
Dissertação para obtenção do grau de Mestre em Matemática pelo
INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA

Variational Texture Atlas Construction and Applications

por
JONAS SOSSAI JÚNIOR

Orientador: LUIZ VELHO

29 de Maio de 2006

Abstract

The use of attribute maps for 3D surfaces is an important issue in Geometric Modeling,
Visualization and Simulation. Attribute maps describe various properties of a surface that
are necessary in applications. In the case of visual properties, such as color, they are also
called texture maps.

Usually, the attribute representation exploits a parametrization g : U ⊂ R2 → R3 of a
surface in order to establish a two-dimensional domain where attributes are defined. However,
it is not possible, in general, to find a global parametrization without introducing distortions
into the mapping. For this reason, an atlas structure is often employed. The atlas is a set of
charts defined by a piecewise parametrization of a surface, which allows local mappings with
small distortion.

Texture atlas generation can be naturally posed as an optimization problem where the goal
is to minimize both the number of charts and the distortion of each mapping. Additionally,
specific applications can impose other restrictions, such as the type of mapping. An example is
3D photography, where the texture comes from images of the object captured by a camera [7].
Consequently, the underlying parametrization is a projective mapping.

In this work, we investigate the problem of building and manipulating texture atlases
for 3D photography applications. We adopt a variational approach to construct an atlas
structure with the desired properties. For this purpose, we have extended the method of
Cohen-Steiner et al. [9] to handle the texture mapping set-up by minimizing distortion error
when creating local charts. We also introduce a new metric tailored to projective maps that
is suited to 3D photography.

Projective texture atlas serves as a foundation for an attribute processing framework. We
exploit it in the user interface of a texture editing/painting interactive application. Other fea-
tures incorporated into this framework include: texture compression, blending and inpainting.
Our current research is looking into using surface attributes like normal and displacement
fields for modeling operations.

Contents

1 Introduction 1
1.1 Motivation and Problem Description . 1
1.2 Related Work . 2
1.3 Contributions . 2
1.4 Structure . 3

2 Variational Partitioning and Texture Atlas Construction 4
2.1 The Variational Scheme for Optimization . 4

2.1.1 Partition and Proxies . 5
2.1.2 Metrics . 5
2.1.3 Optimizing Shape Proxies . 7

2.2 Texture Atlas Construction as an Optimization Problem 9
2.2.1 Chart Formation . 11
2.2.2 Chart Parametrization . 11
2.2.3 Chart Packing . 12

3 Multiresolution Texture Maps from Multiple Views 13
3.1 Definitions and Objects . 14

3.1.1 The Half-Edge Representation . 14
3.1.2 The View Structure . 15
3.1.3 The Face Structure . 15
3.1.4 The Patch Structure . 16

3.2 Visibility Calculation . 16
3.3 Atlas Generation . 18

3.3.1 Distortion-Based Mesh Partitioning Algorithm 19
3.3.2 Parametrization and Discretization 25

3.4 Texture Frequency Analysis . 27
3.4.1 The Laplacian Pyramid . 27
3.4.2 Assigning Frequencies to Faces . 28
3.4.3 Frequency-Based Mesh Partitioning Algorithm 30
3.4.4 Re-discretization . 35

3.5 Packing the Charts . 36
3.6 Improving Continuity . 38

i

CONTENTS ii

4 Attribute Editing 46
4.1 User Interface . 46

4.1.1 The Model View . 47
4.1.2 The Charts View . 49
4.1.3 The Brush Object . 49
4.1.4 Creating a Texture Map . 52
4.1.5 Painting Strokes . 54

4.2 Atlas Construction for Attribute Editing . 57
4.2.1 Mesh Partitioning . 57
4.2.2 Atlas Parametrization . 62

5 Results 64
5.1 Multiresolution Texture Maps from Multiple Views 64
5.2 Construction of Texture Maps Using the Attribute Editing Application . . . 72

6 Conclusions and Future Works 78
6.1 Conclusions . 78
6.2 Future Work . 78

List of Figures

2.1 A partition (left) and its associated proxies (right) (from Cohen-Steiner et
al. [9]). 6

2.2 While L2 (left) and L2,1 (right) give similar results on near-spherical regions,
the results of L2,1 on planar regions are much better (from Cohen-Steiner et
al. [9]). 7

2.3 On the left, the Voronoi Diagram corresponding to 10 randomly selected points
in a square. The dots are the Voronoi generators and the circles are the cen-
troids of the corresponding Voronoi regions. On the right, a 10-point Cen-
troidal Voronoi Diagram. The dots are simultaneously the generators for the
Voronoi Diagram and the centroids of the Voronoi regions. 8

2.4 Mapping Φ from a surface S of R3 to D ⊂ R2 (from Lévy and Mallet [16]). . 10
2.5 Buda model partition (left) and the associated atlas (right) (from Sander et

al. [23]). 10

3.1 Faces of a 3D model (with 10K faces) colored with their best cameras. Camera
positioned at (a) camera 1 (red camera), (b) camera 2 (green camera) and (c)
camera 3 (blue camera). 19

3.2 A 3D model (with 10K faces) constructed from 6 images, whose faces in (a)
were colored with their best cameras. Initially we grow a patch around the
most orthogonal face to each camera (b). We iterate the algorithm (c) until we
cannot add more patches (d). Note the decreasing of the distortion (calculated
from Equation 2.4). 23

3.3 In (a) we show a partition obtained, with 59 patches. Note that the adjacent
patches marked in (b) share the same camera (c), so they have to be merged.
After merging all patches that rely on this case we have a new partition (d),
with 39 patches. 25

3.4 Mapping a texture constructed from a set of 3 images (on the right) on a 3D
model (with 10K faces). Each patch (in this case, 5) is associated to a region
of an input image (on the left). 26

iii

LIST OF FIGURES iv

3.5 On the top two textured models with the patches frontier marked in black. On
the bottom the pyramid level of their triangles (the faces are colored with a
grayscale color, being that the color of the highest frequency pyramid is white
and the color of the lowest frequency pyramid level is black). From the results
we can see that the algorithm captures regions of fine detail (the eyes, nose
and mouth, and some rugosities, of the model on the left, and the eyes, nose,
mouth and the hair of the model on the right). 31

3.6 Running the frequency-based patch splitting process on a model, originally
partitioned in 39 charts, obtaining 70 subcharts (a), each one associated with
a pyramid level (b). The hair have a detail content correspondent to the level
0 of the pyramid (highest frequencies); the ears, mouth, nose and eyes, level
1; and the remaining portion of the face level 3. 35

3.7 Results of the packing algorithm on two models. On the top a model con-
structed from 3 images (a), partitioned in 5 patches (b) and the texture map
obtained by the packing algorithm (c). On the bottom a model constructed
from 6 images (a), partitioned in 39 patches (b) and the texture map obtained
by the packing algorithm (c). 38

3.8 The results of our texture atlas construction applied on a 3D model. The
model is colorized with the patch best camera id (a) and with the texture
obtained from the input images (b). By looking to the forehead of the model
(b) we clearly note that parts of three different input images were used in this
region, and that the light source comes from the left side of the head. 39

3.9 Smoothing the transition between two adjacent 1D functions. 40
3.10 The results when applying Algorithm 17 on a 3D model. In (a) we apply

the texture on the model (note the discontinuities between adjacent patches).
From this atlas we construct a texture map (b) and a texture correction image
(c), which stores the correction factors for the frontier edges (showed in white
color, for visualization purposes). 41

3.11 Applying the diffusion equation on the texture correction image (a), obtaining
in this way a smooth correction image (b) (again, the correction factors are
showed in white color, for visualization purposes). 43

3.12 Mapping a texture on a 3D model without (a) and with (b) color continuity
improvement. 45

4.1 The attribute editing application interface. 47
4.2 The 3D model window of the attribute editing application with the model

being painted and the cameras of each chart. 48
4.3 The toolbar with the atlas information and controls related to cameras (left),

visualization options (center) and charts resolution and texture map construc-
tion controls (right). 49

4.4 The charts window of the attribute editing application, with a stroke painted
on a chart (note the chart boundary in black). 50

4.5 The brush toolbar. 51
4.6 Patterns available in our application. 51

LIST OF FIGURES v

4.7 Strokes painted on a cube with different shapes, size and colors (a), different
values for hardness and alpha (b), different values for the spacing between
brushes (c) and different patterns (d). 53

4.8 The results of painting a pattern on a 3D model. The maximum width of the
charts, given by the user, is 512 (a), 256 (b) and 128 pixels (c). 54

4.9 A user is painting a stroke on a 3D model (a) and the brush stroke center
reaches a pixel on the chart boundary (b). From the center pixel of the stroke
we compute the 3D point corresponding to this point through the parameters
of the camera associated to the patch (c). We project this 3D point using
the parameters of the camera associated to the adjacent patch and place the
brush stroke centered at this position on the adjacent chart (d). In this way
the stroke, which is being painted on different patches, is continuous on the
surface (e). 56

4.10 Applying the mesh partitioning algorithm on a model with 20k faces. On the
top the process of adding patches to the partition . On the bottom a curve
indicating the L2,1 distortion error as a function of the number of iterations.
As expected, a few iterations, for each partition size, suffice to converge the
distortion error . 62

5.1 An illustrative example of how packing efficiency is calculated. The figure
represents the texture domain, where the red circles represent the charts and
the blue squares the bounding boxes. From the figure we conclude that the
intra-rectangle efficiency is π/4 =78% and the inter-rectangle efficiency is 50%. 65

5.2 The two models and their set of images (on the top row the Branca model and
on the bottom row the Human Face model. 66

5.3 Applying the variational map construction pipeline on the Branca model (left)
and on the Human Face model (right). 67

5.4 Applying the variational map construction pipeline without (on the left) and
with (on the right) the texture mapping compression algorithm, on the Hu-
man Face model. The higher frequency regions (eyes, hair, mouth, etc) are
preserved. In this case the reduction of the texture map occupied space is
about 75%. 68

5.5 Photograph of the Branca object (a), the synthetic model by Callieri et al. [7]
(256×512 texture map, 5 charts with optimization, 6 without) (b) and our
synthetic model (220×396 texture map, 5 charts) (c). 70

5.6 Photograph of the Human Face object (a), the synthetic model by Callieri et
al. [7] (512×1024 texture map, 52 charts with optimization, 73 without) (b)
and our synthetic model (750×755 texture map, 39 charts) (c). 71

5.7 Applying the atlas construction on four models, with a user-defined number
of charts of 30 (except for (c), which has 6 charts). 73

5.8 Painting on a Screwdriver model. 75

LIST OF FIGURES vi

5.9 Painting on the Rocker Arm model. We apply the atlas construction algorithm
for 30 charts (a) and paint this mechanical part with a metallic pattern (b).
Since the painting is done directly on the charts, and our distortion metric
minimizes the texture stretch, it is very easy to add details (such as mechanical
specifications and brand) in the internal part of the model (c). 76

5.10 Using the attribute editing application to paint a pattern (a) and circular
strokes (b) in the atlas constructed for the Cube model. Since the L2,1 dis-
tortion for this atlas, as it was seen in Table 5.2, is 0, our application allows
the user to construct a texture map with no stretch (the texture pattern is
mapped in the same pattern on the surface and circular strokes are mapped
in circular strokes, not ellipsoidals, on the surface 77

6.1 On the normal map of a planar surface (a). The attribute editing application
could allow the user to modify the normal map (b) and, in addition, the
geometry of the surface (c). 79

Chapter 1

Introduction

1.1 Motivation and Problem Description

In the quest of reconstruction of high-quality 3D models we have to give attention to both
surface shape and reflectance attributes. Most high-end 3D scanners sample the surface shape
in a very high resolution. Therefore the difference between a good and a bad reconstruction
is how the surface reflectance attributes, such as color, normal, specularity, illumination, etc,
are captured and applied to the model.

Texture mapping, a special case of attribute mapping in which the attributes are visual
properties, is a powerful tool to represent these surface attributes. This technique is based
on mapping an image (either synthesized or digitized) onto a given surface. A mapping is a
function that assigns a pair of coordinates referring to a pixel of the planar image to each
point of a surface.

Mapping a 2D texture onto a 3D surface requires a parametrization of the surface. This
parametrization is obtained easily when the surface is defined parametrically, which is not the
case of the most 3D meshes in Graphics. And even if we had got this global parametrization,
we would have many problems related to distortions, singularities, etc.

A solution to these problems of to use a atlas structure, a set of charts defined by a piece-
wise parametrization. Depending on how these charts are constructed we can obtain local
mappings with small distortion. This approach was explored in several areas in Graphics:
3D photography [7], painting [8], surface representation [23], etc.

The problem of constructing a texture atlas could be set as a optimization problem, where
the goal is to minimize the number of charts of the atlas, as well as the total distortion of
the mapping. There are many works that deal with the problem of finding a good surface
partition. In Sander et al. [23] a greedy face clustering algorithm was proposed, which does
not guarantee an optimal partition. Although Cohen-Steiner et al. [9] base their partition
through clustering too, they seek a partition that minimizes a given error metric (a variational
partition).

Given this idea of constructing a texture atlas using a variational surface partitioning
method, we explore two important areas of computer graphics:

• 3D photography: Following the pipeline described by Callieri et al. [7] we develop
a method for generating multiresolution texture maps from a set of images. With the

1

1.2. RELATED WORK 2

variational scheme we are able construct a well partitioned and low distorted texture
atlas.

• Attribute Editing: The variational scheme help us to created texture atlases to be
used by a intelligent and powerful painting system, which allows the user to manipulate
such as texture atlases.

1.2 Related Work

In our work we have explored many areas in Geometric Modeling and Visualization, like 3D
photography, atlas construction and painting. There has been a significant amount of work
done in these areas.

In 3D photography, some important works were developed for texture reconstruction from
a set of images. One the first works that cover all the process of reconstructing both geometry
and texture from multiple scans was the work of Bernardini et al. [3]. Other important work,
focused in texture map construction, was the work of Callieri et al. [7], which partitions the
surface in regions (in a greedy fashion) and constructs an image-to-surface mapping that
minimizes the final texture map distortion.

The problem of atlas construction has been proposed for different areas. In texture map
construction, the works of Callieri et al. [7] (as we saw in the previous paragraph) and
Maillot et al. [19], which partitions a mesh into charts based on bucketing of face normals,
are distinguished. Sander et al. [23] have used this atlas scheme for surface representation.
Carr and Hart [8], in other way, proposed a multiresolution texture atlas for painting. In
Lévy et al. [17] texture atlases for 3D painting systems are constructed.

One of the most important works in surface painting and texture mapping was developed
by Hanrahan and Haeberli [13]. In this work they have developed a powerful interface for
painting colors, materials and lighting properties. Other important work in this area was
proposed by Carr and Hart [8], in which a multiresolution texture atlas was used for painting.

1.3 Contributions

We propose a method for generating projective texture atlases using the variational surface
partition scheme developed by Cohen-Steiner et al. [9] (different from other approaches that
construct texture atlases in a greedy fashion) and explore applications for 3D photography
and painting. Since our atlases are projective, the underlying parametrization comes from
the projective transformation of a camera associated with each chart.

