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Introduction
A pixel is the unit of representation of color in a digital image. When

such digital image is to be reconstructed in a traditional display, e.g., LCD
and LED screens, the concept of pixel acquires a physical nature. Each pixel
is now formed by chromatic components with distinct spatial location and
geometry. These components are called subpixels. Since these components
are independently addressed by the graphics hardware, it is more accurate
to refer to subpixels (and not pixels) as the reconstruction units of an image
in a screen.

On the last years it has been recognized the importance of taking into
account the reconstruction device properties and the Human Visual System
characteristics for the filtering process. The goal of these approaches is to
attain a larger spatial resolution without produce notorious color artifacts.
Our work belongs to this context.

One of the main inspirations to this work are the distinct pixel grids re-
cently being introduced by display manufacturers . These new grids exhibits
some of the goals that guide manufacturers designs: increase resolution, re-
duce power consumption and expand color gamut. The techniques we present
provide a framework to validate these properties. Therefore, the aim of our
work is assisting pixel grids design.

Contributions

Our main contribution is a formulation and solution of visual-based sub-
pixel filtering in a continuous domain. Previous approaches (to our known)
represented subpixels as chromatic impulses in sparse grids. These discrete
formulations trade the exact geometry and alignment of subpixels by simpli-
fied models. Instead, our continuous domain formulation take advantage of
accurate measures of both subpixel geometry and alignment. Our formula-
tion also involves flexible representation of light spectrum and human visual
system.

In this work we compute optimal filtering kernels on arbitrary multi-
chromatic pixel grids. Previous approaches deal only with RGB grids, or
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proposed nonlinear filtering reductions on RGBW and RGBY grids1.We also
present simulated perceptual reconstructions on RGB, RGBG, RGBW and
RGBY commercial devices to validate the quality of the preceived image re-
construction.

Our optimal reconstruction formulation, define subpixel coefficients as
the solution to a least square problem. We describe a convolution-based
representation of our optimality condition, and we present its spectral de-
composition. This decomposition allows an efficiently parallelized solution
computation. We implement a parallel Cholesky solver to this purpose which
lead to satisfactory results.

Finally, we present an analysis of how subpixel chromatic dependence
and large visual blurring conditions may lead to non-unique optimal sub-
pixel configurations for a same image reconstruction (i.e., singular systems).
This kind of discussions is omitted in most of previous research by assuming
a fixed observation distance. To compute optimal reconstruction in singular
systems we propose a two step optimization framework that first optimizes
on quality and then on reconstruction cost term. This reconstruction term
can be naturally associated to the energetic consumption of the device.

Document Overview

In Chapter 1 we present a discussion in some relevant topics that mo-
tivate our work. First, we describe the gains and risks of naive subpixel
filtering: a larger resolution can be attained, but it can produce undesired
color artefacts. Then we present our approach to simulate human visual sys-
tem perception, and how this is important to validate a visual model and
measures the quality of an image reconstruction. Finally, we introduce some
of the pixel grids designed by manufactures in the last years, and briefly de-
scribe the kind of filtering challenges arising in these new grids.

In Chapter 2 we present some of the relevant works on subpixel filtering.
Most of these works are specialized on RGB striped displays, and provide

1For instance, taking W = min{R,G,B}, and compensations R = R −W ,G = G −
W ,B = B −W . These nonlinear reductions seems to be against the purpose of increment
spatial resolution.
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discrete simplifications of optimal filtering.

The mathematical formulation and analysis of our optimization model is
introduced in Chapter 3. The first order condition for optimality and the
computation of optimal solution are presented in this Chapter. Cases of sin-
gularity of the optimal linear system are analysed in Chapter 4.

In Chapter 5 we discuss some implementation details. Chapter 6 is
devoted to evaluate parameter variations of our optimization model, and
present optimal linear filters for several pixel grids. Finally in Chapter 7 we
present our conclusions and future directions of work.

In Chapter 8 we approach some of the theoretical background that sup-
ports our work. We present the basic characteristics of the Human Visual
System (HVS), and describe some color representations and color transfor-
mations considered by our optimization model. We also include a description
of the standard filtering techniques in the context of achromatic and trichro-
matic pixel grids.

The mathematical notation used in this work is explained in Chapter 9.
This is a prerequisite for the lecture of Chapters 1, 3,4, and 8.
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Chapter 1

Motivation

1.1 What is a pixel?

The concept of pixel is in the hearth of the digital image framework. Pixels
are the units used to transmit, process, store, capture, and reproduce digital
images. Due to its fundamental character, it is hard to give a precise defini-
tion of pixel. In this case, a simple definition is preferred:

Pixels are the units providing full color representation of an image at
certain position.

We will study pixels in the context of display reconstruction elements.

The traditional approach to image filtering is based on the Sampling
Theorem 9.3.1: the band of low frequencies, up to half cycle of the sampling
rate, can be “preserved and reconstructed”. When dealing with image re-
construction at a pixel grid, we can find some different interpretations of the
Sampling Theorem. If we assume that pixels are indivisible reconstruction
units, then, we should preserve frequencies up to half a cycle per pixel. On
the other hand, if we assume that subpixels are independent reconstruction
units, then, for a RGB striped display, we should preserve frequencies up to
a sixth a of cycle per pixel in the horizontal direction.

The two approaches described above are extrema of the filtering problem:
the first taking pixels as indivisible elements, and the second taking subpixels
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as completely independent elements. Our concern in this work is to explore
filtering strategies in between.

In Figure 1.5, we compare reconstructions obtained by filtering with an
scaled interpolative bspline of third degree centered at subpixel position. We
observe that for a pixel scaled filter, with cut-off frequency at 1/2 cycles per
pixels, the result is too blurred. Instead, for a subpixel scaled filter, with
cut-off at 3/2 cycles per pixels, the result is plagued of color artefacts. A
good trade off between little color fringing and sharp results is attained for
a scaled filter which remove frequencies above 3/4 cycles per pixel.

1.2 Human Visual System Simulation

In Figure 1.5 we show two perceptual artefacts that can be produced due to
inappropriate filtering. By definition, an observer is in position to discern
when an image reconstruction in a display contains too much color fring-
ing1 or too much blur. But, what about machines? How can we express in
machine language that a certain image will be perceived with any of these
artefacts? This is a real problem!

First, we should identify the two agents in the perceptual relation: the
observer and the reconstruction. In order to determine the presence of per-
ceptual artefacts, we must simulate both agents. The models of observer and
reconstruction are mathematically developed in Chapter 3.

Our model of the reconstructed image, is given by a raw-reconstruction
(3.5) which takes into account the reconstruction coeffcients and the sub-
pixels emission surface. On the other hand, the visual model is based in
contrast sensitivity for trichromatic vision. The visual model transform the
raw-reconstruction to a opponent color space and applies blurring in each
channel independently ( as in SCIELAB model 8.2.3). The result of this
process is called the visual-reconstruction (3.7). In practice, the visual-
reconstruction is transformed back from opponent color space to sRGB for
display purposes.

1By color fringe, we refer to the reproduction and perception of non-existent color
contours around shape edges.
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The visual-reconstruction takes a central role in our model. It is used
for three important tasks:

• Provide an insight in the accuracy of the visual model.

• Simulate image perception in arbitrary displays.

• Define a domain of comparison between the current reconstruction and
an a reference “optimal” reconstruction.

Applications of our human visual simulation are provided in Figures 1.6
and 1.7. In Figure 1.6 we simulate how an observer at regular viewing con-
ditions2 would perceived a detail of the reconstructions provided in Figure
1.5. On the other hand, Figure 1.7 shows the simulated perception of a fixed
reconstruction3 for an observer who is moving away the screen.

1.3 Pixel Grids

The new generations of mobile devices are introducing innovative designs of
pixel grids. These new display technologies pursue three specific goals: en-
ergy efficiency, resolution enhance, and color gamut expansion.

One of the strategies adopted to reduce energy consumption is to increase
subpixel size without harming effective resolution. In displays such as the
Nexus One 1.2a and the PenTile RGBW 1.3c, the surface covered by two
subpixels is equivalent to the surface of a complete RGB pixel. This reduc-
tion in the number of subpixels per area reduce the number of transistors
of the display. This not only benefit the energy efficiency but also makes
devices thinner. Larger subpixels improve the ratio of transmissive area (i.e.,
area subpixel/area pixel), which allows reproduction of brighter images.

RGB

In the context of RGB displays, Samsumg proposes a new pixel struc-
ture in their Galaxy Note 2 1.1b. Instead of traditional vertical stripes, this

2 This mean, viewing 20 inches away to a 90ppi screen.
3The second from top to bottom in Figure 1.5
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display proposes horizontal orientation for the red and green subpixels. An-
other interesting subpixel geometry is presented by Dell 1905FP 1.1c monitor,
which implements arrow shaped subpixels.

(a) Iphone Retina (b) Galaxy Note 2 (c) Dell 1905FP

Figure 1.1: RGB displays.

RGBG

The purpose of RGBG displays is to mimic light spectrum sensitivity of
the human visual system. The distribution of cones in the retina makes the
visual system more sensitive to green color than red or blue. Consequently,
more luminance resolution is transmitted through the green channel than
through the others. This principle is precisely applied in RGBG displays. In
the same surface covered by a striped RGB pixel, a RGBG display has one
green subpixel and other subpixel which is either red or blue. Since, a RGBG
display maintains the same amount of green detail than a RGB display, it
closely preserves the effective resolution.

(a) Nexus One (b) Galaxy 4

Figure 1.2: RGBG displays.
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RGBW

According to Elliot et al.[2], traditional RGB displays are forced to trade
off between high brightness and wide color gamut. The introduction of an
unsaturated white primary overcomes this difficulty. A white subpixel in the
pixel grid would improve the reproduction of darker saturated color, as well
as brighter unsaturated ones. This allows a closer reconstruction of natural
images.

Manufacturers of PenTile RGBW 1.3c [11] claim that their eight-subpixel
cell allows equal resolution than a striped RGB displays, and reduces the
amount of subpixels by a third. The argument exposed is as follows: To
reproduce a pattern of black and white vertical lines, Pentile RGBW requires
an iterative sequence of two consecutive subpixel columns on and off. This
same pattern of black and white vertical lines is reproduced in a RGB display
by a sequence of three consecutive subpixel columns on and off.

(a) Ricoh GR Digital IV (b) Motoroloa Droid X2 (c) Pentile RGBW

Figure 1.3: RGBW displays.

RGBY

Other approach to expand the color gamut is presented by Sharp through
their Quattron RGBY display 1.4. According to the manufacturer, Quattron
technology provides smoother colour gradations and brighter pictures [14].
This new technology has received serious critics. Defenderes of current RGB
standards consider that the introduction of a yellow primary would not im-
prove image transmision or reproduction [15]. The lack of content specifically
designed for the Y primary is another big obstacle that Quattron must face.
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Figure 1.4: Sharp Xgen Quattron RGBY.

1.4 Filtering in General Pixel Grids

The problem of filtering in arbitrary pixel grids is quite interesting and com-
plex. Here we want to provide some insights on it.

1.4.1 Thrichromatic Grids

We say that a pixel grid is thrichromatic when its subpixels correspond to
any of three distinct primaries. The traditional RGB striped display is an
example of a thrichromatic pixel grid. The RGBG displays manufactured by
Samsumg also lay in this category.

The standard linear filtering schemes discussed in section 8.3.1 are valid
for any thrichromatic pixel grid. The only condition to care is to equilibrate
the maximum intensity of each channel. For instance, in a pixel grid with
a 2:1:1 relation between green, red, and blue subpixels, we are required to
scale the green channel filters to achieve a white color texture for a DC input.
Clearly, this scaling preserves the linearity of a filtering scheme.

1.4.2 Multichromatic Grids

According to the trichromatic vision model, reconstruction in a display with
more than three primaries may present “color dependence”. By “color de-
pendence” we mean that the same image reconstruction can be attained for
several set of reconstruction coefficients. In section 4.1.2 we will analyse
“color dependence” in our optimization problem.
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Suppose we are given a Quattron RGBY pixel grid 1.4, and we are asked
to reconstruct a texture for which we know its RGB channels. A natural
approach in this case is to filter each channel with an antialiasing filter, and
then set

cY = min(R,G) cR = R− cY cG = G− cY (1.1)

In the process above, the antialiasing step is linear, but the color com-
pensation step is non linear. Therefore, this filtering scheme is a nonlinear
process as a whole. Can you imagine a linear filtering scheme to reproduce
RGB textures in a RGBY device?

Intuitively, our linear filtering scheme should guarantee that a red-scale
texture is only reconstructed using red subpixels, and the same situation
should apply for green-scale and blue-scale textures. If we impose these con-
ditions we are inmediately discarding the use of subpixel Y. From a mathe-
matical point of view, we can a reconstruct a red texture using an active Y
subpixel: take R = 1/2, Y = 1/2, B = 0 and G = −1/2. Clearly, this out of
the scope for any phisycal device!

Some of the limitations just described are a consequence of working in
the standard RGB space. Instead, if we are required to exploit the space
resolution of the reconstruction device (i.e., avoid idle subpixels) and reduce
color artefacts, we need to work in a more elaborated model of the human
visual system. This justifies our desire of simulating the human visual system
as described in Section 1.2. A more detailed description of the visual model
we follow is found Section 8.2.3.

