Instituto de Matemática Pura e Aplicada

Ramsey Theory for Sparse Graphs

Doctoral Thesis in Mathematics

Walner Mendonça

Advisor:
Robert Morris

May 2020

Agradecimentos

Ao longo desta jornada que foi o meu doutorado, conheci e reencontrei várias pessoas que me apoiaram e as quais hoje tenho todas como queridos amigos. Acredito que todas elas foram importantes para o meu crescimento acadêmico e pessoal durante este período e deixo aqui o meu agradecimento para cada uma delas. Abaixo citarei algumas dessas pessoas em específico.

Agradeço ao professor Rob Morris por ter sido meu orientador. Seu apoio ao longo do meu doutorado foi essencial e me sinto sortudo em ter tido a oportunidade de ser orientado por ele. Admiro a sua experiência e conhecimento, bem como a leveza e simplicidade com qual ele transmite ideias matemáticas.

Agradeço ao professor Guilherme Mota, a quem eu considero como coorientador. Admiro o seu entusiasmo pela combinatória e empenho na pesquisa. Obrigado também por me convidar a participar em seus projetos de pesquisas, dos quais resultaram em três artigos ao longo do doutorado (dois dos quais serão abordados nesta tese).

Agradeço ao professor Yoshi Kohayakawa pela a sua hospitalidade em São Paulo e por também ter apoiado a minha participação na EUROCOMB-19.

Agradeço à Letícia Mattos, Luiz Paulo, Pedro Araújo, e Taísa Martins, pelas inúmeras discussões matemáticas intensas e pela amizade que carregarei para sempre. Agradeço também a todos demais membros (e ex-membros) do grupo de Combinatória do IMPA Daniel Barrantes, Julian Sahasrabudhe, Lucas Aragão, Marcelo Campos, Natasha Morrison, Teeradej Kittipassorn, e Victor Souza - por criarem esse ambiente acadêmico tão energético e estimulante.

Agradeço aos professores membros da minha banca de doutorada - dos quais dentre os não citados ainda, temos Augusto Teixeira, Maurício Collares, e Roberto Oliveira - pelas correções da tese.

Ao longo do doutorado, tive a oportunidade de me envolver em cinco projetos de pesquisas. Sou grato por ter tido a oportunidade de trabalhar com cada colaborador desses projetos, os quais, além dos já citados anteriormente, incluem Anita Liebenau, Bjarne Schülke, Giulia Maesaka, Jan Corsten, Jozef Skokan, Olaf Parczyk, e Sören Berger,

Agradeço também aos alunos do grupo de Probabilidade - Daniel Yumimura, Leandro Chiarini, Guilherme Reis, Roberto Andrés, Shangjie Yang, e Zoraida Fernandez Rico -
pelas inúmeras discussões na sala do café do IMPA e nas mesas do Zuzu Goró.
Agradeço também a todos os alunos que se juntavam todas as noites de quarta-feira na sala do café do IMPA para nos divertimos com alguns board games. Em particular, agradeço ao Alcides Carvalho e Sandoel Vieira pela amizade.

Agradeço aos meus conterrâneos José Eduardo Garcez, Rafael Ponte, e Renan Santos pela amizade e por me receberem no IMPA no meu primeiro ano.

Também não podia deixar de agradecer à Clarena Arrieta, Daniel Blanquicett, Reza Arefidamghani e Tiecheng Xu por tornarem esta difícil jornada mais leve com a amizade de cada um e com os inúmeros momentos alegres que compartilhamos enquanto morávamos juntos.

Por fim, agradeço à minha mãe, Donzinha, a quem devo tudo que sou hoje.

Abstract

In this thesis we address three problems in Graph Ramsey Theory: the size-Ramsey number of powers of trees, covering edge-colourings of random graphs by monochromatic trees, and monochromatic tiling in edge-coloured complete graphs.

Given a positive integer r, the r-colour size-Ramsey number of a graph H is the smallest integer m such that there exists a graph G with m edges for which any colouring of $E(G)$ with r colours has a monochromatic copy of H. In the first result in this thesis, we prove that for any positive integers k and r, the r-colour size-Ramsey number of the k th power of any n-vertex bounded degree tree is linear in n. As a corollary, we obtain that the r colour size-Ramsey number of n-vertex graphs with bounded treewidth and bounded degree is linear in n.

