impa
w INSTITUTO NACIONAL DE MATEMATICA PURA E APLICADA

On the simulation of fluids
for computer graphics

Ives José de Albuquerque Macédo Junior

Advisor: Luiz Carlos Pacheco Rodrigues Velho
Co-Advisor: Paulo Cezar Pinto Carvalho

Rio de Janeiro
November 2007

i

Aos meus pais e as minhas irmas.

v

“— Alo, cotovial

Aonde voaste,

Por onde andaste,

Que saudades me deixaste?

— Andei onde deu o vento.
Onde foi meu pensamento
Em sitios, que nunca viste,
De um pais que nao existe ...
Voltei, te trouxe a alegria.

— Muito contas, cotovial
E que outras terras distantes
Visitaste? Dize ao triste.

— Libia ardente, Citia fria,
Europa, Franca, Bahia ...

— E esqueceste Pernambuco,
Distraida?

— Voei ao Recife, no Cais
Pousei na Rua da Aurora.

— Aurora da minha vida
Que os anos nao trazem mais!

— Os anos nao, nem os dias,
Que isso cabe as cotovias.

Meu bico é bem pequenino
Para o bem que é deste mundo:
Se enche com uma gota de agua.
Mas sei torcer o destino,

Sei no espago de um segundo
Limpar o pesar mais fundo.
Voei ao Recife, e dos longes
Das distancias, aonde alcanca
S6 a asa da cotovia,

— Do mais remoto e perempto
Dos teus dias de crianga

Te trouxe a extinta esperanca,

Trouxe a perdida alegria.”

Cotovia, Manuel Bandeira

vi

Agradecimentos

Antes de tudo, gostaria de agradecer a meus pais por sempre se esforcarem
para me oferecer uma boa educacao. Agradeco o apoio e o conforto que eles
e minhas irmas me deram ao longo de todos esses anos perto e longe de casa.

Agradeco a Silvio Melo, grande amigo e orientador de graduacao, o qual
me apresentou a Computacao Grafica e as belezas dessa disciplina. Sem seus
ensinamentos e sua confianga em mim, jamais chegaria até aqui.

Sou muito grato a meu orientador Luiz Velho por me agiientar nesses
anos de mestrado, confiar em mim e me guiar até o desenvolvimento deste
trabalho, o que lhe deve ter exigido bastante paciéncia.

Aos professores Luiz Henrique de Figueiredo e Paulo Cezar Pinto Car-
valho, agradeco pelas excelentes aulas e conversas acerca de varios temas.

Agradecgo aos demais professores que tive aqui no IMPA: Alfredo Tusem,
Benar Fux Svaiter, Vladas Sidoravicius, Mikhail Solodov, André Nachbin,
Christian Schaerer e Thomas Lewiner, os quais me ensinaram, com a ex-
celéncia caracteristica do IMPA, praticamente tudo o que sei de matemaética.

Aos demais funcionarios do IMPA, agradeco o seu esforco e cuidados para
manter excelentes as condicoes de estudo e trabalho no instituto.

Gostaria de agradecer a todos os membros de minha familia que me aco-
lheram tao bem quando de minha chegada ao Rio de Janeiro, em particular,
a minha tia Ivone.

Fico grato a todos aqueles com quem tive o enorme prazer de dividir
uma moradia longe de casa: Vivi, Xanda, Ivana, Renato, Borje, Vitor, Paulo
e Fernando. Foram muito felizes nossas noites de conversas e refei¢coes em
familia, mais recentemente, os almocgos de Betinha.

Agradego aos colegas e amigos do Visgraf pelo companheirismo, em par-
ticular a Emilio, Dimas, Geisa, Cicconet, Hedlena, Margareth, Ana Regina,

Anderson, Aldo, Giordano, Sérgio “Meu Caro”, Evilson, Serginho, Otavio,
Adriana, Ricardo, Dalia, Asla e Esdras “Meus Ovos”.

Jamais esquecerei dos demais amigos que fiz aqui no Rio (minha outra e
querida familia de longe de casa): Emilio, Cristina, Julio, Papito, Italo, Au-
gusto, Daniel, Marcelo RH, Tertuliano, Guilherme, Marcelo Cicconet, Paty,
Zanforlin, Laura, Braulia, Vanessa, Adriana, Geisa, Dimas, Clarisse. .. Ufal
Desisti de tentar enumera-los. .. Enfim, MUITO OBRIGADO a todos os meus
amigos por todo o seu carinho e amizade! Acharam que eu iria esquecer?!

Nao deixaria de lembrar dos amigos que ajudaram na revisao dessa dis-
sertagao: Dimas, Emilio, Borje e Julio Daniel. Obrigado, companheiros!

Finalmente, devo expressar minha gratidao de maneira geral ao IMPA,
pela exceléncia de suas instalagoes e pessoas, e ao CNPq, por me conceder
duas bolsas de estudos (mestrado e, agora, doutorado).

P.S.: Sei que ainda tenho MUITO mais o que (e a quem) agradecer, mas,
por favor, compreenda que ja ta na hora d’eu terminar essa bagaga. . .

viii

Resumo

A onipresenca e a complexidade dos fendmenos naturais sao responsaveis
tanto pela alta demanda de softwares capazes de simuld-los quanto pelas
dificuldades em projetar tais ferramentas. Na industria de efeitos especiais,
existe uma necessidade de retratar fenomenos decorrentes da interacao en-
tre elementos da natureza. Entretanto, os requisitos impostos por dominios
de aplicacao como esse diferem daqueles oriundos dos cenarios classicos da
engenharia, aplicagao tradicional da Dinamica dos Fluidos Computacional.
O aumento tanto no poder computacional quanto na disponibilidade de
memoria vém possibilitando a simulacao de vérios fenoménos naturais em
hardware de baixo-custo, quando a plausibilidade visual desses fendmenos é
suficiente. Esses desenvolvimentos, e a demanda por animagoes “realisticas”
tanto para filmes quanto para jogos de computador, tém encorajado a comu-
nidade de computacao gréfica a trabalhar no projeto de novas técnicas para
a simulacao de fenomenos fisicos especializadas nesses dominios de aplicacgao.
Por essas razoes, a literatura sobre simulacao de fluidos, ja bastante ex-
tensa devido a suas importantes aplicagoes nas engenharias, tem crescido
rapidamente por causa da atencao recente da comunidade de computacao
grafica. Esse cendrio tem nos motivado a estudar os fundamentos da sim-
ulacao de fluidos, ainda com vistas a sua utilizacao em animacao por com-
putador. Com o propédsito de reportar nossos estudos, esta dissertacao tem
dois objetivos principais: aprender tanto os fundamentos tedricos da dinamica
dos fluidos quanto os principais métodos para simular escoamentos de fluidos;
e auxiliar outros estudantes, agrupando os principais conceitos envolvidos na
animacao de fluidos num texto introdutorio, junto a referéncias relevantes
para topicos especificos e tendéncias da pesquisa em computacao grafica.

Palavras-chave: dinamica dos fluidos, animagao por computador, fenémenos
naturais, equacoes de Euler, equagoes de Navier-Stokes, Fluidos Estdveis, SPH

Abstract

The ubiquity and complexity of natural phenomena are responsible both for
the high demand of software capable to simulate them and for the difficulties
in designing such tools. In the special effects industry, there is a need of
depicting phenomena arising from the interactions among the elements of
nature. However, the requirements imposed by this application domain differ
from those in the classical engineering settings with which Computational
Fluid Dynamics is traditionally concerned.

The increase in computing power and memory availability has made it
possible to simulate many natural phenomena in commodity hardware, when
the wvisual plausibility of computed motions is enough. These developments
and the demand for “realistic” animations, both for films and games, have
encouraged the graphics community to work on the design of specialized
methods and techniques to simulate physical phenomena for these applica-
tions.

For these reasons, the literature on fluid simulation, already very large due
to its important applications in engineering, has been growing fast because of
the recent attention from the computer graphics community. This scenario
has motivated us to study the fundamentals of fluid simulation, still with
computer graphics applications in mind. With the purpose of reporting our
studies, the goals of this thesis are twofold: to learn both the theoretical
fundamentals of fluid dynamics and the main methods for the computer
simulation of fluid flows; and to help other students, by grouping the main
concepts involved in simulating fluids for animation in an introductory text
along with relevant references to specific topics and current research trends.

Keywords: fluid dynamics, computer animation, Euler’s equations, natural
phenomena, Navier-Stokes’ equations, Stable Fluids, SPH

xii

Contents

(1__Introduction!

Commented Bibliography|

[2.1 Mathematics and Physics of Fluids|
(2.2 Computational Fluid Dynamicsf
(2.3 Fluid Simulation in Computer Graphics|.
2.4 Comments and Further Reading/
[3 The Equations of Motion|
[3.1 Basic Principles and Assumptions|
[3.2 Lagrangian and Fulerian Descriptions|.
[3.3 Conservation ot Mass and Incompressibilityl
3.4 Balance of Momentum|
[3.5 Ideal Fluids and Fuler’s Equations|
[3.6 Newtonian Viscous Fluids and the Navier-Stokes Equations|. .
[3.7 Pressure and Incompressibility|
[3.8 Rotation and Vorticity]
[3.9 Comments and Further Reading|
I N al SionlaG FFInds for A =0l
I4,l :slalzls: I l“‘l!isl

4.1.1 Flow regime and governing equations|
4.1.2 Field representation and spatial discretization|
4.1.3 Operator splitting/fractional-stepping|.
4.1.4 Semi-Lagrangian advection|.

xiil

13
14
16
21
24
26
27
30
32
37

[4.1.5 Explicit forcing and vorticity confinement|
[4.1.6 Implicit diffusion|
[4.1.7 Pressure projection|
[4.1.8 Experiments|. L.
[4.2 Smoothed Particle Hydrodynamics|
[4.2.1 Flow regime and governing equations|
[4.2.2 Field representation and fluid discretization|
[4.2.3 The discretized governing equations|
[4.2.4 Experiments|.
[4.3 Comments and Further Reading|

5 Final Remarks|

[A A Simple Stable Fluids Solver]

(B A Simple Smoothed Particle Hydrodynamaics Solver|

Xiv

65

67

75

List of Figures

[4.1 A simple flow example]o o000 50
[4.2 A more complex example|. 51
[4.3 Generation of vorticity in Navier-Stokes” flows] 52
[4.4 Animating a breaking dam|. 62

XV

XVi

Chapter 1

Introduction

“As Aladdin rubbed the lamp to try to get a better look, the lamp
sprang magically to life! It was all Aladdin could do to hold onto the
bucking lamp as it spewed colored smoke and magic sparkles! Like a
volcano erupting, the lamp launched a long, blue stream upward. The
blue smoke twisted and expanded as it rose toward the ceiling. Finally,
it became an enormous, blue genie!”, Disney’s Aladdirﬂ

1.1 Motivation and Goals

The ubiquity and complexity of natural phenomena are responsible both for
the high demand of tools capable of simulating them and for the difficulties
in designing such tools. In the special effects industry, there is a need to de-
pict phenomena arising from the interactions among elements of nature (e.g.
clouds, mountains, rivers, trees). Frequently, those interactions either cannot
just be captured by real cameras (e.g., explosions of space stations) or they
are too expensive, even dangerous, to shoot in location (e.g., the inundation
of a populated city, or fire spreading through a forest). Many other applica-
tions demand visually plausible computer simulations of natural phenomena,
including computer games and flight simulators.

The increase in computing power and memory availability has made it
possible to simulate many natural phenomena in commodity hardware, when
the visual plausibility of computed motions is enough. These developments

L Story Plot as reported in the Animated Storybook at Disney.com,
c.f. |http://www.geocities.com/aladdin_it/ Aladdin_eindex.html

http://www.geocities.com/aladdin_it/Aladdin_eindex.html

and the demand for “realistic” animations have encouraged the computer
graphics community to work on the design of methods and techniques to
simulate physical phenomena. For these reasons, the computer animation
literature on simulation of the elements of nature has grown significantly in
the past decade. Many of those works deal with the animation of fluid
flows, phenomena omnipresent in our everyday life and complex per se.
In fact, when asked which is the single hardest shot they did in “Shrek”,
the DreamWorks SKG principal and producer of “Shrek”, Jeffrey Katzen-
berg, answered: “It’s the pouring of milk into a glass.”

As such, the literature on fluid simulation, already very large due to its
important applications in engineering, has been growing fast because of the
recent attention from the computer graphics community. This has motivated
us to study more about the simulation of fluids, with computer graphics
applications in mind. For these reasons, the goals of this thesis are twofold:

e to learn both the theoretical fundamentals of fluid dynamics and the
main methods for the computer simulation of fluid flows;

e to help other students by grouping the main concepts involved in the
simulation of fluids for computer graphics in an introductory text along
with relevant references to specific topics and current research trends.

Since most of the literature on the foundations of Computational Fluid
Dynamics (CFD) was written either with theoretical or engineering purposes,
where the needs are rather different from those of computer graphics, one
should take care on how to employ the developments from CFD in anima-
tion applications. We comment on these distinct viewpoints in the following
section.

1.2 Plausibility versus Accuracy

With its roots in engineering disciplines, most works on the numerical simu-
lation of fluid dynamics focus on the accuracy of computed flows. However,
computer graphics applications demand different qualities in the methods
they employ to simulate fluid motion: plausibility, efficiency and complezity.

Visual plausibility of the motion is paramount in applications desiring to
immerse a person in some virtual environment (e.g., flight simulators, com-
puter games, theatrical films). This is the driving goal of techniques in com-
puter graphics [BHW96|, but, perhaps influenced by the classical literature

2

on Computational Fluid Dynamics, it is not always exploited in published
works (which stay conservative, relying just on accurate methods).

Many works have benefited from exploiting this “relaxed” accuracy re-
quirement in designing more efficient schemes to simulate natural phenom-
ena. Even this efficiency need is somewhat different from that in engineering,
where high-end computers and clusters are often available to perform days
(sometimes weeks) of computations. Animators need a quick feedback from
a simulation (often performed just on a “good” desktop), since many param-
eters are tunned to achieve a desired motion effect. This way, the efficiency
requirements in computer graphics applications are, in a sense, more strin-
gent than in engineering. The systematic exploitation of visual perception
and human attention in designing efficient methods for plausible animation of
physical phenomena is a subject of active research [ODO01, (ODGKO03, [O’S05].

Another property that needs to be taken into account concerns the com-
plexity of the method with respect to its implementation and its integration
with other simulators designed for other physical phenomena. This is more
of a practical “requirement”; since a technique is rarely implemented if it
is too hard to code, and the special effects industry is often interested in
motions resulting from complex interactions among rigid, deformable and
fluid objects (“multiphysics” interactions). Complexity also plays a role in
the interface used for simulations, as the animators are not experts in fluid
dynamics, there is a requirement that the methods should be easy to use
(besides the discussed efficiency of feedback).

All those differences in requirements make it difficult to directly adopt
standard CFD techniques in computer graphics. Therefore, there is a need to
develop specialized algorithms and methods for special effects, what has been
accomplished by both adapting existing techniques from CFD and developing
novel ones to meet the graphics’ requirements.

As this is an introductory text, we will not pursue further issues regarding
these requirements, they are overcome by employing well adopted techniques
to simulate fluid motion for computer graphics applications.

1.3 Overview of the Thesis

This thesis is organized to provide the reader a gradual introduction to the
simulation of fluids for computer graphics applications. In Chapter [2] we
comment on part of the available literature concerned with the main topics

treated on this text: mathematics and physics of fluids, numerical analy-
sis and computational fluid dynamics and computer animation of fluid flows.
In Chapter [3] the governing equations that model the motion of fluids are de-
rived directly from basic physical and mathematical assumptions. That chap-
ter provides the fundamentals of mathematical fluid dynamics needed to
understand most of the computer graphics literature on fluid animation.
In Chapter [4, we describe two of the most influent methods for fluid anima-
tion introduced to computer graphics: Stable Fluids and Smoothed Particle
Hydrodynamics. In Chapter o] a discussion of some efforts which have been
(and are intended to be) made concludes the main text. For completeness,
appendices[A]and [B] contain the C code of our basic implementations of Stable
Fluids and SPH.

Chapter 2

Commented Bibliography

This chapter is intended to provide the reader with an overview (somewhat
biased) to available literature both on the prerequisites and fundamentals
of mathematical and computational fluid dynamics and on works developed
in the computer graphics community to simulate the natural phenomena of
fluid flows with animation and depiction purposes.

Both theoretical and numerical fluid dynamics communities are very pro-
lific. For this reason, we have neither the intention to provide a compre-
hensive list of published works nor the ambition to give a complete picture
of this vast discipline. Even the restriction to those efforts in the computer
graphics literature would be a superb task to anyone pursuing such a goal.
That is why, in the present chapter, we hope to provide more something like
a “student report”: a guide for those interested in studying fluid mechanics
with animation ambitions. The discussion is restricted to materials relevant
to the simulation of fluids and doesn’t even touch on efforts on the visual-
ization of simulated flows. The goal of providing a guide for students and
researchers starting in this field motivated us to employ a different writting
style for this chapter, almost informal compared to the following chapters.

We first provide references on the mathematical modeling of the physics
of fluids and comment on the disciplines required to be able to follow those
references. The discussion following that concerns the literature dealing with
the discretization of the governing equations and differential equations in
general, as well as the basics of numerical analysis and linear algebra on
which the “computational theory” relies. After that, we overview published
works of the computer graphics community regarding the animation of fluid
flows. This chapter ends with comments and some tips for further studies.

2.1 Mathematics and Physics of Fluids

As would be expected, a good understading of the foundations of mathemati-
cal and computational fluid dynamics requires knowledge of basic graduate
mathematics. To be able to follow the references we cite here, the reader
should feel comfortable with real analysis of several variables, linear algebra
(both theoretical and computational) and some elements from the theory
(and practice) of ordinary and partial differential equations (and, sometimes,
results regarding functions of one complex variable). References for these
subjects can be provided by people in the math department nearest to you.

Assuming those subjects are familiar to the reader, we provide the refer-
ences which helped us in preparing this text. The literature on mathematical
modeling of the physics of fluids is rather broad, the available textbooks focus
on varied audiences (e.g. mechanical engineers, physicists and applied math-
ematicians) and topics (e.g. aero, hydro and fire dynamics). Our choices
rely on the bibliography adopted in an introductory graduate course on fluid
dynamics, directed to applied mathematics students, and some references we
found (and enjoyed) on our way throughE]

The classical book by Batchelor [Bat99] provides a broad (and wverbal)
treatment of the physics and mathematical modeling of fluid dynamics; it
is a very nice reference for those interested (and somewhat mathematically
biased) in the subtleties of modeling the physics of fluids. Those who pre-
fer a more formal (but intended to be introductory) view of fluid mechanics
will appreciate the succinct approach adopted in [CM93]. We recommend
[Mey82] as a good balance on the presentation of the physics and the mathe-
matical aspects of fluid dynamics (not to mention the book was written in a
concise and clear language directed to students of applied mathematics and
physics).

For those who can read Portuguese, the books [NacO1l, MN91] provide
both an introduction to mathematical fluid dynamics. Nachbin’s text is more
accessible to beginners who are familiar with elements of complex analysis
of one variable, while Melo and Moura Neto’s is intended for those comfort-
able with the language of differential equations (although the first chapters
provide a nice structure for deriving the governing equations of fluid motion
and influenced our developments in the next chapter).

! The mentioned course was lectured by Professor André Nachbin on the March—June
semester of 2007 here at IMPA.

We also found useful the course notes [NacO7, Mei07]. The first is only
available at IMPA’s copy room, the notes of Professor Chiang Mei can be
found on the internet (by October 2007) as part of a “school-wide modu-
lar program for Fluid Mechanics” hosted at the Massachusetts Institute of
Technology, http://web.mit.edu/fluids-modules/www/|

2.2 Computational Fluid Dynamics

Since the available references for CFD is even larger than those dedicated to
mathematical fluid dynamics and the methods most commonly used in com-
puter graphics for the simulation of fluid flows are rather classical, we chose to
study these specific methods rather than attempt to cover this overwhelming
literature. We pursued standard textbooks on computational linear algebra
and the numerical analysis of differential equations as well as some of the
classical papers most frequently cited by the computer graphics community.

On the subject of numerical linear algebra, we adopted the textbooks
[TB97, Dem97]. The first of these introduce both basic and advanced meth-
ods in a very modular way, suitable both for teaching this subject as well as
for individual study. Demmel’s book complements that text providing a nice
covering of state-of-the-art techniques and issues related to their computer
implementation. For those who aren’t still comfortable with the theory of
linear algebra, but are interested in studying it with applied endeavours, we
recommend [Str80] as a very didatic reference with plenty of examples.

With respect to classical numerical analysis, the book [SB02] provides
a rather complete covering of the basic problems and solutions. For imple-
mentation of the methods by means of computer programs, the Numerical
Recipes series [PTVF92] are the classic reference, providing lots of comments
and source code (available in FORTRAN, C and C++).