In Chapter 6, we present results of our filtering model applied to trichro-
matic and multichromatic grids. As we show, we can find linear filtering
schemes with all active subpixels attaining satisfactory results in multichro-
matic grids.
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Figure 1.5: Subpixel filtering with scaled kernels. Cut-off frequency at 3/2
(top), 3/4 (mid-top), 1/2 (mid-bottom) and 1/4 (bottom) cycles per pixel.
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Figure 1.6: Simulation of raw and visual reconstruction of the images in the
right column of Figure 1.5.
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(a) 0.2 inches (b) 10 inches

(c) 20 inches (d) 38 inches

Figure 1.7: Simulation of visual blurring for several viewing distances on a
striped RGB 90 pixels per inch display.

16



Chapter 2

Related Works

Kajiya and Ullner (1981)

One of the pioneering works on proposing text filtering based on display
attributes and human visual system is due to Kajiya and Ullner [7]. In
this work, the authors study text rasterization on CRTs. The authors claim
that traditional filtering schemes such as triangular filtering effectively solve
the aliasing problem, but are still suboptimal. They observe that these ap-
proaches disregard the reconstruction kernel of the display, which in case of
a CRT, are Gaussian spots.

Kajiya and Ullner expose the mismatch between filtering with a triangle
kernel and reconstructing with a Gaussian spot, and suggest large room for
improvement. They propose a reconstruction scheme that minimizes the
L2 error between the original texture and the image reconstructed from the
Gaussian spots:

J(. . . , x−1, x0, x1, . . .) =

∫ ∞
−∞

∣∣f(ξ)−
∞∑

i=−∞

xigi(ξ)
∣∣2dξ (2.1)

This unconstrained problem is reduced to a linear problem Ax = b. Ma-
trix A corresponds to Gaussian spots autocorrelation, and vector b to cross
correlation between Gaussian spots and texture f . Matrix A, called Gram-
mian matrix, is symmetric and block Toeplitz1.

1The mathematical formulation of our optimization problem is an extension of Kajiya
and Ullner work. We consider more elaborated display and visual models.
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They claim that the solution to the unconstrained optimization is weak,
in the sense that it does not guarantee values in the [0, 1] range for the recon-
struction coefficients. He notices that truncating the unconstrained solution
to [0, 1] could lead to poor results, specially if the quadratic problem is very
eccentric (i.e., poorly conditioned).

Figure 2.1: Optimal reconstruction of a box from Gaussian kernels. Uncon-
strained optimum (left), positivity constrained optimum (middle), and range
constrained optimum (right). Adapted from [7].

Therefore, the authors also consider constrained optimization for the same
energy function 2.1. The solution to the constrained problem is given by
Kuhn Tucker conditions, and is computed by iterative methods (gradient de-
scent in Kajiya and Ullner work). This is computationally more expensive
than solving the unconstrained problem, but produces a more accurate re-
sult. The constrained solution overcomes the notorious ringing artifacts of
the unconstrained case.

Kajiya and Ullner acknowledge that computing squared differences be-
tween linear scale intensities (8.5a) is suboptimal. Instead, a more accurate
visual metric is required. They discuss a single channel model that weights
more accurately errors for different luminance levels. Finally, they present
multichannel models as a more robust approach. The energy function as-
sociated to these visual models are nonlinear. Due to the complexities of
optimizing this kind of energy functions, the optimal solutions were not com-
puted.
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Platt (2000)

Platt [12] discusses subpixel filtering on RGB striped displays. He ob-
serves that traditional filtering schemes treat pixels as indivisible reconstruc-
tion elements. Instead, subpixels of a RGB striped display are addressed
independently, and some resolution can be gained by filtering at subpixel
level.

Figure 2.2: Crossed Filters. Compare with our result 6.2.1. Adapted from
[12].

Platt proposes an optimization model that seeks resolution gains without
producing color artefacts. This model is based on the SCIELAB [17] percep-
tual metric. Platt analyses and discusses his model in the frequency domain,
and computes the optimal solution by solving the associated linear system.

Platt shows that solving the linear system is equivalent to filtering the
texture with a 9-filter set2: R → R, R → G, R → B, G → R, G → G,
G→ B, B → R, B → G, and B → B. These filters are illustrated in Figure
2.2. The coefficients of the reconstructed red channel are given by filtering

2As we discuss in section 8.3.1, any linear scheme for subpixel filtering can be repre-
sented as a set of kernels, one for each pair of subpixel and input channel.
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the input red, green and blue channels with R → R, G → R, B → R, re-
spectively, and summing up. The coefficients for the reconstructed green and
blue channel are obtained analogously.

The filters R → R, G→ G and B → B are antialiasing kernels centered
in their respective subpixel position. On the other hand, crossed filters are
highly oscillatory or null kernels.

Figure 2.3: Cleartype Filtering. Adapted from [1].

Betrisey et al. (2000)

The work of Platt was seminal for the development of Microsoft Cleartype
[10]. Betrisey et al.[1] present details about real time implementation of Mi-
crosoft Cleartype. Instead of using the 9 optimal filters described by Platt,
they used a technique called RGB decimation. This technique disregards
the crossed filters, and simplify the R → R, G → G and B → B filters to
box kernels. Specifically, Betrisey et al. sample the input channels six times
horizontally per pixel, and take a uniform mean of support 1 centered at sub-
pixel position (Figure 2.3). They claim that this approach produce results of
sharpness comparable to optimal filtering. Beside its computational speed,
this approach is exempt of [0, 1] truncation.

Klompenhauewer and De Haan (2003)

Klompenhauewer and De Haan [8] analyse the gain of resolutions due to
subpixel sampling in RGB striped displays. The authors represent each sub-
pixel as the characteristic function of a rectangular region covering one third
of the pixel area and shifted to its respective position. No visual features are
considered in the reconstruction model.
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Figure 2.4: RGB striped and Delta Nabla pixels. Adapted from [8].

Klompenhauewer and De Haan compare the frequency spectra of an ideal
achromatic texture3 with the spectra of reconstructions using sampling at
pixel center, for one side, and sampling at subpixels positions on the other
side. This spectra analysis is done in YUV space. They present a simulated
reconstruction of a high frequencies texture (zoneplate) using each sampling
scheme. They claim that subpixel sampling produces a shift of aliasing from
luminance to chrominance. As they indicate, this is desirable since humans
are less sensitive to chrominance errors than to luminace errors.

It is also discussed subpixel sampling for a Delta Nabla (see Figure 2.4)
pixel grid, and some simulated reconstructions are exhibited for both text
and natural images. Their simulated reconstructions correspond to images
in a large scale with pixels activated in one primary color. They apply a low
pass filter on their simulated reconstructions to obtain brigther images and
induce some effects of human visual system4.

Messing et al. (2003)

Messing et al. [9] compare the efficiency of certain pixel geometries and
sampling schemes on covering the limits of perception of the human visual
system. They consider two kind of pixel grids: striped RGB and Pentile II.

Messing et al. develop their analysis by first introducing the visible
boundaries of the 2D contrast sensitivity functions for luminance and chromi-
nance channels. They argue that the luminance channel (Y ) is independently
sampled at R and G subpixels, while the chrominance channels (U and V )
are limited by the sampling rate of B and R, respectively. Following this

3The spectra of the ideal achromatic texture is assumed to be 1 for frequencies below
1/2 cycles per pixel, and 0 for frequencies above.

4This blurring is not done in the context of a visual model, i.e. an opponent color
space, as in our case.
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idea, they justify that the PentileII display covers all the visible frequencies,
but using fewer subpixels than a twice resolution RGB striped display.

They propose a subpixel rendering scheme based in the optimization of a
quality energy function similar to the proposed by Platt [12], together with
a set of constraints. They assume that each subpixel is a full color unit, and
they use the constraints to implicitly specify the color of the subpixel5. For
instance, the full color subpixel associated to a green subpixel, is constraint
to be of intensity 0 in red and blue.

Figure 2.5: Visible frequencies reproducible by pixels and sampling schemes.
Adapted from [9].

The optimal solution to their model is given by the solution of a linear sys-
tem, with Lagrange multipliers associated to each constraint. The Lagrange
multipliers indicate how the reconstruction error would be diminished if the
respective constraints were lifted. The authors claim that this information
provide the gains in resolution by adding subpixels to the current display.

Farrell et al. (2011)

Farrell et al.[6] seeks to measure the results quality for a set of discrete
filters. The discrete filters evaluated are all symmetric and support 5 (in
subpixel units). As in Cleartype, these discrete filters act independently on

5In our model we assume that each type of subpixel has a fixed light spectrum, so this
kind of constraints are unnecessary.
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sampled R, G, and B channels.

Figure 2.6: Simulated Reconstruction and Matched Display. Comparison by
SCIELAB error metric. Adapted from [6].

The first step of their approach is to simulate image reconstruction. This
is done by rendering an image with intensity-scaled point spread function for
each subpixel6. The figure in the top left corner of 2.6 provide an example of
this simulation. Then, the authors set as quality reference to a reconstruction
in a matched display. As observed from the bottom left of 2.6, a matched
display has the same number of subpixels, but these are achromatic instead
of monochromatic. Finally, they evaluate the performance of a discrete fil-
ter, by computing the perceptual SCIELAB error metric between the quality
reference and the reconstruction provided by the filter.

A good compromise between resolution and low chromatic artefacts was
obtained by the discrete filter (−0.1, 0.2, 0.8, 0.2,−0.1).7 This is partially cor-
roborated by a psychophysical test the authors carried out with three ob-
servers, three letters, two fonts and 2 type of displays.

Fang et al. (2013)

Fang et al. [5, 4] propose downsampling schemes for traditional RGB
displays which extends cutoff frequencies beyond Nyquist limit. They define

6This is also the approach we follow for our raw-reconstruction.
7The presence of negative weights exhibits some relation between this discrete filter

and ideal low pass filtering. In Figure 1.5 we show that good results are indeed attained
by scaling antialiasing filters.
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a luminance function, which is a uniform mean of the R, G, and B image
coefficients. The authors claim that high frequencies of different colors tend
to be similar. Based on this hypothesis, they are able to move (by applying
a linear transform) from R,G,B, to a space Y,C1, C2, where C1, C2 are low
frequency components (see Figure 2.7).

Figure 2.7: (a) Y , (b) C1, and(c) C2 spectrum. Adapted from [5].

They explore three downsampling techniques: Direct Pixel Downsam-
pling (DPD), Direct Subpixel Based Downsampling (DSD), and Diagonal
DSD (DDSD). They observe that DSD produces Y,C1, C2 spectral compo-
nents to align vertically; since C1, C2 are low frequency components, they
are able to expand the horizontal cutoff frequency of Y , without introducing
alias. In the case of DDSD,the spectral components of Y ,C1, and C2 aligns
diagonally, thus allowing a larger spectrum of Y both vertically and horizon-
tally.

Fang et al. propose some measures to compare several subpixel filtering
techniques. They propose a Luminace Sharpness Measure (LSM) to identify
the presence of high frequencies on the downsampled reconstruction, and a
Luminance Aliasing Measure (LAM) that establishes the proximity of the
reconstruction to a aliased reference or to a blurred reference. They also
propose a Luminance Contrast Measure (LCM), claiming that images with
larger contrast are perceptually desirable. Finally it is proposed a Chromi-
nance Distortion Measure (DCM), which compares the U and V component
of the reconstructed image, with the respective components of a reference
reconstruction with no color distortion.
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Engelhardt et al. (2013)

Engelhardt et al.[3] present an approach to construct visual-based kernels
for subpixel filtering on regular pixel grids. The approach follow very much
Platt[12] works, and its main novelty is the adaptability to more complex
pixel grids such as RGBW and RGBG. The purposes and methods discussed
in this paper are close to our model, but there are several notorius differ-
ences. First, the authors compute optimal visual-based kernel through a
discrete domain formulation, then, subpixels are represented as an arrange
of impulses on a discrete grid. This representation disregards pixel geometry
and forces (or assume) perfect alignment of subpixels to a sparse grid. Also,
the construction of the sparse grid is pixel dependent, what implies certain
user (or designer) interaction8. Instead, our continuous domain formulation
overcomes these limitations.

Figure 2.8: Pixel Discretization. Adapted from [3].

Once the problem is solved in the discrete domain, the authors fit a
continuous function over the optimal discrete filters. The author looks for
parameters a, b, on a functional form f(x, y) = sinc a

√
x2 + y2 exp(−x2+y2

b
),

that best fit the model. The selection of this functional form suits the os-
cilatory and exponential decay of these filters. However, it only allows two
degrees of freedom and forces the kernel to be radially symmetric. This last
property seems not to be coherent to the asymmetries of the physical pixel

8Consider for instance designing a sparse grid to represent a Galaxy Note 6.8 pixel.
This would require introducing several idle variables to the system.
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grid.

The authors also discus the problem of optimal subpixel filtering in the
context of color dependence. Their approach is very different to ours since
they use a standard nonlinear mapping: in a RGBW pixel you take W =
min(R,G,B) and subtracts W to each R,G,B. Observe that this approach
would reconstruct a grayscale image using W pixels only. This seems a con-
tradiction to the goal of subpixel filtering: increase the spatial resolution9.
Finally, the authors do not aboard the problem of system singularity in-
troduced by the color dependence. Maybe these kind of problems are not
present in the fixed distance visual model of the authors.

9Our human visual system simulations show that best results for grayscale images are
attianed when all subpixels are active.
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Chapter 3

Linear Problem

3.1 Introduction

The work here developed is an approximation to the following question:

What is the most visually accurate reconstruction attainable for a given
texture in certain display?

We will approach this problem by proposing an optimization model that
considers both the Human Visual System and display attributes.