In the second result in this thesis, we are interested in determining how many monochromatic trees are necessary to cover the vertices of an edge-coloured random graph. We show that if $p \gg n^{-1 / 6}(\ln n)^{1 / 6}$, then for every 3-edge-colouring of the random graph $G(n, p)$, there are three monochromatic trees such that their union covers all the vertices of $G(n, p)$. This improves, for three colours, a result of Bucić, Korándi and Sudakov.

In the third result of this thesis, we prove that for all integers $\Delta, r \geq 2$, there is a constant $C=C(\Delta, r)>0$ such that the following holds for every sequence $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots\right\}$ of graphs with $v\left(F_{n}\right)=n$ and $\Delta\left(F_{n}\right) \leq \Delta$: in every r-edge-coloured K_{n}, there is a collection of at most C monochromatic copies of graphs from \mathcal{F} partitioning $V\left(K_{n}\right)$. This makes progress on a conjecture of Grinshpun and Sárközy.

Resumo

Nesta tese, abordamos três problemas na Teoria de Ramsey para Grafos: o número tamanhoRamsey para potência de árvores, cobertura com árvores monocromáticas em colorações de arestas de grafos aleatórios, e azulejamento monocromático em grafos completos coloridos.

Dado um número inteiro positivo r, o número tamanho-Ramsey com r cores de um grafo H é o menor número inteiro m para o qual exista um grafo G com m arestas com a propriedade de que, em qualquer coloração de $E(G)$ com r cores, há uma cópia monocromática de H. No primeiro resultado desta tese, provamos que para quaisquer números inteiros positivos k e r, o número tamanho-Ramsey com r cores de uma k-potência de qualquer árvore com n vértices e grau máximo limitado é linear em n. Como corolário, obtemos que o número tamanho-Ramsey com r cores de grafos com n vértices e com largura de árvore limitada e grau máximo limitado é linear em n.

No segundo resultado desta tese, estamos interessados em determinar quantas árvores monocromáticas são necessários para cobrir os vértices de um grafo aleatório aresta-colorido. Mais precisamente, mostramos que se $p \gg n^{-1 / 6}(\ln n)^{1 / 6}$, então para cada 3-coloração das arestas do grafo aleatório $G(n, p)$ existem três árvores monocromáticas tais que a união delas cobre todos os vértices. Isso melhora, para três cores, um resultado de Bucić, Korándi and Sudakov.

No nosso terceiro resultado, provamos que para todos números inteiros $\Delta, r \geq 2$, existe uma constante $C=C(\Delta, r)>0$, tal que o seguinte vale para toda sequência $\mathcal{F}=$ $\left\{F_{1}, F_{2}, \ldots\right\}$ de grafos com $v\left(F_{n}\right)=n$ e $\Delta\left(F_{n}\right) \leq \Delta$: para toda r-aresta-coloração de K_{n}, existe uma coleção de no máximo C cópias monocromáticas de grafos em \mathcal{F} particionando $V\left(K_{n}\right)$. Tal resultado é um progresso em uma conjectura de Grinshpun e Sárközy.

List of Figures

2.1 Illustration of the concepts and notation used throughout the proof of Lemma 2.3.6

 when $\Delta=3$ and $k=2$.143.1 Analysis of the colouring of the edges incident on $X_{r b g}$ and on $X_{y r b g}$. 35
3.2 Analysis of the colour of the edges incident on $X_{y r b g}$ and on $X_{x r b g}$. 36
3.3 Case 1 40
3.4 Case 2 42
3.5 Case 3 43
4.1 A partition of $V(G)$. Each set in the picture is much smaller than the closestcylinder Z_{i} to the left.61

Contents

Abstract iv
Resumo v
List of Figures vi
1 Introduction 1
2 Size-Ramsey Number of Powers of Bounded Degree Trees 7
2.1 Introduction 7
2.2 Auxiliary results 9
2.3 Bijumbledness, expansion and embedding of trees 10
2.4 Proof of Theorem I 17
2.5 Concluding Remarks 28
3 Covering the Random Graph by Monochromatic Trees 29
3.1 Introduction 29
3.2 Preliminaries 31
3.3 A sketch of the proof 31
3.4 Proof of Theorem II 33
3.4.1 Shortcut graphs with independence number at least three 34
3.4.2 Shortcut graphs with independence number at most two 37
3.5 Concluding Remarks 43
4 Tiling Edge-coloured Complete Graphs 45
4.1 Introduction 45
4.2 Proof overview 47
4.3 Regularity 49
4.4 Greedily covering most vertices 51
4.5 The Absorption Lemma 52
4.6 Proof of Theorem III 58

