Influence of non-Newtonian blood flow models on drug deposition in the arterial wall

Elías Gudiño¹

 1 Universidade Federal do Paraná

In this talk, we investigate the influence of non-Newtonian blood flow models on drug diffusion from a coronary drug-eluting-stent (DES). We consider the Oldroyd-B, Phan-Thien- Tanner (PTT) and Giesekus viscoelastic models for the description of fluid dynamics of blood. The model for blood flow is coupled with plasma filtration and mass transport from a DES. The model for the transport problem takes into consideration non-Fickian diffusion, drug dissolution, polymer degradation and binding. We propose an Implicit-Explicit (IMEX) finite element method and show numerical experiments that confirm the effectiveness and order of convergence of the employed methodology.

References

 E. GUDIÑO, C. M. OISHI, A. SEQUEIRA, Influence of non-Newtonian blood flow models on drug deposition in the arterial wall, Journal of Non-Newtonian Fluid Mechanics 274 (2019) 104206