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Abstract

In this text we investigate the Biham-Middleton-Levine Traffic model. In the
first chapter we introduce the model for Z2 lattice and show that the system
will be globally blocked for p close to 1. In this chapter we use [1, 3, 4, 6, 7, 9].
In the second chapter we survey the Biham-Middleton-Levine model for a
single junction of size N and we introduce the time-normalized model. For
this chapter we use [5, 7]. Finally, in the third chapter we focus our study for
the Biham-Middleton-Levine model on a finite lattice of size N × N . Also,
in this chapter we respond some open questions of [8], and give a MATLAB
code for finding the configuration of the system at time t. For this chapter
we use [2, 7, 8].



Chapter 1

The Jammed Phase of the
Biham-Middleton-Levine
Traffic Model

1.1 Introduction

In this chapter we will define The Biham-Middleton-Levine traffic model
and see some properties and theorems of this model. The Biham-Middleton-
Levine traffic model is a self-organizing cellular automaton traffic flow model.
It is consists of a number of cars represented by points on a lattice with a
random starting position, which each car may be one of two type: those that
only move upwards (shown as blue in this work), and those that only move
towards the right (shown as red in this work). The two types of cars take
turns to move. During each turn, all the cars for the corresponding type
advance by one step if they are not blocked by another car. Our goal in this
chapter is to prove that there is p1 < 1 such that for all p ≥ p1 the BML
traffic model on Z

2 will be block almost surely.
First we give some definitions and then we define the system more rigor-

ously.

Definition 1. (Cellular Automaton) A cellular automaton consists
of a regular grid of cells, each in one of a finite number of states, such as on
and off.
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The grid can be in any finite number of dimensions. For each cell, a set
of cells called its neighborhood is defined relative to the specified cell. An
initial state (time t = 0) is selected by assigning a state for each cell. A
new generation is created advancing t by 1, according to some fixed rule that
determines the new state of each cell in terms of the current state of the
cell and the states of the cells in its neighborhood. Typically, the rule for
updating the state of cells is the same for each cell and does not change over
time, and is applied to the whole grid simultaneously.

Definition 2. (Self-organization)Ability of a system to spontaneously
arrange its components or elements in a purposeful (non-random) manner,
under appropriate conditions but without the help of an external agency.

For constructing The Biham-Middleton-Levine traffic model we present
three variants of a simple cellular automaton model that describes traffic flow
in two dimensions. The first two variants are three-state cellular automaton
models on a square lattice. Each site contains either an arrow (blue particle)
pointing upwards, an arrow (red particles) pointing to the right, or is empty.
In the first variant the dynamics is controlled by a traffic light, such that the
right arrows move only in even time steps and the up arrows move in odd
time steps. On even time steps, each right arrow moves one step to the right
unless the site on its right-hand side is occupied by another arrow (which can
be either an up or a right arrow). If it is blocked by another arrow it does
not move, even if during the same time step the blocking arrow moves out of
that site. Similar rules apply to the up arrows, which move upwards. Note
that this is a fully deterministic model; randomness enters only through the
initial conditions.

Note. In this text, ”right arrow”, ”red car”, and ”red particle” refer to
the same concept. Also, ”up arrow”, ”blue car”, and ”blue particle” are the
same concept.

The model is defined on a square lattice of N × N sites with periodic
boundary conditions. Due to the periodic boundary conditions the total
number of arrows of each type is conserved. Moreover, the total number of
up arrows in each column and the total number of right arrows in each row
are conserved, giving rise to 2N conservation rules.

The density of right (up) arrows is given by p→ = n→
N2 (p↑ =

n↑
N2 ), where
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n→ (n↑) is the number of right (up) arrows in the system. The (average)
velocity v of an arrow in a time interval τ is defined to be the number of
successful moves it makes in τ divided by the number of attempted moves in
τ . It has maximal value v = 1, indicating that the arrow was never blocked,
while v = 0 means that the arrow was stopped for the entire duration τ , and
never moved at all. The average velocity v̄ for the system is then obtained
by averaging v over all the arrows in the system.

In this part suppose initially a car is placed with probability p at each
site of the two dimensional integer lattice (we consider the BML model on Z

2

instead of a square lattice of N×N sites with periodic boundary conditions).
Each car is equally likely to be red or blue, and different sites receive inde-
pendent assignments. We prove that when p is sufficiently close to 1 traffic
is jammed, in the sense that no car moves infinitely many times.

Let Z
2 = {z = (z1, z2) : z1, z2 ∈ Z} be two dimensional integer lattice.

At each time step t = 0, 1, ..., each site of Z2 contains either a red car (→), a
blue car (↑) or an empty space (0). Let p ∈ [0, 1]. The initial configuration
is given by a random element σ of {0,→, ↑}Z2

under a probability measure
Pp in which

Pp(σ(z) =→) = Pp(σ(z) =↑) = p

2
and Pp(σ(z) = 0) = 1− p

for each site z ∈ Z
2, and the initial states of different sites are independent.

The configuration evolves in discrete time according to the following deter-
ministic dynamics. On each odd time step, every ↑ which currently has a
0 immediately to its top (i.e. in direction (0, 1)) moves into this space. On
the even time step, each → which currently has a 0 immediately to its right
(i.e. in direction (1, 0)) moves into this space. The configuration remains
otherwise unchanged.

Our goal here is to prove the following theorem.

Theorem 3. There exists p1 < 1 such that for all p ≥ p1, almost surely
no car moves infinitely often and the state of each site is eventually constant.
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1.2 Proof of Main Result (Theorem 3)

Definition 4. A finite or infinite sequence of sites z0, z1, z2, ...[, zn] is called
a blocking path if, for each m ≥ 0, one of the following holds:
(i) σ(zm) =→ and zm+1 = zm + (1, 0);
(ii) σ(zm) =↑ and zm+1 = zm + (0, 1);
(iii) σ(zm) = σ(zm+(1, 0)) =→, σ(zm+(1,−1)) =↑, and zm+1 = zm+(1, 1);
or (iv) σ(zm) = σ(zm + (0, 1)) =↑, σ(zm + (−1, 1)) =→, and zm+1 = zm +
(1, 1).

Figure 1.1: There are blocking paths from (0, 0) (bottom left) to (2, 2) and
from (0, 0) to (1, 2). The former uses just steps (i) and(ii) but the latter uses
a step of type (iii) between (0, 1) and (1, 2).

See Figure 1.1 for an illustration. Note that if z0, ..., zn and zn, zn+1, ...
are blocking paths then so is z0, ..., zn, zn+1, .... Cases (i) and (ii) correspond
to the naive chains of cars. Cases (iii) and (iv) will provide the key to our
argument by allowing for additional types of blocking path.

Lemma 5. No car on an infinite blocking path ever moves.

Proof. We claim that the car at zm can only move strictly after that at
zm+1 has moved. This implies the result, by induction on the time step. The
claim is immediate in cases (i) and (ii) above. In case (iii), we note that the
car at zm can only move after that zm + (1, 0). If the latter car ever moves
then it does so at an even step, and it is replaced immediately at the next step
by the car initially at zm+(1,−1). But this car now cannot move again until
after that at zm+1. An analogous argument applies in case (iv). For all sites
we have one of these cases, hence, no car ever moves. �

Now we present a renormalized lattice with the structure of Z2. Suppose
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that M and k are positive integers such that M > 2k > 0, later we will fix
them. Each site in the renormalized lattice covers 2k+ 1 sites on a diagonal
from higher left hand to the lower right hand. We introduce Dk = {(s,−s) :
|s| ≤ k}. For each site u = (u1, u2) ∈ Z

2 introduce the renormalized site

Vu = u1(10M, 9M) + u2(9M, 10M) +Dk.

By having renormalized sites we have to give a definition for renormalized
edge. We call (u,v) a renormalized edge if v− u is equal (1, 0) or (0, 1).

For example if k = 3 and M = 7 for u = (0, 0) we have Vu = D3 =
{(−3, 3), (−2, 2), ..., (0, 0), ...(2,−2), (3,−3)}; that is, the sites on the line
that connects (−3, 3) to (3,−3) are considered as a one renormalized site.
Also, by definition of renormalized edge for v = (1, 0) and v′ = (0, 1), (u,v)
and (u,v′) are renormalized edge. By knowing renormalized sites and edges,
we call the edge (u,v) a ”good edge” if for all x ∈ Vu there exists a blocking
path to some y ∈ Vv. In fact, renormalization is another way for looking
to the configuration in lattice without changing the configuration and good
edges are defined in terms of the initial configuration σ. The issue of renor-
malization is illustrated in Figure 1.2.

Figure 1.2: Part of renormalized lattice. Renormalized sites are indicated by
bold lines, renormalized edges by dashed lines and blocking paths by curved
lines. Here ((0, 0), (0, 1)) and ((0, 1), (1, 1)) are good edges.

Definition 6. (graph-theoretic distance) The graph-theoretic dis-
tance δ(u,v) from u = (u1, u2) to v = (v1, v2) is defined by δ(u,v) =

6



|u1 − v1|+ |u2 − v2|.

Definition 7.We say that the process of good edges is k-dependent for
k ∈ Z, if for any subsets A and B of edges with graph-theoretic distance at
least k from each other in the renormalized lattice, the states of the edges in
A are independent of the states of the edges in B.

Lemma 8. Let M > 2k > 0. The process of good edges is 30-dependent.

Proof. By our definitions of blocking paths and good edges, the event
that the edges (u,v) is good depends only on the initial states σ(x) of sites
x in some box containing Vu and Vv. Now for the edge (u,v), v−u = (1, 0)
or (0, 1), and a rectangle box of dimensions (9M + 2k) and (10M + 2k) can
contain Vu and Vv. See Figure 1.3. When two good edges at graph the-
oretic distance their distance is at least 30 in the renormalized lattice, in
the Z

2 lattice their graph theoretic distance is 570M = 30 × 19M . since
M > 2k, one may control the dimensions of the isolating boxes such that
the boxes separate the two good edges at graph-theoretic distance at least
30 and do not intersect each other. �

Figure 1.3: In this picture v − u = (1, 0).

Note that in the previous lemma the number 30 is not a specific number
and may be a number less than 30 satisfies too, but we choose 30 as a big
enough number for our purpose.

For stating the proof of theorem 1 we are going to prove that an arbitrary
edge is good with probability close to 1. First we show this for the case p = 1.
Figure 1.4 shows all blocking paths with the initial site at the origin for a
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random initial configuration with p = 1.

Figure 1.4: Blocking paths for a random initial configuration with p = 1.
Blocking paths from the origin are highlighted.

In our proof a basic stage is the following lemma which says that these
kind of paths are likely to come close to any site in a certain cone.

Lemma 9. Suppose that p = 1 (at any site in the lattice Z
2 there is a

car). Assume that E(y, k) is the event that there exists a blocking path from
(0, 0) to y + (s,−s) for some s ∈ [−k, k]. There exists c > 0 such that for
any site y = (y1, y2) ∈ Z

2 which y1, y2 > 0 and y1
y2

∈ [8
9
, 9
8
] we have

P1[E(y, k)] > 1− e−ck.

It can be interesting to the reader when p = 1 why the probability of
having a blocking path from (0, 0) to the mentioned y in the lemma is not 1.
It happens because of our definition of a blocking path. See Figure 1.5 for
being more clear.

First, we present and prove two propositions and then we present the
proof of the lemma 9.

Proposition 10. Consider the case p = 1. For each β < 1, there is M
and k with M > 2k such that for each renormalized edge (u,v),

P1(edge (u,v) is good) ≥ β.
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Figure 1.5: There is not any blocking path from (0, 0) (bottom left) to (5, 5).