Our approach to simulate the Human Visual System response will fol-
low the SCIELAB model 8.2.3. This visual model considers the following
physiological attributes, described in Chapter 8:

1. Trichromatic vision. Due to the presence of three different types of
cones in the retina : L, M and S.

2. Opponent Color Space Decomposition. Due to the decorrelation of the
spectral response of L, M and S cones.

3. Visual Blur. Due to the density and distribution of L, M and S cones.

4. Luminance Perception. Due to the nonlinear response of cones and
rods.

The specific notation used for the problem formulation is explained in 9.2.
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3.2 Parameters

For clarity, we will divide our model in three stages:

Raw Level

The raw-texture is the object to be reproduced. It is represented by a
multichannel decomposition of its light spectrum,

f : (ΩC)× {h} → R (3.1)

The display is a grid of pixels with identical subpixel structure. For a pixel
with n subpixel elements, we represent the raw-pixel by the multichannel
vector,

ϕ =


ϕ1

ϕ2
...
ϕn

 (3.2)

Each ϕs is a multichannel decomposition of the light spectrum emitted
by the subpixel surface. ϕs : (ΩC)×{h} → R is such that the domain origin
coincides with the pixel center.

We will write ϕs,i,j to denote the sth reconstruction element (i.e., subpixel)
in the (i, j)th pixel of the image. This is precisely given by the expression:

ϕs,i,j = ϕs(· − i, · − j) (3.3)

The reconstruction coefficients indicate the intensity of subpixels at the
each pixel position. Reconstruction coefficients will be represented by the
discrete channel vector,

c =


c1

c2
...
cn

 (3.4)

Each cs is a channel, cs : ΩD → R, indicating the intensities of the
sth subpixel. For a fixed raw-pixel ϕ, we define the raw-reconstruction
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associated to coefficients c by,

gc =
∑
s,i,j

cs,i,jϕs,i,j

=
∑
s

cs ∗ ϕs

= c> ∗ ϕ

(3.5)

Remark

In equation 3.4 we defined c as a channel vector. In practice, we will
overload the symbol c to also denote the multichannel vector formed by its
repeated copies in depth. In equation 3.5, c is a multichannel vector of depth
h, where c1 = c2 = · · · = ch.

Visual Level

We denote by A : Rh → Rd the linear transformation from the multi-
channel decomposition of the light spectrum to the opponent color space.

The visual blurring kernels will be denoted by the multichannel,

kA =
(
kA1 ; kA2 ; . . . ; kAd

)
(3.6)

where each kAi
is a channel, kAi

: ΩD → R, that acts independently on the
respective component of the opponent color space.

By blurring the opponent color decomposition of the raw-texture and
raw-reconstruction, we obtain the visual-texture and the visual-reconstruction,
respectively. These are multichannels given by expressions:

f̌ = A(f) ∗ kA, ǧ = A(gc) ∗ kA (3.7)

The expression for the visual-reconstruction can be written in the form:

A(gc) ∗ kA = A(c> ∗ ϕ) ∗ kA
= c> ∗ (A(ϕ) ∗ kA)

(3.8)

The multichannel vector ϕ̌ = A(ϕ) ∗ kA will be called the visual-pixel.
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Metric Level

Let B : Rd → Re be the linear transformation from opponent color
space to the metric space. By applying this transformation to visual-texture
and visual-reconstruction, we obtain the metric-texture and the metric-
reconstruction, respectively. These are multichannels given by the expres-
sions:

f̄ = B(A(f) ∗ kA), ḡc = B(A(gc) ∗ kA) (3.9)

We can rewrite the metric-reconstruction in the form:

B(A(gc) ∗ kA) = B(c> ∗ (A(ϕ) ∗ kA))

= c> ∗ (B(A(ϕ) ∗ kA))

= c> ∗ ϕ̄
(3.10)

The multichannel vector ϕ̄ = B(A(ϕs) ∗ kA) will be called the metric-
pixel.

Remark

We will be specially concerned with the SCIELAB opponent color space
and their respective blurring kernels 8.2.3. However others color spaces and
blurring kernels could be considered. We apply a metric transform B to
obtain a color space where L2 distance between colors adjust better to per-
ceptual distance. In practice, B could represent a scaling of the opponent
color space, or a transformation to another color space.

3.3 Problem Formulation

Problem 3.1. Let VB,A,ϕ denote the reconstruction space defined by raw-
subpixels ϕ, visual model A and metric transformation B. Let f̄ denote the
metric-texture. Our aim is to find metric-reconstruction, ḡc ∈ VB,A,ϕ, that
minimizes:

||f̄ − ḡc||2 (3.11)
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Since ḡc is completely characterized by the reconstruction coefficients c,
we can evidence this parameter, and restate the problem as follows:

Let f be a texture to be reconstructed as an W ×H image. Our objective
is to find c : (ZW×H × {n})→ R that minimizes,

J(c) = ||f̄ − c> ∗ ϕ̄||2 (3.12)

3.4 Problem Analysis

The problem stated above is an unconstrained convex1 quadratic problem on
the reconstruction coefficients c. Since the reconstruction space VB,A,ϕ, is a
finite dimensional vector subspace of L2, there is a unique ḡc ∈ VB,A,ϕ that
minimizes distance to f̄ . Whenever the reconstruction elements are linear
independent, there is a unique representation c for this optimal.

For the unconstrained problem, first order conditions are sufficient to
guarantee optimality. Expressing 3.12 as an inner product, we obtain,

J(c) = 〈f̄ − c> ∗ ϕ̄, f̄ − c> ∗ ϕ̄〉
= 〈f̄ , f̄〉 − 2〈f̄ , c> ∗ ϕ̄〉+ 〈c> ∗ ϕ̄, c> ∗ ϕ̄〉
= 〈f̄ , f̄〉 − 2〈[f̄ ∗ ϕ̄∨]+, c〉+ 〈[ϕ̄∨ ∗ ϕ̄>]+ ∗ c, c〉

(3.13)

The first order condition is given by ∂J
∂c

= 0. This corresponds to equation:

[ϕ̄∨ ∗ ϕ̄>]+ ∗ c = [f̄ ∗ ϕ̄∨]+ (3.14)

In aim of clarity, we will denote,

m = [ϕ̄ ∗ (ϕ̄∨)>]+, b = [f̄ ∗ ϕ̄∨]+ (3.15)

msr = [ϕ̄r ∗ ϕ̄∨s ]+, bs = [f̄ ∗ ϕ̄∨s ]+ (3.16)

m =


m11 m12 · · · m1n

m21 m22 · · · m2n
...

...
. . .

...
mn1 mn2 · · · mnn

 , b =


b1

b2
...
bn

 (3.17)

1The convexity of the problem follows from lemma 3.1.

31



Here b is a discrete channel vector of dimensions n × 1, and m is a
discrete channel matrix of dimensions n×n. The energy function and optimal
condition can now be expressed as:

J(c) = 〈m ∗ c− b, c〉+ 〈f̄ , f̄〉 (3.18)

m ∗ c = b (3.19)

Remarks

Our functional J(c) can be written in matrix form as

J(c) = ctMc− 2btc+ d, (3.20)

where c is the vector representation of the reconstructions coefficients, and M
is the Hessian of the minimization function. M is called the Gramian matrix
and corresponds to subpixels correlations. Indexing vector coordinates by
triplets (s, i, j), refering to sth subpixel at (i, j)th image position, entries in
3.20 are given by:

Msij,rkl = 〈ϕ̄r,k,l, ϕ̄s,i,j〉 bsij = 〈f̄ , ϕ̄s,i,j〉 d = 〈f̄ , f̄〉
= [ϕ̄r ∗ ϕ̄∨s ]+i−k,j−l = [f̄ ∗ ϕ̄∨s ]+i,j

= msr(i− k, j − l) = bs(i, j)

(3.21)

The Hesssian M is a Hermitian positive semidefinite matrix. This is a
corollary of the following lemma:

Lema 3.1. Let {ϕ1, ϕ2, . . . , ϕn, w} be a set of functions defined from Ω ⊂ Rn

to R, and w ≥ 0. Let H be the matrix defined by:

Hij =

∫
Ω

w(x)〈ϕi(x), ϕj(x)〉dx

Then H is Hermitian positive semidefinite.
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3.5 Solution via Spectral Decomposition

Applying Discrete Fourier Transform on both sides of 3.19, we deduce that
for all (u, v) ∈ {W } × {H}, it must be satisfied,

m̂(u, v)ĉ(u, v) = b̂(u, v) (3.22)

In matrix form this condition is written as,


m̂11(u, v) m̂12(u, v) · · · m̂1n(u, v)
m̂21(u, v) m̂22(u, v) · · · m̂2n(u, v)

...
...

. . .
...

m̂n1(u, v) m̂n2(u, v) · · · m̂nn(u, v)



ĉ1(u, v)
ĉ2(u, v)

...
ĉn(u, v)

 =


b̂1(u, v)

b̂2(u, v)
...

b̂n(u, v)


(3.23)

Observe that m̂ij, ĉi, and b̂i are the Discrete Fourier Transform of W ×H
real arrays, therefore, m̂ij(u, v), ĉi(u, v), b̂i(u, v) are complex numbers. By
solving each (u, v)-linear system, we get the value of the Discrete Fourier
Transform of each ci for the (u, v)-th frequency, this is,

ĉs(u, v) =
(
m̂(u, v)−1b̂(u, v)

)
s

(3.24)

Once we have solved the linear system for all the (u, v)-frequencies, we
find the value of the reconstruction coefficients by applying Inverse Discrete
Fourier Transform:

c = IDFT(m̂−1b̂) (3.25)

Remarks
Since mji = m∨ij, we deduce,

m̂ji(u, v) = m̂ij(u, v) (3.26)

This implies that matrices m̂(u, v) are Hermitian. In the next section we
will show that each m̂(u, v) is also positive semidefinite.

3.6 System Spectrum

Denote by ωu,v the (u, v)-eigenvector of the Discrete Fourier Transform. For
any F : ZW×H → R we have,
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F ∗ ωu,v = 〈F ,ωu,v〉ωu,v = F̂ (u, v)ωu,v (3.27)

Let ⊗ denote the Kronecker product operator. For z = (z1, . . . , zn) ∈ Cn

and ωu,v, we have

z ⊗ ωu,v =


z1ωu,v
z2ωu,v

...
znωu,v

 (3.28)

By convolving the expression above respect to the channel matrix m we
obtain

m ∗ (z ⊗ ωu,v) =



n∑
s=1

(m1s ∗ zsωu,v)
n∑
s=1

(m2s ∗ zsωu,v)

...
n∑
s=1

(mns ∗ zsωu,v)


=



n∑
s=1

(m̂1s(u, v)zsωu,v)

n∑
s=1

(m̂2s(u, v)zsωu,v)

...
n∑
s=1

(m̂ns(u, v)zsωu,v)


= (m̂(u, v)z)⊗ ωu,v

(3.29)

Let Zu,v = {z1
u,v, . . . ,z

n
u,v} ⊂ Cn, Λu,v = {λ1

u,v, . . . , λ
n
u,v} ⊂ Cn be the set

of eigenvectors and eigenvalues of m̂(u, v). By definition,

m̂(u, v)ziu,v = λiz
i
u,v (3.30)

From expressions 3.29 and 3.30 we get,

m ∗ (ziu,v ⊗ ωu,v) = λi(z
i
u,v ⊗ ωu,v) (3.31)

Therefore we conclude that the sets

Z = {ziu,v ⊗ ωu,v : i ∈ {n}, (u, v) ∈ {W } × {H}}, (3.32)
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Λ = {λiu,v : i ∈ {n}, (u, v) ∈ {W } × {H}} (3.33)

are eigenvectors and eigenvalues of m.

Since Λu,v ⊂ Λ ⊂ R≥0, we conclude that m̂(u, v) is positive semidefinite.

Remark

The set Z defined above correspond to complex eigenvectors of the linear
system. Since the linear system is Hermitian we can find an orthonormal set
of real eigenvectors. These real eigenvectors are given by the expressions:

xiu,v = (ziu,v + ziu,v)/2 yiu,v = (ziu,v − ziu,v)/2 (3.34)

Here, we are counting the real eigenvectors twice, since xiu,v = yiW−u,H−v
and yiu,v = xiW−u,H−v.

3.7 Filtering Kernels

To compute the matrix coefficients (m) and input vectors (b) of our linear
system, we are required to sample the subpixels correlations and filtered
textures. The coefficients of the input vector are given by

b = [f̄ ∗ ϕ̄∨]+

= [
(
B(A(f) ∗ kA)

)
∗
(
B(A(ϕ) ∗ kA)

)∨
]+

= [
(
A(f) ∗ kA

)
∗
(
BtB(A(ϕ) ∗ kA)

)∨
]+

= [A(f) ∗
(
BtB(A(ϕ) ∗ kA) ∗ k∨A

)∨
]+

= [A(f) ∗ ϕ̃∨o ]+

(3.35)

The multichannel vector ϕ̃o, defined by,

ϕ̃o = BtB(A(ϕ) ∗ kA) ∗ k∨A, (3.36)

will be called the opponent filtering kernel. On the other hand, the matrix
coefficients are given by
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m = [ϕ̄ ∗ (ϕ̄∨)>]+

= [
(
B(A(ϕ) ∗ kA)

)∨ ∗ (B(A(ϕ) ∗ kA)
)>

]+

= [
(
B(A(ϕ) ∗ kA)

)∨ ∗ (B(A(ϕ>) ∗ kA
)
]+

= [
(
BtB(A(ϕ) ∗ kA)

)∨ ∗ (A(ϕ>) ∗ kA
)
]+

= [
(
BtB(A(ϕ) ∗ kA) ∗ k∨A

)∨ ∗ A(ϕ>)]+

= [ϕ̃∨o ∗ A(ϕ>)]+

(3.37)

Equations 3.35 and 3.37 illustrate the importance of ϕ̃o in the computa-
tion of matrix and input vector coefficents. Equation 3.36 gives an explicit
formula to compute this kernel based in the raw-pixel, visual model, and
metric parameters.