CONTENTS

4.7 Proofs of the auxiliary lemmas 63
4.8 Concluding Remarks 66
Bibliography 76

Chapter 1

Introduction

The classical Ramsey problem for graphs asks whether there must exist monochromatic subgraphs in colourings of large graphs. Given graphs G and H and a positive integer r, we say that G is r-Ramsey for H, and we write $G \rightarrow(H)_{r}$, if in any r-colouring of the edges of G there is a monochromatic copy of H. For $r=2$, we simply say that G is Ramsey for H and denote $G \rightarrow H$. The classical theorem of Ramsey [92] states that for every positive integers t and r, there exists an integer n such that $K_{n} \rightarrow\left(K_{t}\right)_{r}$. The r-colour Ramsey number $R_{r}(H)$ of a graph H is the minimum positive integer n such that $K_{n} \rightarrow(H)_{r}$. We denote by $R(H)$ the 2-colour Ramsey number of H.

Extensive research has been developed around Ramsey numbers, beginning with the work of Erdős and Szekeres [43], who in 1935 proved a recursion formula for the so called off-diagonal Ramsey numbers yielding the follow inequality:

$$
R\left(K_{t}\right) \leq\binom{ 2 t-2}{t-1} .
$$

In particular, $R\left(K_{t}\right) \leq 2^{2 t}$. In 1947, as one of the earliest application of the probabilistic method, Erdős 40 proved that $R\left(K_{t}\right) \geq 2^{t / 2}$. Surprisingly, despite efforts of many researchers, the upper bound has only been improved by a sub-exponential factor (see [26|), and the lower bound has only been improved by Spencer [98] in 1975 by a factor of 2 .

Ramsey numbers have been a vibrant research area in Combinatorics. The survey of Conlon, Fox and Sudakov [29] describes some of the results in the theory. Besides complete graphs, the most studied class of graphs has been the class of bounded-degree graphs. In 1983, Chvatál, Rödl, Szemerédi and Trotter [23], confirming a conjecture of Burr and Erdôs [19], proved that for every positive integer Δ, there is a positive real number C such that if $\Delta(H) \leq \Delta$, then $R(H) \leq C|H|$. However, their proof, as an application of Szemerédi's regularity lemma, gave an upper bound for C that grows as a tower of height polynomial in Δ. This bound has been improved by Eaton [36], Graham, Rödl and Ruciński [52] and finally by Conlon, Fox and Sudakov [28], who proved in 2012 that

1. INTRODUCTION

there exists a constant c such that any graph H with maximum degree Δ satisfies $R(H) \leq$ $2^{c \Delta \log \Delta}|H|$. Conlon, Fox and Sudakov also conjectured (see [29|) that the logarithmic factor in the exponent is unnecessary.

Another important class of graphs that has been extensively explored in the literature is the class of graphs of bounded degeneracy. The degeneracy of a graph G is the smallest positive integer d such that every subgraph of G has minimum degree at most d. Burr and Erdôs [19] conjectured in 1975 that for every positive integer d, there is a constant C_{d} such that for every graph H with degeneracy at most d we have $R(H) \leq C_{d}|H|$. This conjecture remained open for more than four decades. The first polynomial bound was established in 2004 by Kostochka and Rödl [75], who proved that $R(H) \leq C_{d} \Delta(H)|H|$, for every graph H with degeneracy at most d (in particular, this gives a quadratic upper bound). Kostochka and Sudakov 76$]$ showed an almost linear upper bound using the dependent random choice technique and Fox and Sudakov [47] refined their method to prove that for every graph H with degeneracy at most d we have $R(H) \leq 2^{C_{d} \sqrt{\log |H|}}|H|$. The conjecture of Burr and Erdős was finally settled in 2017 by Lee [80] who proved that there exists a constant c for which every graph H with degeneracy at most d, chromatic number at most r and at least $2^{d^{2} 2^{c r}}$ vertices, satisfies $R(H) \leq 2^{d 2^{c r}}|H|$. Since graphs with degeneracy at most d have chromatic number at most $d+1$, this gives the upper bound $R(H) \leq 2^{2^{C d}}|H|$, for every graph H with degeneracy at most d (where C is an universal constant).