Proof. Since 2k+1
eck

→ 0 < 1 − β as k → ∞, we can take k large enough
that (2k + 1)e−ck < 1 − β. Also, since 10M

9M
→ 10

9
< 9

8
and 9M

10M
→ 9

10
> 8

9

as M → ∞, we can take M > 2k large enough that 10M
9M

≤ 9
8
and 9M

10M
≥ 8

9
.

v − u = (1, 0) or (0, 1), by translation invariance we can consider u = (0, 0)
and v = (1, 0) or (0, 1) respectively, then for any site y ∈ Vv,

y1
y2

∈ [8
9
, 9
8
] and

by lemma 9 we have

P1(edge (u,v) is not good) ≤
∑
x∈Vu

P1( � ∃ a blocking path from x to Vv)

≤
∑
x∈Vu

e−ck = (2k + 1)e−ck < 1− β.

Therefore P1(edge (u,v) is good) ≥ β. �

Proposition 11. Let α < 1. There exist M and k with M > 2k such
that for all p sufficiently close to 1, for every edge (u,v)

Pp(edge (u,v) is good) ≥ α. (1)

Proof. Take β ∈ (α, 1), and fix M , k according to Proposition 10. Since
the event that an edge is good depends only on the initial states in a finite
box, it is a polynomial in p and therefore continuous. By Proposition 10
P1(edge (u,v) is good) ≥ β > α. By continuity of P we have for all p suffi-
ciently close to 1, Pp(edge (u,v) is good) ≥ α. �

Definition 12. Let S be a countable set, and let Y = {Yx; x ∈ S},
Z = {Zx; x ∈ S} be families of random variables taking values in the set
{0, 1} and indexed by S. We say that Y dominates (stochastically) Z, writ-
ten Y ≥st Z if E(f(Y )) ≥ E(f(Z)) for all bounded, increasing, measurable

9



function f : {0, 1}S → R (Here, E denotes the expectation operator).

Proof of Theorem 3. By [3], section 10 page 1026, the critical proba-
bility for oriented percolation on Z

2 is strictly less than 1 (pc ≤ 8
9
). Now by

the results of [9] (Theorem 0.0), a percolation on Z
d, d ≥ 1, (or any transi-

tive graph) which is k-dependent is stochastically dominated from below by
Bernoulli percolation with parameter less than 1, with some control on the pa-
rameter. Therefore, if α is sufficiently close to 1 then any 30-dependent bond
percolation process on Z

2 satisfying (1) stochastically dominates a Bernoulli
percolation process which is super-critical for oriented percolation on Z

2.
Hence by Proposition 11 and Lemma 8, we may choose M , k such that

if p is sufficiently close to 1, the event that there is an infinite path of good
renormalized edges starting from V(0,0), oriented in the positive directions of
both coordinates, occurs with positive probability. On this event, there is an
infinite blocking path starting at (0, 0), so by Lemma 5 we have

Pp(there is a car which never moves at (0, 0)) > 0.

Now consider any site z. By translation invariance and ergodicity, it fol-
lows from the above that almost surely there are cars which never move
at z + (r, 0) and z + (0, s) for some (random) r, s ≥ 0. This implies that
any car initially at z moves at most max{r, s} times, which the state at z
changes at most 2(r+s) times. �

Proof of Lemma 9. We start by giving an outline of the proof. Given a
”target” y, we will algorithmically construct a blocking path z0, z1, ... starting
at z0 = (0, 0). If we use only steps of types (i) and (ii) in the definition of
a blocking path, we obtain a unique random path with asymptotic direction
(1, 1). If we also allow steps of types (iii) and (iv) then at a positive proportion
of steps we have a choice of which direction to move. By always choosing the
direction which moves closer to the target we are exponentially unlikely to
miss the target by much, provided that the target is within a cone determined
by the typical slopes that would result from choosing to go always up or
always down.

We now present the details. Let z0 = (0, 0). Suppose that a blocking path
z0, ..., zm has been constructed, and suppose that zm lies on the diagonal line
z1 + z2 = 2n. We will extend the blocking path by one or two sites to some
site on the line z1 + z2 = 2n+ 2.
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If σ(zm) =→, consider the following cases:

1) If σ(zm + (1, 0)) =↑ we set zm+1 = zm + (1, 0) and zm+2 = zm + (1, 1).

2) If σ(zm + (1, 0)) = σ(zm + (1,−1)) =→ we set zm+1 = zm + (1, 0) and
zm+2 = zm + (2, 0).

3) If σ(zm + (1, 0)) =→ and σ(zm + (1,−1)) =↑ we have a choice: we can
set either

a) zm+1 = zm + (1, 0) and zm+2 = zm + (2, 0), or

b) zm+1 = zm + (1, 1) (using a blocking path step pf type (iii)).

We choose (a) if zm1 − zm2 < y1 − y2, otherwise (b).

Thus we take the naive path (using steps of types (i) and (ii)) unless a step
of type (iii) is possible and it moves us closer to y than the alternative.

On the other hand if σ(zm) =↑, then:
1’) If σ(zm+(0, 1)) =→ we set zm+1 = zm+(0, 1) and zm+2 = zm+(1, 1).

2’) If σ(zm + (0, 1)) = σ(zm + (−1, 1)) =↑ we set zm+1 = zm + (0, 1) and
zm+2 = zm + (0, 2).

3’) If σ(zm + (0, 1)) =↑ and σ(zm + (−1, 1)) =→ we have a choice: we can
set either

a) zm+1 = zm + (0, 1) and zm+2 = zm + (0, 2), or

b) zm+1 = zm + (1, 1) (using a blocking path step of type (iv)).

We choose (a) if zm1 − zm2 > y1 − y2, otherwise (b).

It is trivial the above construction yields a blocking path z0, z1, .... Suppose
for the moment that y1 + y2 is even. For each n, let zr(n) be the site at
which the blocking path intersects the line z1 + z2 = 2n, and let Wn =
|(zr(n)

1 −z
r(n)
2 )−(y1−y2)|

2
. Now we claim that (Wn)n≥0 is a Markov chain with

transition probabilities

Pj,j−1 =
1

4
, Pj,j =

5

8
, Pj,j+1 =

1

8
for j ≥ 1;
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P0,0 =
3

4
, P0,1 =

1

4
.

For finding these data, first we show that P0,0 = 3
4
. We have Wn = 0 thus

z
r(n)
1 − z

r(n)
2 = y1 − y2 and we want Wn+1 = 0. It is the case if σ(zr(n)) =→

and σ(zr(n)+(1, 0)) =↑, or σ(zr(n)) =↑ and σ(zr(n)+(0, 1)) =→, or σ(zr(n)) =
σ(zr(n)+(1, 0)) =→ and σ(zr(n)(1,−1)) =↑, or σ(zr(n)) = σ(zr(n)+(0, 1)) =↑
and σ(zr(n) + (−1, 1)) =→.
Hence P0,0 = 1

2
× 1

2
+ 1

2
× 1

2
+ 1

2
× 1

2
× 1

2
+ 1

2
× 1

2
× 1

2
= 1

4
+ 1

4
+ 1

8
+ 1

8
= 3

4
.

Also, P0,1 = 1− P0,0 =
1
4
.

Now for proving Pj,j = 5
8
, we have Wn = j and we want Wn+1 = j.

We have z
r(n)
1 − z

r(n)
2 > y1 − y2 or z

r(n)
1 − z

r(n)
2 < y1 − y2. Without loose

of generality suppose z
r(n)
1 − z

r(n)
2 > y1 − y2, then Wn+1 = j if one of the

following cases happens: σ(zr(n)) =→ and σ(zr(n)+(1, 0)) =↑, or σ(zr(n)) =↑
and σ(zr(n) + (0, 1)) =→, or σ(zr(n)) = σ(zr(n) + (0, 1)) =↑ and σ(zr(n) +
(−1, 1)) =→.
Hence Pj,j =

1
2
× 1

2
+ 1

2
× 1

2
+ 1

2
× 1

2
× 1

2
= 1

4
+ 1

4
+ 1

8
= 5

8
.

For proving Pj,j−1 =
1
4
, we have Wn = j and we want Wn+1 = j − 1. We

have y1 − y2 < 0 or = 0 or > 0. If y1 − y2 = 0 and z1 − z2 > 0 then for
having Wn+1 = j − 1, z

r(n+1)
2 must be z

r(n)
2 + 2. This will happen in cases 2’

and 3’(a). Therefore Pj,j−1 =
1
2
× 1

2
× 1

2
+ 1

2
× 1

2
× 1

2
= 1

4
. If y1 − y2 = 0 and

z1− z2 < 0 then for having Wn+1 = j−1, z
r(n+1)
1 must be z

r(n)
1 +2. This will

happen in cases 2 and 3(a). Therefore Pj,j−1 =
1
2
× 1

2
× 1

2
+ 1

2
× 1

2
× 1

2
= 1

4
.

If y1 − y2 < 0 and z
r(n)
1 − z

r(n)
2 > 0 then for having Wn+1 = j − 1, z

r(n+1)
2

must be z
r(n)
2 + 2. This will happen in cases 2’ and 3’(a). Therefore Pj,j−1 =

1
2
× 1

2
× 1

2
+ 1

2
× 1

2
× 1

2
= 1

4
.

If y1− y2 < 0 and z
r(n)
1 − z

r(n)
2 < 0 and z

r(n)
1 − z

r(n)
2 > y1− y2 then for having

Wn+1 = j − 1, z
r(n+1)
2 must be z

r(n)
2 + 2. This will happen in cases 2’ and

3’(a). Therefore Pj,j−1 =
1
2
× 1

2
× 1

2
+ 1

2
× 1

2
× 1

2
= 1

4
.

If y1− y2 < 0 and z
r(n)
1 − z

r(n)
2 < 0 and z

r(n)
1 − z

r(n)
2 < y1− y2 then for having

Wn+1 = j−1, z
r(n+1)
1 must be z

r(n)
1 +2. This will happen in cases 2 and 3(a).

Therefore Pj,j−1 =
1
2
× 1

2
× 1

2
+ 1

2
× 1

2
× 1

2
= 1

4
.

If y1 − y2 > 0 we have a similar argument. Hence by the above discussion in
any case we have Pj,j−1 =

1
4
. Now Pj,j+1 = 1−Pj,j − Pj,j−1 = 1− 5

8
− 1

4
= 1

8
.

Since z
r(n)
1 + z

r(n)
2 and y1 + y2 are even, thus (Wn)n≥0 is a random walk on

the natural numbers with drift −1
8
(1
8
− 1

4
= −1

8
). To conclude we use the

following claim.
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Claim 13. For the above Markov chain (Wn), there exists c1 > 0 such
that for any N > 9r and any k,

P(WN > k|W0 = r) ≤ e−c1k.

Assuming the claim we argue Lemma 9 as follows. If y1+y2 is even, then
the lemma follows from the claim immediately. In fact,

P1(WN > k|W0 = r) ≤ e−c1k ⇒ P1(WN ≤ k|W0 = r) > 1− e−c1k

⇒ P1(E(y, k)) > 1− e−c1k.

If y1+ y2 is odd, then we apply the lemma first to y− (1, 0) or y− (0, 1) and
k−1, and note that any finite blocking path may always be extended by one
site in direction (1,0) or (0,1). �

Before proving Claim 13 we recall some definitions and facts which will
use in the proof. Suppose (X0, X1, ...) is a Markov chain on a state space Ω.
A stopping time τ for (Xt) is a {0, 1, ...} ∪ {∞}-valued random variable
such that, for each t, the event {τ = t} is determined by X0, ..., Xt. In other
words, a random time τ is a stopping time if and only if the indicator func-
tion 1{τ=t} is a function of the vector (X0, X1, ..., Xt).