Remark

In the most general case, At is not computable. For the computable cases,
we define

ϕ̃r = At(BtB(A(ϕ) ∗ kA) ∗ k∨A) (3.38)

and call this expression the raw filtering kernel. From this definition we
obtain:

b = [f ∗ ϕ̃∨r ]+, m = [ϕ̃∨r ∗ (ϕ>)]+ (3.39)

3.8 Dual Filters

Let δ denote the discrete impulse, and define the discrete channel matrices

∆n =


δ 0 · · · 0
0 δ · · · 0
...

...
. . .

...
0 0 · · · δ

 (3.40)
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l =


l1,1 l1,2 · · · l1,n
l2,1 l2,2 · · · l2,n
...

...
. . .

...
ln,1 ln,2 · · · ln,n

 (3.41)

to be such that m ∗ l = l ∗m = ∆n.

From equations 3.35 and 3.19 we obtain

c = l ∗ b
= l ∗ [A(f) ∗ ϕ̃∨o ]+

= [A(f) ∗ l ∗ ϕ̃∨o ]+

= [A(f) ∗ (l∨ ∗ ϕ̃o)∨]+

= [A(f) ∗ (ϕ̊o)
∨]+

(3.42)

The multichannel vector ϕ̊o, defined by,

ϕ̊o = l∨ ∗ ϕ̃o, (3.43)

will be called the opponent dual kernel.

Remarks

In equations 3.42 and 3.43 we overload discrete channel matrix l to de-
note a multichannel matrix with repeated copies of l in depth.

When At is computable, we get

c = [f ∗ (ϕ̊r)
∨]+ (3.44)

The multichannel vector ϕ̊r, defined by,

ϕ̊r = l∨ ∗ ϕ̃r (3.45)

is called the raw dual kernel.
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Chapter 4

Singular Systems

4.1 Factors of Singularity

The linear system 3.19, which gives optimal condition, is not always invert-
ible. In such cases, a fixed texture can be reconstructed using distinct sets
of coefficients. To understand the reasons of singularity, we will study the
concept of uniform reconstruction. Then, we will distinguish two scenarios
that produce a poorly conditioned system.

4.1.1 Uniform Reconstruction

Intuitively, we say that a reconstruction is uniform when it is perceptually
equal in all its points. If you reconstruct a texture of black and white stripes
in the screen, and you start moving away, you will eventually perceive a con-
stant gray texture. At the point a constant gray texture is attained (and
beyond), we have a uniform reconstruction. Therefore, uniform reconstruc-
tion is a consequence of visual blur.

Let us consider the reconstruction problem in an achromatic space. Sup-
pose we have a display with simple achromatic pixels ϕ (Figure 4.1a), and
visual blur in the achromatic space given by k. Assume both ϕ and k are
normalized, this is, ||ϕ||1 = ||k||1 = 1. If we turn all the pixels with equal
intensity, we will have a uniform whenever (c∗ϕ)∗k = c∗ (ϕ∗k) is constant.
This is attained if and only if
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∑
ij

(ϕ ∗ k)(x+ i, y + j) = 1 ∀(x, y) ∈ [0, 1]× [0, 1] (4.1)

The condition above implies ϕ ∗ k satisfies partition of unity (see 9.38).
Since ϕ effective support is only one pixel, in practice, it will not satisfy par-
tition of unity1. On the other hand, the visual blurring kernel k will be closer
to satisfy partition of unity as far as we move away from the screen. From
proposition 9.2, we deduce that partition of unity of k guarantees uniformity
in the reconstruction.

Now, consider a reconstruction where only the odd-odd pixels are turned
on (Figure 4.1b). In such case, we will have a uniform reconstruction when-
ever k satisfies 2-step partition of unity. This is∑

ij

k(x+ 2i, y + 2j) =
1

2
∀(x, y) ∈ [0, 2]× [0, 2] (4.2)

Condition above is equivalent to claim that kernel k1/2(x) = 2k(2x) sat-
isfies partition of unity. If a blurring kernel satisfies partition of unity for
certain viewing distance, then, it will satisfies 2-step partition of unity when
doubling this distance. In practice, blurring kernels that almost satisfy par-
tition of unity lead to poorly conditioned systems.

(a) (b)

Figure 4.1: Achromatic Display. (a) All pixels at 1/4 of maximum intensity.
(b) Odd-Odd pixels at full intensity. Viewing far enough of the screen, both
reconstructions may appear identical due to visual blurring.

1 ϕ will satisfy partition of unity only if it is a full pixel box kernel.
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4.1.2 Color Dependance

In practice, our optimization model represents the light spectrum of each
subpixels in a finite dimensional color space. If we have model with n type of
subpixels and a color space of dimension m, we will have “color dependance”
whenever n > m.

Consider a four subpixels RGBW display 1.3a, and suppouse we want to
reconstruct a white texture by solving the optimization problem in the three
dimensional RGB color space. By projecting the light spectrum of these
subpixels to RGB color space we obtain the associations

ϕR →

1
0
0

 , ϕG →

0
1
0

 , ϕB →

0
0
1

 , ϕW →

1
1
1

 (4.3)

Since the projected light spectrums of ϕW , ϕR, ϕG, ϕB, form a linear de-
pendent set, we say the subpixels are “color dependent”. This isolated con-
dition does not imply singularity of the system. In fact, linear system 3.19
is still invertible for low blurring conditions.

What happens when blurring kernels are large enough to satisfy parti-
tion of unity? In that case, we can reconstruct a uniform white texture by
turning on all RGB subpixels, or by turning on all W subpixels. Both recon-
structions are not only perceptually equivalent, but are optimal solutions of
the optimization problem.

In conclusion, the linear system 3.19 is singular whenever we have “color
dependent” subpixels and blurring kernels satisfying partition of unity.

4.1.3 Blurring Overlapping

Since subpixels of the same type emit identical light spectrum, they are pair-
wise “color dependent”. This dependence harms the system invertibility at
large blurring conditions.

Suppose we are interested in reconstructing a 1
4

intensity red texture in
a RGB display. If blurring kernels satisfies two-step partition of unity, we
will have optimal reconstruction by turning all red subpixels at 1

4
intensity,
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or by turning all odd-odd red subpixels at full intensity, or by turning all
even-even red subpixels at full intensity, etc.

No matter if subpixels types are “color independent”, we will have sin-
gular systems whenever blurring kernels satisfies two-step partition of unity.
Figure 4.1 is an example of this phenomena in an achromatic display.

4.2 Energy Function

4.2.1 Boundedness

As we have previously discussed, systems with large blurring kernels tend to
be poorly conditioned and even singular.

In general, a quadratic problem, F (x) = 1
2
xtAx − etx, for A positive

semidefinite and singular, is not bounded. If v is an eigenvector of A as-
sociated to the eigenvalue 0, and etv < 0, then v or is direction of infinite
descent. This means, J(αv)→ −∞ as α→∞.

Observe that e ⊥ Null(A) is a necesary and sufficient for F (x) to be
bounded. This is true for our problem. Our energy function, expressed in
convolution form, is given by,

J(c) = 〈m ∗ c− b, c〉+ 〈f̄ , f̄〉 (4.4)

Going back in the steps that lead to this equation (see 3.13), we obtain

c ∈ Null(m) ⇐⇒ m ∗ c = 0

⇐⇒ 〈m ∗ c, c〉 = 0

⇐⇒ 〈c> ∗ ϕ̄, c> ∗ ϕ̄〉 = 0

⇐⇒ 〈ω, c> ∗ ϕ̄〉 = 0 ∀ω ∈ L2(ΩC × {h})

(4.5)

This last condition implies,

〈f̄ , c> ∗ ϕ̄〉 = 0

〈b, c〉 = 0
(4.6)

We conclude b ⊥ Null(m). Therefore, energy function 4.4 is indeed
bounded.
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4.2.2 Range-nullspace Decomposition

Consider our energy function 4.4, expressed in vector form by

J(c) = ctMc− 2btc+ d (4.7)

Since M is Hermitian, we can express it as M = QDQt, for Q unitary
matrix of eigenvectors, and D diagonal matrix of eigenvalues. Let

Q = (QR|QN), D =

(
DR 0
0 0

)
(4.8)

where QR and QN are the submatrices of eigenvectors in the range and
nullspace of M , respectively. DR is the diagonal matrix of positive eigenval-
ues.

By applying the variable change y = Qtc, and writing y = (yR, yN), the
energy function corresponds to

J(c) = ytRDRyR − 2btQRyR + d (4.9)

The minimum of the function above is attained for y∗R = D−1
R Qt

Rb. Since
4.9 is independent of yN , it follows that all vectors y = (y∗R, yN) are global
minimums. We conclude that the set of optimal solutions to the energy
function 4.7 is given by c = c∗R + cN where c∗R = QRy

∗
R and cN is any vector

in Null(M).

4.3 Minimal Reconstruction Cost Solution

We have already characterized the set of optimal solutions to our energy
function 4.7. The question that naturally arise is what solution to choose.
The criteria we defined to choose a solution is based in reconstruction costs.

Each subpixel will be assigned a reconstruction cost which is proportional
to the square of its intensity. We define the total reconstruction cost by

I(c) = ctDγc (4.10)

where Dγ is a positive diagonal matrix. The values in the diagonal of Dγ are
the reconstruction costs associated to each subpixel.
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By setting cN = QNyN , we find that the reconstruction cost for all optimal
solution to 4.7 is given by,

I(c) = (c∗R +QNyN)tDγ(c
∗
R +QNyN)

= ytN(Qt
NDγQN)yN + 2ytN(Qt

NDγc
∗
R) + (c∗R)tDγc

∗
R

(4.11)

The minimum of this function is attained for

y∗N = −(Qt
NDγQN)−1(Qt

NDγc
∗
R) (4.12)

By setting c∗N = QNy
∗
N , we finally get that c∗ = c∗R+c∗N is the optimal so-

lution with minimal reconstruction cost. From the results above we conclude
that

c∗ = c∗R + c∗N

=
(
I −QN(Qt

NDγQN)−1Qt
NDγ

)
c∗R

=
(
I −QN(Qt

NDγQN)−1Qt
NDγ

)(
QRD

−1
R Qt

R

)
b

(4.13)

4.3.1 Linearity of the Minimal Reconstruction Cost
Solution

Since b depends linearly on the input (equation 3.21), and c∗ depends linearly
on b (equation 4.13), we conclude the that the filtering scheme that provide
minimal reconstruction cost solution is linear.

If we assume that the reconstruction cost is equal for all the subpixels of
the same type, then our optimization problem is also shift invariant (LSI).
This results follows from the invariance of the reconstruction cost when the
texture is shifted an integer pixel direction.

As a LSI system, this filtering scheme should be written in the form

cs =
∑
i

[f ∗ ks]+ where f is the input texture and ks is the multichannel

filter of the sth subpixel. The analysis of the explicit form of these filters
is left for future work. However, we should remark that the computation of
these filters can be done in a similar form as done in section 3.8. Let hs and
bs be discrete channel vectors,
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hs =


hs1

...
hss

...
hsn

 , bs =


0
...
δ
...
0

 (4.14)

such that hs is the optimal reconstruction coefficients of the minimal cost
problem with vector b = bs. Define the channel matrix,

h =


h1,1 h1,2 · · · h1,n

h2,1 h2,2 · · · h2,n
...

...
. . .

...
hn,1 hn,2 · · · hn,n

 (4.15)

Analogous expressions to 3.42 and 3.44 can be formulated for this case.
For instance, we may write

c = [f ∗ (ϕ̊γr)
∨]+ (4.16)

where we define,

ϕ̊γr = h∨ ∗ ϕ̃r (4.17)

The multichannel vector ϕ̊γr will be called the minimal cost - raw dual
kernel. This kernel depends in the vector of reconstruction costs γ.

4.3.2 Solution by Spectral Decomposition

Consider a model with n subpixel types, where the reconstruction cost is
equal for all the subpixels of the same type. Let γs be the reconstruction
cost associated to sth subpixel type. Then, the reconstruction cost is given
by

I(c) =
∑
s

γs||cs||2 (4.18)

By Parseval identity, we have,

||cs||2 =
∑

(u,v)∈{W }×{H}

|ĉs(u, v)|2 (4.19)
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Therefore, reconstruction cost in the frequency domain is given by,

I(c) =
∑

(u,v)∈{W }×{H}

(∑
s

γs|ĉs(u, v)|2
)

(4.20)

On the other hand, optimal solution to the energy function 4.7, is given
by conditions,

m̂(u, v)ĉ(u, v) = b̂(u, v) ∀(u, v) ∈ {W } × {H} (4.21)

From equations 4.20 and 4.21, we deduce that minimal cost solution c∗,

is such that m̂(u, v)ĉ∗(u, v) = b̂(u, v), and
∑
s

γs|ĉ∗s(u, v)|2 is minimal, for

all (u, v) ∈ {W } × {H}.

We have transformed the original optimization problem in W×H smaller
subproblems that can be solved in parallel. This approach does not require
explicit calculation or storage of matrix Q.

4.3.3 Numerical Issues

Due to the finite arithmetic precision and the numerical methods involved,
the computation of eigenvectors and eigenvalues of the optimal linear system
3.19 is not error free. These numerical errors make difficult to do a sharp
distinction between zero and non-zero eigenvalues. Therefore, the distinction
of null and range spaces may not be done in practice .