Substantial research has also been developed around the following asymmetric variant of the Ramsey numbers. Given graphs F and H, the off-diagonal Ramsey number of the pair (F, H), denoted by $R(F, H)$, is the smallest n such that every red-blue colouring of the edges of K_{n} contains a red copy of F or a blue copy of H. If F is connected, then $\chi(H)-1$ disjoint red cliques of order $|F|-1$ with all the edges between them coloured blue shows that $R(F, H) \geq(\chi(H)-1)(|F|-1)+1$. If we denote by $\sigma(H)$ the size of the smallest colour class in every optimal proper colouring of H, then we get the slightly better lower bound $R(F, H) \geq(\chi(H)-1)(|F|-1)+\sigma(H)$ by adding to the previous construction a red clique of order $\sigma(H)-1$ and colouring blue all the edges incident on this clique. This simple inequality due to Burr [18] has been shown to be tight for many pairs of graphs. We say that F is H-good if $R(F, H)=(\chi(H)-1)(|F|-1)+\sigma(H)$ and we say that F is t-good if it is $K_{t^{-}}$-good. Chvátal [24] showed that every tree is t-good, for every $t \in \mathbb{N}$. Burr and Erdős [20] showed that sufficiently large powers $]^{1}$ of paths are t-good, while Allen, Brightwell and Skokan [3] generalized their result to H-goodness for every graph H (they in fact proved a more general result that covers many other classes of graphs besides powers of paths). Balla, Pokrovskiy and Sudakov [8] proved that sufficiently large bounded-degree trees are H-good, for every graph H. Fiz Pontiveros, Griffiths, Morris, Saxton and Skokan [44] showed that sufficiently large hypercubes are H-good, for every graph H. The reader can find more results about

[^0]
1. INTRODUCTION

Ramsey goodness in the survey [29].
Historically, the theory of Ramsey numbers has been closely related to the theory of random sparse graphs. Indeed, the latter has been used to prove the existence of Ramsey graphs with peculiar structures. For instance, in 1986, Frankl and Rödl [48], motivated by a question of Erdős and Nešetřil [38], used the random graph $G(n, p)$ to construct a fairly small graph G such that $K_{4} \nsubseteq G$ and $G \rightarrow K_{3}$. Those graphs were previously explicitly constructed by Nešetřil and Rödl 87 (in a more general context). However, the graphs they constructed were extremely large. Frankl and Rödl's result relied on proving that for every $\varepsilon>0$, the random graph $G(n, p)$ on n vertices, where each edge is included independently with probability $p \geq n^{-1 / 2+\varepsilon}$, is Ramsey for K_{3} with high probability. Łuczak, Ruciński and Voigt [84] improved this by showing that $n^{-1 / 2}$ is the threshold for the event $G(n, p) \rightarrow K_{3}$.

Since then, the study of Ramsey properties involving random graphs has become an active research area in combinatorics, with the most celebrated result being the theorem of Rödl and Ruciński [93] from 1995 that establishes the threshold for the symmetric Ramsey property $G(n, p) \rightarrow H$, for any graph H. In 1997, Kohayakawa and Kreuter 67] formulated a conjecture concerning the threshold for the asymmetric Ramsey property in $G(n, p)$. The conjectured upper bound for the threshold was proved under some assumptions by Kohayakawa, Schacht and Spöhel [71]. Recently, Mousset, Nenadov and Samotij 86] proved the upper bound in full generality, using the containers method of Balogh, Morris and Samotij [9] and Saxton and Thomason [97]. However, the conjectured lower bound for the threshold has only been proved for pairs of cycles 67] and pairs of cliques 85.

The r-colour size-Ramsey number $\hat{r}_{r}(H)$ of H is the minimum number of edges in a graph G such that $G \rightarrow(H)_{r}$. Erdôs 39 asked in 1981 whether we have $\hat{r}_{2}\left(P_{n}\right) \gg n$. In 1983, Beck [10] answered Erdô's' question negatively by proving that $\hat{r}_{2}\left(P_{n}\right)=O(n)$. His proof essentially consisted of showing that for some large constant C, with high probability, the random graph $G\left(C n, n^{-1}\right)$ is Ramsey for P_{n}. Alon and Chung [4] provided an explicit construction of graphs with $O(n)$ edges that are Ramsey for P_{n}. Beck also conjectured that for every positive integer Δ, there is a constant C such that for every tree T with $\Delta(T) \leq \Delta$, we have $\hat{r}_{2}(T) \leq C|T|$. This was proved by Friedman and Pippenger [49] in 1987, in a more general setting which also implies the corresponding result for arbitrarily many colours.

Recently, Clemens, Jenssen, Kohayakawa, Morrison, Mota and Reding [25] generalized Beck's result to powers of paths by proving that the 2-colour size-Ramsey number of the k th power of a path on n vertices is linear (as a function of n). This result was later extended to any fixed number r of colours by Han, Jenssen, Kohayakawa, Mota and Roberts [57. In Chapter 2, in a work developed together with Berger, Kohayakawa, Maesaka, Martins, Mota, and Parczyk, we generalize the result from [57] to bounded powers of bounded degree trees. More precisely, we prove the following theorem.