If τ is a stopping time, then an immediate consequence of the definition
and the Markov property is

Px0{(Xτ+1, Xτ+2, ..., Xl) ∈ A|τ = k and (X1, ..., Xk) = (x1, ..., xk)}

= Pxk
{(X1, ..., Xl) ∈ A}.

For any A ∈ Ωl. This is referred to as the strong Markov property. In-
formally, we say that the chain ”starts afresh” at a stopping time.

Let Sn = X1 + · · ·+Xn. For a > μ = EXi if the moment-generating
function ϕ(θ) = E exp(θXi) < ∞ for some θ > 0, P(Sn ≥ an) → 0 ex-
ponentially rapidly by large deviation argument in [3]. In fact, by large
deviation argument in [3], if ϕ(θ) < ∞ for some θ > 0, P(Sn ≥ na) ≤

13



exp(−n{aθ − κ(θ)}) where κ(θ) = logϕ(θ). Also, by Lemma 2.6.2 of [3] if
a > μ and θ > 0 is small, then aθ − κ(θ) > 0.

For a Markov chain (X0, X1, ...) on the state space Ω = {0, 1, 2, ...} let

• pj is the probability of moving from j to j + 1 when j ≥ 0,

• qj is the probability of moving from j to j − 1 when j ≥ 1,

• rj is the probability of remaining at j when j ≥ 0,

• q0 = 0.

By Section 2.5 of [1] we have a function ω on Ω = {0, 1, 2, ...} given by ω0 = 1
and

ωj =

j∏
i=1

pi−1

qi
for j ≥ 1.

Normalizing so that the sum is unity yields πj =
ωj∑∞
i=0 ωi

for j ≥ 0. Then

πj → π as j → ∞ and by Proposition 2.8 of [1] π is the stationary distribu-
tion.

We define a coupling of Markov chains with transition matrix P to be
a process (Xt, Yt)

∞
t=0 with the property that both (Xt) and (Yt) are Markov

chains with transition matrix P , although the two chains may possibly have
different starting distributions. Any coupling of Markov chains with transi-
tion matrix P can be modified so that the two chains stay together at all
times after their first simultaneous visit to a single state– more precisely, so
that

if Xs = Ys, then Xt = Yt for t ≥ s. (∗)
To construct a coupling satisfying (∗), simply run the chains according to
the original coupling until they meet; then run them together.

Proof of Claim 13. Since the chain has increments at most 1, we have
WN ≤ r+N < N

9
+N < 2N . Hence the probability in question is zero when

k > 2N , so we may assume k ≤ 2N .
Let T be the first time (Wn) hits 0. Before T , the increments are i.i.d

with mean μ = EXi = −1
8
. We have the moment-generating function ϕ(θ) =
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E exp(θXi) ≤ 1
4
eθ.1 + 1

4
eθ.(−1) + 3

4
eθ.0, therefore ϕ(θ) < ∞ for some θ > 0.

Now

P(T > N) ≤ P(WN > 0) ≤ P(
N∑
i=1

Xi > −r) ≤ P(
N∑
i=1

Xi > −1

9
N)

≤(large deviation) exp(−N{−1

9
θ − κ(θ)}).

Since −1
9
> −1

8
we have −1

9
θ−κ(θ) > 0 by choosing θ > 0 small. Therefore,

put c2 = −1
9
θ − κ(θ) we have P(T > N) ≤ e−c2N ≤ e−c2k/2. Therefore,

applying the strong Markov property at T , the claim will follow if we can
establish for fixed c3 > 0 and all n ≥ 0 that P(Wn > k|W0 = 0) ≤ e−c3k. To

check this, note that ωj = (1/8
1/4

)j = (1
2
)j and πj =

ωj∑∞
i=0 ωi

=
( 1
2
)j

2
= (1

2
)j−1,

then π = limj→∞ πj is the stationary distribution, and observe that we may

couple (Wn) with a stationary copy (W̃n) in such a way that Wn ≤ W̃n for
all n, then note that the stationary distribution has exponentially decaying
tail. �

In Figure 1.6 we can see for p = 0.1 and p = 0.3 the system organized
itself and has free-flowing, for p = 0.32 the system organized itself and has
free-flowing while it has local jammed. For p = 0.34 and p = 0.8 the system
is globally jammed in both cases but the former is organized while the latter
one is not. In fact, for p = 0.34 by having a part of the lattice we can guess
the structure of the system for rest of the lattice but for p = 0.8 we do not
have this possibility.
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Figure 1.6: Example of the model after 20,000 steps on a 200-by-200 torus.
East-facing and North-facing are shown in red and blue respectively.
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Chapter 2

The Biham-Middleton-Levine
Traffic Model for a Single
Junction

2.1 The Junction Model

In this chapter we introduce a slight variant of the original BML model by
permitting a car (say, red) to move not only if there is vacant place right
next to it but also if there is a red car next to it that moves. Thus, for
sequence of red cars placed in a row with a single vacant place to its right -
all cars will move together (as oppose to only rightmost car in the sequence
for the original BML model). Not only does this new variant exhibits the
same phenomena of self-organization and phase transition, they even seem to
appear more quickly (i.e. it takes less time for the system to reach a stable
state). Note that the result of the first chapter appear to apply equally well
to the variant model.

In the following, we will analyze a simplified version of the BML model:
BML on a single junction. Meaning, we place red cars in some density p on
a single row of the torus, and blue cars are placed in density p on a single
column. For p < 0.5 we will show the system reaches velocity 1, while for
p > 0.5 the velocity cannot be 1, but the system will reach the same velocity,
regardless of the initial configuration. Moreover, at p = 0.5 the system’s be-
havior undergoes a phase transition: we will prove that while for p < 0.5 the
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stable configuration will have linearly many sequences of cars, for p > 0.5 we
will have only O(1) different sequences after some time. We will also examine
what happens at a small window around p = 0.5.

Pay attention in the variant BML model car sequences are never split.
Therefore, the simplified version of the variant BML model can be viewed as
some kind of 1-dimensional coalescent process.

We start with the exact definition of the simplified model. On a cross
shape, containing a single horizontal segment and a single vertical segment,
both of identical length N , red cars are placed in exactly pN randomly (and
uniformly) chosen locations along the row, and blue cars are similarly placed
in pN locations along the column. For simplicity we may assume that the
junction is left unoccupied. Also, the segments are cyclic (periodic boundary
condition).

At each turn, all the red cars move one step to the right, except that
the red car that is just left of the junction will not move if a blue car is in
the junction (i.e. blocking it), in which case also all red cars immediately
following it will stay still. Afterwards, the blue cars move similarly, with red
and blue roles switched.

2.2 Time-normalized model

Though less natural, it will be sometimes useful to consider the equivalent
description, in which two rows of cars - red and blue - are placed one beneath
the other, with ”special phase” -the junction- where at most one car can be
present at any time. In every step first the red line shifts one to right (except
cars immediately to the left of the junction, if it contains a blue car) and then
the blue line does the same. Furthermore, instead of having the cars move
to the right, we can have the junction moves to the left, and when a blue car
is in the junction, the (possibly empty) sequence of red cars immediately to
the left of the junction moves to the left, and vice verse. Figure 2.1 clarifies
the correspondence between these models.

From the discussion above we get the following equivalent system, which
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Figure 2.1: On the left hand side is a junction configuration and analogous
configuration under it. The junction is showed by star. On the right hand
side there is the same configuration after 3 turns in both views.

we will call the time-normalized junction:

1. Fix S = N − 1 ∈ ZN and fix some initial configuration {Ri}N−1
i=0 ,

{Bi}N−1
i=0 ∈ {0, 1}N representing the red and blue cars respectively, i.e.

Ri = 1 if and only if there is a red car at the i-th place. We require
that

∑
Ri =

∑
Bi = p.N , and at place S(= N − 1) there is at most

one car in both rows which means that the junction itself can contain
only one car at the beginning.

2. In each turn:

• If place S contains a blue car, and place S − 1 contains a red
car (if BS = RS−1 = 1), push this car one step to the left. By
pushing the car we mean also moving all red cars that immediately
followed it one step to the left, i.e. set RS−1 = 0, RS−i = 1 for
i = minj≥1[RS−j = 0].

• If place S does not contain a blue car and place S − 1 contains
both a red and a blue car (if BS = 0 and RS−1 = BS−1 = 1),
push the blue car at S − 1 one step to the left (set BS−1 = 0 and
BS−i = 1 for i = minj≥1[BS−j = 0]).

• set S = S − 1.

Note that the time-normalized model guarantee that always there is at
most one car at the junction. Also, when the system flows freely the time-
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normalized system configuration does not change except the position of the
junction, and cars in the time-normalized system move only when some cars
are waiting for the junction to clear in the non-time-normalized system.

2.3 Analysis of an (N, p) junction

By investigating the junction we will show that for any p, regardless of the
initial configuration, the system will approach to an optimal velocity that
depends only on p. First we clarify what is an optimal velocity.

Theorem 1. For a junction with density p, the maximum of velocity for
any initial configuration is min(1, 1

2p
).

Proof. It is straightforward that the velocity cannot exceed 1. Consider
the system when it is in its stable state, and denote the velocity by s. There-
fore, at time t, a car has gone forward ts steps (on average); it means that it
has passed the junction ts

N
times because we have N sites on each line. But

just one car can occupy the junction at any time, all number of cars passing
the junction until time t is bounded by t. Now on both lines we have 2pN
cars, therefore, we have 2pN× ts

N
≤ t. This implies that s ≤ 1

2p
. �

We will demonstrate the system with any initial configuration approaches
to these velocities.

2.4 The case p < 0.5

In this section we want to prove that for p < 0.5 the junction eventually
reachs velocity very close to 1.

Lemma 2. A junction is free-flowing (no car is ever waiting to enter the
junction) if and only if the time-normalized junction satisfies the following:
1) For all 0 ≤ i ≤ N − 1 there exists only one car in site i in both rows.
2) For all 0 ≤ i ≤ N − 1 if site i contains a blue car, site (i− 1) mod N does
not contain a red car.
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Proof. ⇒) Suppose that we have a free-flowing system. We have (1)
otherwise suppose that without loose of generality at site N − 2, exactly
before the junction, there are a red and a blue car. Now
i) if the next movement is for red cars then when the blue car wants to move
to the junction, it cannot because the junction is occupied by the red car.
ii) if the next movement is for blue cars, we have the same argument.
This is contradiction with the free-flowing system ( This argument is followed
by time-normalized model, step 2, condition 2).
For proving (2), without loose of generality suppose that at site N−1 we have
a blue car and at site N−2 we have a red car then by time-normalized model
step 2 condition 1 we do not have a free-flowing system and is a contradiction.

⇐) Suppose that we have condition (1) and (2), therefore, in time-
normalized model, step 2 conditions (1) and (2) never happen and in all
time we have the order: ”set S = S − 1;” which means that the system is
free-flowing. �

Now we will show that for p < 0.5 the system of time-normalized junction
necessarily reaches to a free-flowing state or at worst situation to almost free-
flowing state, it means that the velocity of the system will be arbitrary close
to 1 for large enough N .

For doing this we consider a configuration and look at the sets of violations
of the previous lemma. In fact, we consider the places that have both red
and blue cars and the places that has a blue car and exactly one site left to
it contains a red car.

Let For a configuration R and B we define two disjoint sets for two types
of violations:

VR = {0 ≤ i ≤ N − 1 : Ri−1 = Bi = 1}
VB = {0 ≤ i ≤ N − 1 : Ri−1 = Bi−1 = 1, Bi = 0}

Let V = VR ∪ VB, and consider the indicators X = {X(i)}Ni=0 where

X(i) =

{
1 i ∈ V
0 i �∈ V

.