The reason for providing all those references on numerical linear algebra
and analysis is to build the foundations on which the numerical analysis
of differential equations is supported. A good introduction to this topic
is [Ise96], it contains a study of discretizations of both ordinary and partial
differential equations with simple examples without restricting the text to one
particular method (e.g., finite differences schemes, finite elements methods).
For a discussion on issues related to the discretization of ODE’s, the book
[API8] provides a thorough analysis of numerical schemes for both non-stiff
and stiff equations. This is one reason for which concepts as consistency,

7

http://web.mit.edu/fluids-modules/www/

stability and convergence of time-stepping methods are introduced, what is
done in a manner similar to that applied on numerical methods for PDE’s.
As one of the most employed methods to discretize differential equations,
finite difference schemes comprehend the most used methods in computer
graphics to simulate the physics of fluids through their governing equations.
The references we recommend to study FD methods are the textbooks by
LeVeque and Strikwerda [LeVO07, [Str04] and an unfinished monograph by
Trefethen [Tre96] (freely available on the internet by October 2007). LeV-
eque’s book covers the numerical analysis of finite difference methods for
both ordinary and partial differential equations in a formal, but still very di-
datic, way. Strikwerda’s text is a bit more dry and focuses on FD schemes for
PDE’s, but is a classic reference and has a nice material on stability analysis.
Trefethen’s unfinished book is a fine (low cost, but of good quality) reference
for some topics on finite differences methods, but sometimes the ausence of
interesting stuff cited in the text is rather annoying. No free lunch. ..
Provided the fundamentals of the basic numerical methods for differential
equations and their analysis, we comment highly cited (in the computer
graphics fluid simulation literature) papers on numerical analysis and CFD.
We believe the most cited CFD paper in the CG literature is [HW65], in
this work, Harlow and Welch introduced the marker and cell (MAC) method
to simulate the behaviour of non-steady viscous incompressible free-surface
fluid flows. That paper used a finite-difference scheme to discretize the in-
compressible Navier-Stokes equations on a staggered grid and a set of marker
particles, advected by the computed flow, both to determine the computa-
tional cells filled with fluid and to depict/visualize the free-surface flow.
Although the use of a staggered grid contributed to diminish effects of
numerical dissipation, the direct discretization of the NSE by an explicit
finite difference scheme imposed to [HWG65], as stability requirements (simi-
lar to the CFL condition derived in [CFL67| to linear, constant coefficients
PDE’s), severe (to CG applications at least) restrictions on the step size
used by the time-stepping method. Those restrictions encouraged the com-
puter graphics community to look for computationally cheap strategies to
overcome the CFL condition. The most applied of those strategies was in-
troduced in CG by Jos Stam at SIGGRAPH in 1999 [Sta99], it employed
a splitting method [MQO02, [PTVF92] to decompose the Navier-Stokes equa-
tions into a sequence of simpler subproblems to which specialized methods
were used. The most important of these methods tackled the convection and
the diffusion equations and the incompressibility condition with, respectively,

a semi-Lagrangian advection scheme [SCI1], a standard (implicit) backward
FEuler discretization scheme [[se96] and Chorin’s projection method [Cho68].
These improvements made possible to take arbitrarily large time steps in
the simulation, at the expense of some loss in accuracy (but still producing
motions plausible enough for animation purposes).

The relatively coarse grids used in animation applications, combined with
other factors, contributed to cause much numerical diffusion in the flow sim-
ulations, evidenced by loss of the swirling behaviour of rotating gases. To
tackle this problem, Fedkiw et al. [FSJ01] employed a forcing term, the vor-
ticity confinement force, in the Euler equations which induced an increase in
the vortical details in the flow. This was done based on the work of Steinhoff
and Underhill [SU94] in the interaction of vortex rings arising in simulations
of air flows around helicopters’ rotor blades.

More recently, with the widespread use of smoothed particle hydrodynam-
ics (SPH) methods in the computer graphics community, many articles have
cited the seminal works of Lucy, Gingold and Monaghan [Luc77, (GM77] on
the application of particle systems (also known as meshfree/meshless meth-
ods) to simulate astronomical fluids and study the formation of stars.

2.3 Fluid Simulation in Computer Graphics

Physically-plausible animation of fluid motion is a long-standing goal in the
computer graphics community. Many models to describe the complex phe-
nomena arising in the interaction of fluids with the environment have been
proposed for computer depiction. In this chapter, we overview some classical
and some recent papers from the graphics literature which take an approach
grounded on the governing equations of fluid flows.

The work of Kass and Miller [KM90] was one of the first to solve PDE’s
for the computer animation of fluids. Their model departed from the shallow-
water/long-wave equations to model the height-field (free-surface) of a tra-
velling water wave with amplitude and depth small compared to its wave-
length. After neglecting the non-linear term in these equations, they arrived
at the classical wave equation, a systematic derivation (from Boussinesq’s)
of both shallow-water and wave equations can be found in [Nac07]. To nu-
merically integrate the resulting PDE, Kass and Miller adopted an implicit
finite-differences scheme, based on the alternating-direction method when
simulating “3D” waves, to avoid the requirement of small time-steps.

Restricting to inviscid (non-viscous), irrotational and incompressible flows,
[WHO1] was able to animate (non-turbulent) aerodynamic transport with a
modeling approach similar to that employed in the classical potential theory
of fluids [CM93]. In [SEF93], Stam and Fiume depicted gaseous flows using
elements from the theory of turbulence and advection-diffusion equations.

Only in 1995, Chen and da Vitoria-Lobo [CdVL95] used a FD-discretization
of the full 2D Navier-Stokes equations to animate fluid flows. To “simulate”
3D fluids, their work solved the 2D NSE and used a height-field, calculated
from the (scaled) pressure values, to depict a free-surface. In the same year,
Stam and Fiume introduced in computer graphics the Smoothed Particle Hy-
drodynamics method of [Luc77, [GMT7] to depict the motion of gases [SF95].

It seems that the first work to employ the 3D Navier-Stokes equations in
the animation of fluids was developed by Foster and Metaxas in 1996 [FM96a,
EMO6D]. Their work uses the MAC-scheme of Harlow and Welch [HW65] to
simulate viscous incompressible flows, and presented detailed descriptions of
how to deal with various boundary conditions encountered in typical flow
regimes. Since Foster and Metaxas were interested in providing tools for
computer animation of fluids, their subsequent work dealed with control of
fluid flows [FM97a|] and coarse-grid simulations of turbulent gases [FM97h].

Although Foster and Metaxas were able to animate full three-dimensional
flows, the adoption of the original MAC-scheme forced time-steps so small
that the refinement process commonly employed in animation production was
rendered inviable. This problem inspired the work of Stam [Sta99], in which
the Stable Fluids (SF) scheme was introduced. Employing a time splitting
of the Navier-Stokes equations, Stable Fluids solves a sequence of “simple”
PDE’s using classic unconditionally stable methods, allowing the simulation
to take arbitrarily large time-steps without numerical blow—upE]

The original Stable Fluids method suffered from severe numerical diffu-
sion and volume loss in its simulations, these problems were circumvented in
[ESJO0T, [FF01], which introduced “vorticity confinement” forces to keep rota-
tional detail in gaseous flows and the use of level-sets [OF03] to represent and
advect the fluid-air interface. These improvements made possible the simu-
lation of gases and bulk water with high visual fidelity and details. Latter,
[EMEO02] coupled level-sets with particles and a simplified semi-Lagrangian
advection scheme which, coupled with the hierarchical representation of the
computational domain presented in [LGF04], allowed an efficient simulation

2 In chapter 4, we provide a more detailed description of the Stable Fluids method.

10

of stunning details in water flows.

Since Stam’s seminal work [Sta99], many authors have developed ex-
tensions to the basic Stable Fluids scheme [FSJ01, [FEOT, [Sta01, NFJ02,
CMITO02, [FOAO03, [Sta03, RNGF03|, (GBO04, [CMT04, SRF05] and alterna-
tive approaches [FOKO05, [FOKGO05, [KFCO06, ETK™07, BBBOT7, ICFL07],
although they adopted the general splitting structure of the orginal Stable
Fluids method.

Other interesting researches concern meshfree (particle-based) methods.
Even though introduced in computer graphics by [SE95] for gases and [DG96]
for elastic solids, the SPH method only became popular after the work of
Miiller et al. [MCGO3]|, in which it was demonstrated that it could be used
to simulate 3D fluids at interactive rates. Althought it is one of the most
popular methods, [MCGO3| was not the first to use physically-based particle
methods to simulate the Navier-Stokes equations. In [GLG95], Gamito et
al. presented a particle method based on the vorticity formulation of the
governing equations to simulate gaseous flows. Also in 2003, Premoze et
al. [PTBT03| employed the Moving Particle Semi-implicit (MPS) scheme
to simulate water flows, but the use of MPS required a grid structure to
solve a Poisson equation, which did not free the simulation from using grids.
Since then, many papers proposed extensions and other meshless schemes to
simulate fluid flows [MSTT04, MSKGO05, PK05, PPLT06, [CACCO6, BTO7,
APKGOT].

The computer graphics literature on the simulation of fluid flows is large
and diverse. Many people are working to develop efficient methods to gen-
erate visually realistic fluid imagery. Interesting research trends include
flow control for animation [FM97a, TMPS03, MTPS04, [FL.04, RENT04,
SY05a, [SY05bl, [TKPRO6, KMTO06], alternative methods [Thu07, BWHTOT,
WBOL07,[GN07, SMMLOT7] and implementations on graphics processing units
(GPU’s) [Har04, [SCC04, [SCCO5, [CLT07].

More introductory references on the simulation of fluid flows (and related

topics) for computer graphics applications can be found in the course notes
[BMFE07, DEFT04, WB01] and in the overview papers [FMO0Q, Sta00), Tgl04].

2.4 Comments and Further Reading

We presented an overview of some available references on the theoretical and
computational aspects of fluid dynamics and how they have been exploited

11

by the computer graphics community to simulate fluid motion for animation.

In this chapter, we intended to provide the citations most recurrent in the
fluid animation literature. Our belief is that a more thorough understanding
of the discipline of mathematical fluid dynamics can be acquired through the
study of classic texts on the subject. Besides those cited, some of the classics
include [Lam93, [CF76, [HM76, Whi99]. Another work that seems to adopt
an interesting viewpoint, and is somewhat different from the cited texts, is
the book [WGO0| that models and simulates fluids by cellular automata, an
approach already brought to computer graphics and has generated rather
impressive imagery [Thu(7].

Other references which seem to be worthy, but we didn’t inspect yet, re-
gard the generalized simplified marker and cell (GENSMAC) method [TM94,
TECT01] and its use in the simulation of 3D flows, both Newtonian and
non-Newtonian [TDM96, TGCT04]. This scheme is based on earlier work
by Amsden and Harlow [AH70] which introduced the simplified marker and
cell (SMAC) method and which has also been employed in the (real-time)
animation of fluid flows by an implementation on GPU’s [SCC04} [SCCO03].

An interesting result from studying the mathematics of fluid dynamics
is that most of the modeling done for fluids is very similar to that em-
ployed in mathematical elasticity. Hence, for those also interested in the
physically-based animation of elastic media, we recommend the textbooks
[MH94l, [Lov44] as the analogous to those references cited in the first sec-
tion of this chapter. We have also found a reference written in Portuguese
[Pat87] which would provide an analogous for Nachbin’s text, but may be a
bit harder to find because it is out of print by now.

12

Chapter 3

The Equations of Motion

This chapter is devoted to presenting the basic concepts and results from
mathematical fluid dynamics. The governing equations of fluid motion will
be derived from the fundamental conservation laws and assumptions of con-
tinuum fluid mechanics. Our derivations will be kept general up till the
point where the need to specialize our results to the most commonly sim-
ulated flows in computer graphics is necessary (i.e., incompressible inviscid
flows and incompressible Newtonian flows with uniform viscosity).

From this theoretical treatment, we hope to gain a solid understanding
of the assumptions behind the equations of motion used in physically-based
fluid animation. We have chosen the concepts and results most recurrent in
the computer graphics literature and some we believe could be more exploited
in the development of animation techniques.

For reasons of space and time we have chosen to omit derivations and
results from some topics of continuum fluid mechanics also exploited by the
computer graphics community (e.g., the shallow-water equations and non-
newtonian fluids). However, at the end of this chapter, we provide some
comments about those topics and references for further reading.

Our developments result from studying (some topics from) five books
[CM93], IMNO91l, Nac01l, Mey82], Bat99] and two sets of lecture notes from
courses on “Fluid Dynamics” [Nac(O7, [Mei07]. If a more in-depth treatment
of mathematical fluid dynamics is needed, the reader is strongly encouraged
to pursue those references.

13

3.1 Basic Principles and Assumptions

To mathematically model the physical phenomenon of fluid motion, we need
to make some basic assumptions about our objects of study. The theory of
continuum fluid mechanics is grounded on principles which every fluid flow
is supposed to obey:

e the law of conservation of mass: also known as the Lomonosov—Lavoisier
law, states that

“the mass of a closed system of substances will remain con-
stant, regardless of the processes acting inside the system.”

In fact, this law is only approximately true. Since, according to
special relativity, the relativistic/apparent mass (m) depends on one’s
frame of reference. However, for low speeds (much lower than light’s),
the variation in apparent mass is negligible to a high accuracy.

For our mathematical modeling of fluid dynamics, we assume that
“mass is neither created nor destroyed.” (‘Z—T = O)

e Newton’s laws of motion: the three physical laws which provide rela-
tionships between the forces acting on a body and the motion of the
body. They form the basis for classical mechanics, from which contin-
uum fluid mechanics is a subdiscipline. The modern understanding of
Newton’s three laws of motion id'}

First Law “if no external force acts on a particle, then it is possible to select
a set of reference frames, called inertial reference frames, observed
from which the particle moves without any change in velocity.”

Second Law “observed from an inertial reference frame, the net force (F) on
a particle equals the time rate of change of its linear momentum

-

This law can also be stated as F = fl—f = ma.

—

(7= m?)

Third Law “whenever A exerts a force on B, B simultaneously exerts a force
on A with the same magnitude in the opposite direction.”

L http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion

14

http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion

The second law defines the net force on a body in terms of its linear
momentum. This principle is called the law of balance of momentum
and is recurrent in our derivations

o the first law of thermodynamics: which states that

“The increase in the internal energy (U) of a thermodynamic
system is equal to the amount of energy added to the system
as the result of heating (QQ) minus the amount of energy lost
as the result of work done by the system on the surroundings

(W)

in equations this means dU = 0(Q) — 6WE| In simple words, it accounts
for the assumption that “enerqgy is neither created nor destroyed.”

e continuum hypotesis: although fluids are composed of molecules that
collide with one another and solid objects, at a large scale, they may be
considered as a continuum, i.e. their properties can be assumed con-
tinuous functions defined on subsets of R™P| This assumption is called
the continuum hypotesis and provides us a very good approximation
for the macroscopic phenomena we are interested in.

Besides those general principles of continuum fluid mechanics, for easy of
presentation, we assume a standard smoothness convention [Mey82l [CM93]:
“the fluid properties (e.g. velocity, density and stress tensor to be introduced
later) are smooth enough, with respect to position and time on the closure
of the fluid domain (to be mathematically defined lated), in such a way that
the standard operations of calculus may be performed on them.”

Having set our fundamental assumptions and basic conservation laws, we
are able to begin our mathematical modeling of fluid dynamics.

2 “Notice that the surface of the Earth does not define an inertial frame of reference
because it is rotating and orbiting and because of Earth’s gravity. However, since the speed
of rotation and revolution change relatively slowly, the inertial force is tiny. Therefore,
Newton’s laws of motion remain a good approximation on earth. In a non-inertial frame
of reference, inertial forces must be considered for Newton’s laws to remain valid.”

3| http://en.wikipedia.org/wiki/First_law_of_thermodynamics

4 As our derivations assume that no amount of heat energy is exchanged in the system
(i.e. 8Q = 0), for our purposes, this law reads dU = —W <= W = —dU.

5 For our considerations, we always have n € {2,3}.

15

http://en.wikipedia.org/wiki/First_law_of_thermodynamics

3.2 Lagrangian and Eulerian Descriptions

Our object is to mathematically describe the motion of a fluid region during
a given time interval. Such a description can be based on the idea of studying
the trajectory taken by each one of the “infinitesimal fluid particles” that
compose the fluid. This idea leads us to associating fluid motion with a
geometrical transformation from the configuration this fluid domain presents
at a reference time instant into the configuration it presents at another time.
To mathematically model “fluid motion”, we first need to formalize the
concepts discussed and our intuitions through mathematical definitions.

Definition 1 (fluid region). Let D C R™ be an open and bounded set such

that 0D is smoothll| If D is supposed to be “filled with a fluid”, we call D a
fluid region.

Definition 2 (reference configuration and time instant). The reference con-
figuration is a fluid region g fized at the reference time instant to € Z C R,
where L is the open time interval during which we are interested in studying
the fluid dynamics.

Definition 3 (fluid motion and flow map). The fluid motion is the family
{i}ier of continuous maps ¢, : Qo — R™ whose ,, for each t € I, maps
the position xg € 2o of a fluid particle in the reference configuration to this
particle’s position at time t. With this, we can define the fluid flow map as
the function o : Qy x T — R™ such that ¢ (Xo,t) = ¢, (XO).

After mathematically modeling the notion of “fluid motion” as a family
of maps, we need to study the properties these maps are supposed to pos-
sess (besides continuity). The intuitive idea that two different bodies cannot
simultaneously occupy the same portion of space can be expressed as a prop-
erty for our definition of fluid motion: “for each t € Z, gpt‘ﬂo 1s smooth and
has a smooth inverse on € = ¢, (29)”. Another intuitive property ensures

the continuity of ¢ (xq,) : Z — R", for each x¢ € Qoﬁ Intuitively, this means

6 Notice the use of our smoothness convention. In this case, the convention was used
to avoid the technical requirements that allow us to invoke the Divergence Theorem in
subsequent calculations.

" Don’t confuse the subscript ; with a time derivative!

And notice that ¢, (x0) = ¢ (%o0,%0) = Xo.

8 In fact, we assume ¢ is smooth on Qg x Z and its time derivatives (at least the first

two of them) are continuous on Qy x Z.

16

that “no particle can suddenly disappear and reappear at another position”,
i.e., the trajectory of a fluid particle is (at least) continuous.

Definition 4 (trajectory). From the definition and properties of ¢, we can
notice that the trajectory x : Z — R"™ of a fluid particle initially located at a
point Xo € Qo can be defined by x (t) = ¢ (Xo,t), and, from our smoothness
convention, X describes a smooth curve in R™.

This description of fluid motion through the fluid flow map and the fluid
particles’ trajectories with respect to the reference configuration is the so
called Lagrangian description and the points in €y are known as material
coordinates.

Another approach to describe the particles’ motion is through the defini-
tion of a smooth vector field u : D x T — R™ defined in a fixed fluid region D.
We define u (x,t) as the velocity of the fluid particle which passes through
x € D at time t € 7:

_9¢
ot

From this definition of the velocity field u, we are able to provide an
equivalent definition to a particle’s trajectory x as the (unique) solution of the
ordinary differential equation (sometimes known as the trajectory equation):

(2—); =u(x,t), x(ty) =%

This is the so called Fulerian description and the points in D are known
as spatial coordinates.

Defined the trajectory of a fluid’s particle, we would like to measure the
rates in which quantities change along a particle’s trajectory, i.e., we want
to be able to take time derivatives along trajectories. With this goal, let
f D xZ — R be a smooth function and x : Z — R” be a trajectory. The
time derivative of f along the trajectory x at a time instant ¢ is calculated
(using the chain rule) as:

Fult) = £ (x(0). 1)
Ft) = V5 (e),0) - 20+ Xy

:(g_{ﬂ-w) (x ()1

u (90 (XOat) 7t) (Xo,t) ;X0 = 90;1<X)

17

From these observations, we can define a time differentiation operator
which acts along particles’ trajectories.

Definition 5 (material derivative and derivation along trajectories). Defin-
ing the material derivative opemtmﬂ as % = % + (u- V), the derivative of
f along the trajectory passing through point x at time t is given by %{ (x,1).

With the material derivative, we are able to calculate time derivatives
of functions along material curves (trajectories). As an example, from the
velocity vector field u (x,t), we can compute the fluid acceleration (vector)

field a(x,t) as simply asﬂ

a(x,t) = %(x,t) - <g—?+(u~V)u) (x,1)

where the material derivative is applied componentwise (which also allows
us to apply it on tensor fields). Note the connection between Lagrangian
and Eulerian descriptions of the acceleration field made possible through
the material derivative, such a connection is recurrent both in theory and
algorithm development.

By now, we are able to demonstrate one of our most useful results.

Theorem 1 (Reynolds’ Transport Theorem).
Let f : D x T — R as in the smoothness convention and Q; :== ¢ (Q9,t) C D,
for each t € T and Qo C D the (arbitrary) reference fluid region, then

d D
E/fdv:/<D_];+fdivu) dv
Q4 Q4

where AV denotes the volume element.

Before providing a proof for this result, we demonstrate the following
lemma concerning the time derivative of J (xq,t) := det (V ¢ (x¢,t)) (where
the Jacobian of ¢ is taken with respect to spatial coordinates).