Theorem I. For every positive integers k, Δ and s, there exists $C>0$ such that for any

1. INTRODUCTION

n-vertex tree T with $\Delta(T) \leq \Delta$, we have $\hat{r}_{s}\left(T^{k}\right) \leq C n$.
Another important class of Ramsey-type problems concerns monochromatic covering and monochromatic partitioning of edge-coloured graphs. This line of research was initiated by Gerencsér and Gyárfás [51, who in 1967 proved, among other things, that for any 2-edgecolouring of K_{n}, there is a partition of $V\left(K_{n}\right)$ into 2 monochromatic paths. This result has been generalized in several ways. For instance, in 1979, Lehel (see [6]) conjectured that in every 2 -edge-colouring of K_{n}, there are two monochromatic cycles ${ }^{2}$ of different colours whose vertex sets partition $V\left(K_{n}\right)$. This conjecture was proved for sufficiently large n by Łuczak, Rödl and Szemerédi [83]; for smaller n, but still large, by Allen [2]; and finally, in 2010, Bessy and Thomassé [11 proved it for every n.

In a seminal paper from 1991, Erdős, Gyárfás and Pyber [42], in an attempt to generalize Gerencsér and Gyárfás' result, conjectured that for any r-edge-colouring of K_{n} there is a partition of $V\left(K_{n}\right)$ into r monochromatic paths. In 2014, Pokrovskiy [89] confirmed this conjecture for $r=3$, however the conjecture is still open for larger values of r. Erdôs, Gyárfás and Pyber conjectured further that one can partition $V\left(K_{n}\right)$ into r monochromatic cycles. For $r=2$, this corresponds to Lehel's conjecture. Pokrovskiy [89] showed that this conjecture is false for $r \geq 3$ by providing an r-edge-colouring of the complete graph K_{n} such that any collection of r disjoint monochromatic cycles covers at most $n-1$ vertices. However, he conjectured that in every r-edge-colouring of K_{n}, there are r disjoint monochromatic cycles covering all but $O(1)$ vertices. Currently, the best result concerning partitions into monochromatic cycles is due to Gyárfás, Ruszinkó, Sárközy and Szemerédi [55] who proved in 2006 that in every r-edge-colouring of K_{n}, there are $O(r \log r)$ monochromatic cycles partitioning $V\left(K_{n}\right)$.

Erdős, Gyárfás and Pyber were also interested in generalizing the original result of Gerencsér and Gyárfás to partitioning into monochromatic trees instead of paths. Given a graph G and a positive integer r, let $\operatorname{tp}_{r}(G)$ denote the minimum number k for which in any r-edge-colouring of G, there are k monochromatic trees T_{1}, \ldots, T_{k} such that their vertex sets partition $V(G)$, i.e.,

$$
V(G)=V\left(T_{1}\right) \dot{\cup} \ldots \dot{U} V\left(T_{k}\right) .
$$

We define $\operatorname{tc}_{r}(G)$ analogously by not requiring the union above to be disjoint. In particular, $\operatorname{tc}_{r}(G) \leq \operatorname{tp}_{r}(G)$. An old remark commonly credited to Rado is that for every positive integer n we have $\operatorname{tp}_{2}\left(K_{n}\right)=1$. Erdốs, Gyárfás and Pyber proved that $\operatorname{tp}_{3}\left(K_{n}\right)=2$ and they conjectured that for every $r \geq 2$, we have $\operatorname{tp}_{r}\left(K_{n}\right) \leq r-1$. Haxell and Kohayakawa 58 proved that for every $r \geq 3$, there exists n_{0} such that $\operatorname{tp}_{r}\left(K_{n}\right) \leq r$, for $n \geq n_{0}$. Bal and DeBiasio 7 generalized Haxell and Kohayakawa's result by showing that for every

[^1]positive integer r there exists n_{0} such that for every graph G with $n \geq n_{0}$ vertices and $\delta(G) \geq(1-1 / e r!) n$, we have $\operatorname{tp}_{r}(G) \leq r$. On the other hand, it is easy to see that $\mathrm{tc}_{r}\left(K_{n}\right) \leq r$, for every n. However, even a weaker version of Erdős, Gyárfás and Pyber's conjecture stating that $\mathrm{tc}_{r}\left(K_{n}\right) \leq r-1$ remains open for $r \geq 4$.