For a junction with an initial configuration R and B, let Rt and Bt be the
system configuration at time t, and Vt = VRt ∪ VBt be the set of violations
for this configuration, and X t be the corresponding indicator vector, and St

denote the junction’s position at time t.
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The following lemma will show that the size of the set of violations is
strongly related to the system velocity, and has an important property. In
fact, it is non-increasing in time.

Lemma 3.
1) |Vt+1| ≤ |Vt|.
2) For any t, the system velocity is at least (1 + |Vt|

N
)−1 ≥ 1− |Vt|

N
.

Proof. For the first part of the lemma we examine the three possible
cases which can happen at time t:

1. If at time t, St does not contain to a violation then in the time-
normalized model the configurations do not change for t + 1, and
Rt+1 = Rt, Bt+1 = Bt. Hence |Vt+1| = |Vt|.

2. If St ∈ VBt , then the configuration Bt+1 changes in two places:

a) Bt
St−1 is changed from 1 to 0, Bt+1

St−1 = 0. By this change St is no
longer in VBt and X t(St) changes from 1 to 0.

b) Bt
St−i is changed from 0 to 1 for i = minj≥1(B

t
St−j = 0). This

change may affect X t+1(St − i) and X t+1(St − i + 1). But by
changing Bt

St−i from 0 to 1 no violation can be created for place
St − i + 1 because by definition of i in time-normalized model
Bt

St−i+1 = 1 and Bt+1
St−i+1 = 1 so X t+1(St − i+ 1) = 1 if and only

if Rt
St−i = Rt+1

St−i = 1 regardless of Bt+1
St−i.

For other indices because R and B do not change X t+1(i) = X t(i).
Therefore, from time t to t+ 1 we have X t(St) changes from 1 to
0, and at worst situation only X t(St − i) changes from 0 to 1.
Hence |Vt+1| =

∑N−1
i=0 X t+1(i) ≤ ∑N−1

i=0 X t(i) = |Vt|.
3. Similarly, if place St ∈ VRt , then the configuration Rt+1 changes in two

places:

a) Rt
St−1 is changed from 1 to 0, Rt+1

St−1 = 0. By this change St is no
longer in the set of violations and X t(St) changes from 1 to 0.

b) Rt
St−i is changed from 0 to 1 for i = minj≥1(R

t
St−j = 0). It may

affect X t+1(St− i) and X t+1(St− i+1). However, for place St− i
changing Rt

St−i does not affect whether this place is a violation or
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not, because we do not change Rt
St−i−1 and Bt. Hence at worst

case X t(St − i+ 1) changes from 0 to 1.
Now by the same argument we get |Vt+1| ≤ |Vt|.

Finally, by these three possibilities we have |Vt+1| ≤ |Vt|.
For the second part of the lemma we can see in the time-normalized sys-

tem, considering a specific car in the system, its velocity is N
N+k

= (1+ k
N
)−1

where k is the number of times the car pushed to the left during the last N
system turns (in fact, k is the number of attempts for movement which fails
to move). We note that if a car at place j is pushed to the left at some time
t by some violation at place St, this violation can reappear only to the left
of j, therefore, it can push the car again only after St passes j. Thus any
violation can push a car to the left only one time in a car’s cycle (car’s cycle
is N moves). Because by part (1) of the lemma at any time t onwards the
number of violations in the system is at most |Vt|, therefore, each car can
push left only |Vt| times in N turns and its velocity from time t onwards is

at least (1 + |Vt|
N
)−1 and we know N2 > N2 − |Vt|2 = (N + |Vt|)(N − |Vt|).

Therefore, (1 + |Vt|
N
)−1 > 1− |Vt|

N
as asserted. �

By having this lemma we are ready to prove system self organization for
p < 0.5. We are going to show that for p < 0.5, after 2N system turns
|Vt| = O(1), therefore by second part of the previous lemma the system

approaches to velocity 1− O(1)
N

→ 1 as N → ∞.
As the junction goes to the left it pushes some cars, hence affecting the

configuration to its left. The next lemma will prove that when p < 0.5, for
some T < N , the number of cars affected to the left of the junction is only
a constant, independent of N .

Lemma 4. Consider a junction with density p < 0.5. There exists a
constant C = C(p) = p

1−2p
, independent of N such that:

From any configuration R, B with junction at site S there exist some 0 <
T < N such that after T turns:
1) For i ∈ {S − T, ..., S}, XT (i) = 0 (there are no violations there).
2) For i ∈ {S +1, ..., N − 1, 0, ..., S− T −C}, RT

i = R0
i and BT

i = B0
i (R, B

are unchanged there).

Proof. First suppose that T = 1. If T = 1 does not satisfy in the results
of the lemma, we need to have a car sequence red or blue of length more
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than C, which is pushed left by junction as it moves. Following this process,
if for some T < N − C, the sequence currently pushed by the junction has
length less than C, then this is the desired T . Hence, for the results not to
satisfy, the length of the car sequence pushed by the junction must be more
than C for all 0 < T < N . If this happens, then leaving the junction we
see alternating red and blue sequences, all of lengths more than C and one
vacant place after any blue sequence an before any red one.

However, if this happens for all 0 < T < T ′ then the average number of
cars per site in {S−T ′, ..., S} at time T ′ must be at least 2C

2C+1
(at least 2C cars

between vacant places, because between vacant places we have a sequence of
red cars and a sequence of blue cars, and each of them has length more than
C). Therefore, all number of cars in {S − T ′, ..., S} at time T ′ is more than
2C

2C+1
T ′ = (2p)/(1−2p)

(2p+1−2p)/(1−2p)
T ′ = 2pT ′.

But we have only 2pN cars in the system, and this cannot hold for all
T up to N and is contradiction. Therefore, there is some 0 < T < N for
which the results of the lemma is satisfied. �

Now we can demonstrate the main theorem of this section.

Theorem 5. Consider a junction of size N with density p < 0.5. For
any initial configuration the system reaches the velocity 1− C(p)

N
.

Proof. Let R, B be an initial configuration with the junction S = N − 1
and suppose that V is the corresponding set of violations and X its in-
dicators vector. By the previous lemma there exists T0 > 0 such that
XT0(i) = 0 for i ∈ [N − 1 − T0, N − 1]. Now starting at RT0 , BT0 and
S = N − 1 − T0 and using the lemma again, there exists T1 > 0 such
that XT0+T1(i) = 0 for i ∈ [N − 1 − T0 − T1, N − 1 − T0], and also, as
long as N − 1 − T0 − T1 > C(p) = p

1−2p
, XT0+T1(i) = XT0(i) = 0 for

i ∈ [N − 1− T0 − T1, N − 1] as well.
Continuing in this way until T =

∑
Ti ≤ N we have after T turns, XT (i) = 0

for all but at most C(p) places. Therefore, by lemma 3 the system velocity

after this time is at least 1− C(p)
N

. �

We note no one can show that the exact velocity is 1 for the case p < 0.5,
because by Figure 2.2 you see that this is not the case and in this figure the
junction has velocity 1− 1

N
for all N .
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Figure 2.2: On the left hand side there is a junction configuration with
density p = 1

3
( p
1−2p

= 1) which never reaches velocity 1, and its velocity is

1 − 1
N
. On the right hand side there is a similar construction for p = 0.4

( p
1−2p

= 2) and approaching velocity 1− 2
N
.

2.5 Number of segments for p < 0.5

Here we want to state and prove a theorem which gives us information about
the number of segments of cars for p < 0.5. There are configurations such
that the number of different segments of cars in each row is Θ(N). Trivially,
if the cars are arranged in a single red sequence and a single blue sequence
in the initial configuration, we are going to have only one sequence of each
color of cars at any time.

Nevertheless, in the following theorem we go to prove that for a random
initial configuration, the system has linearly many different segments of cars
with high probability.

Theorem 6. Consider a junction of size N with density p < 0.5, and
with a random initial configuration. It has Θ(N) different segments of cars
at all times with high probability.

Proof. In the proof of Lemma 4 we see that, as the system completes a
full round, at each place we have at most a single car, therefore, there must
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be 2pN places with car and (1−2p)N places in which no car is present. Each
two empty places which are not adjacent must correspond to a segment of
cars in the configuration.

By time-normalized model it is clear that the number of places for which
Ri = Bi = Ri−1 = Bi−1 = 0 is non-increasing. In other words, only places
for which Ri = Bi = Ri−1 = Bi−1 = 0 in the initial configuration remain
like this in the future and two empty places do not connect to each other.
In a random initial configuration with density p, the initial number of these
places is expected to be (1− p)4N (each site is empty with probability 1− p
and we want to Ri, Bi, Ri−1, and Bi−1 be empty), and by standard Central
Limit Theorem, we obtain that with high probability this number is at most
((1− p)4 + ε)N , for arbitrary ε > 0. Two empty places cannot decrease the
number of segments of cars because they cannot connect to each other in
the future. Therefore, the number of different segments of cars in the system
configuration at any time is at least ((1 − 2p) − (1 − p)4 − ε)N . But for p
very close to 0.5 this number may be negative, hence does not suffice.

To take out this problem, note that also for any fixed K, we have the
number of consecutive K empty places in a configuration is non-increasing
by the system dynamics, and with high probability is at most ((1 − p)2K +
ε)N for a random initial configuration. This guarantees we have at least
(1−2p)−(1−p)2K−ε

K−1
N different segments of cars in the system. By choosing K(p)

sufficiently large such that (1−p)2K < (1−2p) we obtain a linear lower bound
for the number of segments of cars from a random initial configuration (note
that K is independent of N). �

2.6 The case p > 0.5

In this part we give a definition and state two facts about the system, then
we continue to survey the system by stating and proving some lemmas and
theorems.

Definition (stable configuration). A stable configuration for the system
is a configuration that reappears after running the system for some M turns.

The proof of having optimal velocity and segment structure for p > 0.5 de-
pend strongly on combinatorial properties and a stable configuration. First,
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we note that the number of possible configurations for the system is finite for
fixed N , therefore, the system necessarily will reach to a stable configuration
regardless of the initial configuration.

Now we state two simple facts that ought to hold after a system reached
a stable configuration:

(a) |Vt| cannot change. It means that no violation can disappear. This fact
is clear by Lemma 3.

(b) Two disjoint segments of car cannot merge to one.

For proving (b) suppose that in a stable configuration we have n segments of
car. If after some time two segments of car merge to one, it means that we
have n − 1 segments of car in new time, but again when the system comes
back to the stable configuration we ought to have n segments of car and this
is contradiction because we know that the number of segments in the system
is non-increasing in time.

Note. In a stable configuration R, B, when S = 0, B0 = 0, and there
is a sequence of exactly sR consecutive red cars at places [N − sR, N − 1]
and sB blue cars at places [N − sB, N − 1], then min(sR, sB) is equal sR.
By contradiction, suppose sB < sR, then we have sB violations for overlap-
ping places of the segments sR, sB and one violation for the place S = 0
(BN−1 = RN−1 = 1 and B0 = 0), therefore we have sB + 1 violations in the
stable configuration. Now run the system for sR − sB turns. Note that at
places [N − sR, N − sB] there is not any blue cars otherwise two segments
of blue cars merge to one which is impossible by (b). At time t = sR − sB,
sR and sB segments have the same endpoint and RN−sR−1 = 0. Hence, the
endpoint of the segments is not a violation and at this time we have sB vio-
lations in the stable configuration. But this is contradiction, since by (a) the
number of violations cannot change. Therefore, sR ≤ sB. See Figure 2.3.

Figure 2.3: This figure illustrates the contradiction. In the left-hand side
there are 4 violations and after 3 turns there are 3 violations.
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These two facts give us a lot of information about the stable configuration
for p > 0.5. Now we give twin lemmas on the stable configuration.