In 3D photography, based on the pipeline described by Callieri et al. [7], we develop a
method for texture map construction using the variational scheme to generate a projective
texture atlas. In particular, we explore two aspects in the process: construct local charts with
small distortion and similar texture detail content. In addition, we develop a new diffusion
method to eliminate the color discontinuity between adjacent charts due to non-uniform
illumination conditions of the photographs.

In painting we create a attribute processing application that uses projective texture atlas
as foundation. For this application we develop a variational method for constructing a texture

1.4. STRUCTURE 3

atlas and a set of virtual cameras based on the ideas of Cohen-Steiner et al. [9], Sander et
al. [23] and Marinov and Kobbelt [21].

1.4 Structure

We organize the text as follows:

• Chapter 2: Introduces the variational scheme developed by Cohen-Steiner et al. [9]
and explains how texture atlas construction can be posed as an optimization problem.

• Chapter 3: Explains the pipeline for texture atlas construction from multiple views
and the improvements (distortion optimization, texture compression and blending).

• Chapter 4: Gives the structure of the attribute editing application and details the
method for generating virtual cameras in a way to minimize the texture atlas distortion.

• Chapter 5: Shows the main results obtained by the methods developed in this work.

• Chapter 6: Concludes the work and lists possible future research and applications.

Chapter 2

Variational Partitioning and Texture
Atlas Construction

An important step in the texture atlas construction process is how the input surface is
partitioned based on a given metric or criterion. Most of methods use greedy algorithms
[7, 8, 23], and an optimal partition may not be found. A solution to this problem is to use a
variational scheme for partition optimization.

In section 2.1 we will describe the variational method for shape approximation developed
by Cohen-Steiner et al. [9]. Section 2.2 shows how to use this scheme to construct texture
atlases and details the process of constructing them.

2.1 The Variational Scheme for Optimization

The variational calculus is a field of mathematics which deals with functions of functions,
as opposed to ordinary calculus which deals with functions of numbers. Such functionals
can, for example, be formed as integrals involving an unknown function. Our interest is in
extremal functions, those making the functional attain a maximum or minimum value, as
the following examples:

• Find the shortest path between two points in a plane. The variables in this problem
are the curves connecting the two points. The optimal solution is of course the line
segment joining the points.

• Given two cities in a country with lots of hills and valleys, find the shortest road going
from one city to the other. This problem is a generalization of the above, and finding
this shortest road is not as obvious.

• Find a partition of a surface that is optimal in a certain sense, while satisfying some
requirements.

These examples are classical problems of optimization. The last one was explored in sev-
eral research themes in Graphics, most of them establishing approximation as a optimization
problem. Basically an optimal partition, which gives a good approximating surface Y of a

4

2.1. THE VARIATIONAL SCHEME FOR OPTIMIZATION 5

surface X, is the one that minimizes a distance (error) function between the two surfaces.
The most used metric in Graphics to measure distance, the Lp distance, is defined as follows:

Lp(X, Y) =

(
1

|X|

∫∫
x∈X

‖d(x, Y)‖pdx

) 1
p

(2.1)

with:
d(x, Y) = infy∈Y ‖x− y‖

where ‖.‖ is the Euclidean distance, while |.| is the surface area. The difficulty to find this op-
timal partition for surface approximation (it is a NP-hard optimization problem [1]) explains
the frequent use of greedy algorithms, but the restrictions that must be imposed to them
(reduce the number of geometric elements at the expense of an uncontrollable approximation
error or guarantee an approximation error at the expense of an uncontrollable number of
geometric elements) make difficult to find good solutions in an efficient way.

To solve that, Cohen-Steiner et al. [9] proposed a discrete and variational partitioning
method. In the next sections we will give the theoretical concepts and explain the algorithm.

2.1.1 Partition and Proxies

The problem of finding an approximation of a complex surface can be cast as a geometric
partitioning one. The idea is basically to cluster geometric elements, creating in this way a
partition of the surface:

A partition R of a surface S ⊆ R3 is a collection of k regions Ri, such that Ri ∩Rj = �, for

i 6= j, and
⋃k

i=1 Ri = S.

Each region Ri of a partition R can be represented by a proxy:

A proxy of a region Ri is a pair Pi = (Xi, Ni), with Xi the “average” point of the partition
and Ni the “average” normal of the partition.

In other words, a proxy is an linear approximant for the faces of the associated region.
An example of a mesh partition and the proxies associated to the partition can be seen

in Figure 2.1.
As we can see, there many ways for partitioning a surface, but we are interested in a

partition that is optimal in a certain sense. In other words, we are interested in a partition
that minimizes a given error/distance metric. We will define such metrics in the next section.

2.1.2 Metrics

The key to find a partition which gives an optimal approximation of the surface is defining
a good error metric, based on the Equation 2.1. In Cohen-Steiner et al. [9] two metrics were
explored: the L2 metric and the L2,1 metric.

2.1. THE VARIATIONAL SCHEME FOR OPTIMIZATION 6

Figure 2.1: A partition (left) and its associated proxies (right) (from Cohen-Steiner et al. [9]).

The L2 Metric

The L2 or Hausdorff metric is constantly used in Graphics when comparing two surfaces and
can be extended to the definitions explained in the previous section: given a region Ri, its
associated proxy Pi = (Xi, Ni) and denoting Πi (·) the orthogonal projection of the argument
on the “proxy” plane going through Xi and normal to Ni, the L2 metric is then:

L2(Ri, Pi) =

∫∫
x∈Ri

‖x− Πi (x)‖2dx (2.2)

This metric measures the squared error between the region Ri and its associated proxy Pi,
and tries to match the geometry of the surface and its approximant surface. Although it is
very intuitive, it fails to give a unique optimal shape in some cases (hyperbolic surfaces) and
does not take into consideration the normal field. So a new metric that would circumvent
these problems is essential.

The L2,1 Metric

Since normals govern lighting effects, curvature lines and silhouettes, important aspects in
Visualization, a normal-based metric would be more appropriate than a position-based met-
ric. The L2,1 was a solution proposed by Cohen-Steiner et al. [9] to circumvent the problems
of the L2 metric. Given a region Ri, its associated proxy Pi = (Xi, Ni), the metric can be
written as:

L2,1(Ri, Pi) =

∫∫
x∈Ri

‖n(x)−Ni‖2dx (2.3)

Besides improving the visual results of the partition through the use of the normal field,
the L2,1 metric is much simpler and, consequently, much more easier to compute. Another

2.1. THE VARIATIONAL SCHEME FOR OPTIMIZATION 7

important advantage is that convergence is guaranteed for convex objects for this norm [9].
The effects that L2 and L2,1 can have on an approximation can be seen in Figure 2.2.

Figure 2.2: While L2 (left) and L2,1 (right) give similar results on near-spherical regions, the
results of L2,1 on planar regions are much better (from Cohen-Steiner et al. [9]).

2.1.3 Optimizing Shape Proxies

Given the theoretical concepts of the previous sections, an optimal shape approximation can
be defined as follows:

Given an error metric E (either L2 or L2,1), a desired number k of proxies, and an input
surface S, we call optimal shape proxies a set P of proxies Pi associated to the regions Ri of

a partition R of S that minimizes the total distortion:

E(R,P) =
∑

i=1..k

E(Ri, Pi) (2.4)

As cited in Section 2.1, this is a NP-hard optimization problem, and cannot be solved in a
reasonable time. However in Cohen-Steiner et al. [9] the problem was set up as a discrete and
variational shape approximation one, such that discrete clustering algorithms can be used
to achieve very good results. A particular algorithm that was explored in Cohen-Steiner
et al. [9] was the Lloyd’s method Lloyd [18], commonly used to find the centroidal Voronoi
diagram Du [10], because of the similarity of the two problems.

Centroidal Voronoi Diagram

Before giving the concepts and definitions related to the centroidal Voronoi diagram, we have
to explain what a Voronoi diagram is.

Consider an open set Ω ⊆ RN , with |.| the Euclidean norm on RN . Given a set of points
{zi}ki=1 belonging to Ω, the Voronoi region Vi corresponding to the point zi is defined by:

2.1. THE VARIATIONAL SCHEME FOR OPTIMIZATION 8

Vi = {x ∈ Ω : |x− zi| ≤ |x− zj| for j = 1, ..., k} (2.5)

The points {zi}ki=1 are called generators. The set {Vi}ki=1 is called the Voronoi diagram
of Ω and each Vi is referred to as the Voronoi region corresponding to zi.

The Centroidal Voronoi Diagram is a case of the Voronoi Diagram in which the points
zi, that serve as generators for the Voronoi regions Vi, coincide with the mass centroids of
those regions. Figure 2.3 shows an example of a Voronoi Diagram and a Centroidal Voronoi
Diagram.

Figure 2.3: On the left, the Voronoi Diagram corresponding to 10 randomly selected points
in a square. The dots are the Voronoi generators and the circles are the centroids of the
corresponding Voronoi regions. On the right, a 10-point Centroidal Voronoi Diagram. The
dots are simultaneously the generators for the Voronoi Diagram and the centroids of the
Voronoi regions.

One may ask, how does to find a Centroidal Voronoi Diagram? A classical method to
solve this problem is the Lloyd’s method [18]. This method is described in Algorithm 1.

Algorithm 1 Lloyd’s Method

Ω← set of RN

k ← number of Voronoi regions
Vi ← Voronoi region i
zi ← Voronoi region generator i
select an initial set of k generators {zi}ki=1

while for some i, zi 6= Vi centroid do
for i = 1 to k do

Vi ← Voronoi region associated to zi

zi ← Vi centroid
end for

end while

This method aims at minimizing a cost function E based on how tightly each region is
packed. The functional E, defined by a set of n points Xj and k centers ci, is:

2.2. TEXTURE ATLAS CONSTRUCTION AS AN OPTIMIZATION
PROBLEM 9

E =
∑

i∈1...k

∑
Xj∈Ri

‖Xj − ci‖2 (2.6)

Variational Partitioning Algorithm

As we described in previous section, Lloyd’s method can be used to minimize a cost function.
Therefore we can use this method to minimize the distortion Equation 2.4 and find, in this
way, a optimal partition of a surface. Cohen-Steiner et al. [9] developed a extension of this
algorithm to variational partition that include two steps:

1. Geometry Partitioning: Through the use of an error-minimizing region growing
algorithm, construct a partition of the surface (similar to the first step of Algorithm
1).

2. Proxy Fitting: For each region of the partition compute the proxy associated, that
is an extension of the centroid in the original Lloyd’s algorithm (similar to the second
step of Algorithm 1).

As in Lloyd’s method, these two steps are repeated alternately to drive the total energy
down.

2.2 Texture Atlas Construction as an Optimization Prob-

lem

In the previous section we saw that finding a partition of a surface in order to approximate
it can be treated as an optimization problem. The same idea can be used to generate a
good texture atlas of the associated surface, where the goal is to minimize both the number
of charts and the distortion of each mapping (and consequently reduce texture stretch).
Since these problems are examples of optimization, we adopt a variational approach [4] when
creating the charts, in order to obtain a partition that minimizes the aspects cited above,
differently from other approaches [7, 8, 17, 23], which constructs texture atlases in a greedy
fashion.

Mapping is described by Lévy and Mallet [16] as follows: given an open surface S of R3,
a mapping Φ is a bijective transform that maps the surface S to a subset D of R2 (Figure 2.4):

(x, y, z) ∈ S → Φ(x, y, z) =

[
Φu(x, y, z)
Φv(x, y, z)

]
• D is called the parametric (u, v) domain.

• As Φ is, by definition, a one-to-one function, it has an inverse function x = Φ−1, called
a parametrization of the surface:

(u, v) ∈ D → x(u, v) = Φ−1(u, v) =

 x(u, v)
y(u, v)
z(u, v)

2.2. TEXTURE ATLAS CONSTRUCTION AS AN OPTIMIZATION
PROBLEM 10

Mapping a 2D texture into a 3D surface requires a parametrization of the surface. This
parametrization is obtained easily when the surface is defined parametrically, which is not
the case of most 3D meshes in Graphics. And even if we got this global parametrization, is
very hard to find one without introducing distortions into the mapping.

Figure 2.4: Mapping Φ from a surface S of R3 to D ⊂ R2 (from Lévy and Mallet [16]).

A solution to this problem is partitioning the surface into regions in order to construct
a texture atlas, a set of charts defined by a piecewise parametrization of the surface. In our
case, a atlas is composed of a set of charts {Θ1, ..., Θn}, where each chart Θi is an application
from a patch Pi (section of the 3D mesh) to the Euclidean plane. An example of a surface
partition and its associated atlas is showed in Figure 2.5.

Figure 2.5: Buda model partition (left) and the associated atlas (right) (from Sander et
al. [23]).

2.2. TEXTURE ATLAS CONSTRUCTION AS AN OPTIMIZATION
PROBLEM 11

Basically the process of generating a texture atlas can be separated in three steps: Chart
Formation, Chart Parametrization, and Chart Packing.

2.2.1 Chart Formation

The first step in the texture atlas generation process is to partition the mesh into a set
of regions (patches) based on defined constraints: minimize the mapping distortion of each
chart, ensure that all charts are topological disks, produce charts with compact boundaries,
etc. With respect to minimize the mapping distortion of each chart, the difficulty to find this
optimal partition explains the frequent use of greedy algorithms.

Sander et al. [23] apply a greedy face clustering algorithm based on the Lloyd’s method.
In their algorithm, the cost between a face F on a chart C and its adjacent face F ′ that is a
candidate to join C is a measure of geometric distance between the two faces, and difference
in normal between F ′ and the patch normal Nc:

cost(F, F ′) = (1− (Nc −NF ′))(|PF ′ − PF |) (2.7)

where Nc is the normal of the patch containing F (the average normal of all faces already in
the cluster), and PF ′ and PF are the centroid points of F ′ and F .

We can see in Equation 2.7 that the cost function leads in account both planarity (Nc

and NF ′) and compactness (PF ′ and PF) properties, in order to produce patches that can be
treated by existing parameterization methods.

There are two problems in this work:

1. The clustering is done in a greedy fashion. In consequence an optimal partition may
not be found.

2. The patches are created according not only to planarity criteria, but also compactness.
For this reason, a large number of charts is generated, which introduces discontinuities
between adjacent patches when constructing a texture atlas.

To overcome the first restriction, we decided to use in our chart formation algorithm the
method proposed by Cohen-Steiner et al. [9], posing surface partition as an optimization
problem. The second problem is solved with the use of a normal-based metric in the chart
growing process, which tends to produce regions based on planarity criterion only.

2.2.2 Chart Parametrization

One problem that comes when we create a texture atlas is how to define a parametrization
of the patches in order to minimize the texture distortion and stretch. Several schemes
have been proposed to flatten surface regions to establish a parametrization. These schemes
typically obtain the parametrization by minimizing an objective functional.