9 Also known as transport derivative, substantial derivative, convective derivate. . .
10 From this, we see that, given the velocity field u, the acceleration field a is not given
by %—‘t‘ (a very common mistake).

18

Lemma 1. 2J (xo,t) = J (o,) [divu (¢ (xo,) ,)]
Proof of Lemma[1]. First of all, notice that

0 0y,
EV @i (Xo,t) =V 875 (Xo,t)

=V [w; (¢ (x0,1) ,1)]
:Vui((x0,1),t) - V¢ (x0,1)

8uz
- Z X07))VQOJ (X07t)

From this equality, the n-linearity and the antisymmetry of det (-), we have

2J(X[),t) =

0

ot

0
= GtV 0) Vi ()

0
=3 det (Ve <xO,t>,...,avmm,ﬂ,...,wn<><o,t>)

=1

:Zdet(Zauz XOa ,)Vgpj (XO7),)
_Zzauz (xo,t 7)det(Vgpj(XQ,t),...)

=1 j5=1
(9u1
Za XOa))det<v901 (X0>)7"'7v(10n(X07t))
Xi
- aui
=det (Vg (x0,1)) 5~ (¢ (%0, 1), 1)
i=1 v

= J (X0, t) [divu (¢ (x0,t) ,1)]

19

Proof of Reynolds™ Transport Theorem. From the smoothness of gpt|90 (and

its inverse’s), the continuity of ¢ (xg,-) and that ¢ (-,¢y) = id(-), we have
the positivity of J (xg,t) for each xy € €y and each ¢t € Z. From this, the
preceding lemma and the Change of Variables Theorem:

/thdV—dt/fxth

©(Q0,t)

/f Xo, , (Xg,t) dVv

_:/(af+vv)@MXmOJ%]@mﬂdV

Bt
4 [600, 52 (o) dV
/(%+Vf-u> (p (x0,1),t) J (X0,t) dV
Qo
41/fop@mw,ch%,nmvuwNmexﬂdv

Qo

~ [o teant) 1) ety av
Qo
+ / (fdivu) (¢ (x0,t),t) J (x0,t) dV

Qo

:/(%{—i—fdlvu) (¢ (x0,1)) J (x0,1) AV

= / (%{ —i—fdlvu) (x,t) dV
©(Q0,t)

_ [(2
= / (ﬁ —|—fd1vu) (x,t) dV

Q

20

The following corollary of the transport theorem establishes a connection
between the Lagrangian and the Eulerian viewpoints (in an integral form).

Corollary 1. With) and f as in the transport theorem, let €2y be the fixed
set in R™ which coincides with € at t =t;. Then at the (arbitrary) time t;,

/fdv—gt/deJr/fu ndA

951 o
where n 1s the unit outward normal, and dA the surface element, on 0§;.

Proof. From the identity div(fu) = Vf - u+ fdivu, it suffices to note that
%{ + fdiva = % + div(fu). From the transport and divergence theorems,

/de /(—f+fd1vu) de/(%erlv(fu))

g{dV%—/dlv(fu 1 at/deJr/fu ndA

o o o
[l

The left-hand side of this expression denotes the rate of change of the “f-
content” of the fixed body of fluid occupying the region 2; C D at time t;.
The first term on the right-hand side is the rate of change of the f-content
of this fized spatial domain. And the last term is the rate of outflow of f
through the fixed boundary of €; (“flux of f through 90€,”) [Mey82].

3.3 Conservation of Mass and Incompressibil-
ity

In the previous section, we deduced some preliminary results based on our
(still too abstract) mathematical model of fluid motion. From now on, we
begin to describe our physical assumptions and conservation laws from sec-
tion in terms of mathematical properties of our model.

This section deals with the first of our basic principles, the law of con-
servation of mass, and its relationship with incompressibility in fluids. The

assumption which ensures the conservation of mass of a fluid region in motion
can be mathematically stated as:

21

Definition 6 (mass and density). There exists a function p (x,t) such that,
for any fluid region VYW C Qg and every t € T

0<m(W,t) = / p(x,t)dV and %m W, t) =
p(W,t)

where m (W, t) is the mass of the fluid in o (W, t) and the function p(x,t)
defined this way is called mass density. [1]

From this definition, the conservation of mass can be stated in terms of
p and u as an application of the Reynolds’ Transport Theorem:

d d Dp
0= = (W, t) = pr / p(x,t) dV = / (E + pdiv u) (x,t) dV
pe(W,t) e(W,t)

This way, from the smoothness properties of p, we have the equivalence

Dp : B Dp o
/ <ﬁ+pd1vu) dV—0<:>E+,0d1vu—0 (3.1)
e(W,t)

in which the left-hand side is called the integral form of the law of conser-
vation of mass, while the right-hand side is the so called differential form of
the law of conservation of mass (or the continuity equation).

From these forms of mass conservation, and applying once more the trans-
port theorem, we can prove the following result.

Corollary 2. With €; and f as in the Reynolds’ Transport Theorem,

d
dV = dv
A /D

Q
Proof.
& [orav=| (g (o) + (o) divu) av
o O
—/(Df+f(—+pd1vu>) dV—/p%J;dV
Qs Q

]

1 Sometimes we may refer to p as density or specific mass. As pointed in section
we adopt the smoothness convention for p, this way p > 0 almost everywhere.

22

Although real fluids change volume, most fluid flows of “interest” can be
approximated, to a high degree of accuracy, by incompressible flows. This
means that, for many practical applications (e.g. the simulation of “every-
day” fluids for computer animation), we can assume the incompressibility of
our fluid flows[?]

Definition 7 (incompressible flow). We say that ¢ denotes an incompres-
sible flow when, for any fluid region W C Qg and every t € T

dt

d
volume (W) = volume (¢ (W, 1)) < /dV = / dV & — / dV =0
w e(W,t) pWt)

From this definition and the transport theorem, for incompressible flows,

d

0= —
dt

/dV— / divudV <<= divu=0

Lp(W,t) QO(W,t)

where the right-hand side is often known as the incompressibility condition.ﬁ

The incompressibility condition and lemma [1| also result that a flow is
incompressible if and only if J =1, since J (-, ty) = 1.

From the equation of continuity [3.1} and the fact that p > 0, a fluid is
incompressible if and only if % = 0, that is, the mass density is constant
following the fluid. If the fluid is homogeneous (i.e. p = constant in space),
it also follows that the flow is incompressible if and only if p is constant in
time. So, for a homogeneous incompressible fluid, p (x,t) = pg > O.E

12 Notice this doesn’t hold for simulations involving high-speed flows like sonic booms
and blast waves. The study of how fluids behave in these situations is generally called
“compressible flow”. It’s usually so much more complicated and expensive to simulate
these high-speed flows that, even if we have sonic booms and blast waves, they’re invisible
and most audiences have no idea really how they behave, so it’s generally a much better
idea (for computer graphics applications) to hack together something that looks cool than
try to simulate them accurately. [BMEQ7]

13 A velocity field divu = 0 is often called divergenceless or divergence-free.

14 Notice that this does not mean that incompressibility = homogeneity.

23

3.4 Balance of Momentum

In this section we incorporate in our model the second of our basic princi-
ples, the Newton’s laws of motion. From these, the second is the one mathe-
matically translated into properties of our model, while both others impose
simplifying assumptions in our derivations (e.g. symmetry in binary forces
due to the third law).

To ensure the law of balance of momentum (Newton’s second law of mo-
tion), we first need to define it in the context of continuum fluid mechanics.

Definition 8 (linear momentum). The (linear) momentum of a fluid re-
gion §; is given by the mteng]

/p(x, Bu(x,t) dV.

Q

With this definition of momentum, Newton’s second law can be stated as

d Du
t fi Q) =— dv = —dV
{net force on €} dt/pu P WV
Q Q

where the second equality holds from corollary E] The net force on €, is
due to contributions from external forces (also known as body or long-range
forces) and internal forces (also known as surface stress forces).

The canonical example of external force is the gravity field. These forces
act per unit volume on the fluid, so they can be modeled as the product
pb 1 Qy xZ — R™ (where b : ; x Z — R" is a vector field denoting the
external force field per unit mass and, abusing nomenclature, will be called
the body force field).

An example of surface stress force is the hydrostatic pressure force one
feels when diving, this force is due to the weight of a fluid and increases with
the depth (evidencing the influence of the rest of fluid). These forces are
modeled as a field 7 : Q, x Z x S* ! — R”, which depends on the position
in the fluid region’s boundary x, time instant ¢ and the (outward) normal n
at the point x on the boundary 052;.

15 Tntuitively, notice that pudV = (pdV)u denotes the linear momentum (of an “in-

finitesimal fluid element”) as defined by Newton’s second law (mo)

16 Again, intuitively, the quantity p% av = (p dV)% denotes the net force exerted on

an “infinitesimal fluid element” (from Newton’s second law, F' = mda).

24

This way, the net force on €, is given by

{net force on ;} = {surface stress forces} + {body forces}

_ /T(X,t,n) dA+/p(x,t)b(x,t) v

0 Q

which can be further simplified using a theorem of Cauchy ensuring, as a

consequence of a continuous dependence of 7 on n and the balances of linear

and angular momenta, the existence of a tensor field T : €, x Z — R™ ™ such

that 7 (x,¢,n) = T (x,t) - n and T (x, t) is symmetric (V (x,) € ; x I)
From this result, and the Divergence Theorem for tensor fields,

Du

Qt 8Qt Qt Qt

where Div T is the vector in which each component corresponds to the diver-
gence of the corresponding row in T (seen as a vector field). This equality
ensures the balance of momentum in our model and is known as the integral
form of the law of balance of momentum. As we did for mass conservation,
assuming regularity of the fields involved, we get the differential form of the
law of balance of momentum

D
pF‘: — DivT + pb. (3.3)

Notice that no further assumptions on the structure of T have been made
to arrive at these forms of balance of momentum. This proves useful when
one desires to study the behavior of Non-Newtonian fluids, which are not
dealt with in this text, because all we have done so far has been general
enough to accomodate these materials as well. In the next two sections, we
specialize our derivations assuming a certain structure for T.

17 Although we don’t prove the Cauchy’s Theorem [HMT6) [Pat87], the particular result
T(x,t,—n) = —7 (X,t,n), necessary for the linearity of 7 on n, is a direct (and simple)
consequence of Newton’s third law of motion.[MN91]

25

3.5 Ideal Fluids and Euler’s Equations

Our first simplifying assumption on the structure of the tensor field T is that
it doesn’t impose tangential surface forces, i.e. T (x,t) - n is parallel to n.
From this assumption, T (x,t) must be a multiple of the identity matrix

where p: Q, x T — R is called (mechanical) pressure

This assumption of inexistence of tangential forces on a fluid domain’s
surface is an approximation which neglects effects due to viscous friction,
that is the reason why fluid flows derived from it are called inviscid or also

Definition 9 (ideal fluids). A fluid flow is called ideal if the surface stress
forces are given by a tension field such that T (x,t,n) = —p (x,t) n.

From these considerations, [3.2] and [3.3] we deduce both the integral and

differential forms of the law of balance of momentum for ideal fluid flows,

Du Du
—dV = — b) d — =-V b
/thV /(Vptpb)dV = ppy ptp
Qt Qt

Together with the forms of the law of conservation of mass, the equations
above form a system of n + 2 unknowns (u, p and p)¥ and n + 1 equations
(n from balance of momentum and 1 from conservation of mass).

One way to “close” this system of equations is coupling p and p through
an equation of state, which specifies the pressure as a function of density.
In this way, we have p (x,t) = f (p(x,t)), where f: R, — R is smooth["

Common examples of equations of state used in computer graphics are:

e p(p) = c(p—po), where c is the sound speed in fluid (the maximum
speed attainable by a propagating wave) and pg a reference density;

18 The minus sign in —plI is an account to the intuitive concept that a positive pressure
indicates a compression imposed on the fluid domain, i.e. tension is oriented in the opposite
direction of the surface’s normal field.

19 Notice that we assume b is known.

20 For a more in-depth discussion of the physical interpretation (and an implicit form)
for equations of state, see [Bat99].

26

N
e p(p)=po [(p%) — 1], where py and py are the reference pressure and
density, respectively, and v a constant (typically chosen as v = 7)]

Another very common way to ensure that all degrees of freedom have been
tackled is to assume both incompressibility and homogeneity of the fluid flow,
this way we have the system of partial differential equations known as the
FEuler’s equations (for incompressible homogeneous inviscid flows):

Du

Du . — 4
D Vip+b, divu=0, ul|oW (3.4)

where p = piop and the third equation is a boundary condition on the flow
asserting that no fluid “traverses walls” but is “allowed” to freely slip along
them without friction effects. That is the reason why this condition is some-
times refered to as (free-)slip, no-stick or inviscid boundary condition”|

In the next chapter, we will present two classes of numerical schemes used
for the simulation of fluid flows in computer graphics, the first is based on
the Eulerian description of fluid motion and addresses the degrees of freedom
by assuming incompressibility and homogeneity of the fluid flows, while the
second method employs the Lagrangian description and makes use of an
equation of state to animate quasi-incompressible fluid flows.

3.6 Newtonian Viscous Fluids and the Navier-
Stokes Equations

As noted in previous section, the assumption of ideal fluids neglects effects
due to viscous friction. This assumption is reasonable for some gaseous flows
but it is still too restrictive for many fluids (e.g., water, milk, beer, etc.).

In this section, we make different simplifying assumptions on the structure
of the tensor field T in order to model some common “everyday flurd flows”.

21 The first equation was proposed in [MEFZ97] and is very popular in computer graphics;
the second was adapted from p (p) = (1 + B) (p%
for water by [Bat99], where n and B are chosen as 7 and 3,000 respectively.

22 Different boundary conditions can be imposed on the fluid domain, also often used in
computer graphics are the inflow/outflow, open boundary and the free-surface conditions
discussed elsewhere [FM96al, [SCPT04, [FF01, BMFQ7] and the no-slip boundary condition
we discuss later.

— B, suggested as an equation of state

27

Instead of assuming that T (x,t) = —p (x,t) I as for ideal fluids, we now
assume that T (x,t) = —p (x,t) I + o (x,t), where o is such that [CM93]:

1. o depends linearly on the velocity gradients Vu, i.e. o is related to Vu
by some linear transformation at each point |

2. o is invariant under rigid body rotations, i.e.
UeSOMn)=0o(U-Vu-U')=U-0(Vu)-U"!

This means that, under rigid body rotations, there is no diffusion of
momentum due to viscosity.

3. o is symmetric. This can be deduced from the symmetry of T (due to
balance of angular momentum |[MH94]).

From these assumptions, the Newtonian fluids’ assumptions, follows [CM93]
o=\Mtr(D)I+2uD
where A (x,t) and p(x,t) are the non-negative coefficients of viscosity and
D = 3 [Vu + (Vu)T] is the symmetric part of Vu.

Since tr (D) = divu, we have T = —pI + A (divua) I + [Vu + (Vu)T]
From these considerations, the differential form of the law of balance of mo-
mentum for Newtonian viscous flows follows{*]

Du

p5r = —Vp+ V[A(divw)] + Div (0 |Vu+ (Vw'|) +pb | (35)

A common assumption is to consider A (x,#) = Ao and p (x,t) = 1o, yielding™|

Du

P or = —Vp+ A+ p) V (divu) + pAu + pb (3.6)

23 This means o (x,t) = f (Vu(x,t)), for some f : R"*"™ — R"*" linear. Sometimes,
we use the notation o (Vu) instead of o (x,t) to make explicit the dependence on Vu.
24 We omitted the integral form for space reasons.

25 Notice the use of the laplacian A := 08722 + 6‘9—;24—6‘9—;, which is applied componentwise in

a vector field u yielding another vector field Au, and the identity Div [(Vu)T} = V (divu).

28

Which, adding the incompressibility assumption, amounts in the most com-
monly used form for the law of balance of momentum in computer graphics:

Du

— = — A b)
Py =~ VP pAutp (3.7)

Notice that, if we assumed incompressibility before the homogeneity of A
and p, we would have no dependence on A because

Du
Dy

= —Vp + Div (u [Vu - (Vu)TD + pb,

which is a form used to model varying viscosity incompressible fluid flows |

The assumptions of homogeneity (of both p and u) and incompressibility
yield, along with the differential form of the law of conservation of mass, re-
sults in the most common system of PDE’s for the modeling of fluid motion,
the Navier-Stokes equations (for incompressible homogeneous Newtonian vis-

cous flows) {7

D
Fl; =—-Vp+vAu+b, divu=0, ulspy=0 (3.8)
where p = %p, Vo= %,u is known as the kinematic viscosity and the third

equation denotes a boundary condition on the flow asserting that the flow
“adheres to walls”, due to effects of viscous friction. For this reason, this
condition is refered to as the no-slip or viscous boundary condition.

In the next chapter, when we discuss the Lagrangian scheme known as
Smoothed Particle Hydrodynamics, it is noticed the omission of one term from
the differential form of the law of balance of momentum in the PDE’s used
by a popular paper in the computer graphics community. Such omission is
due to an assumption of flow incompressibility, which cannot be ensured by
their implementation of SPH (not designed for really incompressible flows).

26 This one should be the form of the momentum equation used in [CMIT02], however
it seems they forgot the second parcel appearing in the diffusive term.

27 Notice that the expression modeling the law of balance of momentum is often called
Navier-Stokes equation. In this text, we use the name Navier-Stokes equation(s) inter-
changeably to mean the systems of PDE’s coupling one of the differential forms for the
law of balance of momentum derived in this section, the differential form of the law of
conservation of mass and the no-slip boundary condition we comment later (and, possibly,
an equation of state, if the incompressibility assumption is not made).

29

3.7 Pressure and Incompressibility

In section 3.5 we introduced the mechanical pressure p as the magnitude of
contact forces acting on a fluid surface in a direction parallel to the normal
n. Also, we asked fluid incompressibility and homogeneity to determine p.
We now shall explore the role of the pressure in incompressible flow.
With this aim, we exploit the following vector field decomposition theorem.

Theorem 2 (Helmholiz—Hodge Decomposition Theorem). Let W C R™ be
a fluid region and u : W — R"™ a smooth vector field. There exists a unique
decomposition of u such that, for smooth us, : W — R" and u, : W — R",

u=u;+u, V-u;,=0onW, u,-n=0o0ndW, u,=Ve¢onW
for some smooth ¢ : W — R.

Proof. The existence of such a decomposition is due to the existence of a
function ¢ : W — R such that, for smooth f: W — R and ¢ : 9WW — R,

—A¢p=fon W, ;l—i:gonaw — /de:—/gdA.
w ow

Taking f := —V -u and ¢ := u - n, the divergence theorem ensures the
right-hand side of the above equivalence, which guarantees a ¢ as before.
Defining u, := V¢ and u, := u—u,, it is easy to verify the stated properties.
To prove uniqueness, we suppose that u = ug + u; = uf; + uf), then
0= (uf —u) + (u) — wy) = (uf —ug) + V(" — ¢").

s P p
b

S

0= [{lhut = bl + (= w) - Vo7 - o)} av

Taking the L? inner product with (u? — u®), we have that

w
=/|Iu‘;—U2||§dv+/v. (6" = ") (u —ud)| av
w w

= [t = wigav + [o - o[~ u)] da = [t - wllpav
w ow w
where the second equality is due to V-u? = V-u? = 0 on W, the third to the

divergence theorem and the final is due to u? -n =u®-n =0 on OW. This

implies that [[u —ul||z> = 0, hence we must have uf = u? and u} = u’. O

30

The above proof is specially important because it provides a method to
perform the Helmholtz-Hodge decomposition of a vector field through the
resolution of a Poisson problem with Neumann boundary conditions. This
method will be useful later to the design of numerical simulation algorithms.

The field uy is called the divergence-free (or divergenceless) component
of u, while u, is known as its potential (or gradient) part. With this result,
we are able to define an orthogonal projection operator which maps a given
vector field onto its divergence-free (incompressible) component.

Definition 10 (projection operator). The projection operator P acts on
vector fields for which the Helmholtz-Hodge Decomposition Theorem holds
and is defined as Pu := u,, where ug is the divergence-free component of u.

The importance of this operator may be better appreciated through its
action on both Euler’s and the Navier-Stokes equations for homogeneous
incompressible flows (3.4)) and (3.8)), which take, respectively, the forms:

ut:P<—u-Vu+b>, divu=0, ul[ow

ut:IP’(—u~Vu+VAu+b>, divu=0, ulspy =0

These equations shed some light on the role of pressure in incompressible
fluid flows. From them, one can think about pressure as whatever it takes
to keep flow incompressibility [BMFO?]F_g] Other interesting implication of
the above equations is the “blindness” of the fluid flow to conservative body
forces (i.e., JU : W — R such that b = —VU), since this implies IP’(b) =0.

Such forms of the governing equations not only allow us to give an in-
terpretation for the role of pressure in incompressible fluid flows, but also
they are at the heart of some of the most commonly used numerical schemes
for the animation of fluid flows in the computer graphics community. The
exploitation of the projection operator to design a numerical scheme based
on the Eulerian description of fluid motion is discussed in the next chapter.