Lemma 7. Let R, B be a stable configuration with junction S = 0 and
B0 = 0. Suppose that there exists a sequence of exactly sR consecutive red
cars at places [N − sR, N − 1] and sB blue cars at places [N − sB , N − 1], for
some sR, sB ≥ 1. Then:

1) Bi = 0 for i ∈ [N − sR − sB − 1, N − sB − 1].

2) Ri = 1 for i ∈ [N − sR − sB − 1, N −max(sR, sB)− 2].

3) Ri = 0 for i ∈ [N −max(sR, sB)− 1, N − sR − 1].

Proof. By assumption:

- Bi = 1 for i ∈ [N − sB, N − 1], BN−sB−1 = 0.

- Ri = 1 for i ∈ [N − sR, N − 1], RN−sR−1 = 0.

For proving item (1), pay attention that B0 = 0, BN−1 = RN−1 = 1, hence
the blue sequence will be pushed to the left in the next sR turns. Now by
fact (b) because two disjoint blue segments do not merge, we have Bi = 0
for i ∈ [N − sB − sR − 1, N − sB − 1]. Therefore, following the system after
sR turns we have: Bi = 1 for i ∈ [N −sR−sB, N −sR−1] (the blue segment
pushed to the left sR times), and Bi = 0 for i ∈ [N − sR, N − 1] and Bi not
changed left to the N − sR − sB, and R is unchanged.

For proving item (2), note that sR = min(sR, sB) then R, B contained sR
consecutive violations in places [N − sR + 1, 0] which all vanished after sR
turns, and possible violations at places [N − sB, N − sR] remained as they
were. But by the fact (a) no violation can disappear, therefore, we get that
we must have Ri = 1 for sR places within [N − sR − sB −1, N − sB −1]. But
RN−sB−1 cannot be 1 because if RN−sB−1 = 1 then exactly one place within
[N − sR − sB − 1, N − sB − 2] is empty in the red row, after sR turns there
is a violation in N − sB and BN−sB = 1, hence the segment of red car which
contains N−sB−1 pushed one place to the left and two red segments merge
to one. This is contradiction with (b). Hence, RN−sB−1 = 0 and we ought to
have Ri = 1 for i ∈ [N − sR − sB − 1, N − sB − 2]. In other words, Ri = 1
for i ∈ [N − sR − sB − 1, N −max(sR, sB)− 2].
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For proving item (3), note that sB = max(sR, sB) then follow the sys-
tem for sB turns we note that any red car in [N − sB − 1, N − sR − 1]
will be pushed left until eventually hitting the red car already proven to
be present at place N − max(sR, sB) − 2 and this is contradiction by (b).
Thus Ri = 0 for i ∈ [N − sB − 1, N − sR − 1]. Therefore, Ri = 0 for
i ∈ [N −max(sR, sB)− 1, N − sR − 1]. �

The next lemma is exactly similar when we are reversing the roles of R,B,
and can be proven the same way.

Lemma 8. Let R,B be a stable configuration with junction at S = 0 and
B0 = 1. Assume that there is a sequence of exactly sR consecutive red cars at
places [N − sR, N − 1] and sB blue cars at places [N − sB +1, 0], sR, sB ≥ 1.
Then:

1) Ri = 0 for i ∈ [N − sB − sR − 1, N − sR − 1].

2) Bi = 1 for i ∈ [N − sB − sR, N −max(sB, sR)− 1].

3) Bi = 0 for i ∈ [N −max(sB, sR), N − sB].

By Lemmas 7 and 8 together we get the following characterization for
stable configuration:

Lemma 9. Let R, B be a stable configuration with junction at S = 0 and
B0 = 0. Suppose that there is a sequence of exactly sR consecutive red cars at
places [N −sR, N −1] and sB consecutive blue cars at places [N −sB, N −1].
Denote M = max(sR, sB). Then:

a) There are no additional cars at [N −M,N − 1].

b) Place i = N −M − 1 is empty. That is Ri = Bi = 0.

c) Starting at N −M − 2 there is a sequence of K1 ≥ min(sR, sB) places
for which Ri = 1, Bi = 0, i ∈ [N −M −K1 − 1, N −M − 2].

d) Starting at N − M − K1 − 2 (right after the red sequence) there is
a sequence of K2 ≥ min(sR, sB) places for which Bi = 1, Ri = 0,
i ∈ [N −M −K1 −K2 − 1, N −M −K1 − 2].
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Figure 2.4: Sketch of proof ideas for Lemma 7.

Proof. First of all by Lemma 7 we get:
1) Bi = 0 for i ∈ [N − sR − sB − 1, N − sB − 1].
2) Ri = 1 for i ∈ [N − sR − sB − 1, N −max(sR, sB)− 2].
3) Ri = 0 for i ∈ [N −max(sR, sB)− 1, N − sR − 1].

From (1) we get Bi = 0 for i ∈ [N − max(sR, sB) − 1, N − sB − 1] ⊆
[N−sR−sB−1, N−sB−1]. From (3) we get Ri = 0 for i ∈ [N−max(sR, sB)−
1, N−sR−1]. Therefore, no additional cars are at [N−M,N −1], and place
N −M − 1 is empty, proving claims (a) and (b) in the lemma.

From (1) we get Bi = 0 for i ∈ [N − sR − sB − 1, N −max(sR, sB)− 2] ⊆
[N − sR − sB − 1, N − sB − 1], and from (2) Ri = 1 for i ∈ [N − sR − sB −
1, N −max(sR, sB)− 2], hence places [N − sR − sB − 1, N −max(sR, sB)− 2]
contain a sequence of length min(sR, sB) of red cars with no blue cars in
parallel to it. This sequence is possibly a part of a larger sequence of length
s′R ≥ min(sR, sB), located at [N−max(sR, sB)−s′R−1, N−max(sR, sB)−2].

Now running the system for max(sR, sB) + 1 turns, we are going to have
the junction at place S = N − max(sR, sB) − 1, when we are running the
system for max(sR, sB)+1 the blue sequence is pushing sR turns to left, then
BS = 1, followed by sequences of s′R red cars and s′B = min(sR, sB)(≤ s′R)
blue cars (note that sB = max(sR, sB) when we run the system for sB + 1
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turns the blue sequence pushed left sR times and S = N − sB − 1 and the
blue sequence is from N − sR − 1 until N − sR − sB − 1, therefore, from
S = N − sB − 1 we have a blue sequence of length sR = min(sR, sB)). We
apply Lemma 8 for the system for N ′ = N −max(sR, sB)− 1:

1’) Ri = 0 for i ∈ [N ′ − s′B − s′R − 1, N ′ − s′R − 1] = [N −max(sR, sB) −
min(sR, sB)− s′R− 2, N −max(sR, sB)− s′R − 2] = [N − sR − sB − s′R −
2, N −max(sR, sB)− s′R − 2].

2’) Bi = 1 for i ∈ [N ′−s′B−s′R, N
′−max(s′R, s

′
B)−1] = [N−max(sR, sB)−

min(sR, sB)− s′R − 1, N −max(sR, sB)−max(s′R, s
′
B)− 2] = [N − sR −

sB − s′R − 1, N −max(sR, sB)− s′R − 2].

3’) Bi = 0 for i ∈ [N ′ −max(s′R, s
′
B), N

′ − s′B] = [N −max(sR, sB)− s′R −
1, N−max(sR, sB)−min(sR, sB)−1] = [N−max(sR, sB)−s′R−1, N−
sR − sB − 1].

From (1) we have Bi = 0 for i ∈ [N − sR − sB − 1, N − sB − 1] and N −
max(sR, sB)−2 ≤ N −sB −1, therefore Bi = 0 for i ∈ [N −sR−sB −1, N −
max(sR, sB) − 2], by (3′) we have Bi = 0 for i ∈ [N − max(sR, sB) − s′R −
1, N − sR − sB − 1]. Hence, we have no blue cars are in parallel to the entire
red segment in [N −max(sR, sB)− s′R − 1, N −max(sR, sB)− 2].

Moreover, by (2′) we have a sequence of blue cars in [N − sR − sB − s′R −
1, N −max(sR, sB)− s′R −2] with no red cars parallel to it in [N − sR− sB −
s′R−2, N−max(sR, sB)−s′R−2] by (1′). Note that N−max(sR, sB)−s′R−2
is exactly to the left of N − max(sR, sB) − s′R − 1 where the red sequence
ended. Now by choosing K1 = s′R and K2 = s′B = min(sR, sB) we get claims
(c) and (d) in the lemma. �

Theorem 10. Let R, B be a stable configuration with junction at S = 0
and B0 = 0. Suppose that there is a sequence of exactly sR consecutive red
cars at places [N − sR, N − 1] and sB blue cars at places [N − sB, N − 1].
Denote M = max(sR, sB). Then no additional cars are at [N −M,N − 1],
and at places [0, N −M − 1] the configurations R, B satisfies:

1) Each place contains at most one type of car, red or blue.

2) Place N−M −1 is empty. Each empty place, is followed by a sequence
of places containing red cars immediately left to it, which is followed by
a sequence of places containing blue cars immediately left to it.
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Figure 2.5: Lemmas 7 and 8 combined together result Lemma 9.

3) Any sequence of red or blue cars is of length at least min(sR, sB).

Proof. The proof is obtained by using Lemma 9 repeatedly. By using
Lemma 9 we know that there exist K1, K2 ≥ min(sR, sB) such that: The
place N −M − 1 is empty, followed by K1 consecutive places with only red
cars and K2 consecutive places with only blue cars left to it. Therefore,
the assertion of the theorem holds for the segment [T,N −M − 1] for T =
N −M − 1−K1.

Now we know R, B completely in [N − M − 1 − K1, N − M − 1], and
we run the system for M +K1 + 1 turns. We have first sB blue segment is
pushed left sR places, then the K1 red sequence is pushing min(sR, sB) places
to the left, therefore, its last min(sR, sB) cars now overlap with the K2 blue
sequence.

So after M + K1 + 1 turns the system evolves to a state where S =
N − K1 − M − 1, BS = 0 and left to S there are K2 consecutive blue
cars and exactly min(sR, sB) consecutive red cars. Noting that this time
M ′ = max(K2,min(sR, sB)) = K2, once again we can result from Lemma 9
that: there are no additional cars in [N−M −K1−K2−1, N−M−K1−2],
place N −M −K1−K2−2 is empty, followed by some K3 consecutive places
with only red cars and K4 consecutive places with only blue cars left to it,
for K3, K4 ≥ min(min(sR, sB), K2) = min(sR, sB) thus the assertion holds
for the segment [T ′, N −M − 1] for T ′ = N −M −K1 −K2 −K3 − 1 < T .

We are applying Lemma 9 repeatedly as long as T > 0, and repeatedly
we find that the claim holds for some [T,N −M − 1] for T strictly decreas-
ing, therefore, the claim holds in [0, N−M−1]. �
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Figure 2.6: We are applying repetitively Lemma 9, and reveal a longer seg-
ment in the configuration [T,N − 1], for which properties of Theorem 10
hold.

Figure 2.7: A typical stable configuration.

For reaching to this theorem we worked hard and stating some lemmas,
but it is worthwhile, now we state and prove a useful corollary which uses
Theorem 10.

Corollary 11. Let R, B be a stable configuration with junction at S = 0
and B0 = 0. Suppose that there is a sequence of exactly sR consecutive
red cars at places [N − sR, N − 1] and sB consecutive blue cars at places
[N − sB, N − 1]. Denote m = min(sR, sB), (m = sR). Then:
1) The number of blue segments and red segments are equal in the system.
2) System velocity is at least (1 + m

N
)−1.

3) All number of cars in the system is at most N +m.
4) All number of cars in the system is at least 2m

2m+1
N +m.