In our work, the parametrization when constructing a texture atlas for 3D photography
and for an attribute editing application comes for free, since:

• In 3D photography (Chapter 3) the texture comes from images of the object captured by
a camera. Consequently, the underlying parametrization is the inverse of the projective
mapping from the camera positions.

2.2. TEXTURE ATLAS CONSTRUCTION AS AN OPTIMIZATION
PROBLEM 12

• In attribute editing (Chapter 4) we develop a variational approach to construct a col-
lection of virtual cameras, what means that, again, the underlying parametrization is
the is the inverse of the projective mapping from the virtual camera positions.

2.2.3 Chart Packing

Once the model is decomposed into a set of parameterized charts, we can go further to the
last step of texture atlas generation: chart packing. This problem is basically packing the
charts into a rectangular texture image in a way to reduce the occupied space by the texture.
In other words, given a set of charts, how to to find a non-overlapping placement of the charts
in a way that the enclosing rectangle is of minimum area?

Although this is a NP-hard problem [22], good heuristics have been proposed in computer
graphics.

Sander et al. [24] simplify the problem by approximating each chart with the least-area
rectangle that encloses it. Since they consider compactness criterion in the charts construc-
tion, the charts are reasonably shaped, so the rectangle approximation is not too costly.

In Lévy et al. [17] the charts created have border with arbitrary shape (they not consider
compactness criterion in the charts construction). For this reason, they develop a packing
algorithm that packs the charts directly rather than their bounding rectangles, inspired by
how a ’Tetris’ player would operate.

We decide to use a heuristic similar to Sander et al. [24], but simpler, although we do
not consider, like Lévy et al. [17], compactness criterion in our texture atlas construction
algorithm. We adopt a simplified packing algorithm because our atlas construction algorithm
and multiresolution analysis produces relatively small texture maps. We will detail our
packing algorithm in Section 3.5.

Chapter 3

Multiresolution Texture Maps from
Multiple Views

The main problem when constructing a texture mapping on a 3D model from a sequence of
photos (a classical problem of 3D photography) is how to integrate the information available
in the set of input images.

One of the approaches used to solve this problem is to define a partition of the surface in
order to optimize the texture distortion inherent in any image-to-surface mapping. In other
words, a good solution it to use an atlas structure and pose texture atlas generation as an
optimization problem.

In this chapter we present our variational texture atlas approach for texture reconstruc-
tion. Assuming that we have a 3D model (more specifically, a triangle mesh) of an object
and a number of photographs of it (with known camera parameters), we want to reconstruct
a texture for this model with the following requirements:

• reduced texture distortion in the image-to-surface mapping,

• space-optimized texture map based on the frequency analysis of the photographs,

• reduced color discontinuity between image sections that maps on adjacent regions of
the surface.

To achieve these requirements we develop a variational method to construct a texture
atlas, such that each chart of the atlas is associated to a region of an input image through
a parametrization that is a projective mapping, and a diffusion algorithm that uses the
color and illumination difference between images assigned to adjacent charts on the surface
to create smooth transitions between them. The variational method aims to optimize the
surface partitioning problem with respect to a distortion-based and a frequency-based metric.

Our method follows the main steps of the process of generating texture atlases, with some
modifications:

• Surface Partitioning: In this step we partition our input surface into a set of patches.
As we said before, we pose the surface partitioning process as an optimization problem,
in the way that our partitioning algorithm looks for a partition that minimizes the

13

3.1. DEFINITIONS AND OBJECTS 14

number of charts, the atlas mapping distortion (through a distortion-based metric that
takes into consideration the projective mapping of each camera) and the texture map
occupied space (based on a frequency-based metric which uses the frequency content
of the image regions associated to each chart).

• Parameterization, Discretization and Packing: Since we are constructing a tex-
ture atlas from a set of images, the underlying parametrization of each chart is the
projective mapping of the camera associated to that chart. Once the model is decom-
posed into a set of parameterized charts, we can go further to the step of packing them.
We simplify this problem by approximating each chart with the least-area rectangle
that encloses it.

• Texture Color Smoothing: Due to different illumination conditions when capturing
the images of the object, adjacent patches that are mapped to regions from different
input images could present intense color discontinuity. To solve this problem we propose
a new blending method based on the diffusion equation and multigrid computing, which
diffuses the color difference between the frontier zone between adjacent patches on the
whole texture.

In Section 3.1 we show the structures used in the process. Section 3.2 explains how the
visibility of the mesh is determined. In Section 3.3 we describe our variational approach to
construct an atlas structure for this problem. We detail in Section 3.4 our method for texture
compression based on its frequency content. In Section 3.5 we show how to arrange the charts
of the atlas in order to minimize the texture map occupied space. Finally, in Section 3.6 we
describe our diffusion algorithm to improve color the continuity/coherence between adjacent
patches.

3.1 Definitions and Objects

Before giving the details of the process of generating a texture map from multiple views, we
have to explain the main structures used in the process, that also will be used by the methods
described in Chapter 4.

3.1.1 The Half-Edge Representation

A common way to represent a polygon mesh is a shared list of vertices and a list of faces
storing pointers for its vertices. This representation is both convenient and efficient for many
purposes, however in some domains it proves ineffective.

In our case, since we are using face clustering algorithms to construct our texture atlas,
we have to discover adjacency relationships between components of the mesh, such as the
faces and the vertices.

One of the most common of these types of representations is the half-edge data structure
[4]. The structure has this name because instead of storing the edges of the mesh it stores
half-edges. Basically a half-edge is a half of a edge, is directed and the two half-edges that
make up a edge have opposite directions.

3.1. DEFINITIONS AND OBJECTS 15

To achieve the adjacency relationships that we are interested, the edges of a half-edge
structure are augmented with pointers to the two vertices they touch, the two faces bordering
them, and pointers to the edges which emanate from the end points.

Due to its simplicity and minimal storage, we decided to use the half-edge based library
A48, a dynamic adaptive mesh library, developed by Luiz Velho. The library reference can
be accessed in [25].

3.1.2 The View Structure

The view list is a list of the input images with associated camera definitions. Each node of
the structure has the following items.

• Image: Input image.

• Camera: Camera (position, orientation, etc).

• Laplacian pyramid: Laplacian pyramid of the input image (Section 3.4.1).

• Gaussian pyramid: Gaussian pyramid of the input image (Section 3.4.1).

3.1.3 The Face Structure

A face of the mesh has a number of vectors, pointers and parameters. We give below a
description of each one of these items.

• Face: Pointer to the face of the mesh (Section 3.1.1).

• Area: Face area.

• Barycenter: Face barycenter.

• Normal: Face normal.

• Visible cameras list: List of the cameras from which the face can be seen (Section
3.2). Each node of this list has the following parameters:

– View: A pointer to the view (camera and image information) from which the face
is visible.

– Texture coordinates: The coordinates of the projected vertices of the face through
the view camera.

– Angle: the angle of acquisition (computed from the face normal and the view
direction).

• Best view index: Index of the most orthogonal camera from the list of visible cameras
(Section 3.2).

• Patch object: Pointer to the patch that contains the face (see Section 3.3.1).

3.2. VISIBILITY CALCULATION 16

• Subpatch object: Pointer to the subpatch that contains the face (see Section 3.4.3).

• Is seed flag: Flag indicating if the face is a seed of a patch growing iteration (Section
3.3).

• Is patch frontier flag: Flag indicating if the face is on the frontier of its patch (Section
3.3).

• Level: Level in the Laplacian pyramid (Section 3.4.2).

3.1.4 The Patch Structure

A patch is basically a section of the 3D mesh. The items of this structure are detailed below.

• Patch: Pointer to the patch of the mesh (Section 3.1.1).

• Area: Patch area.

• Barycenter: Patch barycenter (average of the triangles’ barycenters).

• Normal: Patch normal (area-weighted average of the triangles’ normals).

• View: Pointer to the associated view.

• Bounding Box 2D (Input Image): Bounding box of the patch, when projected
onto an input image using the parameters of its associated camera.

• Bounding Box 2D (Texture Map): Bounding box of the patch in the texture map.

• Bounding Box 3D: Bounding box of the patch, when transformed using the orthog-
onal transformation from its associated virtual camera (Section 4.2.2).

• Face list: List of the faces of the patch.

• Distortion: Distortion or error of the patch.

• Level: Level in the Laplacian pyramid (Section 3.4.2).

• Subpatches: List of subpatches (Section 3.4.3).

3.2 Visibility Calculation

The first problem that we have to take into consideration in the construction of a texture map
from a set of images is the visibility problem. Of course we should only map a particular
image onto the portions of the object that are visible from its original camera viewpoint.
Unfortunately the OpenGL implementation of projective texture mapping does not perform
such visibility tests (the texture is mapped onto occluded polygons). Therefore visibility is
a problem that we have to solve on our own.

3.2. VISIBILITY CALCULATION 17

There are several algorithms that solve the problem of visibility calculation (z-buffer,
ray tracing, list priority algorithms, area subdivision algorithms, etc). For simplicity and
efficiency purposes, we decide to implement an extension of the z-buffer algorithm, based on
the hardware-accelerated OpenGL rendering.

For each face in the model we determine from which cameras it is visible as follows:

1. Assign each face an index.

2. For each view position, render the original faces of the scene with z-buffering using the
face index as their colors, and assign to the color image the generated images in the
corresponding view.

3. For each face we project its vertices using the model-view and projection matrix of each
view. Then we iterate over the color image pixels in the bounding box of the project
face until its end or find a pixel with the same color of the face.

4. If the color of the face is the present in the bounding box, we save the following
information:

• View: A pointer to the view (camera and image information) from which the face
is visible.

• Texture coordinates: The coordinates of the projected vertices of the face
through the view camera.

• Angle: the angle of acquisition (computed from the face normal and the view
direction).

Although this implementation is very efficient, its accuracy depends on the viewport
resolution of the face size. Due to this fact, multiple faces could be projected onto the same
pixel (very small faces or faces that are on a surface nearly parallel to the view direction).
To solve this problem we adopted one of the solutions given by Callieri et al. [7]: in each
pass render only the faces not yet detected as visible, until all faces are detected as visible.
Algorithm 2 contains the pseudocode of the method.

As consequence, for each face we know the cameras from which it can be seen. Using this
information, we can select the most orthogonal camera (best camera) for each face. Figure
3.1 shows a model obtained from 3 images/cameras, whose faces were colored with their most
orthogonal cameras.

3.3. ATLAS GENERATION 18

Algorithm 2 visibilityCalculation()

F ← set of faces of the mesh
V ← set of views
ni← number of invisible faces
ni←MAXINT
while ni > 0 do

for each face f in F do
for each view v in V do

if f is not visible from v.camera then
b← f bounding box when projected onto v.image using v.camera
for each pixel p in b do

if p.color = f.color then
f.addV iew(v)

end if
end for

end if
end for
update ni

end for
end while

3.3 Atlas Generation

In this section we will describe how we can construct a projective texture atlas from a set of
images in two parts. First we will explain how to partition the mesh into a set of patches
such that the mapping distortion of each chart is minimized. After that we will describe how
to map the charts to the discrete image grid.

In seeking a good texture atlas, the primary objective is to minimize distortion, such that
large texture distances are not mapped onto small surface distances. One strategy is to define
an energy functional for the mapping, and to try too minimize it. In our case, we adopt the
atlas mapping distortion as this energy functional, and a heuristic in order to not produce
too many charts. This functional is calculated from a distortion-based metric, a variation
of the L2,1 metric [9], which allow us to “score” a partition in terms of mapping distortion.
Given a chart Ci and its associated camera ci, with direction ni, the distortion metric D is
then:

D(Ci, ci) =

∫∫
x∈Ci

‖n(x) + ni‖2dx (3.1)

In Section 3.3.1 we describe our variational approach to construct an atlas structure for
this problem and in Section 3.3.2 we detail how the atlas is parametrized.

3.3. ATLAS GENERATION 19

(a) (b) (c)

Figure 3.1: Faces of a 3D model (with 10K faces) colored with their best cameras. Camera
positioned at (a) camera 1 (red camera), (b) camera 2 (green camera) and (c) camera 3 (blue
camera).

3.3.1 Distortion-Based Mesh Partitioning Algorithm

In the problem of constructing a good texture atlas from a set of images we have to give
attention to two problems: minimize the mapping distortion, in order to reduce texture
stretch, and minimize the number of charts, in order to have as large as possible continuous
surface areas which are assigned to the same image.

Mapping distortion, in our problem, can be thought as the sum of the distortion errors
D for all charts of the atlas. In order to reduce texture distortion in the texture-to-surface
mapping (i.e. minimizes texture stretch, such that small texture distances are mapped onto
large surface distances), we have to select, for each face, the best camera (from the set of
cameras, the most orthogonal to the face, the one with the most accurate color information)
to construct the texture map.

The second problem has to be attacked because an excessive number of charts will cause
problems related to color discontinuity between different parts of texture, besides increasing
the texture map occupied space.

Considering this tradeoff between the number of charts and mapping distortion, we de-
velop a method for mesh partitioning, described in Algorithm 3. This algorithm, which is
subdivided in two phases, tries to minimize the texture distortion, until no more patches
could be created due to some heuristics.

In the next sections we will explain each part of the algorithm.

3.3. ATLAS GENERATION 20

Algorithm 3 meshPartitioning()

np← number of patches
np← number of cameras
npb← number of patches before adding a new patch
npb← 0
patchGrowing()
while npb < np do

npb← np
np← patchAdding()
patchGrowing()

end while
patchMerging()

Patch Adding

In order to bootstrap the process we select the low-distorted face to each camera to be a seed
for the patch growing process, based on the distortion-based metric:

D(f, c) = ‖nf + nc‖2 · af (3.2)

where c represents the camera (with directon nc) and f the face (with normal nf and area
af).

For each seed selected we create a patch. After performing the patch growing step, every
face of the mesh belongs to some patch. We will add a new patch to the atlas using the
face with the biggest distortion error D(fi, ci) (Equation 3.2) as seed, what is in spirit a
farthest-point heuristic. We add patches until we cannot select a face whose neighbors best
cameras (those with lower-distortion in respect to the neighbors) are the same of the face,
in order to minimize the number of charts and, consequently, to not produce too small ones.
This method is described in Algorithm 4.

Patch Growing

The problem of patch growing can be stated as follows:

Given n seeds representing the n patches, assign each face to a patch.