Gyárfás [54] noticed that a well-known conjecture of Ryser is equivalent to the statement that for every graph G and positive integer r we have $\operatorname{tc}_{r}(G) \leq(r-1) \alpha(G)$, where $\alpha(G)$ denotes the independence number of G. Ryser's conjecture for $r=2$ is equivalent to KönigEgerváry's theorem and for $r=3$ has been proved by Aharoni [1] in 2001; however, it remains open for larger values of r. Haxell and Scott 61] proved in 2012 a weaker version of Ryser's conjecture for $r=4$ and $r=5$. They proved that there is some $\varepsilon>0$ such that we have $\operatorname{tc}_{r}(G) \leq(r-\varepsilon) \alpha(G)$, for every graph G and $r \in\{4,5\}$.

In 2017, Bal and DeBiasio [7], motivated by the work of Rödl and Ruciński [93] on the Ramsey property of random graphs, initiated the study of covering random graphs by monochromatic trees. They conjectured that for any $r \geq 2$, the threshold for the event $\operatorname{tc}_{r}(G(n, p)) \leq r$ has order $(\log n / n)^{1 / r}$. This conjecture was verified for $r=2$ by Kohayakawa, Mota and Schacht [68] (they actually showed that $t p_{2}(G(n, p)) \leq 2$ for the conjectured range of p). However, Ebsen, Mota and Schnitzer ${ }^{3}$ showed that it does not hold for larger values of r.

Korándi, Mousset, Nenadov, Škorić and Sudakov [74] investigated the problem of covering random graphs by monochromatic cycles. They proved that for $p \geq n^{-1 / r+\varepsilon}$, with high probability, in any r-edge-colouring of $G=G(n, p)$, there is a collection of at most $O\left(r^{8} \log r\right)$ monochromatic cycles covering $V(G)$. Lang and Lo [79] proved that for $p \geq n^{-1 / 2 r}$, with high probability in every r-edge-colouring of $G=G(n, p)$, there is a collection of at most $O\left(r^{4} \log r\right)$ monochromatic cycles partitioning $V(G)$.

In a recent work, Bucić, Korándi and Sudakov [17] analysed the behaviour of $\operatorname{tc}_{r}(G(n, p))$ for every $r \geq 2$. In Chapter 3, in a work developed together with Kohayakawa, Mota and Schülke, we improve their results for $r=3$. More precisely, we show the following:

Theorem II. If $p=p(n)$ satisfies $p \gg\left(\frac{\log n}{n}\right)^{1 / 6}$, then with high probability we have

$$
\operatorname{tc}_{3}(G(n, p)) \leq 3
$$

It is not hard to see that Theorem II] cannot be improved by reducing the number of trees unless p is very close to 1 . Indeed, let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be an independent set in $G(n, p)$, then colour all the edges incident on v_{i} with the colour i, for $i \in\{1,2,3\}$, and colour all the remaining edges of $G(n, p)$ in any way. This colouring shows that with high probability we have $\operatorname{tc}_{3}(G(n, p)) \geq 3$, for $p \leq 1-O\left(n^{-1}\right)$. However, we believe that the lower bound for p in Theorem II can be improved to $\left(\frac{\log n}{n}\right)^{1 / 4}$.

[^2]
1. INTRODUCTION

As we mentioned earlier, Erdős, Gyárfás and Pyber [42] proved that for every r-edgecolouring of K_{n}, it is possible to partition $V\left(K_{n}\right)$ into a bounded number (depending on r) of monochromatic paths, trees or even cycles. Grinshpun and Sárközy [53] extended this result to more general sequences of graphs. Let $\mathcal{F}=\left\{F_{i}: i \in \mathbb{N}\right\}$ be an infinite sequence of graphs with $\left|F_{i}\right|=i$, for each $i \in \mathbb{N}$. Given an r-colouring of the edges of the complete graph K_{n}, a monochromatic \mathcal{F}-tiling of size t is a collection of monochromatic vertex-disjoint graphs G_{1}, \ldots, G_{t}, each of which is isomorphic to some member of \mathcal{F}, and such that

$$
V\left(K_{n}\right)=V\left(G_{1}\right) \dot{\cup} \cdots \dot{\cup} V\left(G_{t}\right) .
$$