5) All number of segments in the system is at most N
m
+ 1.

Proof. By looking to the structure described in Theorem 10, there is ex-
actly one red and one blue segment in [N−M,N−1] whereM = max(sR, sB)
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and in [0, N −M −1] because any red sequence is immediately proceeded by
a blue sequence, we have an equal number of red and blue segments. This
proves (1).

For proving (2), by Theorem 10 the configuration R, B has exactly m
violations. In fact, the m overlapping places of the segments sR, sB in
[N − M,N − 1] produce the only violations in the configuration because
any places in [0, N − M − 1] contains at most a single car, and no red car
can appear immediately to the left of a blue car. Therefore, by Lemma 3 the
system velocity is at least (1 + m

N
)−1.

For proving (3), by Theorem 10 any place in [0, N −m− 1] has at most
one car or it is empty, and places [N −m,N − 1] has both red and blue cars.
Hence, all number of cars in the system is at most N −m+ 2m = N +m.

For proving (4), we know that any sequence of a red car or a blue car
is of length at least m, and an empty place in [0, N − m] can happen only
one time in each 2m + 1 places, and other places has one car, and places
[N −m,N − 1] has both a red car and a blue car. Therefore, the number of
cars has the lower bound

2m

2m+ 1
(N −m) + 2m =

2m

2m+ 1
N +

2m2 + 2m

2m+ 1
≥ 2m

2m+ 1
N +m.

For proving (5), we know that any sequence of cars has length at least
m, and by item (3) of this corollary all number of cars is at most N + m,
therefore, the number of different sequences is at most N+m

m
= N

m
+ 1 �

Theorem 12. All cars in the system have the same asymptotic velocity.

Proof. As we can see, when the system reaches a stable configuration,
it contains of alternating red and blue sequences of cars. This is trivial that
the order of the sequences cannot change. Hence, the difference between
the number of steps two different cars have taken cannot be more than the
length of the longest sequence, which is less than N . In other words, for
two cars when one of them passes the junction, until it passes the junction
again the other car cannot pass the junction more than one time (for arbi-
trary two cars they pass the junction alternatingly). Thus, the asymptotic
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velocity with respect to t is the same for all cars. �

With these statements which we have in hand until now, we can com-
pletely characterize the stable configuration of a junction with p > 0.5. Since
the number of cars in the system is greater than N , at all times, including
after reaching stable configuration, there are violations in the system. We are
going to look at some time when the junction reaches a violation when the
system is in stable configuration. Now at this point conditions of Theorem
10 are satisfied, therefore, we have the following theorem.

Theorem 13. A junction of size N and density p > 0.5 reaches velocity
of 1

2p
− O( 1

N
) (i.e. arbitrarily close to the optimal velocity of 1

2p
, for large

enough N), and has at most a bounded number (depending only on p) of car
sequences.

Proof. We consider the system after it reached a stable configuration.
Since 2pN > N at some time after that conditions of Theorem 10 are satisfied
for some sR, sB ≥ 1. Put m = min(sR, sB) at this time. The number of cars
is 2pN and by using claims (3) and (4) in Corollary 11 we obtain:

2m

2m+ 1
N +m ≤ 2pN ≤ N +m

From this inequality we get

(2p− 1)N ≤ m ≤ (2p− 2m

2m+ 1
)N

= (2p− 1 + 1− 2m

2m+ 1
)N = (2p− 1)N +

N

2m+ 1
.

By using (2p− 1)N ≤ m on the left hand side of the above inequality for its
right hand side we get:

(2p− 1)N ≤ m ≤ (2p− 1)N +
N

2(2p− 1)N + 1
≤ (2p− 1)N +

1

4p− 2

For C = 1
4p−2

a constant independent of N (C = O(1)). Therefore, m =

(2p− 1)N +K for some K ≤ C. Now by applying claim (2) in Corollary 11,
system velocity is at least

(1 +
m

N
)−1 = (1 +

(2p− 1)N +K

N
)−1 = (2p+

K

N
)−1 ≥ 1

2p
− K

N
.
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For proving the last inequality we know that N2 ≥ N2 − K2, it concludes
that N

N+K
≥ 1− K

N
(∗). Now

(2p+
K

N
)−1 ≥(2p>1) (2p+

2pK

N
)−1 =

1

2p
(

N

N +K
)

≥(∗)
1

2p
(1− K

N
) =

1

2p
− K

2pN
≥(2p>1)

1

2p
− K

N
.

But by theorem 1 system velocity is at most 1
2p
, therefore, the system velocity

is exactly 1
2p

− K ′
N

for some 0 ≤ K ′ ≤ K ≤ C = O(1), hence, K ′ = O(1)
proving the first part of the theorem.

By claim (5) in Corollary 11 we have all number of segments in the system
is at most N

m
+ 1, using m ≥ (2p− 1)N we obtain the number of segments is

bounded by
N

m
+ 1 ≤ 1

2p− 1
+ 1 =

2p

2p− 1
= O(1).

Therefore, we conclude the second part of the theorem. �

2.7 p < 0.5 revisited

The characterization in Theorem 10 is useful to survey p < 0.5. In fact, the
main result for p < 0.5, Theorem 5, can be proved by a similar technique,
and even sharpened.

Corollary 14. For p < 0.5 the junction reaches velocity of at least
1 − C(p)

N
, for C(p) = � p

1−2p
�. In particular, for p < 1

3
the junction reaches

velocity 1, for any initial configuration.

Proof. Let R, B be any initial configuration. Looking at the configura-
tion after it reached the stable configuration, if the system reached velocity
1 we have nothing to prove. Suppose that the velocity is less than 1. Since
in this case violations still occur, at some time the stable configuration will
satisfy conditions of Theorem 10. As before, letting m = min(sR, sB) at this
time, by claim (4) in Corollary 11 we have:

2m

2m+ 1
N +m ≤ 2pN

36



⇒ m ≤ (2p− 2m

2m+ 1
)N = (2p− 1 + 1− 2m

2m+ 1
)N = (2p− 1 +

1

2m+ 1
)N.

Sine m ≥ 1 we conclude that 2p − 1 + 1
2m+1

> 0, by rearranging we have
m < p

1−2p
, and since m ∈ Z, m ≤ � p

1−2p
� = C(p). Now by claim (2) of

Corollary 11 the system velocity is at least

(1 +
m

N
)−1 ≥ 1− m

N
≥ 1− C(p)

N
.

Also, for p < 1
3
, m ≤ C(p) = � p

1−2p
� = 0, but m must be positive, we get

a contradiction, thus the assumption velocity less than 1 cannot hold for
p < 1

3
, and for p < 1

3
the system velocity reaches 1 for any initial configura-

tion. �

2.8 The critical p = 0.5

Until now for junction of size N and density p we have the following descrip-
tion of the behavior:

• If p < 0.5 the junction will reach velocity 1 − o(1) (asymptotically
optimal), and contain linearly many different segments in the stable
configuration.

• If p > 0.5 the junction will reach velocity 1
2p

− o(1) (asymptotically

optimal), and contain constant many segments in the stable configura-
tion.

Therefore, we can see that the junction system undergoes a sharp phase tran-
sition at p = 0.5, as the number of segments of cars as the system stabilizes
drops from being linear to merely constant. Again by using the powerful
theorem 10 we obtain the following theorem for the case p = 0.5.

Theorem 15. A junction of size N with p = 0.5 reaches velocity of at
least 1− 1√

N
and contains at most

√
N different segments.

Proof. First of all since p = 0.5 we have exactly N cars in the system.
When we reach stable configuration since we have N places and N cars in
the system, at least one red car is immediately left to a blue car, hence,
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violations must still occur. Therefore, at some time conditions of Theorem
10 is satisfied. For m = min(sR, sB) at this time, by claim (4) in Corollary
11 we have:

2m

2m+ 1
N +m ≤ N ⇒ m(2m+ 1) ≤ N,

Thus, m ≤ √
N . From here by claim (2) in Corollary 11 the system velocity

is at least

(1 +
m

N
)−1 ≥ 1− m

N
≥ 1− 1√

N
,

it proves the first part of the theorem.
For the second part of the theorem, if r is the number of segments, then

by Theorem 10 we can deduce the following about the number of cars: 2m
cars are in places [N − m,N − 1], and since each place in [0, N − m − 1]
contains one car, except transitions between segments that are empty, we
have N −m− r cars in places [0, N −m− 1]. Therefore,

N = (N −m− r) + 2m = N +m− r ⇒ r = m ≤
√
N.

Hence, the configuration has at most
√
N segments. �

2.9 Simulation results

In the following we give some simulation results for the junction for p near
to 0.5 and p = 0.5. The columns of the tables consist of N , the average
asymptotic velocity, the average number of car segments in the stable con-
figuration, and the average longest segment in the stable configuration.

p = 0.48

For large N , system reaches velocity 1 and the average number of seg-
ments is linear.

N Velocity No. segs Longest
1000 0.99970 38.7 6.8
5000 1.00000 186.4 8.5
10000 1.00000 369.8 7.5
50000 1.00000 1850.6 8.2
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p = 0.52

For large N , system reaches velocity 0.961 = 1
2p

and the average number
of segments ia about constant.

N Velocity No. segs Longest
1000 0.95703 5.7 76.7
5000 0.96041 6.9 330.0
10000 0.96091 7.3 416.1
50000 0.96142 7.2 3207.1

p = 0.5

At critical point, the velocity is tending 1 like 1− C√
N
.

N Velocity No. segs Longest
1000 0.98741 13.4 38.4
5000 0.99414 30.0 82.8
10000 0.99570 43.8 142.1
50000 0.99812 95.0 248.4

In this chapter we investigated a very simplified version of Biham-Middleton-
Levine Traffic Model, which, despite its relative simplicity, had very analo-
gous phenomena of phase transition at some critical density and of self-
organization, which in single junction model both can be proven and well
understood.
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Chapter 3

The Biham-Middleton-Levine
Traffic Model for a finite lattice
of size N ×N

3.1 Introduction

In this chapter we focus on a lattice of finite size with periodic boundary
conditions. By periodic boundary condition we mean that when a red car
left the lattice on the right-hand side, then it enters the lattice on the left-
hand side of the same row, and we have the similar rule for blue cars. First,
we state an easy theorem for a system which has some red cars and just one
blue car. Then we continue our discussion to find the answer of the following
question: For what number of cars must self organization occur in the BML
model from any possible initial configuration? Finally, we give a MATLAB
code for BML model in a finite lattice with periodic boundary conditions.

First, we are going to introduce a function, with the number of cars as a
variable, which for a finite lattice with periodic boundary conditions of size
N ×N gives the probability of happening fully jammed configuration.

Theorem 1. Suppose that we have a finite lattice of size N × N with
periodic boundary conditions and we have i red cars. Then the function
fN(i), which is defined in the following, gives us the probability of having
fully jammed configuration if we add a blue car to the lattice.
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fN(i) =

⎧⎪⎪⎨
⎪⎪⎩

0 i < N

N 1
N2

1
N2−1

· · · 1
N2−(N−1)

(
N2 −N
i−N

)
N ≤ i ≤ N2 −N

1 N2 −N < i ≤ N2

.

