Additive forms of degree ten

Daiane Soares Veras
IFG

Abstract

For $k \in N$ and p a prime number, define $\Gamma^{*}(k, p)$ to be the smallest positive integer $n \in \mathbb{N}$ such that any diagonal form $f\left(x_{1}, \ldots, x_{s}\right)=a_{1} x_{1}^{k}+\cdots+a_{s} x_{s}^{k}$, with integer coefficients, has a nontrivial zero over \mathbb{Q}_{p} whenever $s \geq n$. A special case of a conjecture attributed to Artin states that $\Gamma^{*}(k, p) \leq k^{2}+1$. It is well known that equality occurs when $p=k+1$. In this article, we obtain the exact values of $\Gamma^{*}(10, p)$ for all primes p. Except for $p=11$, these values are much lower than the conjectured bound, as might be expected.

References

[1] Davenport, H.; Lewis, D.L., Homogeneous additive equations, Proc. Royal Soc. London Ser. A (274) (1963), 443-460.
[2] Knapp, M.P. Exact values of the function $\Gamma^{*}(k)$, J. Number Theory 131 (2011), 19011911.
[3] Rodrigues, P. H. and Veras, D. S. Exact values of $\Gamma^{*}(10, p)$, International J. Number Theory Vol. 16, No. 3 (2020), 639-649.