Let us write $\tau_{r}(n, \mathcal{F})$ for the minimum $t \in \mathbb{N}$ such that for every r-edge-colouring of the edges of K_{n}, there is a monochromatic \mathcal{F}-tiling of size at most t. The r-colour tiling number of \mathcal{F} is defined as

$$
\tau_{r}(\mathcal{F}):=\sup _{n \in \mathbb{N}} \tau_{r}(n, \mathcal{F}) .
$$

Grinshpun and Sárközy [53] proved that for every positive integer Δ, there is a positive number C such that if \mathcal{F} is a sequence of graphs with maximum degree at most Δ, then $\tau_{2}(\mathcal{F}) \leq 2^{C \Delta \log \Delta}$. In particular, the 2 -colour tiling number of a sequence of boundeddegree graphs is finite. They conjectured that the r-colour tiling number of a sequence of bounded-degree graphs should also be finite and have at most an exponential growth with Δ. In Chapter 4, in a joint work with Corsten, we prove that the r-colour tiling number of a sequence of bounded-degree graphs is indeed finite by establishing a triple-exponential bound. More precisely, we prove the following.

Theorem III. There is an absolute constant $K>0$ such that for all integers $r, \Delta \geq 2$, we have

$$
\tau_{r}(\mathcal{F}) \leq \exp ^{2}\left(r^{K r \Delta^{3}}\right)
$$

for every sequence $\mathcal{F}=\left\{F_{i}: i \in \mathbb{N}\right\}$ of graphs with $\left|F_{i}\right|=i$ and $\Delta\left(F_{i}\right) \leq \Delta$, for each $i \in \mathbb{N}$.
The proof of Theorem [II] combines ideas from the absorption method as in the original paper of Erdős, Gyárfás and Pyber [42] with some modern approaches involving the blow-up lemma and the weak regularity lemma of Duke, Lefmann and Rödl [35].

Chapter 2

Size-Ramsey Number of Powers of Bounded Degree Trees

2.1 Introduction

Given graphs G and H and a positive integer s, we denote by $G \rightarrow(H)_{s}$ the property that any s-colouring of the edges of G contains a monochromatic copy of H. We are interested in the problem proposed by Erdős, Faudree, Rousseau and Schelp 41] of determining the minimum integer m for which there is a graph G with m edges such that property $G \rightarrow(H)_{s}$ holds. Formally, the s-colour size-Ramsey number $\hat{r}_{s}(H)$ of a graph H is defined as follows:

$$
\hat{r}_{s}(H)=\min \left\{e(G): G \rightarrow(H)_{s}\right\} .
$$

Answering a question posed by Erdôs [39], Beck [10] showed that $\hat{r}_{2}\left(P_{n}\right)=O(n)$ by means of a probabilistic proof. Alon and Chung [4] proved the same fact by explicitly constructing a graph G with $O(n)$ edges such that $G \rightarrow\left(P_{n}\right)_{2}$. In the last decades many successive improvements were obtained in order to determine the size-Ramsey number of paths (see, e.g., [10, 12, 34] for lower bounds, and [10, 33, 81, 34] for upper bounds). The best known bounds for paths are $5 n / 2-15 / 2 \leq \hat{r}_{2}\left(P_{n}\right) \leq 74 n$ from [34]. For any $s \geq 2$ colours, Dudek and Prałat [34] and Krivelevich [78] proved that there are positive constants c and C such that $c s^{2} n \leq \hat{r}_{s}\left(P_{n}\right) \leq C s^{2}(\log s) n$.

Moving away from paths, Beck [10 asked whether $\hat{r}_{2}(H)$ is linear for any bounded degree graph. This question was later answered negatively by Rödl and Szemerédi [94], who constructed a family $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ of n-vertex graphs of maximum degree $\Delta\left(H_{n}\right) \leq 3$ such that $\hat{r}_{2}\left(H_{n}\right)=\Omega\left(n \log ^{1 / 60} n\right)$. The current best upper bound for the size-Ramsey number of graphs with bounded degree was obtained in 70 by Kohayakawa, Rödl, Schacht and

[^3]
2.1. INTRODUCTION

Szemerédi, who proved that for any positive integer Δ there is a constant c such that, for any graph H with n vertices and maximum degree Δ, we have

$$
\hat{r}_{2}(H) \leq c n^{2-1 / \Delta} \log ^{1 / \Delta} n .
$$

For more results on the size-Ramsey number of bounded degree graphs see $30,49,59,60$, 66, 69].