Proof. We have a fully jammed configuration if at least one row is ful-
filled by red cars. Let the number of red cars be strictly less that N , i < N .
Clearly no row can be fulfilled, hence, with probability zero we have a fully
jammed configuration. If N ≤ i < N2 − N , with probability 1

N2 the first
car is on the lowest row and the first site in the left-hand side, and with
probability 1

N2−1
the second car is on the lowest row and second site, and by

continuing this process with probability 1
N2−(N−1)

, N th car is on the lowest
row and last site in the right-hand side, and for the rest of the cars we have(
N2−N
i−N

)
choices. Therefore, with probability 1

N2
1

N2−1
· · · 1

N2−(N−1)

(
N2−N
i−N

)
the

lowest row is fulfilled. Now we have N rows, thus, we multiply the last ex-
pression by N . Finally, assume that N2 − N ≤ i ≤ N2, in the worst case
each row has N − 1 occupied sites and no row is not fulfilled; that is, the
number of occupied sites is N2 − N . Now by adding another red car with
probability 1 we have a fulfilled row. It means that we have a fully jammed
configuration. �

By this theorem, we know that for less than N cars we never have a fully
jammed configuration. Now it is interesting we discover what will happen to
the system if we have less than N cars. The next theorem says that for any
arbitrary initial configuration the system will organize itself, and by passing
a finite time it behaves periodically.

Theorem 2. Assume that we have a finite lattice of size N × N with
periodic boundary conditions and we have less than N cars with an arbitrary
initial configuration. Then by passing a finite time the movement of cars
becomes periodic.

Proof. Suppose that on the even time steps each red car moves and
on the odd time steps blue ones. In the lattice of size N × N we have N2

sites, therefore, the number of all configurations are finite, by considering the
time which is produced (it is produced in odd or even time; more clearly, we
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also pay attention to the time to know that the configuration is produced
by movement of red cars or blue ones). But we do not have a fully jammed
configuration, hence, we have an infinite number of movements and the result
of each of them is chosen from the finite set of all configurations. Therefore,
at least two configurations are equal so that the next movement in both is
by cars of the same color. In other words, let F1 be the initial configuration,
and the configurations Ft and Ft+T are equal so that the next movement
in both of them is by cars of the same color. Hence, Ft+T+1 = Ft+1 and
so on. Therefore, by passing time t the movement of cars becomes periodic.
Note that this theorem is like stable configuration in chapter 2. �

Note that in the previous theorem it is not necessary to have less than N
cars. In fact, it is enough the system never has a fully jammed configuration.

Here we give two examples:
i)

Figure 3.1: N = 4, and there are 4 cars in the system.
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ii)

Figure 3.2: N = 4, and there are 4 cars in the system.

In the example (i), configurations at time t = 0 and t = 10 are equal and
they have the same next steps. In the example (ii), configurations at time
t = 4 and t = 12 are equal and they have the same next steps.

3.2 For what number of cars must self orga-

nization occur from any initial configura-

tion?

One may see in the example (i) the period has length 10 while in the example
(ii) is 8. In fact, in the second example the number of collisions when time
tends to infinity is finite, but in the first one we have an infinite number of
collisions. Therefore, it is interesting if we find a condition such that under
it the number of collisions is finite as time tends to infinity.

For the square lattice of size N × N , consider when the time comes to
move first red cars move and then the blue ones; i.e. in any given time step,
first all red cars try to move, then all the blue cars. Here we prove that when
the number of cars is less that N

2
, m < N

2
, where m is the number of cars,

the system must attain velocity one, which means the number of collisions is
finite.

Write ZN = Z

NZ
, and consider the N×N discrete torus ZN×ZN . Consider

the locations of the cars on the N North-West to South-East diagonals of
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the torus, and define D1, D2, ..., DN by

Dk = {(i, j) ∈ Z
2
N : i+ j = k mod N}

see Figure 3.

Figure 3.3: We can see the positions of D1, ..., DN here.

If a car moves during a time step, then it moves up one diagonal other-
wise it stays without movement. For each t ≥ 0 let φt : Z

2
N −→ ZN be the

associated ’time-corrected diagonal map’ defines as φt(i, j) = i+j−t mod N .

Suppose X1, X2, ..., Xm are the initial positions of the cars, and write the
X i

t for the position of car i at time t ≥ 0 (X i
0 = X i) and Y i

t = φt(X
i
t). Thus,

knowing the Y i
t at a given time t tells us something about the configuration

(X i
t)i≤m, but far from specifies it uniquely. The proof here will use constrains

on the behavior of Y 1
t , Y

2
t , ..., Y

m
t as t increases.

At a given time t, the points Y i
t are distributed within ZN , some points

of ZN may be occupied by many such Y i
t , while others will be empty, note

that several cars may occupy different points on the same diagonal. We will
partition the set ZN\{Y i

t : i ≤ m} of empty points at time t into a union

of arcs in ZN say A1
t ∪ A2

t ∪ ... ∪ A
r(t)
t , where we label the arcs in order and

choose A1
t to be the arc containing the first non-occupied point when ZN is

written as {1, 2, ..., N}.

Lemma 3. Suppose that at time t some arc As
t = {y, y+ 1, ..., y+ l} has

length at least 2. Then at time t + 1 the point immediately to its left, y − 1,
is still occupied by some Y i

t+1, and the set As
t\{y+ l} = {y, y+1, ..., y+ l−1}

is still an arc of unoccupied points.

Proof. This is a direct observation from the dynamics of the cars. The
lower boundary point cannot move, since given a number of cars all in the
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same diagonal in the discrete torus and there is not any car in the diagonal
above because the diagonal above is in the arc, therefore, at least one of those
cars on the diagonal of the lower boundary will not be blocked during the next
time step. Hence, when it moves i → i+1 or j → j +1 and under the time-
corrected diagonal map we have: φt+1(the car that moved at time t + 1) =
i + 1 + j − (t + 1) or i + j + 1 − (t + 1) = i+ j − t mod N , which is equal
the lower boundary point of As

t . Therefore, the lower boundary point cannot
move. Also, images of cars under the map φ can only either stay still or
move one step to the left in one time step, since if a car moves we have +1
in the i or j term and +1 in the t term of φ and they cancel each other,
thus the image of the car under the map φ stay still, and if cars do not
move, then in the next time step i and j do not change and the t term in φ
changes to t + 1 and the image of cars moves one step to the left. Hence, it
is clear that the points {y, y + 1, ..., y + l − 1} cannot become occupied dur-
ing the next time step. �

Lemma 4. The dynamics cannot create new arcs As
t of length greater

than 1; the number of such long arcs is non-increasing in t.

Proof. Suppose that at time t + 1 we have an arc As
t+1 of length at

least 2. During the time step from t to t + 1, the images of those cars that
are now in diagonals immediately above and below As

t+1 either stayed still
or moved one step to the left. Thus, by previous lemma, at time t there
must have been an empty arc at least as long as As

t+1 and with the same
lower end-point. Thus to each empty arc of length at least 2 at time t + 1
we can associate such an arc at time t; since this association is also clearly
unique, the number of such arcs cannot increase. �

Lemma 5. If the system never attains velocity one, then there must come
a time when no arcs As

t have length greater than 1.

Proof. Because the system never attains velocity 1 we know there are
infinitely many times at which cars are blocked, then in particular some car
must be blocked infinitely often. Suppose it is car i ≤ m. We know that
when the car blocks Y i

t moves one point backward because in time-corrected
diagonal map t changes to t+1. This means that as t increases Y i

t describes
infinitely many circuits around the discrete circle ZN .

But after completing one such circuit (say at time T ), there can be no
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arcs of length greater than 1 remaining. By contradiction, if there is still an
arc As

T of length at least 2 at time T , then, arguing as in the proof of the

previous lemma, there must be a sequence of arcs A
s(t)
t for t = 0, 1, ..., T , all

of length at least 2 because arc greater than 1 cannot create, and all with
same lower end-point, say y. Thus we deduce that y ∈ ZN must remain
occupied, and have an arc of length at least 2 immediately to its right, for
all time t ≤ T . This contradicts the fact that Y i passes through all points of
ZN by time T . �

Theorem 6. If m < N
2
, the system must attain velocity one.

Proof. This is now immediate: if m < N
2

then, however the images
Y 1
t , Y

2
t , ..., Y

m
t are distributed in ZN , there will always be some arc of length at

least 2, and so, by previous lemma, the system must attain velocity one in fi-
nite time; that is, the number of collisions is finite. �

In the following theorem we will make a better bound for the number of
cars in the system.

Theorem 7. If m ≤ [N
2
], the system must attain velocity one ([K] de-

notes the integer part of K).

Proof. Let N be odd. Since m ∈ Z we have m ≤ [N
2
] if and only if

m < N
2
. Therefore by Theorem 6, the system must attain velocity one.

Now suppose N is even and m ≤ [N
2
] = N

2
. For m < N

2
we have the

result by using Theorem 6. Assume that m = N
2
. If for all times there

exists an arc of length at least 2 then ,by Lemma 5, the system must at-
tain velocity one in finite time. Suppose for time t∗ there is not any arc
of length greater than 1. Hence, Y 1

t∗ , Y
2
t∗ , · · · , Y m

t∗ are distributed in ZN=2m

so that none of them are not adjacent. In fact, between each Y i
t∗ and Y i+1

t∗

there is an arc of length 1, for 1 ≤ i ≤ N mod N . Therefore, for each
diagonal which contains a car we have two facts: 1) That diagonal contains
exactly one car. 2) The diagonal above that diagonal is empty. Clearly, for
this configuration in the next move we do not have any collision and all cars
move freely. Thus the configuration of Y 1

t∗ , Y
2
t∗ , · · · , Y m

t∗ does not change in
ZN from t∗ to t∗ + 1. By the same argument for all t ≥ t∗, we do not have
any change in the configuration of Y 1

t , · · · , Y m
t in ZN and any collision in the
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system. It means that the velocity is one. �

Example. In this example N = 8 and we have 4 cars.

Figure 3.4: As you can see, all of the times there is an empty arc of length
at least 2.

Now in the following proposition we are going to prove that it is possible
the configuration stuck when we have at least 2N cars.

Proposition 8. There is a configuration with m cars which is stuck if
and only if m ≥ 2N .

Proof. ⇒) First we note that no row can contain some red but no blue
cars and no column can contain some blue but no red cars, since in this case
those cars would be able to move freely. Now assume that the system is
stuck. Then we conclude that in every column there must be at least one red
car otherwise for there cannot be only blue cars, and if there were no cars in
that column, then there would be red cars in some column to the left of it
which are not blocked, and we get a contradiction. By the same argument,
in every row there must be at least one blue car. Therefore, there are at least
N red cars and at least N blue cars, so m ≥ 2N .

⇐) We need only find a configuration of 2N stuck cars. We choose two
adjacent southwest-northeast diagonals, and occupy whole of the lower diag-
onal with blue cars and whole of the upper one with red cars. Now for any
m ≥ 2N , we can add more cars randomly to this configuration. After a finite
time they reach to the blocked diagonals, so the system becomes blocked. �

Here we present a question of [7] then answer it.
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Question. Does the system necessarily self-organize to attain velocity 1
for any m > 1

2
N? Put differently, for which 1

2
N < m < 2N can the system

stay forever below velocity 1, even though (by proposition 7) it can never get
stuck?

Answer. We claim that for 1
2
N < m < 2N the velocity is not forever

below 1. For N = 4, and m = 4 we give an initial configuration and run it
in Figure 5 such that the velocity is 1.

Figure 3.5: As you can see by having N = m = 4 and the initial configuration
at time t = 0, the velocity is exactly 1.

3.3 How many collisions will occur before at-

taining velocity one?

In this section, we are trying to answer the following open question in [8].

Question. Suppose we place a configuration of m ≤ [N
2
] cars on ZN×ZN

uniformly at random. By Theorem 7 the system will self organize to attain
velocity one, but how many collisions will occur before it does so?