We use an energy function to find an approximate solution to the minimal
reconstruction cost problem. The new energy function mixes the quality term
with the cost term. The cost term is weighted by a scalar factor α,

Jα(c) = ctMc− 2btc+ d+ αctDγc (4.22)

As α increases, our system gets better conditioned, but we start loosing
quality in favor of cost. Therefore, we must carefully set α to obtain a well
conditioned problem with little impact on quality.

The following proposition gives us an insight on the asymptotic behaviour
of the energy function Jα as α→ 0.
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Proposition 4.1. Let c∗ = c∗R + c∗N be the optimal-minimal cost solution of
equation 4.7. For α > 0, let cα = cαR+cαN be the optimal solution2 of equation
4.22. Define εαR = c∗R−cαR and εαN = c∗N−cαN . Let m be the minimum positive
eigenvalue of M . The following properties hold:

1. ||εαR|| ≤ α(max γs
m
||c∗||).

2. ||εαN || ≤
max γs
min γs

||εαR||.

3. limα→0+ c
α = c∗.

Remark

The dual filters defined by each system Jα can be computed in analo-
gous way to section 3.8. In this case we must add the reconstruction cost
to the subpixel correlation matrix. Using the notation of section 3.8, this
corresponds to adding (αγs)δ to each mss. For a future work we may study
the convergence of the dual filters of Jα to the dual filter of the minimal
reconstruction cost problem discussed in section 4.3.

2cα is unique since M + αDγ is positive definite.
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Chapter 5

Implementation

In the previous Chapters we presented the formulation and analytic solution
to our linear problem. Here, we will discuss some implementation details.

5.1 Function Representations

Textures, visual kernels, and subpixels, are all represented as functions on
continuous domains. We will distinguish two type of function representations:

• Exact: Those are functions associated to a formula or an algorithm
which provide their exact value at any point.

• Sampled: Those are functions whose exact values we know just in a
finite set of samples. When the samples are located in a regular grid,
we will call this function an image. From the set of samples S, we
extend the function to the rest of the domain by using a reconstruction
kernel ψ. Therefore, we get a function approximation given by S ∗ ψ.
In general ψ is taking interpolative (i.e.,[ψ] = δ), in order to preserve
the texture values at the sampled points.

5.2 Filtering Kernels Construction

In order to calculate filtering kernels ϕ̃ of equations 3.36 and 3.38, it is
required to compute a sequence of convolutions between the subpixel repre-
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(a) Pixel (b) Kernel

Figure 5.1: Sampling Scheme.

sentation ϕ and the visual blurring kernels kA. To compute this convolution,
we sample regularly the subpixel geometry and the visual kernel impulse
response1 (Figure 5.1). We associate to each subpixel and visual kernel a
continuous representation, based in their samples (Sϕ and SkA) and a com-
mon reconstruction kernel ψ:

ϕ = Sϕ ∗ ψ kA = SkA ∗ ψ (5.1)

From this representation we can easily compute convolutions by dividing
in discrete and continuous parts. For instance, ϕ∗kA ∗k∨A = (Sϕ ∗SkA ∗Sk∨A)∗
(ψ ∗ ψ ∗ ψ∨). The previous expression is similar to the filtering kernels ex-
pressions (3.36,3.38) up to the linear transformations involved in our model.

The discrete convolution between the samples can be quickly computed
using FFT. On the other hand, we use simple interpolation kernels for re-
construction. By taking ψ = b1, the bspline of order 1 (i.e., a hat), then, the
final reconstruction kernel given by expression ψ∗ψ∗ψ∨ is bspline of order 5.

Since a bspline of order 5 is a piecewise polynomial function of large de-
gree and support (5th degree and support 6), it is relatively expensive to
evaluate the filtering kernel ϕ̃ using this representation. In practice, we sam-
ple densely the subpixel geometry and visual kernels (300× 300 samples per
pixel for Sϕ and SkA) and we use a hat as final reconstruction kernel. The
large sampling density amortizes the error produced by the simplification of

1In practice our sampling grid is 300× 300 samples per pixel.
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the final reconstruction kernel.

5.3 Coefficient Computations

Subpixel correlation coefficients (m) and filtered texture coefficients (b) are
computed by Monte Carlo Integration. Observe that expressions in 3.35 and
3.37 do not require an explicit convolution between its terms, but integration
at sampling positions. Monte Carlo approximate an integral by summing over
a set of samples: ∫ b

a

f(x)dx ≈ b− a
n

n∑
i=1

f(xi) (5.2)

Here, xi’s are variates uniformly distributed in [a, b]. In our case, the inte-
gration functions are A(ϕ>)ϕ̃(·−i) for subpixel correlation , and A(f)ϕ̃(·−i)
for filtered texture.

We can use a sample, not just for integration in a single pixel position,
but in a neighborhood of the pixel grid. Using a sample repeatedly improve
our implementation performance by reducing kernels and texture evaluations.

For instance, consider subpixel correlations [ϕ̃∨o ∗ A(ϕ>)]+. A sample of
the color transformed subpixel, A(ϕ), can be used repeatedly for Monte Carlo
integration at each pixel center. On the other hand, samples of the filtering
kernel, ϕ̃o, can only be used for Monte Carlo integration at its closest pixel
center.

Consider the filtered texture, [ϕ̃∨o ∗A(f)]+. Samples of the filtering kernel,
ϕ̃o, can now be repeatedly used for integration at each pixel center. On the
other hand, samples of the color transformed texture, A(f), can be repeat-
edly used for integration in a neighbourhood of pixels covered by the filtering
kernel support.

This last strategy of reusing texture samples is called “sample sharing”,
and it is very effective for filtering with large support kernels (as is our case).
“Sample sharing” may be memory intensive. In such cases, a rolling buffer
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can be adapted to reduce memory requirements. By using a rolling buffer,
we do not require storage for samples of the complete image, but for samples
in the lines covered by the filtering kernel support.

5.4 System Solver

In order to solve each linear system Â(u, v) we take advantage of the Her-
miticty. We factorize and solve the Hermitian system using a variant of
Cholesky decomposition. The traditional Cholesky decomposition of a pos-
itive semidefinite Hermitian operator M , is given by M = LL∗ where L is
lower triangular matrix. The variant we implemented factorises M = LDL∗,
where L is lower triangular with 1’s diagonal, and D is real diagonal matrix.
Factorization LDL∗ can be applied to general hermtian systems, i.e., the pos-
itivity condition is not necessary. This is worth for ill-conditioned problems,
where the rounding errors could introduce negative eigenvalues to the system.

We preferred LDL∗ since it avoids square roots calculations on the diag-
onal elements of the matrix. On other aspects, LL∗ and LDL∗ factorizations
are quite similar. Both have equal memory demand, and use equal amount
of float operations during the variables substitution phase.

Figure 5.2 shows performance of the parallel LDL∗ Cholesky solver im-
plemented in GPU. To compute the optimal reconstruction of a 1024× 1024
image in a RGB striped display, it is required to solve 1048576 Hermitian
linear systems of size 3 × 3. In a GTX 560 this was done in approximately
1.28 miliseconds.
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Figure 5.2: GPU performance.
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Chapter 6

Results

6.1 Variations

In this section we present some experiments showing optimal reconstruction
for some set of parameters. The objective of each experiment is to identify
the impact of certain parameter in the optimization model. This is done by
varying certain parameter while the others remain fixed. We present a brief
result discussion at the end of this section. The following are the experiments
considered:

Experiment 1: Subpixel Variations

• Pixel: Striped RGB.

• Opponent Color Transform: RGB to SCIELAB

• Metric Transform: Uniform scaling1.

• Blurring Kernel: SCIELAB luminance + bspline3 + bspline4.2

• Description: We compare two variations of subpixel geometric scale
and their optimal reconstruction kernels.

1Uniform scaling maps (1 1 1) in RGB to (1 1 1) in O1O2O3. This ensures that lumi-
nance and chrominance have equal weight in the energy function.

2SCIELAB blurring kernels for chrominance channels decreases slowly (see 6.5). In
these experiments we use bsplines as the blurring kernels for chrominance channels in our
optimization model.
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Experiment 2: Metric Variations

• Pixel: Striped RGB.

• Opponent Color Transform: RGB to SCIELAB.

• Blurring Kernel: SCIELAB luminance + bspline3 + bspline4.

• Description: We compare two variations of the transformation from
the opponent color space to the metric space. One of the transforma-
tions is a uniform scaling, and the other a non-uniform scaling3.

Experiment 3: Blurring Kernel Variations

• Pixel: Striped RGB.

• Opponent Color Transform: RGB to SCIELAB

• Metric Transform: Uniform scaling.

• Description: We compare two set of scaled blurring kernels which lead
to optimal reconstruction kernels for observers at different distances to
the screen. The blurring kernels are a 0.7-scaled and a 1.15-scaled
(SCIELAB luminance + bspline3 + bspline4) kernels.

Experiment 4: Reconstruction Cost Variations

• Pixel: Ricoh RGBW.

• Opponent Color Transform: RGB to SCIELAB

• Metric Transform: Uniform scaling.

• Blurring Kernel: bspline3 + bspline5 + bspline7.

• Description: We compare optimal reconstruction kernels for multi-
chromatic pixel grids with distinct subpixel costs. The cost vectors we
evaluate are (0, 0, 0, 0.1), (0.05, 0.05, 0.05, 0.05) and (0.1, 0.1, 0.1, 0.0).
The coordinates of these vectors give the cost value of R, G, B and
W subpixels.

3Non-uniform scaling maps (1 1 1) in RGB to (10 1 1) in O1O2O3. Luminance term is
predominant. This may impairs the conditioning of the linear system.
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The simulation of visual reconstruction is generated using SCIELAB ker-
nels. For all the experiments we assume that 1 visual degree covers 40 pixels
of the display. Dual filters are computed as indicated by 3.45. Dual filters
are 2-dimensional scalar functions, for comparison and clear visualization we
just plot their central horizontal slide.
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6.1.1 Experiment 1: Subpixel Variations

Figure 6.1: Subpixel kernels (top), dual filters (middle) and visual recon-
struction (bottom).
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6.1.2 Experiment 2: Metric Variations

 0.306 0.693 0.001
2.313 −1.062 −0.251
−2.143 −8.846 11.99

  3.059 6.928 0.013
2.313 −1.062 −0.251
−2.143 −8.846 11.99



Figure 6.2: Scaled opponent color transformations (top), dual filters (middle)
and visual reconstruction (bottom).
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6.1.3 Experiment 3: Blurring Kernel Variations

Figure 6.3: Blurring kernels (top), dual filters (middle) and visual recon-
struction (bottom).
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6.1.4 Experiment 4: Reconstruction Cost Variations

Figure 6.4: Dual filters(top), raw reconstruction (middle), and visual recon-
struction (bottom).
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6.1.5 Result Discussion

The filter plots in the previous experiments give us insight on how the opti-
mal dual kernels change due to parameter variation. In general, these filter
plots resemblance Platt [12] results: for any subpixel, the kernel of its re-
spective color is an interpolatory low pass filtering; instead, kernels for the
crossed colors are band pass (or null) filters.

We should notice that a relative variation of the blurring kernel has a
larger effect on the overall system than a relative variation of the pixel re-
construction kernel. This is an expected result since the blurring kernel
support is in general much larger than the pixel reconstruction kernel4. The
variation of pixel size produced a slight change on the optimal kernels and a
noticeable change in the simulated visual reconstruction. As expected, larger
subpixels provide a more uniform reconstruction of a flat white texture.

In the blurring kernel case, the variations on scale produced notorious
changes in optimal kernels and simulated visual reconstructions. Stretch
blurring kernels does not preserve zero frequency, implying that a constant
texture (for instance a white background texture) is not reproduced with the
expected intensity. The larger blurring kernels are closer to satisfy partition
of unity and this condition immediately guarantees zero frequency invariance.

The experiment on metric variations shows the strong impact of this pa-
rameter on the model. For the scenario with an unbalanced metric, we notice
that the dual filters present some odd behaviours (high oscillations). This is
may be due to the poor conditioning of these systems.

Finally we observe very interesting results on the reconstruction costs
test. As expected, adding a relative high cost to certain subpixel inhibits
its activation. In the case of subpixels R, G, and B being highly penalized,
we observe how the dual filter associated to the supixel color (which is a
positive low pass filter) is cancelled by the other colors filter (i.e., the W
pixel in the RGBW case). From the simulated visual reconstructions, we can
also confirm that a larger resolution is attained by allowing activation of the
largest amount of subpixels.

4For instance, a blurring kernel with effective support of one visual degree may cover
30 pixels for an observer at 50 cm from a regular LCD display.
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6.2 Pixel Grids

In this section we compare reconstruction in several pixel grids. The common
parameters are the following:

• Opponent Color Transform: RGB to SCIELAB

• Metric Transform: Uniform scaling.

The blurring kernels are given by the SCIELAB model for both luminance
and chrominance channels. According to the relation between blurring ker-
nels and pixel scale we divided in two set of pixels grids:

• Set 1: Striped RGB, Iphone, Galaxy Note, Quattron and Ricoh.

• Set 2: PenTile-RGBW, Nexus and Galaxy S4.

For pixel grids in set 1, a visual degree covers 40 pixels. For pixel grids
in set 2, a visual degree covers 20 pixels. The blurring kernels for set 1 and
2 are shown in Figure 6.5.

(a) (b)

Figure 6.5: SCIELAB blurring kernels scaled for (a) set 1 and (b) set 2.