From the previous section, we have this n seeds representing the n patches. We partition the
elements by growing all the patches simultaneously using the flooding algorithm proposed
by Cohen-Steiner et al. [9] and the D metric. Just like the Lloyd’s algorithm, we want
to cluster faces with low distortion D(f, c), in order to obtain a better partition (i.e. a
partition with distortion smaller than the previous partition, what shows the variational
nature of the method). The flooding algorithm proposed by Cohen-Steiner et al. [9], with
some modifications, is described as follows:

1. For each seed face f of the patch P , we insert its three adjacent faces in a priority
queue (f1, f2 and f3), with priority equal to the distortion error between these faces

3.3. ATLAS GENERATION 21

Algorithm 4 patchAdding()

F ← set of faces of the mesh
s← new seed face
s← �
e← distortion error
emax ← max distortion error
emax ← 0
for each face f in F do

e← D(f, f.patchObject.camera)
if e > emax then

emax ← e
n← numbers of neighbors faces to f with same best camera
n← 0
for each neighbor face fn to f do

if f.bestCamera = fn.bestCamera then
n← n + 1

end if
end for
if n = 3 then

s← f
end if

end if
end for
if s 6= � then

add a new patch with s as seed
end if
return number of patches

3.3. ATLAS GENERATION 22

and P (D(f1, P.camera), D(f2, P.camera) and D(f3, P.camera)), and a pointer to the
patch they are being tested against (P , in this case).

2. With these 3 · number of patches in the queue, we perform the region-growing process
as follows:

(a) Pop out a face f from the priority queue (the face with smallest distortion will be
popped out).

(b) Check f patch assignment. If it has been assigned to a patch, do nothing and
repeat (a).

(c) Otherwise, assign f to the patch indicated by the pointer (P), insert its adjacent
faces that were not assigned to a patch in the queue, with priority equal to the
distortion error between the adjacent faces and the patch, and a pointer to the
patch P , the same of f .

(d) Repeat (a), (b) and (c) until the queue is empty, what means that each face of
the mesh has been assigned to a patch.

The pseudocode to this algorithm is described in Algorithm 5.

Algorithm 5 patchGrowing()

Q← priority queue
P ← list of patches
for each patch p in P do

f ← p.seedFace
for each neighbor face fn to f do

Q.push(p, fn, D(fn, p.camera)) {Equation 3.2}
end for

end for
while Q 6= � do

(p, f)← Q.pop()
if f.patchObject = � then

p.faceList.add(f)
f.patchObject← p
for each neighbor face fn to f do

Q.push(p, fn, D(fn, p.camera)) {Equation 3.2}
end for

end if
end while

We repeat alternately the phases patchAdding() (Algorithm 4) and patchGrowing() (Al-
gorithm 5) of the Algorithm 3 until we cannot add a new patch to the partition (from the
restrictions that we have imposed). An example of this process is showed in Figure 3.2, in
which the model was obtained from 6 images/cameras.

3.3. ATLAS GENERATION 23

(a) Best camera (b) 6 patches
(distortion = 6065.43)

(c) 30 patches (d) 59 patches
(distortion = 4859.82) (distortion = 4680.54)

Figure 3.2: A 3D model (with 10K faces) constructed from 6 images, whose faces in (a) were
colored with their best cameras. Initially we grow a patch around the most orthogonal face
to each camera (b). We iterate the algorithm (c) until we cannot add more patches (d). Note
the decreasing of the distortion (calculated from Equation 2.4).

3.3. ATLAS GENERATION 24

Patch Merging

Even so we worried about the tradeoff between the number of charts and mapping distortion
in the patch adding/growing process, still it is possible to reduce the number of patches,
without increasing the mapping distortion.

This reduction is possible because the resulting partition may contains adjacent patches
with the same view (camera/image information). Since two adjacent patches with the same
view have the same projective mapping, the distortion in the texture-to-surface-mapping
after a patch merge operation will be the same as before.

Following this idea we develop a method to reduce the number of patches (and conse-
quently the texture map size and color discontinuity) base on the adjacency information of
each patch. The algorithm is described in Algorithm 7.

Algorithm 6 patchMerge(p1, p2)

for each face f in p2 do
p1.faceList.add(f)
f.patchObject← p1

end for
P.remove(p2)

Algorithm 7 patchMerging()

P ← list of patches
for each patch p in P do

for each neighbor patch pn to p do
if p.view = pn.view then

patchMerge(p, pn) {Algorithm 6}
update patch neighbors

end if
end for

end for

Figure 3.3 shows the effects of the merging operation.

3.3. ATLAS GENERATION 25

(a) (b)

(d) (c)

Figure 3.3: In (a) we show a partition obtained, with 59 patches. Note that the adjacent
patches marked in (b) share the same camera (c), so they have to be merged. After merging
all patches that rely on this case we have a new partition (d), with 39 patches.

3.3.2 Parametrization and Discretization

From the previous sections we have concluded the first step in the texture atlas construction
process: partition the mesh in small number of patches, based on the distortion in the

3.3. ATLAS GENERATION 26

texture-to-surface-mapping, such that each patch is associated to a image that contains the
most accurate color information for that patch.

As we have explained in Section 2.2.2, the second step (chart parametrization) is not a
problem for us, since the underlying parametrization of each patch is the inverse of the pro-
jective mapping of the patch camera. Hence, each projected patch is used as the parametriza-
tion domain for the surface patch. The mapping between each parametrization domain and
surface domain is defined using discrete sets of values: the projected patch and mesh coor-
dinates. This discretization is done by projecting each patch boundary onto its associated
input image, using the parameters of its associated camera.

Is this way, we have partitioned our mesh into a set of patches such that each patch is
associated to a region of an input image (obtained by projecting the 3D points of the patch
vertices onto the image using the associated camera parameters) through a parametrization
that is an inverse of a projective mapping, i.e, we have constructed a texture atlas. Figure
3.4 shows an example of mapping a texture atlas on a 3D model.

Figure 3.4: Mapping a texture constructed from a set of 3 images (on the right) on a 3D
model (with 10K faces). Each patch (in this case, 5) is associated to a region of an input
image (on the left).

In the next sections we will describe the optimizations developed for this pipeline (texture
compression (Section 3.4) and blending (Section 3.6)) and how we pack our charts (Section
3.5) in a texture map.

3.4. TEXTURE FREQUENCY ANALYSIS 27

3.4 Texture Frequency Analysis

Image resolution can be understood as its capacity to discriminate information of a given
object. Although an image has a fixed resolution, the object texture contains different levels
of detail (or frequencies). For this reason, an image has the potential disadvantage of using
space inefficiently. Portions comprising low spatial frequency content require as much space
as those with much higher spatial frequencies. As an example, faces of humans need high
resolution details in areas such as eyes and mouth, while the appearance of other regions can
be captured with fewer pixels per unit area.

This wasted space may not matter to applications which rely primarily on small, repeated
textures to enhance the appearance of a simple environment. However, the production of
realistic environments often requires the use of large textures which are uniquely applied to
individual surfaces.

The texture frequency analysis for space optimization was explored in several works. In
Hunter and Cohen [14] a frequency map for the image is computed using Fourier analysis.
They partition the image based on this analysis to equalize the frequency content of each
partition. Although this method is effective and simple, the resulting optimized image con-
tains discontinuities. This idea is better explored in Balmelli et al. [2], in which the Fourier
analysis is replaced by a wavelet analysis. From this analysis, a warping function is generated
to uniformly distribute frequency content of the image.

Motivated by these works and by Carr and Hart [8], in which a multiresolution texture
atlas is constructed from a texture frequency analysis, we develop a method to construct a
multiresolution texture map based on frequency analysis using a Laplacian pyramid.

3.4.1 The Laplacian Pyramid

The Laplacian pyramid has been developed by Burt and Adelson [6] in order to compress
images. It is basically a decomposition of the original image into a hierarchy of images such
that each level corresponds to a different band of image frequencies.

The first step for generating a Laplacian pyramid is to low-pass filter the original image
G0 to obtain G1 using a gaussian filter. G1 is a reduced version of G0 because the resolution
was decreased. We then low-pass filter G1 to obtain G2 using the same filter, and so on. This
sequence of images G0, G0, ..., Gn (where n is the number of levels of the pyramid) is called
the Gaussian pyramid of G0.

Each level of the Gaussian pyramid is obtained using the operation REDUCE :

Gl = REDUCE[Gl−1] (3.3)

which means,

Gl(i, j) =
2∑

m=−2

2∑
n=−2

w(m, n)Gl−1(2i + m, 2j + n) (3.4)

A 5×5 Gaussian mask w (convolution kernel) is used to generate each pyramid level.
When we apply a Gaussian filter on an image, the high-frequency components are discarded.

3.4. TEXTURE FREQUENCY ANALYSIS 28

One way to save and separate these components is to subtract the Gaussian image from the
original. This is called the Laplacian pyramid of an image.

To obtain the Laplacian pyramid, each image of a level is subtracted from the image of
the level above. Due to the different image sizes, it is necessary to create interpolated images
before this subtraction. This interpolation can be done in the process called EXPAND, the
inverse of REDUCE. Being Gl,k a image obtained when we expand Gl k times:

Gl,0 = Gl (3.5)

and, for k > 0,

Gl,k = EXPAND[Gl,k−1] (3.6)

which means,

Gl,k(i, j) = 4
2∑

m=−2

2∑
n=−2

w(m, n)Gl,k−1(
i−m

2
,
j − n

2
) (3.7)

Only terms for which (im)/2 and (jn)/2 are integers are included in this sum.

The Laplacian pyramid is a sequence of error images L0, L0, ..., Ln . Each one is the
difference between two levels of the Gaussian pyramid. Thus, for 0 < l < n,

Ll = Gl − EXPAND[Gl+1] = Gl −Gl+1,1 (3.8)

The original image can be recovered exactly by expanding and summing all the levels
of the Laplacian pyramid, what means that the laplacian pyramid breaks up an image into
components based on spatial frequency. The top level of the pyramid will contain the highest
spatial frequency components, i.e, the edgiest of the edges. The bottom level will contain
the lowest spatial frequency components. The intermediate levels contain features gradually
decreasing in spatial frequency from high to low.

3.4.2 Assigning Frequencies to Faces

If we want to eliminate the wasted space caused by low spatial frequency regions in our
texture map, we have to analyze the frequency content of each chart of our atlas and to
partition them in regions of similar detail information.

In Section 3.3 we use a projective mapping distortion metric to create the charts. Now,
since we are interested in splitting our patches based on a frequency content metric, we have
to add a new attribute to the faces: its frequency content (level in the Laplacian pyramid).

The first level of the Laplacian pyramid contains the most high frequency regions of the
input image, so if the texture region of a face has a very sharp edge, we will assign this level
to the face. Naturally we will assign lower levels to faces whose texture region have little
detail information. But how to decide which level?

Following Mallat and Zhong [20], in which Mallat has proven that the local image regu-
larity is characterized by the decay of the wavelet transform amplitude across scales, we have
a way to decide which level of the Laplacian pyramid assign to each face.

3.4. TEXTURE FREQUENCY ANALYSIS 29

For each face of the mesh, we project its coordinates onto the images of different levels
of the Laplacian pyramid (constructed from the input image linked with the patch), using
the camera parameters of the associated patch. For each projected region, we compute the
“detail content” through the function described in Algorithm 8

Algorithm 8 faceDetail(face, pyramidLevel)

factor ← 2pyramidLevel

b← face bounding box when projected onto face.patchObject.view.image
b← (b− 0.5 · (factor − 1))/factor {triangle area coherence across scales}
v1← face.v1 projection onto face.patchObject.view.image
v2← face.v2 projection onto face.patchObject.view.image
v3← face.v3 projection onto face.patchObject.view.image
v1← (v1− 0.5 · (factor − 1))/factor
v2← (v2− 0.5 · (factor − 1))/factor
v3← (v3− 0.5 · (factor − 1))/factor
im← face.patchObject.view.laplacianImage(pyramidLevel)
l← list of “detail content” of the face
for each pixel p in b do

if pointInsideTriangle(p, v1, v2, v3) then
l.add(im.getLuminance(p))

end if
end for
return MAX VALUE(l)

A decay of the detail content between the level k − 1 and k means that from the level
k we are losing frequency content of the projected region. Therefore the Gaussian image
corresponding to level k − 1 of our Gaussian pyramid is the last image that preserves the
detail content of the face projected region. In this way, the level that we have to associate
to that face is level k − 1. The method can be seen in Algorithm 9.

Figure 3.5 shows a example of running this algorithm on two models.
From this we assign a pyramid level to each patch. Given a patch P , its pyramid level

LP is the integer value closest to the area-weighted average of the face’s levels (l is the level
of a face f and s is its area):

LP '
∑

fi∈P si · li∑
fi∈P si

(3.9)

3.4. TEXTURE FREQUENCY ANALYSIS 30

Algorithm 9 assignFrequenciesToFaces()

F ← set of faces of the mesh
nl← numbers of levels of the Laplacian pyramid
for each face f in F do

df ← detail content of f
df ← 0
dauxf ← detail content of f
dauxf ← 0
for i = 1 to nl do

dauxf ← faceDetail(f, i) {Algorithm 8}
if dauxf < df ,{a decay of the detail content} then

f.level← i
break

end if
df ← dauxf

end for
end for

3.4.3 Frequency-Based Mesh Partitioning Algorithm

After Section 3.3 we had a atlas structure such that each chart of the atlas is associated to
a section of one input image, in a way that the texture map distortion is minimized.

Given the fundamentals of the previous section, we develop an algorithm to partition
the charts based on the frequency content of the their faces. Our atlas structure is then
modified: each chart of the atlas is associated to a section and a pyramid level of one input
image. However, the atlas distortion does not increase or decrease, since in this process we
do not change the face-to-camera mapping.

We apply the same algorithm developed in Section 3.3.1 with two modifications:

• Instead of a mapping distortion-based metric, we now use a texture frequency-based
metric.

• We apply the process in each patch separately, since the results obtained when using a
mapping distortion based metric are more relevant to our problem.

In this way, for each patch we create a set of “subpatches”, clusters of faces with similar
frequency content. This algorithm is showed in Algorithm 10.

From Figure 3.5 we can see that the noise of the input images is captured by Algorithm 9.
To Algorithm 10 obtain better results, it is preferred to have as large as possible continuous
surface areas with the same detail content. To achieve this, we adopt an iterative greedy
approach: for each face, we assign to that face a higher detail pyramid level if that minimizes
the number of different levels adjacent to that face.

Subpatch Adding

We will add subpatches based on the existence of groups of adjacent faces with the same
pyramid level (detail content) through the use of a frequency-based metric:

3.4. TEXTURE FREQUENCY ANALYSIS 31

Figure 3.5: On the top two textured models with the patches frontier marked in black. On
the bottom the pyramid level of their triangles (the faces are colored with a grayscale color,
being that the color of the highest frequency pyramid is white and the color of the lowest
frequency pyramid level is black). From the results we can see that the algorithm captures
regions of fine detail (the eyes, nose and mouth, and some rugosities, of the model on the
left, and the eyes, nose, mouth and the hair of the model on the right).

3.4. TEXTURE FREQUENCY ANALYSIS 32

Algorithm 10 patchSplitting(p)

np← number of subpatches
np← 1 {we create a subpatch with the same data of patch p}
while np is increasing do

np← subpatchAdding(p)
subpatchGrowing(p)

end while
subpatchMerging(p)

F(f, l) = ‖l − lf‖ · af (3.10)

where l represents the level of the patch and f the face (with level lf and area af).
Following Algorithm 4, we will add a new subpatch using the face with the biggest frequency-
based error F(fi, li) (Equation 3.10) as seed, if the levels of the face neighbors are the same
of the face. We describe this method in Algorithm 11.