28 Such a loose interpretation for pressure is often exploited by fluid modelers to enforce
some properties at the fluid’s boundary (e.g., the pressure jump in two-phase fluids [HK05],
the coupling of fluids and deformable bodies [GSLF05, [CGFOQ6]).

Another way of thinking about pressure comes from interpreting it as a Lagrange multi-
plier of a fluid dynamics constrained by the incompressibility condition (i.e., the equality
constraint divu = 0) [BMF07].

31

3.8 Rotation and Vorticity

In this section, we study the rotational motion of fluids. Such a study is
of foremost importance due to the key influence of turbulent and rotational
behavior of fluids in the visual perception of fluid motion. To this end,
we introduce the concept of vorticity as closely related to the local angular
velocity of the flow.

Definition 11 (vorticity). The vorticity field w : D x T — R" of a fluid flow
is defined as the curl of the flow’s velocity field, i.e. w (x,t) :=V X u(x,t).

As the curl of the velocity field u, the vorticity quantifies the local spin-
ning speed and direction induced by the fluid flow map. Such an interpreta-
tion can also be supported by Batchelor’s definition of vorticity as twice the
local angular velocity [Bat99].

An interesting result regarding the local structure of a vector field states,

Proposition 1. Consider a stationary flm@ around a small neighborhood
of a given point xo € D. Let uy :=u(xg), Dy := %(Vu (x0) + (Vu (xo))T>
and wo := w (X), then, for sufficiently small ||| [

1
U(Xo—i-h)%uO—‘—Do'h—FﬁwQXh

Proof. This proposition follows imediately from Taylor’s formula and the
fact that w (x) equals twice the anti-symmetric part of Vu(x) (property
readly verifiable by simple hand calculation). O]

This proposition can be physically interpreted as: a fluid flow’s veloc-
ity field induces, locally and approximately, the superposition of translation,
deformation and rotational effects. From it, we can appreciate the role of vor-
ticity in the rotational behavior of the fluid flow and a reason for Batchelor’s
definition of w.

We now introduce the notion of circulation, which may be understood as
the total amount of “spinning” around a closed contour.

9" A fluid flow is said stationary if its velocity field is time-independent, ie. 9% = 0.
Notice this doesn’t imply that u = 0.
30 Somewhat more precisely stated: for every h € R™ such that (xo +h) € D,

u (xo +h) =ug +Dg-h+wy x h+o(]h]).

32

Definition 12 (circulation). Let Cy C Qg be a simple closed contour in the
reference configuration Qo at time t = ty and C, := ¢ (C,t) be the contour
carried along by the flow. The circulation I'e, around the curve Cy is defined
to be the line integral Te, = § u - ds, where ds is the line element on C;.
Ci

This definition relates, through Stokes’s Theorem, the circulation around
a contour to the flux of vorticity across a surface bounded by this curve.

By now, we are ready to prove some theorems regarding properties of the
vorticity field induced by a fluid flow and the circulation around advected
contours. The first of those, is a lemma that resembles the transport theorem.

d _ g Du |
Lemma 2. dtc§u-ds—c Be - ds
t t

Proof. Let x(s) be a parametrization of the loop Cy, s € [0,1]. Then a
parametrization of C; is go(x (s) ,t), s € [0, 1]. Thus, by definition of the line
integral and the material derivative,

1

% u.dS:% u(gp(x(s),t),t)-%g@(x(s),t)ds
Ct 0
— %(gp((s),),t)-%go(x(s),t)ds

0

1
Du 0
D0 [ulele(s).0).0) - prulebe(s).0).0) ds
Cy 0
D 1 / 0
u
= B sty [g (el (s). 0.0 ds
Cy 0
Du) . .
=95 ds, since C; is a simple closed contour. [l
Ct

With this result, we can prove that the circulation around any reducible
closed curve that is advected by an ideal flow is an invariant quantity.

33

Theorem 3 (Kelvin’s Circulation Theorem). For an inviscid incompressible
homogeneous fluid flow subject to the action of conservative external forces,
¢, is constant in time, i.e. Vt € T, I'c, = T'¢, € R.

Proof. From 2% = —Vp — VU = —V(p + U) and the preceding lemma,

d Du
thct dt u - ds= j{ - ds = — %V}H—U =0

where the last equality follows from the fact that C; is a closed contour. [

Such a result has a different interpretation regarding the flux of vorticity
across an advected surface, which has recently been exploited to numerically
simulate fluid motion for computer graphics applications [ETK™07].

Corollary 3. The flux of vorticity across a surface moving with an inviscid
incompressible homogeneous fluid under potential forces is constant in time.

Proof. The flux of vorticity across the surface, by Stokes’ Theorem, equals
the circulation across its bounding curve. The corollary follows by applying
Kelvin’s Clirculation Theorem to this curve. O]

Another very useful result deals with the dynamics of the vorticity field.

Proposition 2. Consider an incompressible homogeneous fluid flow under
conservative body forces, then we have

(i) in the inviscid case (modeled by Euler’s equations|3.4):

Dw

Di = (w-V)u

(ii) in the viscous case (modeled by the Navier-Stokes equations|3.8):

Dw

E:(WV)U‘FVAW

Proof. Both items can be verified by taking the curl of the respective momen-
tum equation, using the vector identities $V(u-u) = ux (Vxu)+ (u-V)u,
AF=V(V-F) -V x(VxF), Vx(Vf)=0,Vx (FxG)=FV- G) -
GV:-)+ (G-V)F - (F-V)G and V- (V x F) = 0, and from the
incompressibility condition]]

31 The identity for AF is used only in the viscous case (for F = u and again for F = w).
A lot of such useful vector calculus’ identities can be found in the last pages of [CM93].

34

Corollary 4. If n = 2 (two-dimensional flow) and the fluid is incompressible
and homogeneous (under conservative body forces), then %—‘: = 0 (in the
inviscid case) and 22 = vAw (in the viscous case).

Proof. Follows from the preceding proposition and that, for n = 2, w is
orthogonal to the velocity field, which is constrained to the plane z = 0. [

This corollary ensures the time invariance of vorticity along particle tra-
jectories of bidimensional fluid flows. Such property has also been used in
computer graphics animations [GLG95].

Some interesting objects of study consist of special curves and surfaces
embedded in the fluid domain which are everywhere tangent to the vorticity
distribution.

Definition 13 (vortex line/sheet). Let C (S) be a regular curve (surface) in
D. We call C (S) a vortex line (sheet) if, for each time instant t € T, it is
tangent to the vorticity field w, i.e. Vx € C (€ §), w (x,t) € TxC (€ TxS).

These concepts model situations where there is a structured distribution
of vorticity along a curve or a surface. For example, in a distant scale, a
tornado could be mathematically modeled as a vortex line. In a closer scale
a different notion would be necessary,

Definition 14 (vortex tube). Let S C D be a two-dimensional surface (dif-
feomorphic to a disc) that is nowhere tangent to € at a timet and C := 0S8 its

bounding curve. We call T := | {mtegml line of w through x at time t} a
xeC
vortex tube.

Notice that every vortex tube is a vortex sheet, but the converse is not true
in general. Intuitively, it is like a vortex sheet that has been twisted to the
shape of a cylinder, but the vorticity field is kept tangent to this cylinder’s
wall (i.e., the vortex tube). This provides a simplified model for a tornado
built-up by rising air-currents in the atmosphere. An invariance property
also holds for ideally advected vortex structures.

Proposition 3. If a surface (or curve) moves with the flow on an inviscid
incompressible homogeneous fluid under conservative body forces and is a
vortex sheet (line) at t = to, then it remains so for all time.

35

Proof. Let P C S be an arbitrary patch (regular surface diffeomorphic to a
disc) of S. From the definition of a vortex sheet, w-n = 0 at time ¢, (where
n is the unit normal to §). By the preceding corollary, the flux of vorticity
across P is zero for all time. Since P is arbitrary, by continuity, w -n = 0
for all time in §. Then, § will always remain a vortex sheet.

For a vortex line C, we use the Implicit Function Theorem (under the
assumption that w is non-zero at every point of C for all time) to describe C
as (locally) the intersection of two vortex sheets and use the surface case. [

We also have the notion of strength of a vortex tube and an invariance
theorem for this quantity as the tube evolves along the flow.

Theorem 4 (Helmholtz’s Theorem). Consider an inviscid incompressible
homogeneous fluid flow under conservative body forces. Then

(i) If Ci and Cy are two arbitrary curves encircling the same vortex tube,

then
Fclzfu-ds:]{u-ds:l“@.

Cl CQ

This common value is called the strength of the vortex tube.

(i) The strength of a vortex tube is constant in time, as the tube moves

with the fluid.

Proof. Let S C 7T be the segment of the vortex tube 7 diffeomorphic to a
bounded (open) cylinder whose bounding countours are the loops C; and Co
(supposed non-intersecting). Let S; and Sy be two arbitrary regular surfaces
diffeomorphic to a disc whose bounding curves are given by C; and Cs, respec-
tively. Let ¥ := & US UGS, be the boundary of the bounded fluid region V
(which is “inside the vortex tube”). By Gauss” Theorem, the vector calculus
identity V - (V x F) = 0 and the definition of the vorticity field w, we have

O:/V-de:/w-ndA: / w-ndA—l—/w-ndA

% b S1US2 S
= /w'ndA—/w~ndA+/w~ndA—j{u-ds—]{u-ds
S1USs S1 So C1 Ca

36

where the last equality follows from Stokes’ Theorem and, without loss of
generality, the assumption that C, is oriented clockwise with respect to X’s
unit (outward) normal field n. Thus ending the proof of item (7).

Having proved (i), item (i) now follows from the circulation theorem. [OJ

This classic theorem allows us to observe that, if a vortex tube gets
stretched and its cross-sectional area decreases, then the magnitude of w
must increase. Thus, the stretching of vortex tubes can increase vorticity,
but it cannot create it. This also implies that, with the increase of vorticity,
the particles near the stretched region spin faster. A phenomenon similar to
the increased angular velocity of a figure skater when, once in rotation, she
closes her arms to spin faster’?]

3.9 Comments and Further Reading

In this chapter, we presented the basics of mathematical fluid dynamics.
We tried to provide a coherent development of the main concepts and re-
sults used by the computer graphics community in the design of novel fluid
animation tools and techniques.

The mathematical theory of fluid dynamics is a very broad subject, to
begin a more in-depth study, we would recommend the textbooks [Bat99,
CM93, Mey82]f°r_3] Other classic texts on this theory include [Lam93|, [CE76].

Many interesting topics were completely ignored in the main text, even
though they have been investigated for computer graphics applications (e.g.
shallow-waters/long-waves equations [Whi99, [KM90, LvdP02], wave equa-
tion [Eva98| [Joh91, BMF07, YHKO07], vorticity dynamics formulation [CM93|
GLG95, [PKO05, ETKT07], cellular-automata and lattice-Boltzmann mod-
els [WGO00, [Thu07, HCSL02, WLMEKO04, [TRS06]).

It is interesting to observe that our first notions of motion and the results
related to mass conservation (and some others) are mostly grounded on the
basic assumptions of continnum mechanics. As such, they would also be
present in an account on the mathematical theory of elastic solids [MH94|
Lov44l, TPBEFR7, [TF88, NMK™06], motivating this chapter as well for those
also interested in the animation of elastically deformable objects.

32 This effect is due to the law of conservation of angular momentum.

33 Batchelor’s book is a good source of physical interpretations for the results, Chorin’s
is a classic for those mathematically savvy and Meyer’s text provides a very nice balance
of physical motivation and mathematical rigour in a clear and well written text.

37

38

Chapter 4

Numerical Simulation of Fluids
for Animation

In this chapter, we present two representatives of the numerical schemes most
commonly used by the computer graphics community for the simulation of
fluid flows with the purpose of animation, namely, the Stable Fluids and the
Smoothed Particle Hydrodynamics methods.

In Stable Fluids, the Eulerian description of fluid motion is adopted and
the fluid domain is discretized as a computational grid, in which the field
quantities are stored and their differential operators are approximated by
finite differences schemes. Operator splitting / fractional-step methods are
used to decompose the governing partial differential equations into a series
of smaller (and simpler to solve) equations connected by their respective ini-
tial conditions. To numerically solve each subproblem, efficient and stable
methods are chosen from the computational fluid dynamics literature and ad-
equately adapted to the performance and robustness requirements demanded
by graphics applications.

The Smoothed Particle Hydrodynamics scheme is based on the Lagrangian
viewpoint of fluid dynamics and relies on a discretization of the fluid mass
in a finite number of blob-like moving particles. To represent fluid prop-
erties (e.g., velocities, density) and their differentials, this method employs
tools from approximation theory and scattered data interpolation to smooth
these quantities from particles’ positions to the whole fluid domain. Such a
particle-based description of the fluid dynamics reduces the governing PDE’s
to a coupled system of ordinary differential equations whose solution can be
approximated by classical time-stepping methods.

39

4.1 Stable Fluids

In this section, we describe the basic stable fluids scheme as presented by Jos
Stam in [Sta99], with a minor modification to add “vortex detail” through
vorticity confinement forces, as was introduced by Fedkiw et al. in [FSJ01].

To keep clarity of presentation and focus on the salient features of this
method, we restrict our attention to a simple flow regime and to the use
of basic discretization and numerical schemes. At the end of this chapter,
we provide further references to other works devoted to both extending and
fixing some problems encountered in the basic stable fluids approach.

4.1.1 Flow regime and governing equations

The flow regime with which we present the stable fluids scheme comprehends
a wall-bounded square domain inside which an incompressible homogeneous
viscous Newtonian fluid flows subject to external (user-applied) body forces.
In these conditions, we model the fluid flow with the Navier—Stokes equations
as presented in the previous chapter (the projected version of the NSE):E]

ut:IP’<—u‘Vu+yAu+b>, divu=0, ulpy =0 (4.1)

where W = (0,1)" C R" is the open unit hypercube (i.e., square or cube).ﬂ

4.1.2 Field representation and spatial discretization

In order to approximate candidate solutions of [4.1]F| we first need to represent
the unknown field quantities involved (e.g., u: W x [0, +o0) — R").

To represent a scalar (or vector) field f : WW — R, we discretize its domain
W into a N™ grid, where N € N is the grid’s resolution along each dimension,

1 The reasons for this choice will be clearer when we present the time-stepping stategy
adopted in stable fluids.

2 Notice that, although not everywhere smooth, 8%V is smooth enough (indeed piece-
wise C*) to hold the theory we developed in the previous chapter.

3 It is still an open problem both the existence and uniqueness of solutions to
in dimension three. In fact, the Clay Mathematics Institute offers a prize of
1 million dollars to anyone that (dis)proves existence and uniqueness of solutions to
the Navier-Stokes equations. For a detailed statement of this Prize Problem see
http://www.claymath.org/millennium /Navier-Stokes_Equations /.

40

http://www.claymath.org/millennium/Navier-Stokes_Equations/

and store a sample of this function value at the middle of each grid’s voxel.
This strategy to discretize a function at cell-centered samples in a regular
grid is known as collocation and the structure is called a collocated grid. 1t is
one of the classical representations used by finite differences schemes, which
approximate the continuous differential equations on bounded domains by
discrete difference equations on finite regular point sets [Str04, LeV07, Tre96).
With this domain discretization, we use the finite differences method to
approximate both the spatial and temporal differential operators by differ-
ence equations. The most common of these difference approximations are
(for a 1D scalar field):
df Jiv1 — [i
L) s

forward differences:

dx h
backward differences: %(%) ~ fi _hfi—l
central differences: %(%) ~ %

where h = % is the space step. These schemes to approximate the differen-
tial operator % provide the most basic building blocks with which we will
search approximate solutions to differential equations. For example, assum-
ing n = 2, the differential operators appearing in could be discretized
as:

ntl _ yn
~ [2¥) 2]
u, (xiayjutn) ~ L
Uit 1, ~%i1y Vi, Vie1,g
. . ~ 2h 2h
Vu (@i, yj, tn) & Yigt1 Y1 Vg Vi
2h 2h
n n n n n n
Wl 2w wy gy, —2u ug
h? h2
n n n n
Uiprj — Uim1j | Vi1 — Vij—1

d' iy '7tn ~
ivu (x;,yj,t) 57 + o7

where k > 0 is the time step and u(z,y,t) = (u (,y,t),v(x, y,t))

Au (mia yja tn) ~

Remark: Various choices for combining spatial-temporal finite
differences approximations are discussed in [Str04, LeV07] as well

4 In these equations, the superscript ™ and the subscripts ; ; denote a value sampled at
time ¢,, and at the point x; ; = (z;,y;), respectively.

41

as their implications. We have decided not to discuss issues re-
lated to concepts as consistency, order, stability, or accuracy of
approximations in this text. The interested reader is directed to
the cited references for in-depth treatments of these subjects[]

A note is needed regarding this discretization scheme with respect to the
treatment of boundary conditions. Whenever we need to approximate the
differential at a boundary cell, the value at an inexistent adjacent cell is
needed. To deal with this problem, an additional layer of cells is appended
adjacently to OW (in the “outer side”) and their values are determined by
both the values at the “inner” boundary cells and the boundary conditions.

As an example, we deal with the homogeneous Dirichlet boundary con-
ditions of (u|syy = 0) by assigning to an outer cell the negated value of
its adjacent inner cell, as the averaged value at the boundary point between
them thus satisfies the no-slip boundary condition. Homogeneous Neumann
conditions are dealt with in the same way, except that, rather than assigning
the negation of the value in the adjacent cell, the assigned value is the same
stored at the adjacent inner cell. In this way, the normal derivative at the
boundary point is zeroed, thus obeying the homogeneous Neumann bound-
ary condition (g—‘; =0, at 8)/\/). This kind of condition appears both in the
simulation of inviscid flows and in the determination of pressures between
the fluid and solid obstacles (a stationary solid wall in our flow regime).
Additional material regarding common boundary conditions in graphics ap-
plications can be found in [FM96al, BMEQ7].

4.1.3 Operator splitting/fractional-stepping

For simulating unsteady flows, we need a time-stepping scheme to advance
in time the field quantities that represent our fluid. To this end, we adopt
an operator splitting/fractional-stepping method [PTVE92, MQ02] to decom-
pose in a sequence of simpler subproblems (each one connected to the
previous by its initial condition), which are solved by specialized schemes.

5 An advice, if you decide to study finite difference schemes by the first edition of
Strikwerda’s book, manage to download its 13-page erratal

42

Our splitting of consists in the following sequence of subproblemsﬁ:

e Convection: which describes the “self-transport” in fluid flows.

Du_

=—-u- — — =0
u, u-Vu D1

e Forcing: which accounts for external/body forces acting on the fluid.

ut:b

e Diffusion: which propagates viscous stresses across the fluid domain.

u; = vAu

e Projection: which enforces incompressibility by applying pressure forces.

u,=—-Vp, divua=0

where each of these time-dependent PDE’s has as initial condition a solution
of the previous equation. This means that, to advance a complete time step
from uy; to uﬁl, the discretized field u}; (assumed to be divergence-free)
is used as the initial condition for numerical integration of the convection
equation along a time interval of lenght k£ and the resulting (convected) field

uZ’f is used as initial condition for the subsequent step (in this case, forcing).
In this way, the sequence of fields u;7, uZ’jf , uZ’jd and u; (respectively

convected, forced, diffused and the final projected velocity fields) is generated

from u7; and u:f;rl is taken as the last of these intermediate ﬁelds
The processing of a time step by this splitting can be summarized as:

n convection n,c [forcing n,f dif fusion n,d projection n,p
S —S u = S !

n+1
u; ; i\j i i i\j '

In the following subsections, we describe the methods chosen to solve each
subproblem of the operator splitting scheme adopted by Stable Fluids.

6 Respectively augmented by appropriate boundary conditions. Notice that, to simulate
inviscid flows governed by FEuler’s equations, the diffusion step should be ommited.
" Notice that uZ;‘l = u."? is a divergence-less velocity field, so that it is ready to be

1,J
used as initial condition for integration into uj'}?.

43

4.1.4 Semi-Lagrangian advection

The numerical integration of the convection equation 0 = u; + u-Vu = %,

also known as the (inviscid) Burgers’ equation, will be performed by approx-

imating the solution of this nonlinear PDE by a sequence of solutions to the
D

advection/transport equation 0 = f; +u -V f = F{’ a linear PDE (on f).

Such an approach to this problem is motivated by the interpretation of the

material derivative operator 2. = 9, + u - V as the rate in which a quantity

Dt
changes along a material trajectory. So the equation %{ = 0 means that
f(x(t),t)is constant in time, where x (¢) denotes a material curve/trajectory

(hence an integral line of u, if it is assumed steady, i.e., u; = 0).

This is the key reasoning behind the semi-Lagrangian methodology for
advection, where the goal is to transport a field through a divergence-free
steady velocity/vector field during a given time step k£ > 0 [SC91]. To this
end, a semi-Lagrangian solver takes a velocity field u, an initial (scalar,
vector, tensor etc.) field f™ and outputs a field f*! as the solution of
fi +u-Vf = 0 (with initial condition f") evaluated at time ¢"*'. Such
a task is performed by assigning to f™ the value from f" at the point
x (k) € W, where x is the solution of the following ODE:

17]'

x =—-u(x), x(0) =x;,.