Simulation of visual reconstruction is also generated using SCIELAB kernels.
They are accordingly scaled for pixel grids in set 1 and set 2. Dual filters are
computed as indicated by 3.45. For visualization clearness we just plot the
central horizontal slide of the dual filters. Result discussion is presented in
the end of the section.
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6.2.1 Striped RGB

Figure 6.6: Subpixel kernels (top), dual filters (bottom left), raw reconstruc-
tion (middle right), and visual reconstruction (bottom right).
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6.2.2 Iphone

Figure 6.7: Subpixel kernels (top), dual filters (bottom left), raw reconstruc-
tion (middle right), and visual reconstruction (bottom right).
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6.2.3 Galaxy Note

Figure 6.8: Subpixel kernels (top), dual filters (bottom left), raw reconstruc-
tion (middle right), and visual reconstruction (bottom right).
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6.2.4 Quattron

Figure 6.9: Subpixel kernels (top), dual filters (bottom left), raw reconstruc-
tion (middle right), and visual reconstruction (bottom right).
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6.2.5 Ricoh

Figure 6.10: Subpixel kernels (top), dual filters (bottom left), raw recon-
struction (middle right), and visual reconstruction (bottom right).
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6.2.6 Pentile-RGBW

Figure 6.11: Subpixel kernels (top), dual filters (bottom left), raw recon-
struction (middle right), and visual reconstruction (bottom right).

66



6.2.7 Nexus

Figure 6.12: Subpixel kernels (top), dual filters (bottom left), raw recon-
struction (middle right), and visual reconstruction (bottom right).
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6.2.8 Galaxy S4

Figure 6.13: Subpixel kernels (top), dual filters (bottom left), raw recon-
struction (middle right), and visual reconstruction (bottom right).
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6.2.9 Results Discussion

In this section we have presented optimal linear filters for different pixel grids.
Some general observations can be drawn from the previous results. First, we
can check that for any R, G and B subpixel, the kernel in its respective
channel is still an interpolative low pass filter centered at subpixel position.
This property was previously stated in the context of RGB stripe displays,
and now we observe that it also hold in the remain pixel grids.

We also get some ringing patterns in some of the reconstructions, spe-
cially in multichromatic pixel grids. This is probably a consequence of poor
conditioned systems due to color dependance. The previous results were
obtained without a reconstruction cost terms. As shown in Section , more
reliable filter set are obtained by adding a reconstruction cost term.

In the case of the striped RGB pixel,the set of dual filters resembles the
results obtained by Platt (see Figure 2.2). Crossed filters for red and green
subpixels are almost null, instead, crossed filters for the blue subpixel are
highly oscillatory. Similar kernels were obtained for the Galaxy Note pixel,
up to its respective shifts to subpixel positions.

In the case of the G subpixels of Galaxy Nexus and Galaxy S4, the period
of interpolation is not a complete pixel cycle but half of it. This is coherent
with the pattern of these two pixel grids: the green channel is horizontally
sampled and reconstructed twice per pixel. From the simulated reconstruc-
tions of the Galaxy Nexus and Galaxy S4 we observe that the RGBG pattern
almost attain the same level of resolution than a RGB pixel, but reducing the
number of subpixels by a third. This supports the efficiency claims regarding
this kind of grid patterns.

Interestingly, the yellow subpixel of Quattron, and the white subpixels
in the Ricoh and PenTile-RGBW grids, have active kernels only for the red
and green channels. This is coherent to our visual model where green and
red components are predominant in the luminance channel.
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Chapter 7

Conclusions and Future Work

The main contribution of this work is a continuous domain formulation of
subpixel filtering that overcomes some limitations of discrete approaches.
The main gain of the continuous formulation is a flexible and precise repre-
sentation of the model parameters: subpixel geometry, light spectrum, metric
color spaces, and visual blurring. The continuous formulation provides an
appropiate scenario to accurately identify the effect of these parameters on
the optimal kernel.

Another major contribution of this work is an strategy for simulating
human visual response to an image reconstructed at certain display. This
technique, despite its simplicity, was not explored (to our known) on previ-
ous works in the area. Previous approaches evaluate reconstruction quality
from metric models that hardly captures (or identify) the visual properties
incident on the overall result. Instead, our visual simulation approach allows
a clear capture of fundamental properties such as sharpness and color fringe.
Therefore, our visual simulation could guide the design of new pixel patterns
and its respective filters.

From our experimental results we observe a larger dependence of the
model on visual blurring kernel than on subpixel reconstruction kernels. This
result is coherent with the difference of scale between these kind of kernels.
Subpixel kernels determine the central position and interpolatory period of
the optimal filtering kernels. Blurring kernels influence the oscilation am-
plitude of the optimal filtering kernels, and are the main reason of poor
conditioning of the optimal linear system.
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In this work, we were only concerned with tridimensional color metric
spaces (coherently to thrichromatic vision), however, our model formulation
and analysis is valid for color spaces of arbitrary dimension. This allows a
direct integration with more ellaborated human visual system models, input
signals with larger gamut, and multichromatic subpixel grids.

The color metric spaces and subpixels chroma also have a large impact
on the optimal kernels and system conditioning. In the case of trichromatic
grids (RGB), a satisfactory reconstruction was obtained for color metric
spaces with uniformly weighted components. Instead, giving considerably
more weight to one component (say luminance) introduces color artefacts
and is a source of poor conditioning. In the case of multichromatic grids
(e.g. RGBW, RGBY) system singularity may appear on large blurring con-
ditions. This is an expected consequence of the linear dependence (in a vector
space sense) of the subpixels chromatic values.

The system singularities introduced by the blurring conditions and color
spaces were resolved using a two step optimization procedure. Our approach
introduces a cost associated to the reconstruction, and finds the reconstruc-
tion with minimal cost that attains the maximum quality. This reconstruc-
tion cost can be naturally identified with the energy consumption of the de-
vice. Our current implementation is based in a unified energy function that
is numerical robust and provides an approximation to the optimal kernel.

7.1 Future Work

Due to the generality of the approached problem, and flexibility of our cur-
rent model there are several aspects that remain to be explored. Also, we
have some considerations in the formulation and implementation of our cur-
rent approach that may lead to more robust results.

First, our current computation of filtering kernels and optimal linear sys-
tem coefficients are done using a regular sampling basis. Despite the appar-
ent large density of the initial sampling1 the simple numerical methods we
used for convolution and integration may not provide enough accuracy. The

1300× 300 samples per pixel for the blurring and subpixel kernels.
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regular sampling approach is sufficient to easily model distinct subpixel ge-
ometries, however, it seems unappropiate for sampling blurring kernels with
large variance. For a future work we propose doing computation in analytic
(i.e., closed) form for both subpixel reconstruction kernels and visual blurring
kernels. This may be done, for instance, using a gaussian basis representa-
tion for our set of kernels.

A second topic of interest is on improving performance of filtering strate-
gies; this is currently the bottleneck of our approach. Since the filtering
kernels inherit the large variance of blurring kernels, accurate integration be-
comes a computationally expensive task. We have explored texture samples
reuse by overalapping filters, and CPU parallelization implementations that
improved performance. For a future work, we may explore variance reduction
sampling strategies (biased sampling), filtering decomposition (e.g., separa-
ble filters), and GPU parallelization.

Our third concern is on exploring chromatic models with an augmented
number of components. The results on this work follow a trichromatic model
of human vision. This is in accordance to the rough classification of photore-
ceptor cells (cones) in the eye. However, our formulation does not constrain
the number of chromatic components. In a future work we may explore mod-
els with several chromatic components. This kind of models could provide a
more accurate description of the HVS light perception, and the reproducible
gamut by certain display. Using chromatic models with several components
may also improve the conditioning of the optimal linear systems.

Providing a quantitative measure of the real resolution and gamut of a
pixel grid is also an interesting topic to further explore. Currently, our model
reproduce the visual stimulation produced by different pixel grids in terms
of perceived resolution and color. In a future work we may try to classifying
and quantitavely assess this stimulation in order to measure pixel grid capa-
bilities. This may require of supervised learning models trainned from user
experiences. The ability of quantitatively measuring pixel grid capabilities is
fundamental to guide pixel design.

Finally, for a future work we may consider the nonlinear behavior of hu-
man light perception. The visual model followed in this work is a linear
simplification that allows efficient computation. However, it does not cap-
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ture the metric distortions produced by nonlinear luminance and chromatic
responses. This situation was initially identified by Kajiya and Ullner [7]. A
nonlinear approach is computationally intensive but could lead to notorius
improvement on the results quality.
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Chapter 8

Theoretical Background

In this chapter we introduce some of the basic principles on light percep-
tion by the human visual system. We present some models for chromatic
representation, some of them based in physiological attributes, and other on
computational convenience. Finally, we provide brief description of the foun-
dations of standard filtering strategies on achromatic and trichromatic pixel
grids.

8.1 Human Visual System

8.1.1 Visible Light

The visible light is a band of the electromagnetic spectrum covering wave-
lengths from 300nm to 700nm. Wavelengths less than 400nm are called
ultraviolets, and those greater than 700nm are called infra-red. Both ultravi-
olet and infrared are imperceptible electromagnetic radiation for the human
visual system.

The spectral distribution of a light source indicates the energy it trans-
ports for each wavelength. The color we perceive from an specific light source
is encoded by its spectral distribution. The traditional identification of color
with an specific wavelength in the visible spectrum frequently misleads the
comprehension of how we actually perceive colors. Light with intensity at a
unique wavelength in the visible spectrum is called “pure color”. The sen-
sorial response to a “pure color” match closely with the colors observed in
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Figure 8.1: Visble Spectrum. Adapted from http://www.giangrandi.ch/

optics/spectrum/spectrum.shtml.

Figure 8.1. For instance, light with intensity at wavelength 400nm is actually
perceived blue, at 500nm is perceived green and at 700nm is perceived red.
However “pure colors” are closer to laboratory constructions, than to natural
phenomena.

Traditional light sources emit electromagnetic radiation at several wave-
length and intensities. In Figure 8.2 we observe the light spectrum of a
phosphor-based white LED.

Figure 8.2: Phosphor based white LED spectrum. Adapted from https:

//en.wikipedia.org/wiki/Light-emitting_diode.

Visible light satisfies the superposition principle. When lights L1 and
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L2, with spectral distributions ρL1(λ) and ρL2(λ), are added together, the
resultant light will have spectral distribution,

ρL1+L2(λ) = ρL1(λ) + ρL2(λ) (8.1)

The superposition principle plays a fundamental role in the study of color.
It allows a characterization of color perception by using a simple linear model.
This model will be discussed in the next section. Figure 8.2 also evidences
how the superposition principle can be used in practice: the perceived white
color is the superposition of a blue LED and yellow phosphor spectrum.

8.1.2 Color Vision

Human color perception is due to the stimulation of specialized photorecep-
tors called cones. The cones are classified as L-cones, M-cones or S-cones,
according to their specific light spectrum response. The names L, M and
S refers precisely to the kind of wavelengths the cone is most sensitive to.
For instance, L-cones are the most sensitive to long wavelengths, M-cones to
medium wavelength, and S-cones to short wavelengths.

Figure 8.3: Cones Spectral Response. Adapted from http://www.

embedded-vision.com.

The stimulation a cone experiments under certain light, is calculated by
weighting the light spectral distribution with the cone spectrum response
(Figure 8.3). This is:
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RX(L) =

∫ 700

400

ρL(λ)CX(λ)dλ X ∈ {L,M, S} (8.2)

From the previous characterization we can deduce that a cone can have
the same stimulation for lights with different spectral distribution. In other
words, lights L1 and L2, will produce the same stimulation in a X-cone as
long as, ∫ 700

400

ρL1(λ)CX(λ)dλ =

∫ 700

400

ρL2(λ)CX(λ)dλ (8.3)

The triplet of cones stimulations defines the color perception. Two lights
produce an identical color perception whenever they lead to the same triplet
(RL, RM , RS). Any set of lights with different spectral distributions but pro-
ducing a same color sensation are called metamerisms.

The L, M and S cones also differ in their distribution at the retina. The
amount of cells of each type, can vary a lot from a person to other accord-
ing to factors such as gender and race. In general, L-cones and M-cones are
densely distributed in the fovea (central retina) in similar proportions, while
S-cones occupies the external part of the retina in a considerable smaller
proportion.

Due to such cells distribution we can comprehend why human visual sys-
tem has a better perception of green and red colors than blue. If you slowly
move Figure 8.4 apart from your eyes, eventually, black lines in the blue
pattern will disappear, while black lines in the green and red pattern are
still visible. This phenomena called visual antialiasing is due to the larger
sampling density of L-cones and M-cones compared to S-cones.

8.1.3 Luminance Response

Luminance is non-linearly perceived. As can be observed from Figure 8.5a,
an achromatic light source with mid intensity produce a visual sensation
closer to white than black. Therefore, a larger range of perceptually different
tones can be identified at low levels than at high level of intensity. Due to
this phenomena, it is common to apply a non-linear transformation to attain

77



Figure 8.4: Color Patterns

a more compact and perceptually correct intensity curve. This is precisely
done in Figure 8.5b, where a gamma transform was applied to the linear scale
intensity.

(a) Linear Scale

(b) Perceptual Scale

Figure 8.5: Luminance Response
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8.2 Color Spaces

Human color perception can be well approximated on a finite dimensional
space. Due to the simplicity and accuracy of the trichromatic model, color
space usually requires of just three coordinates to represent any perceived
color. This dimensional reduction allow efficient manipulation, transmission
and storage of color information.