Subpatch Growing

We use the same flooding algorithm for patch growing of Section 3.3.1, but with the frequency-
based metric from Equation 3.10. In fact, for the growing process we have to add the term
MINFLOAT · (l + lf) to this metric. This is necessary because if a pyramid level k is
assigned to a face f , and in the growing process this face is reached by the subpatch sp1,
pyramid level k + 1, and by the subpatch sp2, pyramid level k − 1, the absolute difference
between the levels of the patches and the face level is the same (1), but sp2 has priority over
sp1, since it preserves the detail content of f

We detail this variation of Algorithm 5 in Algorithm 12.
The phases subpatchAdding(p) and subpatchGrowing(p) of the Algorithm 10 are repeated

alternately using this frequency-based metric, until we cannot split more the patch. The result
of this is a clustering of faces with similar frequency content.

3.4. TEXTURE FREQUENCY ANALYSIS 33

Algorithm 11 subpatchAdding(p)

s← new seed face
s← �
e← frequency error
emax ← max frequency error
emax ← 0
for each face f in p.subpatches do

e← F(f, f.patchObject.level)
if e > emax then

emax ← e
n← numbers of neighbors faces to f with same level
n← 0
for each neighbor face fn to f do

if f.level = fn.level then
n← n + 1

end if
end for
if n = 3 then

s← f
end if

end if
end for
if s 6= � then

add a new subpatch with s as seed
end if
return number of subpatches

3.4. TEXTURE FREQUENCY ANALYSIS 34

Algorithm 12 subpatchGrowing(p)

Q← priority queue
P ← list of subpatches
for each subpatch sp in p.subpatches do

f ← sp.seedFace
for each neighbor face fn to f do

Q.push(sp, fn, F (fn, sp.level)) {Equation 3.10}
end for

end for
while Q 6= � do

(sp, f)← Q.pop()
if f.subpatchObject = � then

sp.faceList.add(f)
f.subpatchObject← sp
for each neighbor face fn to f do

Q.push(sp, fn, F (fn, sp.level)) {Equation 3.10}
end for

end if
end while

Subpatch Merging

At the end of the patch splitting process we have a similar problem to that found in Section
3.3.1: a splitted patch may contains adjacent subpatches with the same level in the pyramid.
Since two subpatches with this peculiarity are linked to the same image in the pyramid,
we should merge them in order to decrease the occupied space in the texture map. The
algorithm, a variation of Algorithm 7, is described in Algorithm 13.

Algorithm 13 subpatchMerging(p)

for each subpatch sp in p do
for each neighbor subpatch spn to sp do

if sp.level = spn.level then
patchMerge(sp, spn) {Algorithm 6}
update subpatch neighbors

end if
end for

end for

In Figure 3.6 we show a example of the results of the frequency-based patch splitting
process.

3.4. TEXTURE FREQUENCY ANALYSIS 35

(a) (b)

Figure 3.6: Running the frequency-based patch splitting process on a model, originally par-
titioned in 39 charts, obtaining 70 subcharts (a), each one associated with a pyramid level
(b). The hair have a detail content correspondent to the level 0 of the pyramid (highest
frequencies); the ears, mouth, nose and eyes, level 1; and the remaining portion of the face
level 3.

3.4.4 Re-discretization

As we saw in Section 3.3.2, the parametrization of each patch is the inverse of the projec-
tive mapping of the patch camera, and the discretization is done by projecting each patch
boundary onto its associated input image, using the parameters of its associated camera.

Based on the results of the previous section we have to re-discretize our new patches
(obtained from the subpatches created), since we have associated to each subpatch an image
obtained from the gaussian pyramid of the input image associated to the original patch. This
re-discretization is detailed in Algorithm 14.

Therefore we now have partitioned our mesh in a set of patches such that each patch is
associated to a region and pyramid level of an input image through a parametrization that
is a inverse of a projective mapping.

3.5. PACKING THE CHARTS 36

Algorithm 14 atlasRediscretization()

P ← list of patches
for each patch p in P do

for each subpatch sp in p do
factor ← 2sp.level

sp.image ← getGaussianImage(p.image, sp.level) {gaussian image at level sp.level
from the gaussian pyramid of p.image}
sp.bBox.x← ((sp.bBox.x− 0.5 · (factor − 1))/factor
sp.bBox.y ← ((sp.bBox.y − 0.5 · (factor − 1))/factor
sp.bBox.width← ((sp.bBox.width− 0.5 · (factor − 1))/factor
sp.bBox.height← ((sp.bBox.height− 0.5 · (factor − 1))/factor

end for
end for

3.5 Packing the Charts

At this point of the process we have a number of patches, each one linked to a section
of one input image and a level of the image gaussian pyramid (texture patch) through a
parametrization that is a inverse of a projective mapping. These texture patches need to be
packed efficiently into a single texture map. But how?

As we have seen in Section 2.2.3, we adopt a heuristic similar to Sander et al. [24], but
simpler. Basically, for each chart, we clip the bounding box of the texture patch (by projecting
the 3D points of the patch vertices onto the image using the associated camera parameters).
In fact we do not clip the exactly bounding box of the texture patch, but a bigger bounding
box, to avoid rendering artifacts at chart boundaries, such as discontinuities. If the lower
left coordinate of the texture patch bounding box is (xl, yb) and upper right coordinate is
(xr, yt), we clip the texture patch bounding box defined by the coordinates (xl − 1, yb − 1)
and (xr + 1, yt + 1).

We then sort these clipped regions by height and, in order of decreasing height, place
them sequentially into rows until a inserted region exceeds the texture map width (given by
the user). If this happens, we place this region just above the first region of the previous
row, until all texture patches have been inserted in the texture map.

The algorithm is described in Algorithm 15.
After this packing process we have a texture map. Therefore we have to update the

parametrization of each chart, because the parametric domain have changed to the texture
map image. This re-parametrization is done by simply verifying the correspondences between
the projected patch onto the input image (and image level in the Gaussian pyramid) and the
texture map image. Figure 3.7 shows an example the packing.

3.5. PACKING THE CHARTS 37

Algorithm 15 patchPacking(width)

P ← set of patches
Ps ← set of patches, ordered by texture patch box height
x ← left coordinate, in the texture map, of the next texture patch bounding box to be
placed
y ← lower coordinate, in the texture map, of the next texture patch bounding box to be
placed
pp ← pointer to the last patch inserted
pf ← pointer to the first patch inserted in the previous line
Ps ← sortPatchesByHeight()
x← 0
y ← 0
for each patch p in Ps do

if p is the first patch of Ps then
pp ← p
pf ← p

end if
p.bBoxTexture← (x, y, p.bBox.width, p.bBox.height)
placePatchOnTheTextureMap(p, x, y)
if x + p.bBox.width > width then

x← 0
y ← y + pf .bBox.height
pf ← p

else
x← x + pp.bBox.width

end if
pp ← p

end for

3.6. IMPROVING CONTINUITY 38

(a) Input images (b) Mesh partition (c) Texture map
(3 images) (5 patches) (dimensions=220×396)

(a) Input images (b) Mesh partition (c) Texture map
(6 images) (39 patches) (dimensions=750×755)

Figure 3.7: Results of the packing algorithm on two models. On the top a model constructed
from 3 images (a), partitioned in 5 patches (b) and the texture map obtained by the packing
algorithm (c). On the bottom a model constructed from 6 images (a), partitioned in 39
patches (b) and the texture map obtained by the packing algorithm (c).

3.6 Improving Continuity

One of the major problems when we construct a texture map using different input images is
the color discontinuity between the parts of the mapped texture, as shown in Figure 3.8. This
discontinuity is caused by different illumination conditions while capturing the images, since
the pictures are taken by modifying the relative position between the camera/light source
and the object.

Several approaches have been presented to reduce this effect. In our case the natural
solution is to use the color and illumination difference between images assigned to adjacent
patches. But how to combine this information in order to create smooth transitions between
them?

3.6. IMPROVING CONTINUITY 39

(a) (b)

Figure 3.8: The results of our texture atlas construction applied on a 3D model. The model
is colorized with the patch best camera id (a) and with the texture obtained from the input
images (b). By looking to the forehead of the model (b) we clearly note that parts of three
different input images were used in this region, and that the light source comes from the left
side of the head.

A solution to this problem, as proposed by Callieri et al. [7], could be reached using the
redundant information of the texture map. In their work the frontier faces (those that are on
the frontier between adjacent patches) are represented in a redundant manner in the texture
map, what means that if a face f is on the frontier between two patches p1 and p2, the
texture map will store the color information of the face when using the mapping to image i1
assigned to patch p1 and the color information of the face when using the mapping to image
i2 assigned to patch p2.

Although we do not represent any faces of our model in a redundant manner in the texture
map (since our texture atlas is obtained from a partition of the model, and consequently, no
face belongs to more than one patch), we know that two faces share a common edge. So, if a
edge is shared by two frontier faces f1 and f2, which belongs to patch p1 and p2, respectively,
this edge is mapped with color and illumination information of the face f1 when using the
mapping to image i1 assigned to patch p1 and color and illumination information of the face
f2 when using the mapping to image i2 assigned to patch p2.

Figure 3.9 illustrates, for the 1D case (axis x represents the pixels and axis y the colors),
how this redundant information could be used to smooth the transition between two adjacent
regions. In Figure 3.9.a we can see a example of the discontinuity of two functions, which
happens in the point xf . The point xf , when assigned to the function f1, has color c1, and
when assigned to the function f2, has color c2. Let c1,2 be the mean color of c1 and c2. So
the difference c1,2− c1 is how do we have to change the color of xf when it is assigned to the

3.6. IMPROVING CONTINUITY 40

Figure 3.9: Smoothing the transition between two adjacent 1D functions.

function f1 to became compatible with color c2. In the same way, the difference c1,2 − c2 is
how do we have to change the color of xf when it is assigned to the function f2 to became
compatible with color c1 (Figure 3.9.b). Once these “correction factors” have been calculated,
we can propagate this difference in order to create a smooth transition between the functions
(dashed line in Figure 3.9.c).

In our case, as mentioned before, each frontier edge is projected twice in the texture map.
For each one of these edges we compute the color difference between corresponding texels in
the two projected lines (correction factors), in order to create a signed RGB image (called
“texture correction image”). These correction factors are calculated as exposed in Algorithm
17.

Algorithm 16 paintFrontierEdge(o1, d1, o2, d2)

t1 ← 0
t2 ← 0
edgeSize1 ← ‖d1 − o1‖
edgeSize2 ← ‖d2 − o2‖
while t1 ≤ 1 do

color1 ← color of a pixel in the edge1

color2 ← color of a pixel in the edge2

correctionColor ← correction color of a pixel in the edge1

color1 ← textureMap.getColor(o1 + t1 · (d1 − o1))
color2 ← textureMap.getColor(o2 + t2 · (d2 − o2))
correctionColor ← color1+color2

2
− color1

colorCorrectionImage.setColor(o1 + t1 · (d1 − o1), correctionColor)
t1 ← t1 + 1/edgeSize1

t2 ← t2 + 1/edgeSize2

end while

This process applied on a atlas is shown in Figure 3.10.
With these factors calculated we are able to perform a diffusion of them over the whole

texture space. But how to do that in a efficiency and accurate way?
This is a classical problem of sparse interpolation, and we have studied two methods to

solve it: Filtering and Diffusion.
Interpolation using filters is solved basically placing smoothing filters on the points to be

3.6. IMPROVING CONTINUITY 41

Algorithm 17 edgesDifference()

F ← set of frontier faces
for each face f in F do

for each edge e of f do
if e is a frontier edge then

v2 ← first vertex of e
v2 ← second vertex of e
fn ← face that shares e with f
Pf ← f associated patch
Pfn ← fn associated patch
o1 ← projection of v1 onto the texture map, through Pf camera
d1 ← projection of v2 onto the texture map, through Pf camera
o2 ← projection of v1 onto the texture map, through Pfn camera
d2 ← projection of v2 onto the texture map, through Pfn camera
paintFrontierEdge(o1, d1, o2, d2) {Algorithm 16}

end if
end for

end for

(a) Model with texture (b) Texture map (c) Texture correction image
(5 charts) (dimensions=220×396)

Figure 3.10: The results when applying Algorithm 17 on a 3D model. In (a) we apply the
texture on the model (note the discontinuities between adjacent patches). From this atlas we
construct a texture map (b) and a texture correction image (c), which stores the correction
factors for the frontier edges (showed in white color, for visualization purposes).

3.6. IMPROVING CONTINUITY 42

interpolated and convolving these filters. The Gaussian smoothing filter is a 2D convolution
operator that is used to smooth images. In our case we want to use this operator only on the
texels of the frontier edges of the texture correction image. Because these samples are not
evenly spaced, this convolution cannot be done. The solution is to do a multiscale analysis
using the wavelet transform [20]. A wavelet transform with a gaussian wavelet function is
applied across each scale of the texture correction image. From the lower scale transformed
image we compute the missing values compared to the higher scale transformed image, and
add these values to the higher scale transformed image. This process is done until we get
the first scale. The result is a smooth interpolation of the texels of the frontier edges of the
texture correction image.

This idea was used by Callieri et al. [7], based on the pull-push interpolation method
developed by Gortler et al. [12]. Based on the two dimensional scattered data approximation
algorithm described by Burt and Adelson [6], which uses the low resolution data to fill in the
void texels at higher resolutions.

Basically the method developed by Gortler et al. [12] has two phases:

• Pull : In this phase a sequence of lower resolution images is constructed from the
texture correction image. Note that the size of the missing region is reduced in the
reduced pyramid levels.

• Push : In this phase, information from each lower resolution grid is combined with
the next higher resolution grid, filling in the void texels while not unduly blurring the
higher resolution information already computed.

The process is iterated until all the texels of the texture correction image are filled.
We developed a method which produces smoother results, since it is not based on inter-

polation. We consider the sparse points (correction factors) as heat sources and solve the
problem applying the heat (diffusion) equation on each heat source, which represents the
flow of heat from that source.

This solution was also explored for constructing elevation models from level sets [11] and
approximating lighting on 2D drawings [15]. The correction factors between frontier edges
remain fixed; unknown values texels are relaxed across the image. Given a field of values
P (texture correction image) to be interpolated, and a velocity field V , initially zero, each
iteration is computed by:

V ′
i,j = d · Vi,j + k · (Pi−1,j + Pi+1,j + Pi,j−1 + Pi,j+1 + 4 · Pi,j) (3.11)

Pi,j = Pi,j + V ′
i,j (3.12)

As experienced by Johnston [15], values d = 0.97 and k = 0.4375 minimize the time of
convergence. Iterations are run until the mean-squared velocity per pixel reaches a error
tolerance (equilibrium temperature).

Figure 3.11 shows the results of such method executed on a texture correction image. Note
that we use the diffusion equation on each chart separately, since we are only considering the
influence of adjacent patches to smooth the interior area of a chart.