Intuitively, this means that the value attributed to f7;*

7 (located at x; ;) is
the same as that from the point where the particle positioned at x; ; at time
" was at time ¢ = ¢"T1 — k, ie. toset f/'', we backtrace x;; along the
vector field u during a time step k and evaluate f" (which, for a discretized

representation f!"., involves an interpolation procedure).

1,77

It is with the semi-Lagrangian method to solve advection equations, we
approximate a solution to the convection equation. This is performed by
advecting u;'; along itself, i.e. we solve a vector advection equation where
u?; is taken as both the steady velocity field (along which the transported
field flows) and as the initial condition for its solution. Therefore, the value
atributed to uZ’jC is computed by tracing backward in time a massless particle
at x; ; along the steady vector field u}; (using some ODE time-stepper, e.g.
Euler scheme) and interpolating uj; at the resulting position (e.g. using

bilinear interpolation), the vector value thus found in assigned to u;’;".

44

4.1.5 Explicit forcing and vorticity confinement

To integrate the body forcing equation u; = b during a time step £ > 0,
we assume % = 0in (", ") x W, effectively approximating b by a vector
field which varies piecewise-constantly in time. With this approximation, we
have uZ’jf = u;j + kb};, which is equivalent to applying the forward Euler

INE
scheme to the ODE £u; ;(t) = b?"; and advancing from u;'; to u?jf

Vorticity confinement. A particular kind of body force was introduced
by [ESJO1] with the purpose of adding “vortical detail” into fluid simulations
for computer graphics, the vorticity confinement forces b,.. Their analytical

expression b,. = €h (H_ZH X w), where € > 0 is used to control the amount

of detail added into the flow, h > 0 is the grid spacing, n = V||w|| and
w = V X u is the vorticity as defined in the previous chapter, reflects the
intended effect of “slapping” the vortical regions and augmenting the overall
rotational motion present in the flow. Vorticity confinement forces have been
both widely used and extended for simulation on coarse grids as those used
in computer graphics applications [FSJ01l, SRF05| [SU94].

4.1.6 Implicit diffusion

The diffusion step in our splitting scheme is the classical heat equation with
Dirichlet boundary conditions (the no-slip condition, u|sy = 0) [Eva98,Joh91].
To numerically solve the diffusion equation, we adopt a fully implicit scheme
based on a backward in time and central in space discretization scheme
[PTVE92, [Str04, LeV07, MTre96]. In such an approximation, the spatial dif-
ferential operator (in this case, the laplacian A) is discretized using central
differences yielding a coupled linear system of ODE’s on the unknown vari-
ables. Then, the backward Euler scheme is applied to this resulting ODE:
n+1 ~n
w=vAu — %~ = %Lﬁ — % = %Lﬁ"+1

where u groups the unknown grid values u;; in a vector of dimension N?
and L is the finite differences matrix representing the laplacian operatorﬁ

8 A component-wise version of the above differential /difference equations would read:

dt h2 h2 i — Wij

d Wip1; — 205 Wity | Wi — 22U + W1\ initial g n.f
u; j = + - u
condition

45

Notice that the last equation from the backward Euler discretization is
equivalent to solving the linear system of equations (I — l/h%L) a'tl = an,
where @"*! corresponds to uZ’jd and " represents uZ’jf . It is interesting to
notice that the matrix on the right-hand side of this system has good numer-
ical properties: it is symmetric, positive definite and sparse. So specialized
(and fast) methods can be applied to approximately solve these equations
(e.g., preconditioned conjugate gradients and multigrid methods [Dem97])E|

Another very important property of the above discretization scheme is
that (I — I/%L) has eigenvalues stricly greater than 1, an implication of this
fact (and a very instructive exercise in numerical analysis of ODE’s) is that,
no matter how large the time step k, the numerical integration conserves the
asymtoptic behaviour of the original ODE (as ¢ — +oo, the solution con-
verges to the origin). This means that we can take arbitrarily large time steps
without suffering with stability concerns, i.e., the simulation never “blows
up” as a consequence of diffusion, a very important feature for simulators
designed for computer graphics applications [Sta99, (CMIT02].

4.1.7 Pressure projection

After performed the diffusion step, the resulting velocity field uZ’jd is not

divergence-free, so doesn’t respect the law of conservation of mass. Hence we

need to solve for pressure, since it has an incompressibility enforcement role

(as noticed in the previous chapter), and complete our splitting pipeline.
After discretizing in time the projection equation we have that:

- . u"tt —u” RS 1
u; = —Vp, dlvu:O—>T:—Vp"Jr , divu"™ =0

Taking the divergence on both sides of the discretized equation yields:

1
—ApT = _EV -u”, in W

n,d n,f n,d n,d n,d n,d n,d n,d
Wij —Wij _ [it T 2u;; tuly I N 2u;; U5,
k h2 h2

Notice that, actually, @ would have dimension (2N)2, because u is a vector field in R2
but here it is treated as a scalar field, since the laplacian operator is applied separately
for each coordinate field u, v of u = (u,v).

9 The implementation of Stable Fluids we have is based on an iterative Gauss-Seidel
method for simplicity reasons.

46

where the no-slip condition (in fact, the kinematic condition that u || OW)
and the original partial differential equation give a homogeneous Neumann
condition on p"*, i.e. dﬁ;: = 0 on OW. Solved this Poisson problem with
Neumann boundary conditions, we take u"** = u® —kVp"*l. The interesting
fact behind all these calculations is that we have in fact taken u™™! as the

projection of u™ by P, what can be verified by projecting the last equation:

un+1 —P (un+1) —P (un _]{?Vﬁn—H) —P (un>

This configures a remarkable application of the projection operator P
defined through the Helmholtz—Hodge Decomposition Theorem. It provides a
natural connection between the abstraction from the theory and a tool in the
practicalities of numerical computation. Such a view for incompressibility
enforcement has been extensively exploited and extended by others both
to advance the theory and to design new simulation techniques that model
the coupling of multiple fluids and solids [CM93|, [HKO05, [LSSF06, [CMT04!
GSLF05, [FOKGO05, [CGFO06, BBBO7].

With these considerations we are able to design a numerical scheme to
enforce flow incompressibility and solve the final step of our splitting method.
To apply the above procedure for advancing from uZ’jd to u;7’, all we need is
to solve the Poisson problem described before. This is done by discretizing
in space the laplacian operator in the very same way as done for diffusionm
with the sole observation regarding the change from Dirichlet to Neumann
boundary conditions as noted in the subsection on spatial discretization. The
discretization procedure yields a linear system of equations:

. 1 1 _ h .
-Ap=f — —=Lp=—-——Du <« (-L)p= —%Du
where L is as before, p groups the unknown grid values p;; in a vector
of dimension N?, D denotes the finite differences matrix of the divergence
operator and u groups the known grid values uZ’jd (now really in a vector of
dimension (2NN)?2, since the divergence operator needs derivatives for both u
and v of u = (u, v)) Where (—L) shares the same properties commented
about the matrix derived for the diffusion step, hence the same methods used

to solve numerically that problem can be reused in the projection step.

10 Just notice that, for diffusion, the laplacian operator was applied for each u, v of
u = (u,v). Therefore, we will use the same notation for the finite differences matrix L
used to solve for pressure.

1 The above equations in matrix/vector-form comprise just a compact version of the

47

After solving for pf;, we finally compute u;7 = uZ’jd — kVp}; by approx-
imating the gradient operator by central differences, yielding the update

~n ~-n

u? — e _ ﬁ Piv1; — Pi

3, T,] =n _sn ’
J T 2h \Diljp1 — Dij—

finishing the pressure projection step and one step of our splitting scheme.

4.1.8 Experiments

As an illustration for our description of the basic Stable Fluids method,
we implemented a simple fluid simulator in the C language for the flow regime
described in [.1.1 1In this subsection, we present some results generated
with that solver and some issues which appeared during its development.
Appendix [A] presents the core code of our simple Stable Fluids solver as a
more concrete example of the method described.

Flow visualization. For our basic Stable Fluids solver, we implemented a
couple simple visualizations to inspect some concepts discussed in Chapter [3}

e scalar fields advected and diffused along the fluid flow as marker dye
fields (top left of Figure , evolving according to %{ =rAf +1;

e velocity fields depicted by small vectors originating at computational
cell centers (top right of Figure 4.1));

e scalar fields derived from other fields (e.g. the velocity and vorticity
magnitude fields ||u|| and ||w]|, at the middle and bottom of Figure [4.1)).

These visualizations were implemented with OpenGL with simple user in-
teractions using GLUT (e.g., mouse-driven body forcing and dye sourcing).

linear system formed from:

B (ﬁ?-s-l,j —2pi; + Dty + Dij41 — 2D; +ﬁ2j—1> _

h2 h?
n,d n,d n,d n,d
LU U " Vi j+1 — Vi j—1

k 2h 2h

48

Some results. The solver presented in Appendix[A]is able to simulate both
inviscid and viscous flows. We comment a couple results generated using it.

Figure [4.1] contains some visualizations of a simple flow in which the fluid
was acted by localized mouse-driven body forces pushing the fluid up from
bottom. This motion induced the generation of two main vortices which were
advected along the inviscid flow and transported the dye scalar field.

Figure[4.2|depicts a later frame in a more complex viscous flow animation,
in which there is plenty of rotational behaviour and localized vortices kept
“alive” by vorticity confinement forces.

Figure illustrates the generation of vorticity along boundaries in vis-
cous Navier-Stokes flows (left) and the sole transport of vorticity along with
inviscid Euler flows (right), in accordance with Corollary

Implementation issues. The development of a fluid simulator is a deli-
cate problem, many little details must be kept in mind when implementing
such a code. Care must be taken in enforcing the boundary conditions at
each stage during simulation and in performing interpolations at the advec-
tion stage. Another issue is solving the linear systems that arise in the finite
difference discretization of the linear PDE’s; often it is not needed to build the
system matrix to apply an iterative method [Dem97], we employed a simple
Gauss—Seidel method, but other methods (e.g., Krylov subspace methods)
only require the programmer to provide a routine which returns the result
of multiplying a given vector by the system matrix and have better con-
vergence rate properties (e.g., preconditioned conjugate gradients) [Saa03].
These methods avoid keeping large (and sparse) matrices saving memory,
time and implementation/maintenance efforts [BBCT94] of both diffusion
and projection stages (we didn’t use them in our code to keep it simple).
For other details on developing more complex simulators, we recommend the
practical approach taken in the lecture notes [BMFQT].

49

L”

Figure 4.1: A “simple” flow example; Top left: scalar field advected /diffused
along the velocity field depicted in the top right figure; Middle: magnitudes
of the velocity field; Bottom: magnitudes of the vorticity field.

50

Figure 4.2: A more complex flow example; Top left: scalar field ad-
vected /diffused along the velocity field depicted in top right figure; Middle:
magnitudes of the velocity field; Bottom: magnitudes of the vorticity field.

51

Figure 4.3: In viscous flows governed by the Navier-Stokes’ equations, vor-
ticity is generated along boundaries. Left: a viscous flow animated using the
Navier-Stokes” equations and its respective vorticity field. Right: an inviscid
flow governed by Euler’s equations (where vorticity slips along boundaries).

52

4.2 Smoothed Particle Hydrodynamics

This section is devoted to describe the Smoothed Particle Hydrodynamics
(SPH) methodology to simulate fluid flows. Our presentation is roughly
based on the works of Miiller et al. [MCGO03], which employed it in the simu-
lation of fluids for interactive graphics applications, and Paiva Neto [Net07],
who extended SPH in his Ph.D. thesis to simulate non-Newtonian viscoplas-
tic and multiphase flows also for computer graphics applications.m

As before, our focus is on clarity and simplicity of presentation. Although
our considerations are restricted to a simple flow regime, at the end of this
chapter we provide further references to works concerned with deeper descrip-
tions of the SPH framework and its implementation issues, both for computer
graphics and its “more serious” original applications [GM77, Luc77].

4.2.1 Flow regime and governing equations

Our description of the smoothed particle hydrodynamics method for flow
simulation is based on a regime where the fluid has uniform viscosity and
the pressure obeys an equation of state of the type p(x,t) = f(p(x,1)).
Under these assumptions, the governing equations for such a fluid flow are:ﬁ

Dp
tinuit tion: L= _ :
continuity equation D p (V-u)
_ Du
momentum equation: — p Dr = —Vp+ A+ p)V(V-u)+ pAu+pb

The Lagrangian formulation used to state the governing equations is due
to the discretization strategy adopted by SPH (to be explained later), which
also makes use of the identity a = % (where a stands for acceleration).

As noted in the previous chapter, the explicit use of an equation of state
doesn’t imply the incompressibility condition V - u = 0. Therefore, it is
conceptually incorrect (at best) to adopt an equation of state and assume
V -u = 0 to simplify the governing equations, even if this equation of state is
designed to direct the system to a quasi-incompressible state. This was done
by Miiller et al. in [MCGO3], when they adopted p 2% = —Vp + pAu+pb

as their momentum equation and p = ¢ (p — po) as their equation of state.

12 Before [MCGO03] used SPH to simulate liquids, the Smoothed Particle Hydrodynam-
ics framework had been exploited by computer graphics both to depict fire and gaseous
phenomena [SF95] and to animate the soft deformations of elastic solids [DG96].

13 Already derived in the previous chapter.

53

4.2.2 Field representation and fluid discretization

Instead of representing the field quantities by regularly sampled values and
their differentials by difference equations (as done in stable fluids), SPH re-
lies on scattered data approximation schemes and analytical differentiation
of its approximations. This is accomplished by exploting the integral repre-
sentation of a function f: Q C R"™ — R as a convolution with Dirac’s delta
distribution ¢ and that this distribution can be defined as a generalized limit
of certain smooth functions Wy, i.e., h — 0 = W), — § [Net07, TI01]:

- /Q f ()8 (x —x)dx' = lim { /Q F)Wy (x - x’)dx’} (4.2)

Motivated by [£.2] the SPH approzimation (f) to the field f is defined by
a given family W), of smooth kernel functions and a fixed h > 0 as

= / [X)Wy (x — x')dx' (4.3)
Q
which is numerically discretized by the quadrature formula:

~ Zf (x;) Wi (x —x;)AV; = ij Wh (x — x5) (4.4)

where the weight AV, = %j corresponds to the volume associated to the j-th
J

fluid particle (located at the quadrature point x; €), m; to its mass and p,
to its associated specific mass (notice that f; is an abbreviation to f (Xj)).
This quadrature form for the integral SPH approximation is interpreted as
discretizing the fluid mass into a finite number of particles which evolve
according to the governing equations, that describe the system dynamics by
a coupled set of nonlinear ODE’s (a topic treated in the next subsection).

Inspecting [£.4] we notice that whenever the family W), is composed by
compactly supported kernels, with influence radius say xh, (i.e., dk > 0 such
that [|[x —x;|| > kh = W), (x — x;) = 0) the sum in {.4| effectively only takes
place for those particles which are less than kh away from x. Defining the
neighboring particles of a point x € W as N (x) := {j € N|||x — x;|| < kh },
we can rewrite the discrete SPH approximation as [Net07]:

~ ij%wh (x—x) = > fjijWh (x —x;) (4.5)

jeN) P

o4

To simplify notation, we adopt (f (x)) to represent the discrete SPH approx-

imation in [4.5 since we won’t use its integral form in this text anymore.
The compact support property is just one of a few useful (hence desired)

properties for choosing the family of smooth kernels W), : R — R, E

FEven: Vh > 0 Vx € R", W), (x) = W, (—x)

Non-negative: Yh > 0 Vx € R", W, (x) > 0

Smooth: Yh > 0, W), € C* (R"), where k > 1

Partition of unity: Yh >0, [, W, (x) dx =1
o Compact support: Ik > 0, Vx € R", ||x — xj|| > kh = W, (x) =0
e Convergence: h — 0= W, — ¢

An important class of radial compactly supported piecewise-smooth ker-
nels can be derived from splines functions, examples of those are the cubic
and quintic splines defined by [Mon05, [Net07]:

W (x) = % ws (H—ZH) and W, (x) = % ws (@)

Whereal:%’OQ:%’O@:ﬁ’ﬁl:lQOa ﬁ?zﬁvﬁ?):%and

((2-¢)* —4(1—¢)®, for0<g<1

ws (q) = § (2—q)?, for 1< q<?2
W for ¢ > 2
((3—q)° —6(2—¢q)°+15(1 —¢q)°, for0<qg<1
(3—¢9)°—6(2—-q)°, for 1 <g<2

ws (q) = 5
(3—4a), for2<q¢g<3
L0, for ¢ > 3

Although the Gaussian is the most common kernel, it doesn’t have com-
pact support (even thought it has a very fast decay), not a good property
for computational implementations. Nevertheless, for its simplicity (which is

14 Notice that some of these properties are necessary to allow the manipulations that
lead to the integral SPH approximation [II01].

95

a key goal of our presentation), we employ the 2D Gaussian function in our
simple example implementation (Appendix .

Provided an SPH approximation for a field quantity, spatial derivatives
can be analytically computed from the discretized form:

Vi)=Y W (x - x;)

jEN(x) Y

A= Y T HAW, (x - x,)
jEN(x) Y

Vo)=Y %fj-vwm—xj)
JEN(x) Y

Vx(Ex)= Y LEx VI, (x - x;)
jeNG) PI

Even though these approximations to differentials of fields are natural, in
practice they suffer from a number of problems related both to accumulation
of numerical errors and to bad representation of physical properties (e.g.,
symmetry in Newton’s Third Law of motion). To overcome these problems,
identities from calculus are exploited to both symmetrize and amortize nu-
merical imprecisions. For example, better numerically conditioned rules can
be derived by subtracting from the above equations what should be a null
constant (e.g. V(1) or V x (1), approximated by V (1) and 1- V (1)):

(Vf(x) = V() = fiD) = S T2(f = f)VWa (xi — x;)
JEN (x;) Y
(A (x) A)~ fi (D) = Y ZL(f — F) AW, (x; — x;)
JEN(x;) Y
(V26 & T (6~ () = 3 08— £ VI (- x)
JEN (x;) 7
(VxE(x) ~ Vx () — £ (1) = %(fj —£)) x VIV, (x; — X;)
JEN (x;) Y

Although these rules can be numerically more suitable for approximating
the differential operators, they are not suitable to use in physical simula-
tions, since they do not respect the Third Law of motion (what can be veri-
fied by analyzing just the interaction of two particles with different masses).

56

Symmetric approximations which work fairly well in practice [Net07] can be
derived by considering the following identity:

1 f 1 1 f
Evf = EV (glk) + g*’fv (gkl) ., where k€ Z (4.6)

By means of identity , we can establish for %V f [Net07):

(L)~ 5 m(er -) oh i)

which give rise to symmetric approximations as, by taking k£ = 1:

Vi)~ S T+ f)VW (- x;)
JEN(x) Y
m;

(V-Fx)m > =2t +) VIV, (x; — x;)
JEN(x:) Pi

and, by taking k£ = 2:

\% ; p
<7f (xl)> ~ Z m; (% + %) VW (x; — x;)
JEN (%) J ¢

(o) () e

FEN(x;) '

)

After deriving a systematic strategy to discretely represent field quan-
tities and their differentials, we have enough material to numerically solve
the governing equations. However, a note on how to deal with boundaries
is appropriate at this point. The classical approach to boundary conditions
in SPH is to approximate the solid surface by a sample of boundary parti-
cles (or ghost particles) and, to each fluid particle which is within the radius
of influence of some boundary particle, to apply a compactly supported re-
pulsive force (as those derived from a Lennard—Jones potentials, common in
computer graphics and molecular dynamics [BMFEQ7]). Such a force (per unit
mass) is of the form [Mon94]:

D o P1 " P2 i f -
if (rlb) = { ((Tib) B (mb) > %7 Oor Tijp S 7o
0,

m; for Tipb > To

57

where D is a problem dependent constant (of the same order of the maximum
expected speed squared), p; > po are constants (usually (p1,ps) = (4,2) or
(p1,p2) = (12,6)), r3p = x; — X and 1y = ||x; — X3

This provides a physically-inspired approach to deal with stationary solid
walls. However, when these obstacles have complex geometries and (possibly)
move, different approaches should be used [MEZ97, Mon05), NetO?]B

4.2.3 The discretized governing equations

The approach employed by SPH to discretize the governing equations is based
on the Lagrangian formulation of the governing equations of fluid flow. Al-
though [MCGO3| depart from the equations mentioned above, we adopt the
differential form of the momentum equation as derived in section 3.4}
along with the tensor field deduced in section |3.6 namely:

Du

P Dr = DivT + pb, where T = —pIl + o and o = A tr (D) I+ 2uD

recalling D = % (Vu + VuT), we have the following set of equations:

D 1 1
g —=Vp+ —Dive + b, with e = Atr (D)I+2uD
Dt p p

Since we have discretized the fluid mass into a finite number of fluid par-
ticles, the dynamics of this particle system is dictated by how each particle’s
position, velocity and density vary in time. Hence, the behaviour of our

system is described by how fli—f, %§ and % are determined for each particle
along this particle’s trajectory x (t). Thus, for particle i, we have:m

dXZ‘

o = Ui pi=f(p:)

dp; 1 T

B —p (V) D, = 5 <(Vui> + (V))

d;z - _ <pri> + <f Div0i> + (b)) o;=Atr(D;)I+2uD;

15 Although our simple solver implements a flow regime in which there are only station-
ary walls, the boundaries were enforced geometrically using a simple particle-wall collision
response model similar to that presented in [Net07].