8.2.1 Linear Color Spaces

This spaces are characterized by a linear transformation, T : (R→ R)→ Rn,
mapping the light spectrum ρL to a finite dimensional space. Linear color
spaces preserve light superposition principle: given spectrums ρL1 , ρL2 : R→
R, and α ∈ R, we have T (αρL1 + ρL2) = αT (ρL1) + T (ρL2).

The linear transformation associated to a color space can be represented
as a set of kernels T = (T1, T2, . . . , Tn), such that, T (ρL) = (T1(ρL), . . . , Tn(ρL))
and,

Ti(ρ) =

∫
ρ(λ)Ti(λ)dλ (8.4)

CIE RGB

The CIE RGB color space has its foundation in the Wright and Guild
color-matching experiments. In this experiment, the observer must recon-
struct a test “pure color” by adjusting the intensities of three reference pri-
maries. The test “pure color” varies over all the visible spectrum, while the
reference primaries are maintained fixed. At the end, we obtain three curves
which indicate the intensity of each primary in the reconstruction of “pure
colors”. These curves are called the color-matching functions.

The CIE comission fixed as reference primaries monochromatic lights at
435.8, 546.1 and 700 nm. The color matching functions of these primaries
correspond to the kernels of CIE RGB, illustrated in Figure 8.6.

CIE XYZ

The limitation of the CIE RGB to represent visible spectrum as positive
linear combinations of its primaries is one of the motivations to the creation
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Figure 8.6: CIE RGB kernels. Adapted from http://en.wikipedia.org/

wiki/CIE_1931_color_space.

of CIE XYZ. To generate a positive cone that contains all the visible spec-
trum, the CIE XYZ takes its primaries outside the visible domain.

The kernels of CIE XYZ are defined as linear combinations of CIE RGB
kernels. The kernel Y approximates the photopic luminance response func-
tion. Primaries Z and X where taken such that white point corresponds to
X = Y = Z = 1. The linear transformation from CIE RGB to CIE XYZ is
given by: XY

Z

 =

 0.4900 0.3100 0.2000
0.17697 0.81240 0.01063
0.0000 0.0100 0.9900

RG
B

 (8.5)

The original CIE XYZ color space was proposed in 1931, and is also
known as the CIE 1931 standard observer or CIE 2◦ observer. The term 2◦

is because color matching experiments were done for two degrees of visual
angle. Therfore, light was incident only at the fovea, and no rod intervention
considered. The kernels of CIE 1931 are included in Figure 8.7.

The CIE XYZ has been reviewed and adjusted. One of the main ad-
ditions is the 1964 CIE supplementary standard observer, or 10◦ standard.
This modification fits better for visual angles larger than four degrees.
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Figure 8.7: CIE XYZ kernels. Adapted from http://en.wikipedia.org/

wiki/CIE_1931_color_space.

LMS

The LMS color space measures the response of L, M and S cones to each
wavelength of the visible spectrum. The kernels of this color space are pre-
sented in Figure 8.3.

Since CIE XYZ and LMS kernels are not linearly related, there is not an
exact coordinates conversion between both color spaces. An approximation
used in practice to transform from LMS coordinates to CIE XYZ is due to
Hunt-Pointer-Estevez:XY

Z

 =

1.9102 −1.1121 0.2019
0.3710 0.6291 0.0000
0.0000 0.0000 1.0000

L
M
S

 (8.6)

8.2.2 Nonlinear Color Spaces

Despite linear color spaces allow an efficient treatment of “color arithmetic”,
they do not provide a good metric of color perception. Nonlinear spaces are
designed to achieve a closer measure of preceived color distances and a more
compact transmision of color information.
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sRGB

sRGB is a nonlinear color space used for the storage of color information.
It is widely used in digital devices due to the efficient color quantization
that it provides. The sRGB color space is specified by the ITU R BT.709
primaries, together with a nonlinear encoding. The transformation from
ITU R BT.709 primaries to CIE XYZ is given by:XY

Z

 =

0.4124 0.3576 0.1805
0.2126 0.7151 0.0722
0.0193 0.1192 0.9505

RL

GL

BL

 (8.7)

Since human visual system is more sensitive to luminance variations at
low intensity levels, a concave nonlinear encoding improves the usage of bits
to store color information. The nonlinear transform used in sRGB is given
by:

XsRGB =

{
1.055(XL)0.416 − 0.055 if XL > 0.0031308

12.92XL if XL ≤ 0.0031308
X ∈ {R,G,B}

(8.8)
Besides sRGB, there are several standards for digital storage and trans-

mission of color information. Other popular standards are Adobe RGB, PAL,
HDTV and NTSC.

CIELAB

CIELAB provides an approximate uniform measure of color distances.
The Lab representation of a color is computed from its CIE XYZ represen-
tation and a reference white point XnYnZn:

La
b

 =

 0 116 0 −16
500 −500 0 0
0 −200 200 0



f( X

Xn
)

f( Y
Yn

)

f( Z
Zn

)

1

 (8.9)

f(r) =

{
3
√
r if r > 0.008856

7.787r + 16
116

if r ≤ 0.008856
(8.10)
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The L component represent the lightness of the color, while a and b are
chrominance components. The Lab distance between a pair of colors C1, C2

is computed as a euclidean distance of its components:

dLab(C1, C2) = |L(C1)−L(C2)|2 + |a(C1)−a(C2)|2 + |b(C1)− b(C2)|2 (8.11)

8.2.3 SCIELAB

Point by point color comparison do not always provide an appropriate mea-
sure of image appearance differences. Consider images in Figure 8.8. These
images are one the inverse of the other. By comparing these images point-
wise we would get that they are quite different. However, for an observer
who see both images far enough, these images will seem identical. SCIELAB
is a model proposed to overcome this problem.

Figure 8.8: Image Appereance

Due to the large overlapping of cones spectral responses (Figure 8.3),
human neural system decorrelates these signals to attain more efficient infor-
mation transmission [16]. This decorrelation process can be interpreted as a
linear transformation from the LMS responses to a color space formed by a
luminance component and two chromatic opponent components.

The first step of SCIELAB model is precisely the representation of the
input images in the opponent color space O1O2O3 proposed by Poirson and
Wandell [13]. Traditionally, the opponent channels are referred as Black-
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Figure 8.9: SCIELAB. Adapted from [17].

White, Red-Green, and Yellow-Blue. The transformation from CIE XYZ to
O1O2O3 is given byO1

O2

O3

 =

 0.279 0.729 −0.107
−0.449 0.290 0.077
0.086 0.590 −0.501

XY
Z

 (8.12)

The second step of SCIELAB is simulate visual blur on each channel of
the opponent space. Blurring kernels are represented as weighted sums of
Gaussian functions. The spread of the Gaussian are given in half visual de-
gree units. The values of weights and spreads for each of the blurring kernels
are presented in the table below:
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Channel Weight (ωi) Spread (σi)
Black-White 0.921 0.0283

0.105 0.133
-0.108 4.336

Red-Green 0.531 0.0392
0.330 0.494

Blue-Yellow 0.488 0.0536
0.371 0.386

The third step of SCIELAB consist in transforming the burred signals
from the opponent spaceO1O2O3 to CIELAB. As previoisly discussed, CIELAB
space provides a more uniform metric to compute color differences. The final
step is to compute mean Lab distance (given by equation 8.11 ) over all the
points of the compared images.

8.3 Linear and Nonlinear Filtering

8.3.1 Linear Filters

The linearity attribute indicates wether the output reconstruction just de-
pends linearly on the input texture. By denoting F (I) the reconstruction of
filter F applied to texture I, linearity can simply be stated as,

F (αI1 + I2) = αF (I1) + F (I2) ∀I1, I2 (8.13)

An special subset of the linear filters are the ones that satisfies the shift
invariant property. Let Ts represent an integer pixel translation in direc-
tion s = (sw, sh). We say that filter F is linear shift invariant (LSI) if
F (Ts(I)) = Ts(F (I)) for all textures I and integer pixel displacements s.

In the spatial domain, LSI filtering can be compactly represented as a
convolution with the system impulse response. In the frequency domain, it
corresponds to an attenuation of the input spectrum by the impulse response
spectrum. Due to its simplicity and reduced computational cost, many of the
proposed approaches to subpixel filtering correspond to LSI schemes. The
scheme we propose in this work, for the unconstrained optimization case,
also lies in this category.

85



Suppose we have a pixel grid with n different type of subpixels, {ϕ1, . . . , ϕn},
and let I = (I1, I2, . . . , Ik) represent a multichannel input texture. Let F be
a LSI filter, such that F (I) = c = (c1, c2, . . . , cn). By the linearity of F we
have that,

F (I) = F (I1, 0, . . . , 0) + F (0, I2, . . . , 0) + . . .+ F (0, 0, . . . , Ik) (8.14)

Let Fi(Ii) := F (0, . . . , Ii, . . . , 0). Observe that each component-function
Fi is LSI. Define Fi(Ii) := (c1i, c2i, . . . , cni), and denote Fsi(Ii) := csi. This
is also a LSI system. Therefore, we can write Fsi(Ii) = [Ii ∗ ksi], for some
kernel ksi : R→ R. Adding over all the channels we obtain,

cs =
∑
i

csi =
∑
i

[Ii ∗ ksi] = [I ∗ ks]+ (8.15)

From the results above, we conclude that a LSI scheme, in the context
of subpixel filtering, can be characterized by a set of multichannel kernels
{k1, k2, . . . , kn}. Here, ks is a multichannel kernel associated to sth subpixel,
which acts independently in each channel of the input. The operator ()+

consolidates the result by adding over all the channels.

Cross-Channel Filter

We say that a filter strategy F is cross-channel, if the filtering process for
each subpixel involves the complete range of channels of the input texture.
Traditional texture filtering in RGB striped displays is an example of non
cross-channel filtering. The reconstruction coefficients for the R, G and B
subpixels depends exclusively on the input texture R, G and B channels,
respectively. Figure 1.5 is an example of non cross-channel filtering.

Many relevant works in the context of cross-channel schemes propose
filtering the signal in an opponent color space. Some of the most common
LSI filters (e.g.,[5]) can be represented by1,

cs = [B(A(I) ∗ k) ∗ δs]+ (8.16)

1 An alternative representation is given by cs = [I ∗AtDBtδsk(·− δs)]+. The symbol δs
is overloaded to indicate the color coordinates of the subpixel in the reference color space,
and the shift towards subpixel centroid.
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In this equation, we have two color space transformations: A from the
input color space to the opponent color space, and B form the opponent
color space to the reference color space. k is a filter that acts in each of the
opponent channels independently. δs is an impulse, shifted in the direction
of the subpixel centroid, which also indicates the subpixel color coordinates
in the reference color space.

The central discussion on the family of methods described by equation
8.16 turns around the lenght of the band that should be passed in each op-
ponent channel. The common objective is to increase luminance resolution
at reduced color fringing cost. For the luminance channel, authors suggests
using low pass filter something below Nyquist, e.g., 2/3 cycles per pixel. For
the chrominance channels is usually suggested to maintain 1/2 cycles per
pixel as the cut off frequency.

8.3.2 Non Linear Filters

Linear filters present some limitations. Physical displays can only turn on
subpixels at a limited positive range of intensities, say [0, 1]. Therefore, it is
desirable that reconstruction coefficients always belong to this interval. For
linear filtering this is in general not true, specially, whenever the filter is
close to a perfect low pass filter. In linear filtering schemes, reconstruction
coefficients outside the [0, 1] range are usually truncated. This is sometimes
undesirable, since ringing patterns may appear.

Another limitation of linear filters arise when we are interseted to find
an image reconstruction that approximate the input texture in a perceptual
sense. If we take into account the blur and the nonlinear intensity response
of the human visual system, a nonlinear filtering scheme is required [7].

Nonlinear filtering approaches are usually formulated as linear, quadratic,
or even nonlinear programming problems with box constraints. Due to its
computational cost, these approaches are not used in practice.
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Chapter 9

Appendix

In this appendix we introduce some notation and definitions used for the
mathematical treatment of our problem. In the general notation section we
review well established operators common to the standard signal processing
literature. On the hierarchical notation section we present our own defini-
tions and operators with the aim of getting to more compact mathematical
expressions (e.g., avoid indices overload).

9.1 General Notation

9.1.1 Functional Domains

In this work we will be concerned on functions over four different domains:

• Rn denote the usual n-dimensional continuous domain.

• Zn denote the usual n-dimensional discrete domain.

• Tm denote the n-dimensional torus, Tm = [0,m1]× [0,m2] . . .× [0,mn],
for certain m ∈ Nn.

• Zm denote the cyclic discrete domain Zm = Zm1 ×Zm2 × . . .×Zmn for
certain m ∈ Nn.

The following table summarizes the nature of each domain:
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Continuous Discrete
Aperiodic Rn Zn

Periodic Tm Zm

We will denote the continuous domains by ΩC . Therefore, ΩC will refer
to either Rn or Tm. Similarly, we will use ΩD to refer either Zn or Zm.

To indicate functions over continuous domains, we will use unbolded let-
ters, e.g, f, g, h. For functions over discrete domains we will use bolded
letters a, b, c.

For aperiodic domains, coordinates arithmetic is as usual. For periodic
domains coordinate arithmetic is modular.