The problem of this method is that the diffusion equation takes a long time to converge.
A solution to this efficiency problem is to explore the idea of the multiscale analysis explained
above, or more specifically, a multigrid solver (detailed in the tutorial by Briggs [5]).

3.6. IMPROVING CONTINUITY 43

(a) Texture correction image (b) Smooth correction image

Figure 3.11: Applying the diffusion equation on the texture correction image (a), obtaining
in this way a smooth correction image (b) (again, the correction factors are showed in white
color, for visualization purposes).

Multigrid methods are very used to solve partial differential equations on a 2D grid. For
this reason, it is totally suitable for our problem, since we want to solve a diffusion equation
on a 2D grid. The method has two operators: restriction and prolongation, equivalents to
the pull an push operators described before.

In multigrid computing, restriction and prolongation operators are used in any order of
the process (Full Multigrid). Because of the simplicity of diffusion equation, we use these
operators just like the pull and push operators by Gortler et al. [12]:

• Restricting : A sequence of lower resolution images is constructed from the texture
correction image. Note that the size of the missing region is reduced in the reduced
pyramid levels.

• Prolongating : Information from each lower resolution image, after applying the
diffusion equation (Equations 3.11 and 3.12) until convergence, is combined with the
next higher resolution image, filling in the void texels. Then we apply the diffusion
equation until convergence on this higher resolution image.

This algorithm is detailed in Algorithm 18. As mentioned before we apply the diffusion
equation on each chart separately, since we are only considering the influence of adjacent
patches to smooth the interior area of a chart.

This method is very efficient since the time of convergence of the diffusion equation
depends on the size of the missing region and the size of the image. The size of this missing

3.6. IMPROVING CONTINUITY 44

Algorithm 18 smoothChart(p)

IR← set of images generated in the restriction phase
IP ← set of images generated in the prolongation phase
IR0 ← cropImage(p.bBoxTexture)
w ← p.bBoxTexture.width
h← p.bBoxTexture.height
k ← 1
while w ≥ 2 and h ≥ 2 do

IRk ← downsample(IRk−1)
w ← w/2
h← h/2
k ← k + 1

end while
for l = k − 1 to 0 do do

IPl ← upsample(IPl+1)
IPl.copyFactors(IRl)
IPl.applyDiffusionEquation()

end for
return IP0

region in the higher image, for example, is very small compared to if we did not have used
the multigrid method.

After doing that, we add this smooth correction image to the previously calculated texture
map, obtaining a uniform and continuous texture map (Figure 3.12).

3.6. IMPROVING CONTINUITY 45

(a) (b)

Figure 3.12: Mapping a texture on a 3D model without (a) and with (b) color continuity
improvement.

Chapter 4

Attribute Editing

A attribute editing system makes it possible to enhance the visual appearance of a 3D model
by interactively adding details to it (colors, normals, etc). 3D texture painting was first
introduced by Hanrahan and Haeberli [13]. In this work they developed a surface painting
system that allows the user to directly paint on 3D shapes (i.e. paint its vertices). However,
in most cases, the desired precision for the colors is finer than the geometric details of the
model. The solution to this problem is to use texture-mapping, but some problems could
occur when using this technique:

• A parametrization of the surface (or inversely, a surface-to-texture mapping) is required,
but finding a good surface parameterization is not trivial.

• The brush strokes are often distorted because of the underlying surface-to-texture map-
ping. If an area of the 3D surface is stretched out in the texture map, the brush stroke
becomes small in the 3D view, and vice-versa. If an area of the 3D surface is split in
the texture map, the discontinuity becomes visible in the painted model.

Based on these requirements (minimize texture stretch and provide a good parametriza-
tion of the surface), we conclude that projective texture atlas serves as the foundation for
an attribute processing framework. In the case of visual properties, such as color, a texture
atlas is an efficient color representation for painting systems.

Following these ideas we develop a texture painting/editing application that allows the
user to directly paint on the charts of the atlas, and show several applications of this frame-
work. In Section 4.1 we detail our texture painting/editing application. Section 4.2 explains
how to construct good texture atlases (based on the ideas of Chapter 2) for the texture
painting/editing framework.

4.1 User Interface

A 3D paint application allows the user to paint a model using all the standard painting and
image manipulation tools. To make this possible, we develop an interactive and intelligent
texture painting/editing application that allows the user to paint with different types of
pigments and patterns.

46

4.1. USER INTERFACE 47

The input of the application is a 3D mesh and a texture atlas for this mesh. The
parametrization of this atlas is the inverse of the projective mapping from the camera asso-
ciated to each chart (real cameras, as we have detailed in Chapter 2, or automatic generated
virtual cameras, which construction will be explained in Section 4.2).

An important difference between our application and other existent 3D painting systems
is that, instead of painting on the 3D model, the user paints directly on the charts of the
atlas, which makes the painting process easier.

The interface has two views, a model view and a charts view (here we consider a view a
window and a toolbar with different controls for that window). The model view contains the
3D model, the camera definitions and other features (Section 4.1.1). The charts view keeps
the chart that is being edited (Section 4.1.2) and the brush options (Section 4.1.3).

Figure 4.1 is a screen dump showing the interface of the application, with the model view
on the left and the charts view on the right, and the toolbar of each view on the bottom.

Figure 4.1: The attribute editing application interface.

4.1.1 The Model View

The model view can be separated in two parts: a OpenGL window which holds the 3D model
and a toolbar with many controls related to the cameras, the model and the texture atlas.

4.1. USER INTERFACE 48

The 3D model window has a powerful control to scale, translate and rotate the 3D model.
It supports many options of visualization (view the painting results, mark the patches, mark
the patches frontier, draw the face edges, show the cameras associated to each chart, etc). A
screenshot of this window is showed in Figure 4.2.

Figure 4.2: The 3D model window of the attribute editing application with the model being
painted and the cameras of each chart.

When the user uses the mouse to scale, translate or rotate the model, the application
looks for the camera closest to the OpenGL camera position, and loads the chart associated
to this camera in the charts view.

The toolbar just above the 3D model window (Figure 4.3) has controls related to:

• Charts camera: The user can select the camera from which the model is being seen.
When a camera is selected, the OpenGL updates its camera, using the chart camera
parameters, for the 3D view, and the chart associated to that camera is loaded in a
square OpenGL window (4.1.2), and the main camera parameters (view position and
XYZ axis) are showed in a table.

• Visualization options: The 3D model can be visualized in many ways. The user
can mark/not mark the patches on the model, view/not view the cameras of the atlas,
draw/not draw the face edges and the patches frontier, change lighting conditions and
map/not map the painted texture on the model.

• Charts resolution: The user can choose the resolution of the texture map. Although
we already have a texture atlas and a parametrization of this atlas (inverse of projective
mapping), we have not defined yet a discretization of each atlas in a texture map (except
if the texture atlas has been produced from a set of images, as detailed in Chapter 3).

4.1. USER INTERFACE 49

• Texture map construction: Based on an user-defined texture map width, the ap-
plication packs the charts, accordinly to the pack algorithm described in Section 3.5
(except if the texture atlas has been constructed from a set of images, as detailed in
Chapter 3).

Figure 4.3: The toolbar with the atlas information and controls related to cameras (left),
visualization options (center) and charts resolution and texture map construction controls
(right).

4.1.2 The Charts View

As the model view, the charts view can be separated in two parts: a square OpenGL window
which holds the chart that is being edited and a toolbar with many brush options (these
options will be detailed in the next section).

After constructing the charts, based on the resolution given by the user, we construct the
painting area of each chart: the charts window. When a user selects a chart to paint, the
application places this chart centered in this window (for details, see section 4.1.4).

This window works as a 2D painting application. The user can select the brush from the
toolbar and paint strokes (a stroke begins when the mouse button is pressed inside a chart
boundary and continues until the pressure is released or the chart boundary is reached) as if
he was painting using a 2D painting/editing software (like Gimp), which is very easy. The
texture image associated to each chart is mapped onto a 2D OpenGL square with vertices
at the OpenGL window corners. Figure 4.4 shows the charts window, with a stroke being
painted.

The user paints strokes directly on the texture image associated to each chart. When a
stroke is being painted and the mouse reaches a chart boundary, the application (if a user
flag is set) automatically loads the neighbor chart in the window and moves the mouse to
a position such that the stroke that is being painted could be continuous at the frontier
between adjacent patches. This process will be detailed in Section 4.1.5.

4.1.3 The Brush Object

The brush is the main object of a painting application, since it contains the color information
that will be added to the model, and how (if we are painting a solid color, a pattern, a color

4.1. USER INTERFACE 50

Figure 4.4: The charts window of the attribute editing application, with a stroke painted on
a chart (note the chart boundary in black).

with alpha, etc). For this purpose, we use a mouse to move a cursor around the screen. The
hot spot of the cursor specifies the position of the brush.

Our brush object has the following flags and parameters:

• Mask: The mask is a matrix of weights for the brush color. It is modified when the
user changes the shape, size, hardness and/or alpha of our brush object.

• Color: The brush color.

• Erase: A flag indicating if the brush is a rubber.

• Shape: The brush shape.

• Pattern: The image pattern of the brush.

• Size: The brush size (width and height).

• Hardness: The hardness which basically changes the function of the mask.

• Alpha: A constant weight that multipliers the mask.

• Spacing: The interval between the painting of two strokes.

The brush toolbar is showed in Figure 4.5. From that the user can choose the brush
shape, pattern, options of the mask, color, and see the resulting brush on a viewport.

The value of each cell in the brush mask is the weight of the brush color. So, for example,
if the user paints a one pixel brush that has a mask with the value wb in its unique cell
(wb < 1.0) in the position (i, j) of the texture map, which has a color value cold(i, j), the new
color in that position will be cnew(i, j) = wb · brush.color + (1− wb) · cold(i, j).

4.1. USER INTERFACE 51

Figure 4.5: The brush toolbar.

Brush Shapes

We have implemented three different brush shapes: circle, square and diamond

Brush Patterns

Normally, in a classical 2D painting applications, the paint on the brush is a constant color.
A good improvement that can be done is to allow the paint to vary as a function of position
in a texture or pattern. We provide the patterns showed in Figure 4.6 for our application.

Figure 4.6: Patterns available in our application.

Patterns are indexed by the coordinates of the canvas (charts window). For instance,
when the user begins painting a stroke using a pattern with dimensions (w, h) on the canvas,
at position (x, y), the application repeats this pattern image over the canvas based on this
position. If the position (x + w, y) is reached, the application picks the color of the pattern
as if the user was painting at position (x, y).

Brush Options

There are options to control the brush mask (size, hardness and alpha), to control the spacing
between strokes (spacing) and to set the type of the painting:

• Size: The brush size (width and height). As we want to put the hot spot of the cursor
int the center of the brush square area, we only allow odd values values for this option.

4.1. USER INTERFACE 52

• Hardness: The hardness, when choose different from one, is basically the sigma pa-
rameter of a gaussian kernel centered at the brush mask center. This value is between
0 and 1.

• Alpha: A constant weight between 0 and 1 that multipliers the mask (i.e., the alpha
channel for the brush mask).

• Spacing: The interval (in pixels) between consecutive brush marks when the user trace
out a stroke.

• Fill: If selected, the application fills the chart area with the brush color or pattern,
when the user clicks on the chart.

• Erase: If selected, the brush works as a rubber.

Given this options, we have a way to construct the mask equation. The mask value
m(x, y) of a brush with radius r, center (cx, cy), alpha a and hardness h is:

m(x, y) = a · exp(
−((x− cx)

2 + (y − cy)
2)

2 · h2 · r2
) (4.1)

Figure 4.7 shows some brushes generated with different values for brush shape, size,
pattern, size, hardness and alpha, and their respective masks painted on a cubic surface.

4.1.4 Creating a Texture Map

In this section we will detail the process of opening and discretizing a parametrized atlas,
based on the atlas resolution given by the user. There are two kinds of atlases supported by
our application:

1. An atlas created by the methods described in the Chapter 3, that is already discretized
in a texture map. As we have detailed, this atlas is parametrized using the projective
mapping of the REAL cameras associated to the charts.

2. An atlas created by the methods that will be detailed in Section 4.2. This atlas is
parametrized using the projective mapping of the VIRTUAL cameras associated to the
charts, but it was not discretized in a texture map.

For the first kind, since the atlas resolution comes from the input images, we do not have
to re-scale the texture map. (we could re-scale this texture atlas in order to paint strokes
with a resolution different from the input images, but we have not yet implemented this
option). The texture map already has been created.

The second kind of atlas, differently to the first one, was not discretized in a texture map.
We will do this job based on the parameters of the camera associated to each chart and the
resolution given by the user.

As we will see in Section 4.2.2, for each patch we apply a transformation in order to
translate the view position of its associated camera to the origin and aligns the camera
axis with the canonical base through a rotation. This transformation, when applied to each

4.1. USER INTERFACE 53

(a) (b)

(c) (d)

Figure 4.7: Strokes painted on a cube with different shapes, size and colors (a), different
values for hardness and alpha (b), different values for the spacing between brushes (c) and
different patterns (d).

patch, will give to us the patch 3D bounding box (minimum and maximal coordinates of
its faces in x, y and z directions), i.e, a rectangular prism shaped viewing volume, since we
are working with orthogonal cameras. We then create a unique view volume defined by the
smallest enclosing cube of the 3D bounding boxes of all patches. This unique view volume
is necessary because we have to maintain the scale coherence between the charts.

The atlas scale is calculated using the parameter given by the user: the maximum
width/height of the charts. We then create an square OpenGL window (the charts win-
dow) with dimensions equal to this parameter. Using the transformation of the camera
associated to each chart, and the orthogonal perspective transformation from the dimensions
of the smallest enclosing cube calculated in the previous paragraph, we project each patch
onto the square OpenGL window (obtaining in this way a discretized chart) and construct a
square image associated to this chart (which we will call Texture Image). This image is the
parametrization domain for each surface patch (as the input images of Chapter 3). When
the user has finished his painting, he selects a texture map width and generate a texture map

4.1. USER INTERFACE 54

for the atlas, packing the charts using the method described in Section 3.5.
Figure 4.8 shows three models textured with atlases of different resolutions.

(a) (b) (c)

Figure 4.8: The results of painting a pattern on a 3D model. The maximum width of the
charts, given by the user, is 512 (a), 256 (b) and 128 pixels (c).

4.1.5 Painting Strokes

In the previous section we explained how we create a texture map based on a collection of
parametrized charts. In this section we will detail how the strokes are painted on the charts.
Since the user paints directly on the texture map, we have to develop a method such that a
stroke painted on adjacent patches is continuous on the surface.

Beyond the texture map, we have other auxiliary images:

• Texture Image: The “front-buffer” of the painting application. For each chart we
create a square texture image with dimensions given by the user. When the user paints
a stroke on the OpenGL window this image is updated with this new stroke (only if
the brush is inside the boundary of the chart).