16 Notice the change of notation from % to %, since we are talking about the rates of
change of a particle’s properties instead of derivatives of field quantities along trajectories.

58

where each spatial derivative is approximated by the symmetric rules we
derived before (to ensure conformance with Newton’s Third Law). Now, we
present discretizations for each of the terms in the above equations.

The continuity equation

Since the equation of continuity is an expression which enforces the law of
conservation of mass, we have the possibility of simply ignore it, in view of
the explicit conservation of the total mass in our particle system [MCGO03].
In this case, the particles densities are computed at each time-step through
the SPH approximation (derived by considering p as an ordinary scalar field):

pii=(p(x)) = > mWi(x —x;)

JEN (%)

Altought our implementation makes use of this expression for simplicity,
some authors prefer to directly discretize the continuity equation to reuse cer-
tain computations and to not oversmooth the density field [Mon92, Mon94].
In this case, the discretization recommended is given by [Mon05, [Net07]:

dpi
dt

—pi (Vow) = —p; L —) VW, (x; — x;)

The momentum equation

The discretization of the momentum equation is performed on each term.

Pressure term. To compute a discretization for the pressure term, we
make use of the symmetric rules derived in the later section:

1 P; | Di
()= 3 m () T

jEN(Xi) J t
where the pressures py are given by the chosen equation of state f (py).

59

Viscous term. The viscous term requires the computation of the defor-
mation tensor D;, which is given by the numerically better rule:

<Vuz> = Z @ (Uj - lli) ® VWh (Xi — Xj)
jeNe) P
_ 1 T . T
D, = 3 ((Vui> + (Vuw;) > , where v w =vw" .

With the deformation tensor calculated, the viscous term in computed by
a rule from the same family used in the pressure term (adapted to tensors):

1 .
<—D1V0'Z>: Z m] (O'j—FO'i)VWh(Xi—Xj)
& jeNtx PP

where o = Atr (Dy) I+ 2uDy as before. Notice that more general expres-
sions for the viscous stress tensor o could be adopted with this scheme and
that no second-order derivatives are required. This approximation was used,
with another o, to simulate non-Newtonian flows in [PPLT06] and [Net07].

Body forces. The forcing term in the momentum equation accounts for
external body forces and, in an SPH implementation adopting repulsive ghost
particles, the repulsive boundary forces as defined above. To compute b;, the
discrete SPH approximation scheme can be applied directly, resulting in:

m.
(bi) = Y bW (xi —x;)
jeN i)

This allows a force applied on a particle to spread to others inside its support.

Time-stepping

After discretizing the governing equations by SPH approximations, a coupled
system of nonlinear ordinary differential equations result. The numerical
integration of this system can be performed by employing any standard time-
stepper designed for ODE’s [PTVE92] [SB02, Ise96, [AP98|, [LeV07].

In our implementation, we employed a simple explicit symplectic Euler
method [SD06, KYTT06]. The integration rule of this method is very similar
to the classical forward Euler scheme, applied to the ODE, x = f (x):

60

forward Euler scheme: | symplectic Euler scheme:

Vn+1 — Vn + k’f (Xn) Vn+1 — Vn + k,f (Xn)
Xn+1 = x" + kVn Xn+1 = x" + kvn—i—l

where X = f (x) was transformed to the first-order ODE, (:) = (7 E,X))

A note is required regarding the choice of the time step k. In an im-
plementation of SPH with more than didatic goals, the integration of the
discretized governing equations by an explicit method during a time £ is per-
formed by a sequence of iterations with smaller time steps in such a way to
guarantee that the simulation doesn’t blow up. This means that, after each
substep, a new time step k is chosen in such a manner that some stability
condition is satisfied (e.g., the Courant—Friedrichs—Lewy (CFL) condition for
PDE’s [CFL67]). The form in which these conditions restrict the time step
used in each substep is dependent of the discretization performed. Stability
conditions for discretizations similar to ours can be found in [MEFZ97, Net07].
Since we don’t choose our substeps by a stability condition in our implemen-
tation, our time step k has to be hand-tuned for every simulation performed.

4.2.4 Experiments

As an illustration for our description of a simple Smoothed Particle Hydrody-
namics scheme, we implemented a simple fluid simulator in the C language for
the governing equations as described in [£.2.1] In this subsection, we present
some results generated with that solver and some issues which appeared dur-
ing its development. Appendix [B| presents the core code of our simple SPH
solver as a more concrete example of the method described.

A simple breaking dam. Figure presents six frames from a simple
two-dimensional breaking dam animation. The fluid is confined inside a
square bounded domain, in which a vertical wall is fixed at the middle of the
ceiling in this chamber going down to % of the chamber’s height above its
floor. The simulation is then initialized with half the left-side of the chamber
filled with a fluid under the action of gravity. Those frames were captured
little after the simulation began and are spaced roughly regularly in time

(they are intended just to illustrate the resulting animation).

61

s

i S Tt
Nl T

b L=
i i
by . Lt oA
=
)
o

Figure 4.4: Frames from an animation of a breaking dam (1024 particles).

62

To avoid excessive compression and blow up of the simulation, we needed
to take very small time steps. Combined with the fact that we did not use any
data structure to accelerate neighbor queries, the simulation ran annoyingly
slowly, at least compared to our simple Stable Fluids implementation, even
using just 1024 fluid particles.

Implementation issues. As before, we experienced some problems in
dealing with boundaries. We first implemented the ghost particle approach
outlined in but they introduced too much stiffness in the resulting
ODE’s, which required time steps prohibitively small for interactive simu-
lation and avoiding blow up. For this reason, we changed paradigm and
employed a collision response scheme similar to those used in rigid body an-
imations [NetO7]. This change allowed us to take time steps large enough
to keep interactivity without blow up. Improvements in stability can be
made using particle-dependent time steps by “freezing” the acceleration field
during the time step and evolving each particle independently using the inter-
polated accelerations. Such an approach is adaptive both in time and space
and improvements are reported in the simulation time complexity [HK89].

4.3 Comments and Further Reading

In this chapter, we presented the two most basic and commonly used meth-
ods to simulate the governing equations of fluid flows in computer graphics.
Although they already produce very nice (and physically-plausible) results,
many other methods and extensions have been developed to overcome prob-
lems and limitations encountered in their basic formulation.

Stable Fluids and variants. The stable fluids method was introduced by
Stam [Sta99] as an alternative to the work of Foster and Metaxas [FM96a]
better suited to computer graphics, because of the stringent restrictions on
the time step imposed by the techniques they used to numerically solve
the Navier-Stokes equations, which was strongly based on the seminal work
of Harlow and Welch [HW65], that introduced both the Marker And Cell
method and the use of a staggered grid to represent the velocity field. After
[Sta99], some works proposed modifications to the basic stable fluids scheme
in order to reduce effects of vortical diffusion [FSJ01, [SRF05], mass dissipa-
tion in liquid simulation [FEF01, [EMF02] and to speed-up pressure projection

63

[LGF04]. Other works proposed extensions to the basic approach (and to
other extensions) to be able to animate fire [NEJ02, RNGF03], highly vis-
cous and viscoelastic fluids [CMIT02, [GBOO04], flows on surfaces [Sta03],
coupling of fluids and solids [CMT04], IGSLF05, [CGFO06, BBB07|, hybrid,
deforming and dynamic meshes [FOKO05, FOKGO05, [KECO06] and GPU im-
plementations [Har04l, [CLT07, Bor06] (just to name a few).

Smoothed Particle Hydrodynamics and variants. SPH was proposed
independently by Gingold and Monaghan [GMT77] and Lucy [Luc77] in 1977
with the purpose of simulating stellar flows in astronomy and astrophysics.
Since then, much work has been done in improving the method both for its
original applications in astrophysics and to other fields [Mon92, Mon05]. In
computer graphics, it was introduced by Stam to depict gaseous phenomena
[SE95] and used later by Desbrun and Cani to simulate deformable solids
[DGI6]. However, it was just after the work of Miiller et al. [MCGO03] on
interactive simulation of liquids that SPH has caught widespread attention
from the computer graphics community. Since its introduction, many authors
have been exploting the SPH methodology to animate systems as complex as:
weakly compressible fluids [BT07|, non-Newtonian fluids [PPLT06], Net07],
bubbling and frothing [CPPKO7], coupling of solids and fluids [KAG™T05],
adaptive fluids [APKGO7], fluids in GPU’s [Nak(7], elastic, plastic and melt-
ing objects [MKNT04] and even hair [HMT01, BCNO3].

Other methods. The computational fluid dynamics community is very
prolific, this may be a reason for the many different techniques recently in-
troduced into the computer animation community to simulate fluid flows,
a few of them are [SCC04, [SCCO05, [ZB05, [ETK™07, WBOL07, BWHTQT,
GNO07, [GLG95|, [PK05| [CACCO6, [AN05L [ANSNOG].

64

Chapter 5

Final Remarks

After an overview of the fundamentals of mathematical fluid dynamics em-
ployed in the simulation of fluid flows for computer graphics, and the basic
methods used by the CG community, we have provided some of the foun-
dations needed by the interested (and mathematically educated) reader to
pursue a more in-depth understanding of the techniques which have been pub-
lished in the computer animation literature regarding the animation of fluid
motion. As a complement to this introductory text, we provided some guid-
ance for further reading of relevant references. In the following, we present
some efforts which have been (and, in near future, are intended to be) made.

Work in Progress. Both our implementations of Stable Fluids and SPH
are still very basic. Currently, we are working on an extension of these solvers
to handle moving boundaries (internal and external) [CMTO04], high-viscosity
and non-Newtonian fluids [CMIT02, PPLTO06], liquids (using particle level-
sets in stable fluids and contouring in rendering SPH simulations) [FF01]
EME02) [LLVT03], and on optimizing the SPH code with data-structures for
hierarchical range queries [HK89]. Since we are also interested in simula-
ting deformable objects, we are currently studying the foundations of mathe-
matical elasticity [MH94, [Lov44, [Pat87] and the recent works on discrete
differential geometry [Gri06], which have found interesting applications in
the simulation of fluids [ETK™07].

Future Work. In (a not so far) future, we intend to experiment with re-
cently developed (and promising) techniques to animate fluids for computer
graphics. These include the work of Elcott et al. [ETKT07], which applies the

65

tools of discrete differential geometry to stably simulate fluids avoiding the
“correction” procedure that projects an intermediary vector field onto its
divergence-free part; the dynamic/adaptive remeshing method of Klingner
et al. [KECOO06] which conforms the mesh to fluid features attaining de-
tailed simulations without over-subdividing the computational domain (and
impacting performance); the variational/Eulerian approach of Mullen et al.
[IMMTDOT7] to represent and advect field quantities; the hierarchical run-
lenght encoded level-set structure of Houston et al. [HNBT06] to compactly
represent highly detailed level-sets; and the lattice Boltzmann method em-
ployed by Thuerey [Thu07] in the simulation of fluid motion by means of
cellular automata.

Some Ideas and more Future Work. During the preparation of this
text, some ideas have shown up as interesting avenues for future research.
We believe that proposition [1| — describing the local behaviour of the fluid
flow — might be exploited to design some criteria for adaptive subdivision
dynamic Eulerian simulations [KECO06], adaptively sampled particle-based
simulations [APKGQT7], and anisotropic rendering of the free-surface in li-
quid/fire animations [AA06] (possibly avoiding the blobby artifacts common
when using few particles). Another possibility regards the design of veloc-
ity /vector fields [AN05, [ANSNO6] as a “cheap” alternative to a full simulation
of the Navier-Stokes equations. Maybe an intuitive modeling metaphor can
be provided by exploiting the concepts involved in the definitions of vortex
lines/sheets/tubes and in theorem [4| (Helmholtz’s Theorem). Recently, a
model-reduced simulation method has been introduced to computer graphics
for real-time fluid simulation [TLP06], we believe this technique (or a sim-
ilar one using machine learning algorithms other than principal component
analysis) could be exploited to perform faster optimization-based fluid con-
trol methods [TMPS03, IMTPS04]. Another intesting possibility, would be to
evaluate the feasibility of employing domain decomposition methods (spatial
splitting methods) [Bor(O7] to parallelize computations, both in distributed
systems and GPU’s. At last, further study of the variational principles un-
derlying fluid motions might be used to perform numerical simulations which
better preserve invariants of flows (e.g., kinetic energy in unforced ideal flu-
ids), some recent works have benefited from an understanding of such varia-
tional principles [BBB07, IKYTT06] and we think these properties could be
more exploited in the design of better solvers [LR04].

66

Appendix A
A Simple Stable Fluids Solver

In this appendix, we present our implementation in C of the basic Stable
Fluids scheme as described in [Sta99]. This code also contains a simple
implementation of the vorticity confinement forces as introduced in [ESJ01].
We stress that this code is neither optimized for performance nor memory
consumption, it was written for didatic reasons (i.e., designed to be almost
readable).

#include <math.h>
#include <string.h>

#define INDEX(i,j) (@ +((G)*(N+2)))

#define FOR_EACH_CELL for(i=1;i<=N;++i){for(j=1;j<=N;++j){
#define END_FOR_EACH i3

#define MAX_ITERATIONS 25

#define CLAMP(x,m,M) ((x)<m))?(m) : (C)>M)I?7M) :(x)))
#define EPSILON (1e-12)

typedef enum boundary_e {
DIRICHLET,
NEUMANN

} boundary_t;

typedef enum boolean_e {

FALSE = 0,
TRUE = (!'0)
} boolean_t;

67

void setBoundaryCondition(boundary_t bx, boundary_t by,
unsigned int N, floatx f) {
register unsigned int i;

for (i=1;1i<=N; ++ti) {
f[INDEX(O, i)]=((bx==DIRICHLET)?-f[INDEX(1,i)]:f[INDEX(1,i)]);
f[INDEX(N+1, i)]=((bx==DIRICHLET)?-f[INDEX(N,i)]:f[INDEX(N,i)]);
f[INDEX(i, 0)]=((by==DIRICHLET)?-f[INDEX(i,1)]:f[INDEX(i,1)]1);
£[INDEX(i,N+1)]1=((by==DIRICHLET)?~f [INDEX(i,N)]:f [INDEX(i,N)1);
}

f[INDEX(0, 0)] = 0.5f * (f[INDEX(0,1)] + f[INDEX(1, 0)1);
f[INDEX(N+1, 0)] = 0.5f * (f[INDEX(N+1,1)] + f[INDEX(N, 0)]1);
f[INDEX(O,N+1)] = 0.5f * (f[INDEX(O,N)] + f[INDEX(1,N+1)1);
f [INDEX(N+1,N+1)] = 0.5f * (f[INDEX(N+1,N)] + f[INDEX(N,N+1)]);
}
/%

* Solves (\alpha I - \beta\Delta)u = f on the unit square,
* with boundary conditions ’b’ using the Gauss-Seidel iteration
*/
void solve(boundary_t bx, boundary_t by, float alpha, float beta,
unsigned int N, float* f, float*x u) {
register unsigned int i, j, k;
float n = beta * N * N;
float d = alpha + 4.0f * n;
float left, right, down, up;

for (k = 0 ; k < MAX_ITERATIONS ; ++k) {
FOR_EACH_CELL

left = ul[INDEX(i-1, j)];
right = u[INDEX(i+1, j)1;
down = ulINDEX(1i,j-1)1;
up = u[INDEX(i,j+1)];

u[INDEX(i,j)] = (f[INDEX(i,j)]+n*(left+right+down+up))/d;
END_FOR_EACH

setBoundaryCondition(bx, by, N, u);
}

68

void advect(boolean_t advectAndForce, boundary_t bx, boundary_t by,
float dt, unsigned int N, float* u, float* v, float* fO, floatx f) {
register unsigned int i, j;
float x0, yO0, x, y, xi, yj, fxi, fyj, cxi, cyj, h = 1.0£f/N;
float s, t, 1d, rd, lu, ru, c;

FOR_EACH_CELL
x0 = (1 - 0.5f) * h;

y0 = (j - 0.5f) * h;

x = x0 - dt * u[INDEX(i,j)];
y = yO - dt * v[INDEX(i,j)];
x = CLAMP(x,0.0f,1.0f);

y = CLAMP(y,0.0f,1.01f);

xi = x x*x N + 0.5f;
VA

]
=
+
o
2

fxi = floor(xi);
cxi = ceil(xi);

if (fxi '= cxi) {

s = (xi - fxi) / (cxi - fxi);
} else {

s = 0.0f;
}

fyj = floor(yj);
cyj ceil(yj);

if (fyj !'= cyj) {
t = (yj - fyj) / (cyj - fyj);

} else {

t = 0.0f;
}
1d = fO[INDEX((int)fxi, (int)fyj)];
rd = fO[INDEX((int)cxi, (int)fyj)];
lu = fO[INDEX((int)fxi, (int)cyj)l;
ru = fO[INDEX((int)cxi, (int)cyj)l;

c = ((1.0f-t)*((1.0f-s)*1d+s*rd)+t*x((1.0f-s)*1lu+s*ru));

69

if (advectAndForce == TRUE) {
f[INDEX(i,j)] *= dt;
£[INDEX(i,j)] += ¢ ;

} else {
f[INDEX(i,j)] = c;

}

END_FOR_EACH

setBoundaryCondition(bx, by, N, f);
}

void force(boundary_t bx, boundary_t by, float dt,
unsigned int N, float* f, float*x u) {
register unsigned int i, j;

FOR_EACH_CELL
u[INDEX(i,j)] += dt * £[INDEX(i,j)];
END_FOR_EACH

setBoundaryCondition(bx, by, N, u);
}

void confineVorticity (boundary_t ubx, boundary_t uby,
boundary_t vbx, boundary_t vby, float dt, float epsilon,
unsigned int N, float* u, float* v,
float* hOmega, float* hAbsOmega) {

if (epsilon < EPSILON) {
return;

}

register unsigned int i, j;
float left, right, down, up;
float dx, dy, norm, alpha = dt * epsilon;

FOR_EACH_CELL

left v[INDEX(i-1, 3j)1;

right = v[INDEX(i+1, j)]1;

down ul[INDEX(1i,j-1)];

up u[INDEX(1i,j+1)];

hOmega [INDEX (i,3)] = (right - left) - (up - down);

hAbsOmega [INDEX(i,j)] = (float) fabs(hOmega[INDEX(i,j)]);
END_FOR_EACH

70

setBoundaryCondition(NEUMANN, NEUMANN, N, hOmega) ;
setBoundaryCondition(NEUMANN, NEUMANN, N, hAbsOmega);

FOR_EACH_CELL
left = hAbsOmegal[INDEX(i-1, j)I1;
right = hAbsOmega[INDEX(i+1, 3)1;
down = hAbsOmegal[INDEX(i,j-1)];

up = hAbsOmega [INDEX(1i,j+1)]1;
dx = right - left;
dy = up - down;

norm = sqrt(dx * dx + dy * dy);

if (norm > EPSILON) {
u[INDEX(i,j)] += alpha * hOmega[INDEX(i,j)] * dy / norm;
v[INDEX(i,j)] += alpha * hOmega[INDEX(i,j)] * (-dx) / norm;
}

END_FOR_EACH

setBoundaryCondition(ubx, uby, N, u);
setBoundaryCondition(vbx, vby, N, v);
}

void diffuse(boundary_t bx, boundary_t by, float nu, float dt,
unsigned int N, float* u0, float* u) {
solve(bx, by, 1.0f, nu * dt, N, u0, u);
}

/*

* Solve -\Delta\phi = \nabla\cdot U, using Neumann boundary conditions

* for \phi, and assigns U <- U + \nabla\phi (U <- IP(U))

*/

void project(unsigned int N, float* u, float* v, float* divU, float* phi) {
register unsigned int i, j;
float n = 0.5f * N;
float left, right, down, up;

FOR_EACH_CELL

left = ul[INDEX(i-1, 3)1;
right = u[INDEX(i+1, j)I1;
down = v[INDEX(1i,j-1)1;
up = v[INDEX(1i,j+1)];

divU[INDEX(i,j)] = n * ((right - left) + (up - down));
phi [INDEX(i,j)] = 0.0f;

71

END_FOR_EACH

setBoundaryCondition(NEUMANN, NEUMANN, N, divU);
setBoundaryCondition(NEUMANN, NEUMANN, N, phi);

solve(NEUMANN, NEUMANN, 0.0f, 1.0f, N, divU, phi);