In this section our system is of size N × N with m ≤ [N
2
] cars. First we

state two facts.

a) Suppose there exists a diagonal having some cars which do not collide
with other cars (out of the diagonal). Assume that the image of these cars
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is Y ∈ ZN . If some collisions between these cars happen, under the time-
corrected diagonal map, the image of cars which could not move (because a
collision affected them) will take one step to the left; i.e. their new image is
Y − 1 ∈ ZN . Now cars whose images are pushed to Y − 1 never will collide
with the cars whose images are Y .

b) Suppose we have some cars on two consecutive diagonals with images
Y − 1, Y ∈ ZN . If some cars whose images are Y − 1 collide with some cars
whose images are Y , then the image of them will take one step to the left (to
Y − 2 ∈ ZN) and they do not have collision any more with the cars whose
images forever are Y .

Examples:
i) Assume that N = 4 and m = 2. It is straightforward the number of

collisions is at most 1.
ii) Suppose N = 6 and m = 3. By Theorem 7, the system must attain

velocity 1. If the image of initial configuration in Z6 is alternately empty and
occupied, by the argument in the proof of Theorem 7 there is not any collision
in the system and it starts with velocity 1, Figure 3.6(a). In Figure 3.6 we
discuss other possibilities. In Figure 3.6(b) we have 3 cars in one diagonal.
Definitely, one of them moves without any stop, thus we have at most 2
collisions. Therefore, their image moves one step to the left and by fact (a)
they do not have collision with the car in the diagonal above anymore, and
between these two cars there is at most one collision, then one of them moves
one step to the left and there is no collision between them anymore. Hence,
there are at most 3 collisions. In Figure 3.6(c), on the diagonal with 2 cars
we have at most one collision, because one of them moves freely and the car
on the lower diagonal has at most one collision. Then between the two last
cars can exist at most one collision. Hence, we have at most 3 collisions. In
Figure 3.6(d), the car on the upper diagonal moves freely and the two other
cars on the lower diagonal can have at most 2 collisions, hence their image
moves one step to the left. By fact (b), they cannot have more collision with
the car on the upper diagonal, and it can exist at most one collision between
these two cars. Therefore, we have at most 3 collisions. We can argue Figure
3.6(e) similarly, and all other possible initial configurations. Then we find
that there exist at most 3 collisions in the system.

iii) Suppose N = 8 and m = 4. We have at most 6 = 3+ 2+1 collisions.
In Figure 3.7 we check the images of four initial configurations. The reader
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Figure 3.6: The number above each occupied place shows the number of cars,
and the number under each occupied place shows the number of possible
collisions.

can check all possible initial configurations.
Lemma 9. Consider a system of size N ×N with m ≤ [N

2
] cars. There

exists at least a car which never stops.

Proof. Assume that m = [N
2
]. By contradiction suppose all cars in the

system have some stops. Let car i be the first car which has a stop and whose
image is Y ∈ ZN ; the image of car i moves to Y −1 after its stop. For the cars
whose images are in Y − 1 and Y − 2, after a stop their image move to Y − 2
and Y − 3, respectively. Note that for cars which immediately right to their
images exist an empty arc, it is necessary some image appear immediately
right to their image so that they can have their stop; otherwise there is a car
which never stops. Now by Lemma 4, we know that the dynamics cannot
create new arcs of length greater than 1. Therefore, since all cars must have
a stop, we conclude that there is no empty arc of length greater than 1 after
passing enough time. Since car i with image Y had a stop (now its image is
in Y − 1) necessarily we had a car with image in Y or Y + 1. Now:
i) If this car had image Y , after a stop its image is Y − 1, and since we do
not have any empty arc of length greater than 1 we have m occupied places
in ZN , which each of them contains at least one car, and two cars have image
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Figure 3.7: The number above each occupied place shows the number of cars,
and the number under each occupied place shows the number of possible
collisions.

Y − 1. Therefore we have at least m+ 1 cars, which is a contradiction.
ii) If this car had image Y +1, after a stop its image is Y (immediately next
to Y − 1), and since we do not have any empty arc of length greater than
1, we have at least m cars, and places Y and Y − 1 next to each other are
occupied, therefore we have at least m+ 1 cars, which is a contradiction.
Hence, there is a car which never stops. �

In Figure 3.8 we give some initial configurations such that for the images
with red color never appear another image immediately to its right. In fact,
by the argument in the proof of Lemma 9, we see there is an image which
never appear another image immediately to its right. In other words, if for
all images appear another image immediately to its right (even temporarily)
we reach to a contradiction with the number of cars in the system.

Figure 3.8: No image will appear immediately right to the red images.

Theorem 10. Consider a system of size N×N with m ≤ [N
2
] cars. Then
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we have at most
∑m−1

i=1 (m− i) collisions in this system.

Proof. Assume that 0 ≤ Y 1 ≤ · · · ≤ Y l ≤ N , l ≤ m, are all occupied
places (images) in ZN . Let Y k, 1 ≤ k ≤ l, be an image which ,immedi-
ately to its right, does not appear another image. Consider the new order
Y k+1, Y k+2, · · · , Y l, Y 1, · · · , Y k, and denote them without changing the or-
der Y 1,1, Y 2,1, · · · , Y r1,1 = Y k where r1 = l. Suppose Y i,1 is the image of
yi,1 cars for 1 ≤ i ≤ r1, and

∑r1
i=1 y

i,1 = m. At least there exists one car
with image Y r1,1 = Y k so that it moves without any stop. Thus, for cars
with the image Y r1,1 we have at most yr1,1 − 1 collisions and for cars with
the image Y i,1 i �= r1, we have at most yi,1 collisions. Therefore, we have
y1,1+ · · ·+yr1−1,1+yr1,1−1 = m−1 collisions. Now for the cars which had a
collision their images move one step to the left and the new configuration of
the images is Y 1,2, Y 2,2, · · · , Y r2,2, Y r1,1, where by having yr1,1 − 1 collisions
in Y r1,1, we know Y r1,1 is the image of just one car (the car which moves
without any collision) and yi,2 is the number of cars which their image is
Y i,2 for i = 1, · · · , r2. Now by facts (a) and (b), cars with the image Y r2,2

do not have any collision anymore with the car whose image is Y r1,1, and at
least there exists one car with image Y r2,2 so that it does not stop anymore.
Thus, for cars with the image Y r2,2 we have at most yr2,2 − 1 collisions and
for cars with the image Y i,2, i �= r2, we have at most yi,2, i �= r2, collisions.
Therefore, we have at most y1,2 + · · ·+ yr2−1,2 + yr2,2 − 1 = m− 2 collisions.
For the cars which had a collision their images move one step to the left and
the new configuration of the images is Y 1,3, Y 2,3, · · · , Y r3,3, Y r2,2, Y r1,1. By
continuing this process, we reach to the configuration

Y 1,m−1, Y 2,m−1, · · · , Y rm−1,m−1, Y rm−2,m−2, Y rm−3,m−3, · · · , Y r2,2, Y r1,1

where just one collision, (m-[m-1]), can happen and this collision is between
cars with the image Y rm−1,m−1, and since after all these collisions Y 1,m−1

cannot reach immediately right to Y r1,1, we cannot have more collision in
the system. Now we sum the number of all possible collisions in the system,
we have (m− 1) + (m− 2) + (m− 3) + · · ·+ 1 =

∑m−1
i=1 (m− i). �

Example. Here we give an example of an initial configuration with
N = 8 and m = 4 so that the number of collisions reaches to its maximum.
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Figure 3.9: There exactly 6 collisions in this system.

3.4 Simulation Code

Now we present a MATLAB code function, biham(n), where the lattice is of
size n× n. We show red cars by 1 and blue cars by -1.

function biham(n)
% Create a matrix that have the information of the position of each car and
its color
val=cell(1,3,n);
for i=1:n

val(:,:,i)=input(”);
end
val=cell2mat(val);
A=cell(n,n,(nˆ2)+n);
for i=1:(nˆ2)+n

for j=1:n
for k=1:n

A(j,k,i)=0;
end

end
end
A=cell2mat(A);
%Creat the first configuration
for i=1:n

A(val(1,1,i),val(1,2,i),1)=val(1,3,i);
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end
i=1;
%first configuration
t=1;
disp(A(:,:,i))
for j=2:(nˆ3)

if mod(j,2)==0
for co=1:n

for ro=n:-1:1
if ro==1

if A(ro,co,i)==1
A(ro,co,j)=1;

end
if A(ro,co,i)==-1

if A(n,co,i)==0
A(n,co,j)=-1;

else
A(ro,co,j)=-1;

end
end

end
if (1<ro)&(ro<=n)

if A(ro,co,i)==1
A(ro,co,j)=1;

end
if A(ro,co,i)==-1

if A(ro-1,co,i)==0
A(ro-1,co,j)=-1;

else
A(ro,co,j)=-1;

end
end

end
end

end
disp(A(:,:,j))
for pr=2:2:(j-(2*n)+1)

if (A(:,:,pr)==A(:,:,j))
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disp(pr)
disp(j)
disp(A(:,:,pr))
disp(A(:,:,j))
return

end
end

end
if mod(j,2)==1

for ro=1:n
for co=1:n

if A(ro,co,i)==-1
A(ro,co,j)=-1;

end
if A(ro,co,i)==1

if A(ro,mod(co,n)+1,i)==0
A(ro,mod(co,n)+1,j)=1;

else
A(ro,co,j)=1;

end
end

end
end
disp(A(:,:,j))
for pr=1:2:(j-(2*n)+1)

if (A(:,:,pr)==A(:,:,j))
disp(pr) disp(j)
disp(A(:,:,pr))
disp(A(:,:,j))
return

end
end

end
i=j;

end
end
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Appendix

Here we are going to give a new definition which may help us to prove the
existence of pc > 0.

In fact, instead of considering the asymptotic velocity of a car, we consider
a rate of visit by cars per site. The benefit of this method is that the site is
fixed and does not move as time increases. First, we define Ω0 = {e, r, b}Z2

=
{ω|ω(x) = e, r, or b; x ∈ Z

2} where e means that site x is empty, b and r
means that site x is occupied by a blue car and red car respectively. ΩT =
Ω0 × ...× Ω0︸ ︷︷ ︸

T−times

, Ω = ΩZ
0 where Z = {0, 1, 2, ...}.

Now we define αT (x) =
ΣT−1

t=0 1{ωt(x)=r or b}
T

, x ∈ Z
2. We define asymptotic

rate of visit by α(x) = limT→∞αT (x), x ∈ Z
2

Lemma. v = 0 (asymptotic velocity) if and only if there exists an x ∈ Z
2

such that α(x) = 1, (v > 0 if and only if for all x ∈ Z
2, α(x) < 1).

Proof. ⇒) v = 0 means that by choosing a car randomly, its velocity is
zero. By lemma 5 of Chapter 1 it implies for some x ∈ Z

2, α(x) = 1.
⇐) α(x) = 1 for some x ∈ Z

2, then x is in an infinite blocking path.
Therefore, v = 0 because we have an infinite blocking path. �

Theorem. Ep[α(x)] = p, where x ∈ Z
2, p is the density of cars, and E[.]

is expectation.

Proof. We have

Ep[αT (x)] =

∑T−1
t=0 Ep[1{ωt(x)=r or b}]

T
=

∑T−1
t=0 Pp[ωt(x) is occupied]

T

Now for t = 0 the site x with probability p is occupied because the density
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of cars is p. When t = 1, in two dimensional lattice some cars move without
changing the number of cars, thus the density of cars does not change and
we can consider this stage as an initial configuration with the same density,
therefore again the probability of existence a car at site x is p. We have the
same argument for t = 2, 3, ..., T . Hence, we obtain

Ep[αT (x)] =
pT

T
= p

Now for each T we have the above statement which it means that Ep[αT (x)]
is independent of T . Therefore

Ep[α(x)] = Ep[limT→∞αT (x)] = limT→∞Ep[αT (x)] = limT→∞p = p

and we are done. �
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