• Texture Image Input: This image is useful if we want clear the strokes painted on
a chart (a rubber tool). If there are input images associated to the charts, as in the
previous chapter, this image the one associated to each chart. If there are not, this
image is filled with the white color.

• Texture Image Before: This image is useful if we want to undo a painting. It keeps
the Texture Image just before the user starts painting a stroke. When the mouse is
released, we update this image.

4.1. USER INTERFACE 55

• Chart Adjacency Image: Each chart is associated to a image in which the pixels
define the boundary of the chart and the adjacent charts. In the region inside of the
chart boundary the pixels values are the id of the chart. On the chart boundary the
pixel values of this image are the id of its adjacent charts.

When a user selects a chart and a brush and press the mouse inside the chart boundary:

1. A stroke is calculated by combining the brush color (computed from its mask and
options) and the color of the Texture Image.

2. The pixels of the Texture Image, in the region of the brush inside the chart boundary,
are updated with this stroke.

3. This Texture Image is mapped onto a 2D OpenGL square with vertices at the OpenGL
window corners (see Section 4.1.2).

4. The system re-projects the painted strokes in the model from the texture image of
each chart according to the predefined texture coordinate of each vertex, and instantly
presents the result in the 3D view.

In order to strokes painted on adjacent patches be continuous on the surface, the following
method was developed. Suppose that a user begins to paint a stroke on a chart. The applica-
tion automatically repeats the steps described just above. One issue is when to terminate a
stroke. A stroke should always end when the brush is outside the charts boundary. Suppose
that the user starts painting a stroke on a chart Θ. When the brush stroke center (the hot
spot of the cursor) reaches a pixel p on the chart boundary, the application checks a user
flag: automatically switch the charts when painting. If this flag is not set, nothing is done
(remembering that we only paint strokes inside the chart boundary). If the user set this flag,
then we have to update the charts window with a new chart. We decide which chart Θa will
be placed in this window by analyzing the Chart Adjacency Image of the current chart in
pixel p. The value of this pixel, as mentioned above, keeps the id of the adjacent chart in
that boundary region.

Now that we know which chart will be loaded in the charts window, we have place the
mouse hot spot on the pixel pa of Θa corresponding to the pixel p of Θ. This pixel pa is
obtained in this way:

1. We compute the 3D point corresponding to p through the parameters of the camera
associated to Θ (Algorithm 19).

2. We project this 3D point using the parameters of the camera associated to Θa in order
to find pa.

3. Place the brush stroke center in this pa.

Figure 4.9 exemplifies this process.

4.1. USER INTERFACE 56

Algorithm 19 find3DPointOnBoundary(Θa, Θ, p)

E ← set of 3D edges of the boundary between the patches of Θa and Θ
l← 3D line obtained by computing the inverse projection of p using Θ.camera
P ← set of potential 3D points
for each edge e in E do

p← 3D point of e that gives the minimum distance between e and l
P.insert(p)

end for
pc ← the closest point to l from P
return pc

(a) (b) (c)

(d) (e)

Figure 4.9: A user is painting a stroke on a 3D model (a) and the brush stroke center reaches
a pixel on the chart boundary (b). From the center pixel of the stroke we compute the 3D
point corresponding to this point through the parameters of the camera associated to the
patch (c). We project this 3D point using the parameters of the camera associated to the
adjacent patch and place the brush stroke centered at this position on the adjacent chart
(d). In this way the stroke, which is being painted on different patches, is continuous on the
surface (e).

4.2. ATLAS CONSTRUCTION FOR ATTRIBUTE EDITING 57

4.2 Atlas Construction for Attribute Editing

In the previous section we detailed an attribute editing application based on a projective
texture atlas. As mentioned before, a good projective texture atlas is a one that minimizes
the distortion of the underlying surface-to-texture mapping.

A way to construct such atlas is to use the optimization methods for atlas construction
described in Chapter 2. As we are dealing with projective mapping, the L2,1 metric is totally
suitable for our problem, since it captures the shape and normal field of a surface.

We develop an algorithm that produces an optimal atlas and a set of virtual cameras
based on a triangle mesh and some user-defined parameters. This output serves as the input
for the attribute editing application.

4.2.1 Mesh Partitioning

In the way to make our atlas generation process interactive, we adopt an user and error-
driven method. User driven because we let the user defines the minimum number of charts
and/or maximum mapping distortion when constructing the atlas. Error driven because,
given the error metric and a desired number of charts, we want to find a surface partition
that minimizes the total distortion of the mapping.

The algorithm is very related to the algorithm described in Section 3.3, but with some
differences. The first difference is that we do not have to worry about visibility when executing
the patch growing step, since we will define the view position (and consequently the projective
mapping) of each chart at the end of the process. The second difference is that in the
method of Section 3.3 we construct a texture atlas from a set of images, what means that the
parametrization of each chart comes from the projective mapping of its FIXED POSITION
associated camera (real camera). Now, since we do not have a set of cameras and images
(i.e. a previously defined projective mapping) as input, we could define, for each chart, its
own parametrization.

The optimal atlas generation works as follows:

1. The user defines the minimum number of charts and/or maximum mapping distortion.

2. The phases patchSeeding() and patchGrowing() are repeated alternately until conver-
gence, just as described by Cohen-Steiner et al. [9] (Section 2.1.3).

3. If the minimum number of patches and/or the maximum distortion has not been
reached, add a new seed (like Sander et al. [23]).

4. Repeat steps 2 and 3 until the minimum number of patches and/or the maximum
acceptable distortion is reached.

5. Then we check if the boundary of each patch projects injectively into the plane defined
by the patch normal and barycenter (this is done by simply checking, for each patch,
the signal of inner product between the patch normal and all face’s normals of the
patch. If one of these products is negative, the patch projection onto its plane is not
injective). This checking is necessary because we will parametrize the charts using the
projective mapping of the virtual cameras created from each patch normal.

4.2. ATLAS CONSTRUCTION FOR ATTRIBUTE EDITING 58

6. Repeat steps 2 and 5 until the boundary of each patch projects injectively into the
plane defined by the patch normal and patch barycenter.

7. Merge the patches if this does not violate the injectivity criterion.

The algorithm is described in Algorithm 20:

4.2. ATLAS CONSTRUCTION FOR ATTRIBUTE EDITING 59

Algorithm 20 optimalAtlasConstruction()

mnp← minimum number of patches
np← number of patches
np← 0
md← maximum total distortion
d← total distortion
d← MAXFLOAT
while np < mnp or d > md do

np← patchAdding()
while d is increasing do

patchSeeding()
patchGrowing()
update d

end while
end while
while one of the patches boundary do not project injectively into the plane defined by the
patch do

np← patchAdding()
while d is increasing do

patchSeeding()
patchGrowing()
update d

end while
end while
patchMerging()

In the next sections we will explain each part of the algorithm.

Patch Adding

In order to bootstrap the algorithm, we first select, we first assign a random face to be the
first seed. Then we iterate over patchSeeding() and patchGrowing() until convergence. if
the minimum number of seeds and/or maximum mapping distortion has not been reached,
we add a new seed, based on the following criteria, proposed by Cohen-Steiner et al. [9]:

1. For each patch select the one with maximum total distortion (based on the L2,1 metric).

2. For each face of this selected patch pick the face with worst distortion error as the
initial seed for the next flooding.

This tends to place the new seed far away from the other seeds and in a region with
maximum distortion.

When we add a new seed to the partition we clean up the list of faces of each patch
(except the seeds) and, for each patch, make the patch normal and barycenter be its seed
normal and barycenter.

4.2. ATLAS CONSTRUCTION FOR ATTRIBUTE EDITING 60

Patch Seeding

The problem can be stated as follows:

Given a surface partition into patches, update the seed for each patch.

For each patch of the previous partition we want to select as the new seed for the next
growing process the most similar face. This similarity is calculating using the L2,1 metric,
described in Equation 2.3. With this metric we are able to distributes the patches according
to local surface complexity. The distortion metric between a face f , with normal n and area
s, and a patch P , with normal NP , is:

E(f, P) = ‖n−NP‖2 · s (4.2)

We visit each patch P and go through all its faces to find the one with the smallest
distortion error E(f, P). Then we update this face to be the new seed of that patch and
clean up the list of faces of each patch (except the seeds).

Patch Growing

The problem can be stated as follows:

Given n seeds representing the n patches, assign each face to a patch.

We partition our mesh using the same flooding algorithm described in Section 3.3.1 (Al-
gorithm 5). However, now we use a metric based only on the normal information of the faces
and the patches, described in Equation 4.2.

Once each face has been assigned to a patch we wish to update, for each patch, its
normal and barycenter, and the total distortion of the partition. For the L2,1 metric, the
patch normal NP is the area-weighted average of the face’s normals (n is the normal of a face
f and s is its area):

NP =
∑
fi∈P

si · ni (4.3)

The patch barycenter XP is chosen to be the barycenter of the region defined by its faces.
So, if x if the barycenter of a face f :

XP =

∑
fi∈P si · xi∑

fi∈P si

(4.4)

With each patch normal updated, the total distortion of the partition is calculated, us-
ing the L2,1 metric in Equation 2.4. The phases patchSeeding() and patchGrowing() are
repeated alternately until convergence.

4.2. ATLAS CONSTRUCTION FOR ATTRIBUTE EDITING 61

Patch Merging

Since we do not aggregate in the metric used by the patchSeeding() and patchGrowing()
phases the injectivity test (the test, as showed in Algorithm 20, is done after the convergence
of the distortion), the process of adding charts based on this criterion may add an excessive
number of charts in the atlas.

For this reason we can merge adjacent patches until we reach some of the user-defined
parameters (minimum number of charts or maximum mapping distortion), if this operation
does not violate the injectivity criterion. This merging method is inspired by Marinov and
Kobbelt [21]. Being X, N and S the barycenter, normal and area of a patch P , respectively,
a patch merge operation of two patches P1 and P2 computes a new patch Pm with:

Nm =
S1 ·N1 + S2 ·N2

‖S1 ·N1 + S2 ·N2‖
, Xm =

S1 ·X1 + S2 ·X2

‖S1 + S2‖
(4.5)

Basically the algorithm in each step performs the patch merge operation with the highest
priority (the lowest error) that does not violate the injectivity criterion, and stops when the
minimum number of charts or maximum mapping distortion is reached. The L2,1, in this
case, is estimated by computing an area weighted sum of the deviation between the normals
before and after a merge operation:

E(P1, P2, Pm) = S1 · ‖N1 −Nm‖2 + S2 · ‖N2 −Nm‖2 (4.6)

The algorithm is exposed in Algorithm 21.

Algorithm 21 optimalPatchMerging()

Q← priority queue
P ← list of patches
mnp← minimum number of patches
np← number of patches
md← minimum distortion
d← total distortion
for each patch pair of adjacent patches Pk and Pl in P do

Q.push(Pk, Pl, E(Pk, Pl, Pm)) {Equation 4.6}
end for
while Q 6= � and np ≥ mnp and d ≤> md do

(Pk, Pl)← Q.pop()
if merge of Pk and Pl does not violate the injectivity criterion then

patchMerge(Pk, Pl) {Algorithm 6}
update patch neighbors
update priorities
update d
decrease np

end if
end while

In Figure 4.10 we show an example of the mesh partitioning algorithm on a model.

4.2. ATLAS CONSTRUCTION FOR ATTRIBUTE EDITING 62

5 patches 10 patches 15 patches 20 patches

Figure 4.10: Applying the mesh partitioning algorithm on a model with 20k faces. On the
top the process of adding patches to the partition . On the bottom a curve indicating the
L2,1 distortion error as a function of the number of iterations. As expected, a few iterations,
for each partition size, suffice to converge the distortion error

4.2.2 Atlas Parametrization

Once we have found a optimal partition of a mesh from a set of user-defined parameters, we
have to find a way to parametrize this atlas. Since we are constructing an atlas to be used by
our attribute editing application, an easy and natural solution is to parametrize it through
projective mapping.

Therefore, for each patch of the mesh partition we associate a virtual camera. Each
virtual camera has the following parameters:

• View Position

• View Direction

4.2. ATLAS CONSTRUCTION FOR ATTRIBUTE EDITING 63

• Up Vector

From these parameters calculated (using the patch normal and barycenter, as we will
explain in Algorithm 22), we obtain a camera transformation matrix, which translates the
view position to the origin and aligns the camera axis with the canonical base through a
rotation.

We have to choose now the projective transformation: perspective or orthogonal. Or-
thogonal projection is a better choice if the region we want to project does not have much
distortion. Perspective projection is better if we want to simulate real cameras (lens distor-
tion, focus, etc). Since our algorithm produces charts with small distortion, and we do not
want to simulate real cameras, orthogonal projection is a better choice. This transformation,
when applied to each patch, will give to us the patch 3D bounding box (minimum and maxi-
mal coordinates of its faces in x, y and z directions), i.e, a rectangular prism shaped viewing
volume.

Since we want that the charts have the same scale, we have map the patches onto a
2D domain using the same viewing volume. This unique view volume is defined by a 3D
bounding box with dimensions being the maximum and minimum coordinates among the 3D
bounding boxes of all patches.

Algorithm 22 describes how to compute the virtual camera parameters for each patch. The
scale of the charts, as we detailed, is chosen by the user in the attribute editing application
(4.1.4).

Algorithm 22 computeOrthogonalCameras()

P ← list of patches
for each patch p in P do

p.camera.viewPosition← p.barycenter + p.normal
p.camera.viewDirection← −p.normal
p.camera.upV ector ← U − (U · p.camera.viewDirection) · p.camera.viewDirection
apply camera transformation on p, and obtain p.bBox3D

end for

The methods described here and in the previous section produce a optimal partition and
a set of virtual cameras, that serve as the input for the attribute editing application detailed
in Section 4.1.

Chapter 5

Results

In this chapter we demonstrate some results of our studies. In Section 5.1 we show the results
obtained by processing 3D data acquired with a camera, following the methods described
in Chapter 3. Section 5.2 reports the results of applying the atlas construction algorithm
described in Section 4.2 and exposes the use of the attribute editing application to create
texture maps.

5.1 Multiresolution Texture Maps from Multiple Views

We have applied the texture atlas construction from a set of images on two target objects,
the Branca model, that was acquired from a set of 3 images, and the Human Face model
(gently yielded by the ISTI-CNR), acquired from 6 images. These two models and respective
input images are showed in Figure 5.2.

In Figure 5.3 we show the results of constructing texture maps for the Branca and the
Human Face models. The results were obtained through the variational atlas construction
pipeline detailed in Chapter 3, without applying the texture mapping compression algorithm
described in Section 3.4. The hole process is really fast, and the results obtained were very
good. For the Branca model we note that the color differences on the frontier zones between
adjacent charts are evident, due to the extremely variance in its input images, and the
mapping distortion is high, due to the small number of images for this model.

In Figure 5.4 we compare the results of the variational map construction pipeline with
and without applying the texture mapping compression algorithm described in Section 3.4.
Although the visual quality of the textured model, when the compression algorithm is not
applied, is better, the reduction of the texture map occupied space is considerable.