FOR_EACH_CELL
left = phil[INDEX(i-1, 3j)J;

right = phi[INDEX(i+1, 3)1;
down = phil[INDEX(1i,j-1)];
up = phi[INDEX(1i,j+1)];

w[INDEX(i,j)] += n * (right - left);
v[INDEX(i,j)] +=n * (up - down);
END_FOR_EACH

setBoundaryCondition(DIRICHLET, NEUMANN, N, u);
setBoundaryCondition(NEUMANN, DIRICHLET, N, v);
}

void stepNavierStokes(float dt, float nu, float epsilon,
unsigned int N, float* bx, float* by, float* u, float* v) {
/*
* Advect -> Force -> Diffuse -> Project
*/
advect(TRUE, DIRICHLET, DIRICHLET, dt, N, u, v, u, bx);
advect (TRUE, DIRICHLET, DIRICHLET, dt, N, u, v, v, by);
confineVorticity(DIRICHLET, DIRICHLET, DIRICHLET, DIRICHLET,
dt, epsilon, N, bx, by, u, v);
diffuse(DIRICHLET, DIRICHLET, nu, dt, N, bx, u);
diffuse(DIRICHLET, DIRICHLET, nu, dt, N, by, v);
project(N, u, v, bx, by);
setBoundaryCondition(DIRICHLET, DIRICHLET, N, u);
setBoundaryCondition(DIRICHLET, DIRICHLET, N, v);
}

void stepScalarField(float dt, float kappa, unsigned int N,
float* u, float* v, float*x f, float* rho) {
/*
* Force -> Advect -> Diffuse
*/
force(NEUMANN, NEUMANN, dt, N, f, rho);
advect (FALSE, NEUMANN, NEUMANN, dt, N, u, v, rho, f);
diffuse(NEUMANN, NEUMANN, kappa, dt, N, f, rho);
}

72

void stepEuler(float dt, float epsilon, unsigned int N,

float* bx, float* by, float* u, float*x v) {
/*

* Advect -> Force -> Project

*/
advect (TRUE, DIRICHLET, NEUMANN, dt, N, u, v, u, bx);
advect (TRUE, NEUMANN, DIRICHLET, dt, N, u, v, v, by);
confineVorticity(DIRICHLET, NEUMANN, NEUMANN, DIRICHLET,

dt, epsilon, N, bx, by, u, v);

project(N, bx, by, u, v);
memcpy(u, bx, (N + 2) * (N + 2) * sizeof(float));
memcpy(v, by, (N + 2) * (N + 2) * sizeof(float));

“I think that the most important result of the computer graphics revolution
1s that it has helped heal the gulf between art and science.”
Jim Blinn

73

74

Appendix B

A Simple Smoothed Particle
Hydrodynamsics Solver

In this appendix, we present our implementation in C of a simple SPH
scheme as outlined in section We stress that this code is meither op-
timized for performance mor memory consumption, like our Stable Fluids
solver, it was written for the purpose of illustrating our considerations in
chapter [4

#include <math.h>
#include <string.h>

#define FOR_EACH_PARTICLE for(i=0;i<N;++i){
#define END_FOR_EACH_PARTICLE }

#define FOR_EACH_PAIR for(i=0;i<(N-1);++i){for(j=i+1; j<N;++j){
#define END_FOR_EACH_PAIR 1}

float W(float h, float dx, float dy) {

static const float r2pi = 0.15915494309189535%;

float th2 = 1.0f / (h * h);

return r2pi * rh2 * exp(- 0.5f * rh2 * (dx * dx + dy * dy));
}

void gradW(float h, float dx, float dy, float* gradWx, float* gradWy) {
float scale = - W(h, dx, dy) / (h * h);
*gradWWx = scale * dx;
*gradWy = scale * dy;

}

5

void wGradW(float h, float dx, float dy,
float* w, float* gradWx, float* gradWy) {
xw = W, dx, dy);
float scale =- (xw) / (h *x h);
*gradWx = scale * dx;
*gradWy = scale * dy;
}

void computeDensities(float h, float m, unsigned int N,
float* x, float* y, float* rho) {
register unsigned int i, j;
float Wh = W(h, 0.0f, 0.0f);

FOR_EACH_PARTICLE
rho[i] = Wh;
END_FOR_EACH_PARTICLE

FOR_EACH_PAIR
Wh = W(h, x[i]l-x[j], y[il-y[j1);
rho[i] += Wh;
rho[j] += Wh;

END_FOR_EACH_PAIR

FOR_EACH_PARTICLE
rho[i] *= m;
END_FOR_EACH_PARTICLE
}

void computeStressTensors(float h, float m, float lambda, float mu,
unsigned int N, float* rho, float* x, float* y, float* u, float* v,
float* s11, float* s12, float* s22) {
register unsigned int i, j;
float twomu = mu+mu, gradWx, gradWy, du, dv;
float di11, twodl2, d22, lambdaTzrD;
float slirho, si12rho, s22rho, rrho;

memset(s11, 0, N * sizeof(float));
memset(s12, 0, N * sizeof(float));
memset(s22, 0, N * sizeof(float));

FOR_EACH_PAIR
gradW(h, x[il-x[j], y[il-y[j]l, &gradwx, &gradWy);

du = uljl-ulil;

76

dv = v[jl-v[il;

di1 = du * gradWx;
twodl2 = du * gradWy + dv * gradWx;
d22 = dv * gradWy;

lambdaTrD

lambda * (d11 + d22);

slirho = lambdaTrD + twomu * di1l ;
s12rho mu twodl2;
s22rho = lambdaTrD + twomu * d22 5

*

rrho = 1.0f / rholj];
s11[i] += sllirho * rrho;
s12[i] += s12rho * rrho;
s22[i] += s22rho * rrho;

rrho = 1.0f / rholil;
s11[j] += silirho * rrho;
s12[j] += s12rho * rrho;
s22[j] += s22rho * rrho;
END_FOR_EACH_PAIR

FOR_EACH_PARTICLE
s11[i] *= m;
s12[i] *= m;
s22[i] *= m;
END_FOR_EACH_PARTICLE
}

void addAccelerations(float h, float m, float B, float n, float rhoO,
unsigned int N, float* rho, float* x, float* y,
float* s11, float* s12, float* s22, float* f, float*x g) {
register unsigned int i, j;
float Wh, gradWx, gradWy, rrhoi, rrhoj, pi, pj, scale, a, b;

FOR_EACH_PAIR
wGradW(h, x[i]-x[jl, y[il-y[j]l, &Wh, &gradWx, &gradWy);

1.0f / rholil;
1.0f / rholjl;

rrhoi
rrhoj

/* Equation of state */
pi = (1.0f+B)*pow(rho[i]/rho0,n)-B;
pj = (1.0£+B)*pow(rho[jl/rho0,n)-B;

7

scale = m * (pi * rrhoi * rrhoi + pj * rrhoj * rrhoj);

a
b

- scale * gradWx;
- scale * gradWy;

f[i] += a; £[j] += -a;
glil += b; gljl += -b;

scale = m * rrhoi * rrhoj;
a = scale * ((s11[il+s11[jl)*gradwWx + (s12[i]+s12[j])*gradWy);
b = scale * ((s12[i]+s12[j])*gradWx + (s22[i]+s22[j])*gradWy);

fli]l += a; f[j]1 += -a;
glil += b; gljl += -b;
END_FOR_EACH_PAIR
}

void enforceBoundaryConditions(float dt, float epsilon, float h,
float* x, float* y, float* u, float* v) {
float x0 = (*x) - dt * (*u);
float yO = (xy) - dt * (*v);
float gap = 0.75f * h;

if ((#x) < 0.0f+gap) {
*x = 0.0f+gap;
*u = -epsilon * ((xx) - x0) / dt;

if (1.0f-gap < (*x)) {
*x = 1.0f-gap;
*u = -epsilon * ((*x) - x0) / dt;

if ((xy) < 0.0f+gap) {
*y = 0.0f+gap;
*v = -epsilon * epsilon * ((xy) - y0) / dt;

if (1.0f-gap < (xy)) {
*y = 1.0f-gap;
*v = -epsilon * epsilon * ((xy) - y0) / dt;

78

if (x0 <= 0.5f && 0.5f < *x+gap && 0.125f < yO+gap) {
*x = 0.5f-gap;
*u = -—epsilon * ((*x) - x0) / dt;
} else if (0.5f <= x0 &% *x-gap < 0.5f && 0.125f < yO+gap) {
*x = 0.b5f+gap;
xu = -epsilon * ((*x) - x0) / dt;

3

void step(float dt, float h, float m, float lambda, float mu, float epsilon,
float B, float n, float rhoO, unsigned int N, float* rho,
float* x, float* y, float* u, float* v, float* f, float*x g,
float* s11, float* s12, floatx s22) {
computeDensities(h, m, N, x, y, rho);
computeStressTensors(h, m, lambda, mu, N, rho,
X, y, u, v, si1, s12, s22);
addAccelerations(h, m, B, n, rhoO, N, rho,
x, y, si1, s12, s22, £, g);

register unsigned int i;
FOR_EACH_PARTICLE
uli] += dt * £[i];
v[i] += dt * gl[il;

x[i] += dt * ulil;
y[i] += dt * v[il;

enforceBoundaryConditions(dt, epsilon, h, &x[i], &yl[i], &uli]l, &v[i]);
END_FOR_EACH_PARTICLE

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

Donald E. Knuth

79

80

Bibliography

[AAO6]

[AHT70]

[ANO5)

[ANSNO6]

[APYS]

[APKGO7]

Anders Adamson and Marc Alexa. Anisotropic point set sur-
faces. In Afrigaph ’06: Proceedings of the 4th international con-
ference on Computer graphics, virtual reality, visualisation and
interaction in Africa, pages 7-13. ACM, 2006.

A. A. Amsden and F. H. Harlow. The SMAC method: A numeri-
cal technique for calculating incompressible fluid flows. Technical
Report LA-4370, Los Alamos Scientific Laboratory, 1970.

Alexis Angelidis and Fabrice Neyret. Simulation of smoke based
on vortex filament primitives. In SCA °05: Proceedings of the
2005 ACM SIGGRAPH/FEurographics symposium on Computer
animation, pages 87-96, New York, NY, USA, 2005. ACM Press.

Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek
Nowrouzezahrai. A controllable, fast and stable basis for vor-
tex based smoke simulation. In SCA ’06: Proceedings of the
2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 25-32, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

Uri M. Ascher and Linda R. Petzold. Computer methods for
ordinary differential equations and differential-algebraic equa-
tions. Society for Industrial and Applied Mathematics (STAM),
Philadelphia, PA, 1998.

Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J.
Guibas. Adaptively sampled particle fluids. In SIGGRAPH
07: ACM SIGGRAPH 2007 papers, New York, NY, USA, 2007.
ACM Press.

81

[Bat99)]

[BBBO7]

[BBCT94]

[BCNO3]

[BHW96]

[BMFO7]

[Bor06]

[Bor07]

[BTO7]

G. K. Batchelor. An introduction to fluid dynamics. Cambridge
Mathematical Library. Cambridge University Press, Cambridge,
paperback edition, 1999.

Christopher Batty, Florence Bertails, and Robert Bridson. A fast
variational framework for accurate solid-fluid coupling. ACM
Trans. Graph., 26(3):100, 2007.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA,
1994.

Yosuke Bando, Bing-Yu Chen, and Tomoyuki Nishita. Animat-
ing hair with loosely connected particles. Computer Graphics
Forum, 22(3):411-418, 2003.

Ronen Barzel, John F. Hughes, and Daniel Wood. Plausible mo-
tion simulation for computer animation. In EGCAS ’96: Seventh

International Workshop on Computer Animation and Simula-
tion, 1996.

Robert Bridson and Matthias Miiller-Fischer. Fluid simulation.
In SIGGRAPH’07: ACM SIGGRAPH 2007 Courses, pages 1—
81, New York, NY, USA, 2007. ACM Press.

Alex Laier Bordignon. Navier-stokes em GPU. Master’s thesis,
Departamento de Matematica, Pontificia Universidade Catdlica
do Rio de Janeiro, 2006.

Carlos E. C. Borges. Coarse grid correction operator splitting for
parabolic partial differential equations. Master’s thesis, Instituto
Nacional de Matematica Pura e Aplicada, 2007.

Markus Becker and Matthias Teschner. Weakly compressible
sph for free surface flows. In SCA °07: Proceedings of the 2007
ACM SIGGRAPH /Eurographics symposium on Computer ani-
mation, pages 209-217, Aire-la-Ville, Switzerland, Switzerland,
2007. Eurographics Association.

82

[BWHTO07] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg

[CACCO6]

[CAVLOS]

[CF76)]

[CFL67]

[CFL*+07]

[CGFO06]

[Cho68]

Turk. A finite element method for animating large viscoplastic
flow. In SIGGRAPH 07: ACM SIGGRAPH 2007 papers, New
York, NY, USA, 2007. ACM Press.

Mathieu Coquerelle, Jeremie Allard, Georges-Henri Cottet,
and Marie-Paule Cani. A vortex method for bi-phasic
fluids interacting with rigid bodies, 2006. Available at
http://arxiv.org/abs/math/0607597.

Jim X. Chen and Niels da Vitoria Lobo. Toward interactive-rate
simulation of fluids with moving obstacles using navier-stokes
equations. Graph. Models Image Process., 57(2):107-116, 1995.

R. Courant and K. O. Friedrichs. Supersonic flow and shock
waves. Springer-Verlag, New York, 1976. Reprinting of the 1948
original, Applied Mathematical Sciences, Vol. 21.

R. Courant, K. Friedrichs, and H. Lewy. On the partial differ-
ence equations of mathematical physics. IBM J. Res. Develop.,
11:215-234, 1967.

Nuttapong Chentanez, Bryan E. Feldman, Francois Labelle,
James F. O’Brien, and Jonathan R. Shewchuk. Liquid simula-
tion on lattice-based tetrahedral meshes. In SCA ’07: Proceed-
ings of the 2007 ACM SIGGRAPH /Eurographics symposium on
Computer animation, pages 219-228, Aire-la-Ville, Switzerland,
Switzerland, 2007. Eurographics Association.

Nuttapong Chentanez, Tolga G. Goktekin, Bryan E. Feldman,
and James F. O'Brien. Simultaneous coupling of fluids and de-
formable bodies. In SCA ’06: Proceedings of the 2006 ACM
SIGGRAPH /Eurographics symposium on Computer animation,
pages 83-89, Aire-la-Ville, Switzerland, Switzerland, 2006. Eu-
rographics Association.

Alexandre Joel Chorin. Numerical solution of the Navier-Stokes
equations. Math. Comp., 22:745-762, 1968.

83

http://arxiv.org/abs/math/0607597

[CLTO07]

[CM93]

[CMITO2]

[CMTO4]

[CPPKO7]

[DEF+04]

[Dem97]

[DG6]

[EMF02]

Keenan Crane, Ignacio Llamas, and Sarah Tariq. GPU Gems 3 —
Chapter 30: Real-Time Simulation and Rendering of 3D Fluids.
Addison-Wesley Professional, 2007.

Alexandre J. Chorin and Jerrold E. Marsden. A mathematical
introduction to fluid mechanics, volume 4 of Texts in Applied
Mathematics. Springer-Verlag, New York, third edition, 1993.

Mark Carlson, Peter J. Mucha, R. Brooks Van Horn III, and
Greg Turk. Melting and flowing. In SCA ’02: Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 167-174, New York, NY, USA, 2002. ACM
Press.

Mark Carlson, Peter J. Mucha, and Greg Turk. Rigid fluid:
animating the interplay between rigid bodies and fluid. ACM
Trans. Graph., 23(3):377-384, 2004.

Paul W. Cleary, Soon Hyoung Pyo, Mahesh Prakash, and Bon Ki
Koo. Bubbling and frothing liquids. In SIGGRAPH °07: ACM
SIGGRAPH 2007 papers, New York, NY, USA, 2007. ACM

Press.

Oliver Deusen, David S. Ebert, Ron Fedkiw, F. Kenton Mus-
grave, Przemyslaw Prusinkiewicz, Doug Roble, Jos Stam, and
Jerry Tessendorf. The elements of nature: interactive and real-
istic techniques. In SIGGRAPH '04: ACM SIGGRAPH 2004
Course Notes, New York, NY, USA, 2004. ACM Press.

James W. Demmel. Applied numerical linear algebra. Society
for Industrial and Applied Mathematics (STAM), Philadelphia,
PA, 1997.

M. Desbrun and M. P. Gascuel. Smoothed particles: a new
paradigm for animating highly deformable bodies. In EGCAS
'96: Seventh International Workshop on Computer Animation
and Simulation, 1996.

Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Ani-
mation and rendering of complex water surfaces. In SIGGRAPH

84

[ETK"07]

[Evags]

[FFO1]

[FLO4]

[FM96a]

[FMO6b)]

[FM97a]

[FMO7b]

'02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 736-744, New York,
NY, USA, 2002. ACM Press.

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schroder, and
Mathieu Desbrun. Stable, circulation-preserving, simplicial flu-
ids. ACM Trans. Graph., 26(1):4, 2007.

Lawrence C. Evans. Partial differential equations, volume 19
of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 1998.

Nick Foster and Ronald Fedkiw. Practical animation of liquids.
In Proceedings of ACM SIGGRAPH 2001, Computer Graph-
ics Proceedings, Annual Conference Series, pages 23-30, August
2001.

Raanan Fattal and Dani Lischinski. Target-driven smoke ani-
mation. In SIGGRAPH °0/: ACM SIGGRAPH 2004 Papers,
pages 441-448, New York, NY, USA, 2004. ACM.

Nick Foster and Dimitri Metaxas. Realistic animation of liquids.
In GI '96: Proceedings of the conference on Graphics interface
’96, pages 204-212, Toronto, Ont., Canada, Canada, 1996. Cana-
dian Information Processing Society.

Nick Foster and Dimitri Metaxas. Realistic animation of liquids.
Graphical Models and Image Processing, 58(5):471-483, 1996.

Nick Foster and Dimitris Metaxas. Controlling fluid animation.
In CGI ’97: Proceedings of the 1997 Conference on Computer
Graphics International, Washington, DC, USA, 1997. IEEE

Computer Society.

Nick Foster and Dimitris Metaxas. Modeling the motion of
a hot, turbulent gas. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive
techniques, pages 181-188, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

85

[FMOO]

[FOA03]

[FOKO5]

[FOKGO5)

[FSJO1]

[GBO04]

[GLGY5]

[GMT7]

Nick Foster and Dimitris Metaxas. Modeling water for computer
animation. Communications of the ACM, 43(7):60-67, 2000.

Bryan E. Feldman, James F. O’Brien, and Okan Arikan. Ani-
mating suspended particle explosions. In SIGGRAPH °03: ACM
SIGGRAPH 2003 Papers, pages 708-715, New York, NY, USA,
2003. ACM.

Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner.
Animating gases with hybrid meshes. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers, pages 904-909, New York, NY, USA,
2005. ACM Press.

Bryan E. Feldman, James F. O’Brien, Bryan M. Klingner, and
Tolga G. Goktekin. Fluids in deforming meshes. In SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH /Eurographics sympo-
sium on Computer animation, pages 255-259, New York, NY,
USA, 2005. ACM Press.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual
simulation of smoke. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and interactive
techniques, pages 15—22, New York, NY, USA, 2001. ACM Press.

Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien.
A method for animating viscoelastic fluids. In SIGGRAPH ’0/:
ACM SIGGRAPH 2004 Papers, pages 463-468, New York, NY,
USA, 2004. ACM Press.

Manuel Noronha Gamito, Pedro Faria Lopes, and Mario Rui
Gomes. Two-dimensional simulation of gaseous phenomena us-
ing vortex particles. In Demetri Terzopoulos and Daniel Thal-
mann, editors, Computer Animation and Simulation ’95, pages
2-15. Eurographics, Springer-Verlag, September 1995.

R. A. Gingold and J. J. Monaghan. Smoothed particle hydrody-
namics - Theory and application to non-spherical stars. Monthly
Notices of the Royal Astronomical Society, 181:375-389, Novem-
ber 1977.

86

[GNO7]

[Gri06]

[GSLF05]

[Har04]

[HCSLO02|

[HK89)

[HKO05)

[HMT6]

[HMTO1]

[HNB+06]

Mohit Gupta and Srinivasa G. Narasimhan. Legendre fluids:
a unified framework for analytic reduced space modeling and
rendering of participating media. In SCA °07: Proceedings of the
2007 ACM SIGGRAPH/FEurographics symposium on Computer
animation, pages 17-25, Aire-la-Ville, Switzerland, Switzerland,
2007. Eurographics Association.

Eitan Grinspun. Discrete differential geometry: An applied
introduction. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Courses, New York, NY, USA, 2006. ACM.

Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald
Fedkiw. Coupling water and smoke to thin deformable and rigid
shells. ACM Trans. Graph., 24(3):973-981, 2005.

Mark Harris. GPU Gems — Chapter 38: Fast Fluid Dynamics
Simulation on the GPU. Addison-Wesley Professional, 2004.

Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and
Anselmo Lastra. Physically-based visual simulation on graphics
hardware. In Graphics Hardware 2002, pages 109-118, Septem-
ber 2002.