Additionally, we use the notation {·} to refer to a set of indices. In
particular, if n is a natural number, we denote

{n} = {1, 2, . . . n} (9.1)

9.1.2 Sampling Operator and Dirac δ

• Given f : ΩC → R, we define [f ] : ΩD → R, by:

[f ]k = f(k) (9.2)

• The Dirac δ is a distribution which concentrates all its weight at the
origin. For any f : ΩC → R, we have∫

ΩC

f(x)δ(x)dx = f(0) (9.3)

Given a : (ΩD → R), we define aδ : (ΩC → R), by:

aδ =
∑
i∈ΩD

aiδ(· − i) (9.4)
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9.1.3 Norms

Instances.

• Given a ∈ ΩD → R, we define:

||a||1 =
∑
i∈ΩD

|ai|, ||a||2 =
∑
i∈ΩD

|ai|2 (9.5)

When ||a||1 <∞ and ||a||2 <∞, we say a ∈ l1 and a ∈ l2, resp.

• Given f ∈ ΩC → R, we define:

||f ||1 =

∫
ΩC

|f(t)|dt, ||f ||2 =

∫
ΩC

|f(t)|2dt (9.6)

When ||f ||1 <∞ and ||f ||2 <∞, we say f ∈ L1 and f ∈ L2, resp.

Properties.

• ||u||p ≥ 0. ||u||p = 0 ⇐⇒ u ≡ 0.

• ||αu||p = |α|||u||p.

• ||u+ v||p ≤ ||u||p + ||v||p.

9.1.4 Inner Product

Instances.

• Discrete Inner Product: Given a, b ∈ l2(ΩD → R), we define:

〈a, b〉 =
∑
i∈ΩD

aibi (9.7)

• Continuous Inner Product: Given f, g ∈ L2(ΩC → R), we define:

〈f, g〉 =

∫
ΩC

f(t)g(t)dt (9.8)
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The norm || · ||2 is induced by the inner product:

||u||2 =
√
〈u, u〉 (9.9)

Properties.

• 〈αu+ v, w〉 = α〈u,w〉+ 〈v, w〉.

• 〈u, v〉 = 〈v, u〉.

• |〈u, v〉| ≤ ||u||2||v||2.

9.1.5 Convolution

Instances.

• Continuous Convolution: Given f, g ∈ L1(ΩC → R) we define, h :=
f ∗ g ∈ L1(ΩC → R), by:

h(x) = (f ∗ g)(x) =

∫
ΩC

f(x− t)g(t)dt (9.10)

• Discrete Convolution: Given a, b ∈ l1(ΩD → R), we define c := a∗b ∈
l1(ΩD → R) by:

c(k) = (a ∗ b)k =
∑
i∈ΩD

ak−ibi (9.11)

• Discrete-Continuos Convolution: Given a ∈ l1(ΩD → R), f ∈ L1(ΩC →
R), we define g := a ∗ f ∈ L1(ΩC → R) by:

g(x) = (a ∗ f)(x) =
∑
i∈ΩD

aif(x− i) (9.12)

Remark:The definition above corresponds to the continuous convolu-
tion aδ ∗ f .

Properties.
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• u ∗ v = v ∗ u

• (u ∗ v) ∗ w = u ∗ (v ∗ w)

• u ∗ (αv + w) = αu ∗ v + u ∗ w

• ||u ∗ v||1 = ||u||1||v||1

9.1.6 Fourier Transform

Instances.

• Continuous Fourier Transform: Given f ∈ L2(Rn → R), we define
f̂ ∈ L2(Rn → C) by:

f̂(ω) =

∫
Rn

f(x)e−2πiωxdx (9.13)

• Discrete Fourier Transform: Given a ∈ l2(Zm → R), we define, â ∈
l2(Zm → C) by:

âω =
∑
k∈Zm

ake
−2πi〈ω,k〉 (9.14)

Properties.

• FT(αu+ v) = αFT(u) + FT(v)

• FT(FT(u)) = u

• FT(u ∗ v) = FT(u) FT(v)

• ||FT(u)||2 = ||u||2

9.2 Hierarchical Notation

In aim of simplicity, we introduce a hierachical notation that will guide the
arithmetic treatment of our problem. Below we define, in order of complexity,
three kind of structures: channel, channel matrix, and multichannel matrix
(Figure 9.2). For each level of complexity we define some operators. All op-
erators defined at certain level of complexity are extended to superior levels.
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(a) Channel (b) Channel Matrix (c) Multichannel Matrix

Figure 9.1: Hierarchical Notation

9.2.1 Channel

A channel is a function u : ΩD → R, u ∈ l1∩ l2, or u : ΩC → R, u ∈ L1∩L2.
Domain ΩC ∈ {Zn,Zm}, and ΩD ∈ {Rn,Tm}. According to the nature of the
domain we will distinguish between four types of channels: discrete-periodic,
discrete-aperiodic, continuous-periodic, and continuous-aperiodic.

Operators.

• Arithmetic Operators (+,−, . . .): For u and v channels of the same type,
arithmetic operators are defined as usual in scalar functions. This is,
(αu)(x) = α(u(x)), (u+ v)(x) = u(x) + v(x), (uv)(x) = u(x)v(x), etc.

• Convolution (∗): For u and v channels of the same periodic type, con-
volution is as defined in 9.10,9.11, or 9.12.

• Inner Product (〈, 〉): For u and v channels of the same type, inner
product is defined as in 9.7 or 9.8.

• Norms (|| · ||1, || · ||2): As defined in 9.5 or 9.6.

• Reflect (∨): u∨(x) = u(−x).

• Sampling ([·]): As is defined in 9.2.

Properties.

Since channels are defined in l1 ∩ l2 and L1 ∩ L2, all the properties for
inner product 9.1.4 and convolution 9.1.5 hold. The following are also valid:
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• If u, v,and w, are channels of the same type, then,

〈u ∗ v, w〉 = 〈v, u∨ ∗ w〉 = 〈u,w ∗ v∨〉 (9.15)

• If u, v,and w, are channels of the same periodic type, u discrete, v, w
continuous, then,

〈u ∗ v, w〉 = 〈u, [w ∗ v∨]〉 (9.16)

9.2.2 Channel Matrix

A channel matrix is a two dimensional array formed by channels of the same
type. A channel matrix corresponds to a function Ω×({n}×{m})→ R. The
type of the channel matrix is inherited from its channels. If U is a channel
matrix with n rows and m columns, we say its dimensions are n ×m. We
denote by Uij to the channel at the i-th row and j-th column.

Operators.

• Arithmetic Operators (+,−, . . .): Let U and V channels matrices of
the same type, and same dimensions. Arithmetic operators act compo-
nentwise: (αU)ij = α(Uij), (U + V )ij = Uij + Vij, (UV )ij = UijVij, etc.

• Convolution (∗): Let U and V be channels matrices of the same periodic
type, where U is n×m and V is m× h. Then U ∗ V is a n× h channel
matrix defined by:

(U ∗ V )ij =
m∑
h=1

Uih ∗ Vhj (9.17)

• Inner Product (〈, 〉): Let U and V be channels matrices of the same
type and dimensions, we define

〈U, V 〉 =
∑
ij

〈Uij, Vij〉 (9.18)

• Norms (|| · ||1, || · ||2): Let U be a channel matrix, we define,

||U ||1 =
∑
ij

||Uij||1, ||U ||2 =
∑
ij

√
||Uij||22 (9.19)
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• Reflect (∨): Acts componentwise, (U∨)ij = U∨ij .

• Sampling ([·]) : Acts componentwise, [U ]ij = [Uij].

• Transpose (>): Let U be a n×m channel matrix. U> is m×n channel
matrix defined by

(U>)ij = Uji (9.20)

Properties.

• If U, V ,and W , are channels matrices of the same type, then,

〈U ∗ V,W 〉 = 〈V, (U∨)> ∗W 〉 = 〈U,W ∗ (V ∨)>〉 (9.21)

• If U , V ,and W , are channel matrices of the same periodic type, U
discrete, V,W continuous then,

〈U ∗ V,W 〉 = 〈U , [W ∗ V ∨]〉 (9.22)

• If U, V are channels matrices of the same periodic type, then,

(U ∗ V )> = V > ∗ U> (9.23)

Remarks

• Channel matrices of dimensions n× 1 will be called channel vectors.

• Convolution U ∗V between channels matrices is in general non conmu-
tative. Instead, it resembles usual matrix product.

9.2.3 Multichannel Matrix

A multichannel matrix is a one dimensional array formed by channel matri-
ces of the same type and dimensions. A multichannel matrix corresponds to
a function

(
Ω× ({n} × {m})

)
× {k} → R. The type and dimensions of the

multichannel matrix are inherited from its channels matrices. The number
of channels matrices defines the depth. The channels matrix at depth l is
denoted by U l.
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Operators.

• Arithmetic Operators (+,−, . . .): Let U and V multichannels matri-
ces of the same type, dimensions, and depth. Arithmetic operators act
componentwise: (αU)l = α(U l), (U+V )l = U l+V l, (UV )l = U lV l, etc.

• Convolution (∗): Let U and V be multichannel matrices of the same
periodic type and depth k, U of dimensions n×m, and V m×h. Then
U ∗ V is a n× h multichannel matrix of depth k defined by:

(U ∗ V )l = U l ∗ V l (9.24)

• Inner Product (〈, 〉): Let U and V be multichannels matrices of the
same type, dimensions, and depth, we define

〈U, V 〉 =
∑
k

〈U l, V l〉 (9.25)

• Norms (|| · ||1, || · ||2): Let U be a multchannel matrix, we define,

||U ||1 =
∑
l

||U l||1, ||U ||2 =
∑
l

√
||U l||22 (9.26)

• Reflect (∨): Acts componentwise: (U∨)l = (U l)∨.

• Sampling ([·]): Acts componentwise: [U ]l = [U l].

• Transpose (>): Acts componentwise: (U>)l = (U l)>.

• Linear Transform (A): Let U a be multichannel matrix of dimensions
n×m, depth k, and A ∈ L(Rk,Rd). Then, AU is a multichannel matrix
of dimensions n×m and depth d defined by:

(AU)lij =
k∑
p=1

AlpU
p
ij (9.27)
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• Reduce (+): Let U a be multichannel matrix of dimensions n×m and
depth k. Then, U+ is a channel matrix of dimensions n × m defined
by:

(U+)ij =
k∑
p=1

Up
ij (9.28)

Properties.

• If U, V ,and W , are multichannel matrices of the same type, then,

〈U ∗ V,W 〉 = 〈V, (U∨)> ∗W 〉 = 〈U,W ∗ (V ∨)>〉 (9.29)

• If U , V ,and W , are multichannel matrices of the same periodic type, U
discrete, V,W continuous, then,

〈U ∗ V,W 〉 = 〈U , [W ∗ V ∨]〉 (9.30)

• If U, V are multichannel matrices of the same periodic type, then,

(U ∗ V )> = V > ∗ U> (9.31)

• If U, V are multichannel matrices of the same type and dimensions, U
of depth k, V of depth d, and A ∈ L(Rk,Rd), then,

〈AU, V 〉 = 〈U,A>V 〉 (9.32)

• Let U, V be multichannel matrices of the same periodic type, U of
dimensions n ×m and depth k, V of dimensions m × h and depth d.
Let A ∈ L(Rk,Rd), then,

(AU ∗ V )+ = (U ∗ A>V )+ (9.33)

Remarks

• Reduce operator (+) is a shortcut for the linear operator 1 = (1 . . . 1)︸ ︷︷ ︸
k

.

• Multichannel matrices of dimensions n × 1 and 1 × 1 will be called
multichannel vectors and multichannels, respectively.
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9.3 Filtering

9.3.1 Sampling Theorem

The Sampling Theorem states that a band limited function f can be exactly
reconstructed if it is regularly sampled with a rate which is at least twice its
largest frequency (Nyquist frecuency). The exact reconstruction is given by
the Whittaker - Shannon interpolation formula:

f = [f ] ∗ ϕsinc ϕsinc(x) =
sin(x)

x
(9.34)

Sampling with a frequency inferior to Nyquist introduce high frequen-
cies to the base band. This phenomena, called aliasing, prevent an exact
reconstruction of the original function.

9.3.2 Reconstruction Spaces

We denote by Vϕ to the space of functions generated by the reconstruction
kernel ϕ : Rn → R on a regular grid. Concretely,

Vϕ = {c ∗ ϕ | c : Zn → R} (9.35)

The array c is called reconstruction coefficients.

Given a function f : Rn → R, the reconstruction problem looks for a
representation of f in the reconstruction space Vϕ. We will be concerned
with to types of reconstruction:

Interpolation

We say that c ∗ ϕ is an interpolative reconstruction of f whenever [f ] =
[c ∗ ϕ]. This implies:

c = [ϕ]−1[f ] (9.36)

If [ϕ] = δ we say that the reconstruction kernel ϕ is interpolative. When
ϕ is interpolative the reconstruction coefficients corresponds to the function
sampled values.
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Orthogonal Projection

The orthogonal projection of f in the reconstruction space Vϕ is the ele-
ment that minimizes ||f − c ∗ ϕ||2. This is precisely attained for the recon-
struction coefficient:

c = [ϕ ∗ ϕ∨]−1[f ∗ ϕ∨] (9.37)

9.3.3 Partition of unity

Definition 9.1. We say ϕ : Rn → R, satisfies partition of unity if,∑
i∈Zn

ϕ(x+ i) = 1 ∀x ∈ [0, 1]n (9.38)

Proposition 9.1. In the frequency domain, the condition of partition of
unity is equivalent to,

ϕ̂(n) =

{
1 if n = 0.

0 if n ∈ Z/{0}.
(9.39)

Proposition 9.2. Let ϕ : Rn → R satisfies partition of unity and ||ψ||1 = 1.
Then ϕ ∗ ψ satisfies partition of unity.
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