Table 5.1 exposes general quantitative results of the atlas construction process on the
two models. Stretch efficiency is the total surface area in 3D (sum of the patches area,
calculated from the dot products between each triangle normal and the normal of its asso-
ciated patch) divided by the total chart area in 2D. Packing efficiency is the sum of chart
areas in 2D divided by the rectangular texture domain area. We can separate the packing
efficiency into intra-rectangle efficiency (the sum of chart areas in 2D divided by the sum of
rectangles areas) and inter-rectangle efficiency (the sum of rectangles areas divided by the
rectangular texture domain area). Therefore packing efficiency = intra-rectangle efficiency

64

5.1. MULTIRESOLUTION TEXTURE MAPS FROM MULTIPLE VIEWS 65

· inter-rectangle efficiency. Figure 5.1 shows an illustrative example of these measures. For
these results, we have ignored the overhead that would be caused by the 1-texel gutter re-
quired between charts (see Section 3.5). The method’s efficiency, called texture efficiency is
the stretch efficiency times the packing efficiency. Since the atlas produced for the Human
Face model has almost 8 times the number of charts of the one produced for the Branca
model, the packing efficiency and texture efficiency of the Human Face model is smaller.

Figure 5.5 and 5.6 shows an accuracy comparison between the texture models obtained
by our algorithm and Callieri et al. [7] with the original object images. Despite of the good
accuracy of the two methods (except for the Branca model, for which Callieri et al. [7] method
have presented worse results, probably originated in the blending phase), we pose texture
atlas generation as an optimization one, in way that our method tries to generate a partition
that minimizes the stretch distortion and the number of charts. For this reason our method
produces less charts than Callieri et al. [7], as showed in the figures.

In Callieri et al. [7] the texture packing phase is done with an optimization: they aggregate
patches mapped to the same images if this reduces the overall texture space (if the resulting
bounding rectangle is smaller than the sum of the independent ones). We compare the
number of charts generated by our method with the number of charts generated by Callieri
et al. [7] without (the real partition of the object) and with this optimization. In both models
and cases we produce a lesser number of charts.

Figure 5.1: An illustrative example of how packing efficiency is calculated. The figure repre-
sents the texture domain, where the red circles represent the charts and the blue squares the
bounding boxes. From the figure we conclude that the intra-rectangle efficiency is π/4 =78%
and the inter-rectangle efficiency is 50%.

5.1. MULTIRESOLUTION TEXTURE MAPS FROM MULTIPLE VIEWS 66

9852 triangles 3 images

9406 triangles 6 images

Figure 5.2: The two models and their set of images (on the top row the Branca model and
on the bottom row the Human Face model.

5.1. MULTIRESOLUTION TEXTURE MAPS FROM MULTIPLE VIEWS 67

(5 patches, distortion = 5875.18) (39 patches, distortion = 4680.54)

(dimensions=220×396) (dimensions=750×755)

Figure 5.3: Applying the variational map construction pipeline on the Branca model (left)
and on the Human Face model (right).

5.1. MULTIRESOLUTION TEXTURE MAPS FROM MULTIPLE VIEWS 68

(39 patches) (70 patches)

(dimensions=750×755) (dimensions=320×433)

Figure 5.4: Applying the variational map construction pipeline without (on the left) and with
(on the right) the texture mapping compression algorithm, on the Human Face model. The
higher frequency regions (eyes, hair, mouth, etc) are preserved. In this case the reduction of
the texture map occupied space is about 75%.

5.1. MULTIRESOLUTION TEXTURE MAPS FROM MULTIPLE VIEWS 69

Models Branca Human Face

Vertices 5177 4971

Faces 9852 9406

Charts 5 39

Distortion 5875.18 4680.54

Texture map dimensions 220×396 750×755

Stretch efficiency 80% 86%

intra-rectangle efficiency 64% 49%
inter-rectangle efficiency 78% 80%

Packing efficiency 50% 39%

Texture efficiency 40% 34%

Table 5.1: Quantitative results

5.1. MULTIRESOLUTION TEXTURE MAPS FROM MULTIPLE VIEWS 70

Figure 5.5: Photograph of the Branca object (a), the synthetic model by Callieri et al. [7]
(256×512 texture map, 5 charts with optimization, 6 without) (b) and our synthetic model
(220×396 texture map, 5 charts) (c).

5.1. MULTIRESOLUTION TEXTURE MAPS FROM MULTIPLE VIEWS 71

Figure 5.6: Photograph of the Human Face object (a), the synthetic model by Callieri et
al. [7] (512×1024 texture map, 52 charts with optimization, 73 without) (b) and our synthetic
model (750×755 texture map, 39 charts) (c).

5.2. CONSTRUCTION OF TEXTURE MAPS USING THE ATTRIBUTE
EDITING APPLICATION 72

5.2 Construction of Texture Maps Using the Attribute

Editing Application

In this section we report some results obtained by the methods exposed in Chapter 4. First
we show some results when applying the atlas construction algorithm for attribute editing
(4.2). After that we demonstrate the use of the attribute editing application to create texture
maps.

Figure 5.7 shows the results of the atlas construction for attribute editing on four models:
Branca, Human Face, Cube and Rocker Arm. By looking to the Branca and Human Face
models we note that the L2,1 distortion metric captures the symmetry of the models, and by
looking to the Cube and Rocker Arm models we see that the local planarity of the models
was captured. Table 5.2 exposes general quantitative results of this algorithm on the four
models. An observation has to be done. Although it would be expected to the Rocker Arm
model stretch efficiency be higher than in the Branca and Human Face models (due to its
piecewise planar nature), we would have that to add more patches to achieve a higher stretch
efficiency. Other observation on this model is its low packing efficiency, consequence of its
non-convex form and presence of holes.

Using the atlases created by the variational atlas construction algorithm we show some
texture maps constructed through the attribute editing application. In Figure 5.8 we show
the process of painting on a Screwdriver model. In Figure 5.9 we show how our application
can be used to paint details in the internal parts of models with holes, what would be very
difficult if we were using a application that paints directly on the surface. Figure 5.10 shows
an example of how the variational atlas construction algorithm minimizes the distortion of
the underlying surface-to-texture mapping (i.e., texture stretch).

5.2. CONSTRUCTION OF TEXTURE MAPS USING THE ATTRIBUTE
EDITING APPLICATION 73

(a) (b)

(c) (d)

Figure 5.7: Applying the atlas construction on four models, with a user-defined number of
charts of 30 (except for (c), which has 6 charts).

5.2. CONSTRUCTION OF TEXTURE MAPS USING THE ATTRIBUTE
EDITING APPLICATION 74

Models Branca Human Face Cube Rocker Arm

Vertices 1243 4971 5402 10044

Faces 1605 9406 10800 20088

Charts 30 30 6 30

Distortion 792.15 1896.17 0 6962.05

Texture map dimensions 512×821 512×939 512×1280 512×557

Stretch efficiency 93% 86% 100% 89%

intra-rectangle efficiency 51% 50% 100% 35%
inter-rectangle efficiency 76% 82% 100% 62%

Packing efficiency 39% 41% 100% 22%

Texture efficiency 36% 38% 100% 20%

Table 5.2: Quantitative results

5.2. CONSTRUCTION OF TEXTURE MAPS USING THE ATTRIBUTE
EDITING APPLICATION 75

Mesh partition, 14 charts Textured model
(distortion=6159.48; stretch efficiency=90%)

Texture map
(dimensions=1270×790; packing efficiency=37%)

Figure 5.8: Painting on a Screwdriver model.

5.2. CONSTRUCTION OF TEXTURE MAPS USING THE ATTRIBUTE
EDITING APPLICATION 76

(a) 30 charts (b)
(distortion=6962.05;

stretch efficiency=89%)

(c) (d) Texture map
(dimensions=512×557;
packing efficiency=22%)

Figure 5.9: Painting on the Rocker Arm model. We apply the atlas construction algorithm for
30 charts (a) and paint this mechanical part with a metallic pattern (b). Since the painting
is done directly on the charts, and our distortion metric minimizes the texture stretch, it is
very easy to add details (such as mechanical specifications and brand) in the internal part of
the model (c).

5.2. CONSTRUCTION OF TEXTURE MAPS USING THE ATTRIBUTE
EDITING APPLICATION 77

(a) (b)

Figure 5.10: Using the attribute editing application to paint a pattern (a) and circular strokes
(b) in the atlas constructed for the Cube model. Since the L2,1 distortion for this atlas, as it
was seen in Table 5.2, is 0, our application allows the user to construct a texture map with
no stretch (the texture pattern is mapped in the same pattern on the surface and circular
strokes are mapped in circular strokes, not ellipsoidals, on the surface

Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this work we have proposed the use of a variational optimization scheme in the construction
of texture atlases for 3D photography and attribute editing. With this scheme we were able
to construct optimal texture atlases, minimizing the number of charts, the atlas distortion
and the texture map occupied space.

In Chapter 2 we have described the variational shape approximation method detailed in
Cohen-Steiner et al. [9] and explained how to use this scheme to construct texture atlases
with small distortion.

We have developed in Chapter 3 a method for generating multiresolution texture atlases
from a set of images, inspired by the pipeline created by Callieri et al. [7]. We have used
a variational method to construct well partitioned and low distorted texture atlases. In
addition, we have applied texture compression and packing techniques, to reduce the occupied
space of charts, and blending methods, to increase the color coherence between adjacent
patches.

Finally, in Chapter 4, we have developed an attribute editing application that allows the
user to create and manipulate texture atlases. We have created a friendly interface that
allows the user to directly paint on the charts of the atlas, with different types of pigments
and patterns, as if he was painting using a 2D painting/editing software. For this application
we have presented a variational method for generating a texture atlas and a set of virtual
cameras, based on the ideas of Chapter 2.

6.2 Future Work

There remain a number of areas for future work:

• We have implemented a simplified packing algorithm (see Section 3.5). We would have
better results, with respect to packing efficiency, if we pack the charts boundary directly
rather than their bounding rectangles (like Lévy et al. [17] and Sander et al. [23]).

• Examine how best to address the trade-off between texture atlas distortion and the
number of charts, for the atlas construction for attribute editing algorithm (Section

78

6.2. FUTURE WORK 79

4.2).

• Exploit the construction of atlases with other surface attributes, like normal and dis-
placement fields, in order to allow the user to create/modify any kind of attribute maps
through the attribute editing application.

• Modify the attribute editing application such that it could be used for modeling op-
erations, based on normal maps created/modified by a user, as exemplified in Figure
6.1.

(a) (b) (c)

Figure 6.1: On the normal map of a planar surface (a). The attribute editing application
could allow the user to modify the normal map (b) and, in addition, the geometry of the
surface (c).

Bibliography

[1] Agarwal, Pankaj K., and Subhash Suri. Surface approximation and geometric partitions.
In SODA ’94: Proceedings of the fifth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 24–33, Philadelphia, PA, USA, 1994. Society for Industrial and Applied
Mathematics.

[2] Balmelli, Laurent, Gabriel Taubin, and Fausto Bernardini. Space-optimized texture
maps. Comput. Graph. Forum, 21(3):411–420, 2002.

[3] Bernardini, Fausto, Ioana M. Martin, and Holly Rushmeier. High-quality texture re-
construction from multiple scans. IEEE Transactions on Visualization and Computer
Graphics, 7(4):318–332, 2001.

[4] Botsch, M., S. Steinberg, S. Bischoff, and L. Kobbelt. Openmesh - a generic and efficient
polygon mesh data structure, 2002.

[5] Briggs, Willian L. A multigrid tutorial. http://www.llnl.gov/CASC/people/henson/
mgtut/welcome.html.

[6] Burt, Peter J., and Edward H. Adelson. The laplacian pyramid as a compact image
code. pages 671–679, 1987.

[7] Callieri, Marco, Paolo Cignoni, and Roberto Scopigno. Reconstructing textured meshes
from multiple range rgb maps. In VMV, pages 419–426, 2002.

[8] Carr, Nathan A., and John C. Hart. Painting detail. ACM Trans. Graph., 23(3):845–852,
2004.

[9] Cohen-Steiner, David, Pierre Alliez, and Mathieu Desbrun. Variational shape approxi-
mation. ACM Trans. Graph., 23(3):905–914, 2004.

[10] Du, Qiang, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations: Ap-
plications and algorithms. SIAM Rev., 41(4):637–676, 1999.

[11] Figueiredo, L. H., C. A. da Silva, and R. de B. Seixas. Interpolação de curvas de ńıvel
por difusão de calor. In GeoInfo 2001, pages 57–62, 2001.

[12] Gortler, Steven J., Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The
lumigraph. In Proceedings SIGGRAPH ’96, pages 43–54. ACM Press, 1996.

80

BIBLIOGRAPHY 81

[13] Hanrahan, Pat, and Paul Haeberli. Direct wysiwyg painting and texturing on 3d shapes.
In Proceedings SIGGRAPH ’90, pages 215–223. ACM Press, 1990.

[14] Hunter, Adam, and Jonathan D. Cohen. Uniform frequency images: adding geometry
to images to produce space-efficient textures. In Proceedings VIS ’00, pages 243–250.
IEEE Computer Society Press, 2000.

[15] Johnston, Scott F. Lumo: illumination for cel animation. In Proceedings NPAR ’02,
pages 45–ff. ACM Press, 2002.

[16] Lévy, Bruno, and Jean-Laurent Mallet. Non-distorted texture mapping for sheared
triangulated meshes. In Proceedings SIGGRAPH ’98, pages 343–352. ACM Press, 1998.

[17] Lévy, Bruno, Sylvain Petitjean, Nicolas Ray, and Jêrome Maillot. Least squares confor-
mal maps for automatic texture atlas generation. In Proceedings SIGGRAPH ’02, pages
362–371. ACM Press, 2002.

[18] Lloyd, Stuart P. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–136, 1982.

[19] Maillot, Jêrome, Hussein Yahia, and Anne Verroust. Interactive texture mapping. In
Proceedings SIGGRAPH ’93, pages 27–34. ACM Press, 1993.

[20] Mallat, Stephane, and Sifen Zhong. Characterization of signals from multiscale edges.
IEEE Trans. Pattern Anal. Mach. Intell., 14(7):710–732, 1992.

[21] Marinov, Martin, and Leif Kobbelt. Automatic generation of structure preserving mul-
tiresolution models. Comput. Graph. Forum, 24(3):277–284, 2005.

[22] Milenkovic, Victor J. Rotational polygon containment and minimum enclosure. In SCG
’98: Proceedings of the fourteenth annual symposium on Computational geometry, pages
1–8, New York, NY, USA, 1998. ACM Press.

[23] Sander, P. V., Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry
images. In Proceedings SGP ’03, pages 146–155. Eurographics Association, 2003.

[24] Sander, Pedro V., John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture mapping
progressive meshes. In Proceedings SIGGRAPH ’01, pages 409–416. ACM Press, 2001.

[25] Velho, Luiz. A48. http://w3.impa.br/~lvelho/a48/main.html.