L. Hernquist and N. Katz. TREESPH - A unification of SPH
with the hierarchical tree method. The Astrophysical Journal
Supplement Series, 70:419-446, June 1989.

Jeong-Mo Hong and Chang-Hun Kim. Discontinuous fluids.
ACM Trans. Graph., 24(3):915-920, 2005.

Thomas J. R. Hughes and Jerrold E. Marsden. A short course
in fluid mechanics. Publish or Perish Inc., Boston, Mass., 1976.
Mathematics Lecture Series, No. 6.

Sunil Hadap and Nadia Magnenat-Thalmann. Modeling dy-
namic hair as a continuum. Computer Graphics Forum,
20(3):329-338, 2001.

Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nils-
son, and Ken Museth. Hierarchical RLE level set: A compact

87

[HW65)

[Ig104]

[1101]

[Ise96]

[Joh91]

[KAGT05]

[KFCOO6]

[KMO0]

[KMTO06]

and versatile deformable surface representation. ACM Trans.
Graph., 25(1):151-175, 2006.

Francis H. Harlow and J. Eddie Welch. Numerical calculation
of time-dependent viscous incompressible flow of fluid with free
surface. Physics of Fluids, 8(12):2182-2189, 1965.

A. TIglesias. Computer graphics for water modeling and ren-
dering: A survey. Future Generation Computer Systems,
20(8):1355-1374, 2004.

Rafael José lorio, Jr. and Valéria de Magalhaes lorio. Fourier
analysis and partial differential equations, volume 70 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 2001.

Arieh Iserles. A first course in the numerical analysis of dif-
ferential equations. Cambridge Texts in Applied Mathematics.
Cambridge University Press, Cambridge, 1996.

Fritz John. Partial differential equations, volume 1 of Applied
Mathematical Sciences. Springer-Verlag, New York, fourth edi-
tion, 1991.

R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutre, and
M. Gross. A unified lagrangian approach to solid-fluid anima-
tion. pages 125-148, 2005.

Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez,
and James F. O’Brien. Fluid animation with dynamic meshes.
In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages 820
825, New York, NY, USA, 2006. ACM Press.

Michael Kass and Gavin Miller. Rapid, stable fluid dynamics
for computer graphics. In Computer Graphics (Proceedings of
SIGGRAPH 90), pages 49-57, August 1990.

Yootai Kim, Raghu Machiraju, and David Thompson. Path-
based control of smoke simulations. In SCA ’06: Proceed-
ings of the 2006 ACM SIGGRAPH /Eurographics symposium on

88

[KYT06]

[Lam93]

[LeVO7]

[LGF04]

[LLVTO03]

[Lov44]

[LRO4]

[LSSFO6]

Computer animation, pages 33-42, Aire-la-Ville, Switzerland,
Switzerland, 2006. Eurographics Association.

L. Kharevych, Weiwei Yang, Y. Tong, E. Kanso, J. E. Marsden,
P. Schroder, and M. Desbrun. Geometric, variational integra-
tors for computer animation. In SCA ’06: Proceedings of the
2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 43-51, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

Horace Lamb. Hydrodynamics. Cambridge Mathematical Li-
brary. Cambridge University Press, Cambridge, sixth edition,
1993.

Randall J. LeVeque. Finite Difference Methods for Ordinary
and Partial Differential Equations: Steady-State and Time-
Dependent Problems. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 2007.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating
water and smoke with an octree data structure. In SIGGRAPH
04: ACM SIGGRAPH 200/ Papers, pages 457-462, New York,
NY, USA, 2004. ACM Press.

Thomas Lewiner, Hélio Lopes, Antonio Wilson Vieira, and Geo-
van Tavares. Efficient implementation of marching cubes’ cases
with topological guarantees. Journal of Graphics Tools, 8(2):1—
15, 2003.

A. E. H. Love. A Treatise on the Mathematical Theory of Elas-
ticity. Dover Publications, New York, 1944. Fourth Ed.

Benedict Leimkuhler and Sebastian Reich. Sitmulating Hamilto-
nian dynamics, volume 14 of Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press,
Cambridge, 2004.

Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw.
Multiple interacting liquids. ACM Trans. Graph., 25(3):812-819,
2006.

89

[Luc77]

[LvdP02]

IMCGO3]

[Mei07]

[Mey82]

[MFZ97]

[MHO4]

[MKN*04]

[MMTDO7]

IMNO1]

L. B. Lucy. A numerical approach to the testing of the fission hy-
pothesis. Astronomical Journal, 82:1013-1024, December 1977.

Anita T. Layton and Michiel van de Panne. A numerically ef-
ficient and stable algorithm for animating water waves. The
Visual Computer, 18(1):41-53, 2002.

Matthias Miiller, David Charypar, and Markus Gross. Particle-
based fluid simulation for interactive applications. In SCA "03:
Proceedings of the 2003 ACM SIGGRAPH/FEurographics sym-
posium on Computer animation, pages 154-159, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics Association.

Chiang C. Mei. Lecture notes on fluid dynamics. Available at
http://web.mit.edu/1.63/www/, 2007.

Richard E. Meyer. Introduction to mathematical fluid dynamics.
Dover Publications Inc., New York, 1982.

Joseph P. Morris, Patrick J. Fox, and Yi Zhu. Modeling low
reynolds number incompressible flows using sph. Journal of
Computational Physics, 136(1):214-226, 1997.

Jerrold E. Marsden and Thomas J. R. Hughes. Mathematical
foundations of elasticity. Dover Publications Inc., New York,
1994.

M. Miiller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and
M. Alexa. Point based animation of elastic, plastic and melt-
ing objects. In SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH /Eurographics symposium on Computer animation,
pages 141-151, Aire-la-Ville, Switzerland, Switzerland, 2004.
Eurographics Association.

Patrick Mullen, Alexander McKenzie, Yiying Tong, and Mathieu
Desbrun. A variational approach to eulerian geometry process-
ing. ACM Trans. Graph., 26(3):66, 2007.

Severiano Toscano Melo and Francisco Moura Neto. Mecanica
dos Fluidos e Equacoes Diferenciais. 18° Coloquio Brasileiro de

90

http://web.mit.edu/1.63/www/

[Mon92]

[Mon94|

[Mon05]

IMQO2]

[MSKGO5]

[MST+04]

IMTPS04]

[NacO1]

[Nac07]

[Nak07]

Matematica, Instituto Nacional de Matematica Pura e Aplicada,
1991.

J. J. Monaghan. Smoothed particle hydrodynamics. Annual
Review of Astronomy and Astrophysics, 30:543-574, 1992.

J. J. Monaghan. Simulating free surface flows with sph. J.
Comput. Phys., 110(2):399-406, 1994.

J. J. Monaghan. Smoothed particle hydrodynamics. Rep. Progr.
Phys., 68(8):1703-1759, 2005.

Robert I. McLachlan and G. Reinout W. Quispel. Splitting
methods. Acta Numer., 11:341-434, 2002.

Matthias Miiller, Barbara Solenthaler, Richard Keiser, and
Markus Gross. Particle-based fluid-fluid interaction. In 2005
ACM SIGGRAPH / Eurographics Symposium on Computer An-
1mation, pages 237-244, July 2005.

Matthias Miiller, Simon Schirm, Matthias Teschner, Bruno Hei-
delberger, and Markus Gross. Interaction of fluids with de-

formable solids. Computer Animation and Virtual Worlds, 15(3-
4):159-171, 2004.

Antoine McNamara, Adrien Treuille, Zoran Popovié¢, and Jos
Stam. Fluid control using the adjoint method. In SIGGRAPH
04: ACM SIGGRAPH 2004 Papers, pages 449-456, New York,
NY, USA, 2004. ACM.

André Nachbin. Aspectos de Modelagem Matemdtica em
Dinamica dos Fluidos. 23° Coléquio Brasileiro de Matematica,
Instituto Nacional de Matematica Pura e Aplicada, 2001.

André Nachbin. Dinamica dos fluidos. Lecture Notes, 2007.

Fabio Issao Nakamura. Animacao interativa de fluido baseada
em particulas pelo método SPH. Master’s thesis, Departa-
mento de Informatica, Pontificia Universidade Catélica do Rio
de Janeiro, 2007.

91

[Net07]

[NFJO2]

[NMEK*06]

[OD01]

[ODGKO3]

[OF03]

[O’S05]

[Pat87]

[PKO5]

Afonso Paiva Neto. Uma abordagem Lagrangeana para simula¢ao
de escoamentos de fluidos viscopldsticos e multifasicos. PhD
thesis, Departamento de Matematica, Pontificia Universidade
Catolica do Rio de Janeiro, 2007.

Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen.
Physically based modeling and animation of fire. In SIGGRAPH
'02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 721-728, New York,
NY, USA, 2002. ACM Press.

Andrew Nealen, Matthias Muller, Richard Keiser, Eddy Boxer-
man, and Mark Carlson. Physically based deformable models in

computer graphics. Computer Graphics Forum, 25(4):809-836,
2006.

Carol O’Sullivan and John Dingliana. Collisions and perception.
ACM Trans. Graph., 20(3):151-168, 2001.

Carol O’Sullivan, John Dingliana, Thanh Giang, and Mary K.
Kaiser. Evaluating the visual fidelity of physically based anima-
tions. ACM Trans. Graph., 22(3):527-536, 2003.

Stanley Osher and Ronald Fedkiw. Level set methods and dy-
namic implicit surfaces, volume 153 of Applied Mathematical
Sciences. Springer-Verlag, New York, 2003.

Carol O’Sullivan. Collisions and attention. ACM Trans. Appl.
Percept., 2(3):309-321, 2005.

Jorge Patino. Introdu¢ao a Teoria da Elasticidade. 16° Coldquio
Brasileiro de Matematica, Instituto Nacional de Matematica
Pura e Aplicada, 1987.

Sang Il Park and Myoung Jun Kim. Vortex fluid for gaseous
phenomena. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH /Eurographics symposium on Computer animation,
pages 261270, New York, NY, USA, 2005. ACM Press.

92

[PPLTO6]

[PTB103]

[PTVF92]

[REN*04]

[RNGF03]

[Saa03]

[SBO2]

[SCO1]

[SCC04]

Afonso Paiva, Fabiano Petronetto, Thomas Lewiner, and Geo-
van Tavares. Particle-based non-newtonian fluid animation for
melting objects. SIBGRAPI, pages 78-85, 2006.

Simon Premoze, Tolga Tasdizen, James Bigler, Aaron Lefohn,
and Ross T. Whitaker. Particle-based simulation of fluids. Com-
puter Graphics Forum, 22(3):401-410, September 2003.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical recipes in C: The art of scientific

computing. Cambridge University Press, Cambridge, second edi-
tion, 1992.

N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sum-
ner, W. Geiger, S. Hoon, and R. Fedkiw. Directable photo-
realistic liquids. In SCA °04: Proceedings of the 2004 ACM
SIGGRAPH /Eurographics symposium on Computer animation,
pages 193-202, Aire-la-Ville, Switzerland, Switzerland, 2004.
Eurographics Association.

Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald
Fedkiw. Smoke simulation for large scale phenomena. In SIG-
GRAPH 03: ACM SIGGRAPH 2003 Papers, pages 703-707,
New York, NY, USA, 2003. ACM Press.

Yousef Saad. Iterative methods for sparse linear systems. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA,
second edition, 2003.

J. Stoer and R. Bulirsch. Introduction to numerical analysis,
volume 12 of Texts in Applied Mathematics. Springer-Verlag,
New York, third edition, 2002. Translated from the German by
R. Bartels, W. Gautschi and C. Witzgall.

Andrew Staniforth and Jean Coté. Semi-lagrangian integration
schemes for atmospheric models — a review. Monthly Weather
Review, 119(9):2206-2223, 1991.

C. Scheidegger, J. Comba, and R. Cunha. Navier-stokes on pro-
grammable graphics hardware using SMAC. In Proceedings of
XVII SIBGRAPI - II SIACG, pages 300-307. IEEE Press, 2004.

93

[SCC05]

[SCP+04]

[SDOG]

[SF93]

[SF95]

[SMMLO7]

[SRF05]

[Sta99]

C. Scheidegger, J. Comba, and R. Cunha. Practical CFD sim-
ulations on the GPU using SMAC. Computer Graphics Forum,
24(4):715-728, 2005.

Maurya Shah, Jonathan M. Cohen, Sanjit Patel, Penne Lee,
and Frédéric Pighin. Extended galilean invariance for adap-
tive fluid simulation. In SCA °04: Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer an-
imation, pages 213221, Aire-la-Ville, Switzerland, Switzerland,
2004. Eurographics Association.

Ari Stern and Mathieu Desbrun. Discrete geometric mechanics
for variational time integrators. In SIGGRAPH '06: ACM SIG-
GRAPH 2006 Courses, pages 75-80, New York, NY, USA, 2006.
ACM Press.

Jos Stam and Eugene Fiume. Turbulent wind fields for gaseous
phenomena. In SIGGRAPH ’93: Proceedings of the 20th annual
conference on Computer graphics and interactive techniques,

pages 369-376, New York, NY, USA, 1993. ACM.

Jos Stam and Eugene Fiume. Depicting fire and other gaseous
phenomena using diffusion processes. In SIGGRAPH ’95: Pro-
ceedings of the 22nd annual conference on Computer graphics
and interactive techniques, pages 129-136, New York, NY, USA,
1995. ACM Press.

Jason Sewall, Paul Mecklenburg, Sorin Mitran, and Ming Lin.
Fast fluid simulation using residual distribution schemes. In Pro-
ceedings of the Furographics Workshop on Natural Phenomena,
2007.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex
particle method for smoke, water and explosions. ACM Trans.
Graph., 24(3):910-914, 2005.

Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer graphics and interactive
techniques, pages 121-128, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

94

[Sta00]

[Sta01]

[Sta03]

[Str80]

[Str04]

[SU94|

[SY05a]

[SYO05b)]

[TBY7]

[TDM96]

[TF88)

Jos Stam. Interacting with smoke and fire in real time. Com-
munications of the ACM, 43(7):76-83, 2000.

Jos Stam. A simple fluid solver based on the FFT. J. Graph.
Tools, 6(2):43-52, 2001.

Jos Stam. Flows on surfaces of arbitrary topology. In SIG-
GRAPH 03: ACM SIGGRAPH 2003 Papers, pages 724-731,
New York, NY, USA, 2003. ACM Press.

Gilbert Strang. Linear algebra and its applications. Academic
Press, New York, second edition, 1980.

John C. Strikwerda. Finite difference schemes and partial differ-
ential equations. Society for Industrial and Applied Mathematics
(STAM), Philadelphia, PA, second edition, 2004.

John Steinhoff and David Underhill. Modification of the eu-
ler equations for “vorticity confinement”: Application to the
computation of interacting vortex rings. Physics of Fluids,
6(8):2738-2744, 1994.

Lin Shi and Yizhou Yu. Controllable smoke animation with
guiding objects. ACM Trans. Graph., 24(1):140-164, 2005.

Lin Shi and Yizhou Yu. Taming liquids for rapidly chang-
ing targets. In SCA °05: Proceedings of the 2005 ACM
SIGGRAPH /Eurographics symposium on Computer animation,
pages 229-236, New York, NY, USA, 2005. ACM.

Lloyd N. Trefethen and David Bau, III. Numerical linear alge-
bra. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

M. F. Tomé, B. Duffy, and S. McKee. A numerical technique
for solving unsteady non-newtonian free surface flows. Journal
of Non-Newtonian Fluid Mechanics, 62(1):9-34, 1996.

Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic
deformation: Viscoelasticity, plasticity, fracture. In Computer

Graphics (Proceedings of SIGGRAPH’ 88), pages 269-278, 1988.

95

[TFCT01]

[TGC+04]

[Thu07]

[TKPROG]

[TLPO6]

[TM94]

[TMPS03]

[TPBF87]

[Tre96]

M. F. Tomé, A. C. Filho, J. A. Cuminato, N. Mangiavacchi,
and S. McKee. Gensmac3d: A numerical method for solving un-
steady three-dimensional free surface flows. International Jour-
nal for Numerical Methods in Fluids, 37(7):747-796, 2001.

M. F. Tomé, L. Grossi, A. Castelo, J. A. Cuminato, N. Man-
giavacchi, V. G. Ferreira, F. S. deSousa, and S. McKee. A numer-
ical method for solving three-dimensional generalized newtonian

free surface flows. Journal of Non-Newtonian Fluid Mechanics,
123(2-3):85-103, 2004.

Nils Thuerey. Physically based Animation of Free Surface Flows
with the Lattice Boltzmann Method. PhD thesis, Friedrich-
Alexander-Universitat Erlangen-Niirnberg, Institut fiir Infor-
matik, 2007.

N. Thiierey, R. Keiser, M. Pauly, and U. Riide. Detail-preserving
fluid control. In SCA ’06: Proceedings of the 2006 ACM
SIGGRAPH /Eurographics symposium on Computer animation,
pages 7-12, Aire-la-Ville, Switzerland, Switzerland, 2006. Euro-
graphics Association.

Adrien Treuille, Andrew Lewis, and Zoran Popovié¢. Model re-
duction for real-time fluids. ACM Transactions on Graphics,
25(3):826-834, 2006.

Murilo F. Tomé and Sean McKee. Gensmac: A computational
marker and cell method for free surface flows in general domains.
Journal of Computational Physics, 110(1):171-186, 1994.

Adrien Treuille, Antoine McNamara, Zoran Popovié¢, and Jos
Stam. Keyframe control of smoke simulations. In SIGGRAPH
03: ACM SIGGRAPH 2003 Papers, pages 716-723, New York,
NY, USA, 2003. ACM.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer.
Elastically deformable models. In Computer Graphics (Proceed-
ings of SIGGRAPH 87), pages 205-214, July 1987.

Lloyd N. Trefethen. Finite difference and spectral methods
for ordinary and partial differential equations. Unpublished

96

[TRS06]

[WBO1]

[WBOLO7]

[WGO0]

[WHO1]

[Whi99]

[WLMEKO4]

[YHKO7]

[ZB05|

manuscript avaliable at http://web.comlab.ox.ac.uk/oucl/work/
nick.trefethen /pdetext.html, 1996.

Nils Thiirey, Ulrich Riide, and Marc Stamminger. Animation
of open water phenomena with coupled shallow water and free
surface simulations. In 2006 ACM SIGGRAPH / Eurographics

Symposium on Computer Animation, pages 157166, 2006.

Andrew Witkin and David Baraff. Physically
based modeling. In SIGGRAPH01: ACM SIG-
GRAPH 2001 Courses, 2001. Available at

http://www.pixar.com/companyinfo /research/pbm2001/.

Jeremy D. Wendt, William Baxter, Ipek Oguz, and Ming C. Lin.
Finite volume flow simulations on arbitrary domains. Graph.
Models, 69(1):19-32, 2007.

Dieter A. Wolf-Gladrow. Lattice-gas cellular automata and lat-
tice Boltzmann models, volume 1725 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 2000. An introduction.

Jakub Wejchert and David Haumann. Animation aerodynamics.
In SIGGRAPH ’91: Proceedings of the 18th annual conference
on Computer graphics and interactive techniques, pages 19-22,

New York, NY, USA, 1991. ACM.

G. B. Whitham. Linear and nonlinear waves. Pure and Applied
Mathematics (New York). John Wiley & Sons Inc., New York,
1999.

Xiaoming Wei, Wei Li, Klaus Mueller, and Arie E. Kaufman.
The lattice-boltzmann method for simulating gaseous phenom-
ena. IEEFE Transactions on Visualization and Computer Graph-
ics, 10(2):164-176, March/April 2004.

Cem Yuksel, Donald H. House, and John Keyser. Wave par-
ticles. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2007), 26(3):to appear, 2007.

Yongning Zhu and Robert Bridson. Animating sand as a fluid.
ACM Trans. Graph., 24(3):965-972, 2005.

97

http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html
http://www.pixar.com/companyinfo/research/pbm2001/

	Introduction
	Motivation and Goals
	Plausibility versus Accuracy
	Overview of the Thesis

	Commented Bibliography
	Mathematics and Physics of Fluids
	Computational Fluid Dynamics
	Fluid Simulation in Computer Graphics
	Comments and Further Reading

	The Equations of Motion
	Basic Principles and Assumptions
	Lagrangian and Eulerian Descriptions
	Conservation of Mass and Incompressibility
	Balance of Momentum
	Ideal Fluids and Euler's Equations
	Newtonian Viscous Fluids and the Navier-Stokes Equations
	Pressure and Incompressibility
	Rotation and Vorticity
	Comments and Further Reading

	Numerical Simulation of Fluids for Animation
	Stable Fluids
	Flow regime and governing equations
	Field representation and spatial discretization
	Operator splitting/fractional-stepping
	Semi-Lagrangian advection
	Explicit forcing and vorticity confinement
	Implicit diffusion
	Pressure projection
	Experiments

	Smoothed Particle Hydrodynamics
	Flow regime and governing equations
	Field representation and fluid discretization
	The discretized governing equations
	Experiments

	Comments and Further Reading

	Final Remarks
	A Simple Stable Fluids Solver
	A Simple Smoothed Particle Hydrodynamics Solver