Let us turn our attention to powers of bounded degree graphs. Let H be a graph with n vertices and let k be a positive integer. The k th power H^{k} of H is the graph with vertex set $V(H)$ in which there is an edge between distinct vertices u and v if and only if u and v are at distance at most k in H. Recently it was proved that the 2 -colour size-Ramsey number of powers of paths and cycles is linear [25. This result was extended to any fixed number s of colours in [57], i.e.,

$$
\begin{equation*}
\hat{r}_{s}\left(P_{n}^{k}\right)=O_{k, s}(n) \quad \text { and } \quad \hat{r}_{s}\left(C_{n}^{k}\right)=O_{k, s}(n) . \tag{2.1}
\end{equation*}
$$

The main result in this chapter (Theorem I) extends (2.1) to bounded powers of bounded degree trees. We prove that for any positive integers k and s, the s-colour size-Ramsey number of the k th power of any n-vertex bounded degree tree is linear in n.

Theorem I. For every positive integers k, Δ and s, there exists $C>0$ such that for any n-vertex tree T with $\Delta(T) \leq \Delta$, we have $\hat{r}_{s}\left(T^{k}\right) \leq C n$.

We remark that Theorem \square is equivalent to the following result for the 'general' or 'offdiagonal' size-Ramsey number $\hat{r}\left(H_{1}, \ldots, H_{s}\right)=\min \left\{e(G): G \rightarrow\left(H_{1}, \ldots, H_{s}\right)\right\}$: if $H_{i}=T_{i}^{k}$ for $i=1, \ldots, s$ where T_{1}, \ldots, T_{s} are bounded degree trees, then $\hat{r}\left(H_{1}, \ldots, H_{s}\right)$ is linear in $\max _{1 \leq i \leq s} v\left(H_{i}\right)$. To see this, it is sufficient to apply Theorem to a tree containing the disjoint union of T_{1}, \ldots, T_{s}.

The graph that we present to prove Theorem \square does not depend on T, but only on Δ, k and n. Moreover, our proof not only gives a monochromatic copy of T^{k} for a given T, but a monochromatic subgraph that contains a copy of the k th power of every n-vertex tree with maximum degree at most Δ. That is, we prove the existence of so called 'partition universal graphs' with $O_{k, \Delta, s}(n)$ edges for the family of powers T^{k} of n-vertex trees with $\Delta(T) \leq \Delta$.

Recently, Kamčev, Liebenau, Wood, and Yepremyan [64] proved, among other things, that the 2 -colour size-Ramsey number of an n-vertex graph with bounded degree and bounded treewidth is $O(n)^{1}$. This is equivalent to our result for $s=2$. Indeed, any graph with bounded treewidth and bounded maximum degree is contained in a suitable blow-up of some bounded degree tree $[32, ~ 99]$ and a blow-up of a bounded degree tree is contained in the power of another bounded degree tree. Conversely, bounded powers of bounded degree trees

[^4]have bounded treewidth and bounded degree. Therefore, we obtain the following equivalent version of Theorem I, which generalises the result from [64] and answers one of their main open questions (Question 5.2 in [64]).

Corollary 2.1.1. For any positive integers k, Δ and s and any n-vertex graph H with treewidth k and $\Delta(H) \leq \Delta$, we have

$$
\hat{r}_{s}(H)=O_{k, \Delta, s}(n)
$$

The proof of Theorem $\mathbb{1}$ follows the strategy developed in [57], proving the result by induction on the number of colours s. Very roughly speaking, we start with a graph G with suitable properties and, given any s-colouring of the edges of $G(s \geq 2)$, either we obtain a monochromatic copy of the power of the desired tree in G, or we obtain a large subgraph H of G that is coloured with at most $s-1$ colours; moreover, the graph H that we obtain is such that we can apply the induction hypothesis on it. Naturally, we design the requirements on our graphs in such a way that this induction goes through. As it turns out, the graph G will be a certain blow-up of a random-like graph. While this approach seems uncomplicated upon first glance, the proof requires a variety of additional ideas and technical details.

To implement the above strategy, we need, among other results, two new and key ingredients which are interesting on their own: (i) a result that states that for any sufficiently large graph G, either G contains a large expanding subgraph or there is a given number of reasonably large disjoint subsets of $V(G)$ without any edge between any two of them (see Lemma 2.3.4; (ii) an embedding result that states that in order to embed a power T^{k} of a tree T in a certain blow-up of a graph G it is enough to find an embedding of an auxiliary tree T^{\prime} in G (see Lemma 2.3.6).

2.2 Auxiliary results

In this section we state a few results which will be needed in the proof of Theorem I. The first lemma guarantees that, in a graph G that has edges between large subsets of vertices, there exists a long "transversal" path along a constant number of large subsets of vertices of G. Denote by $e_{G}(X, Y)$ the number of edges between two disjoint sets X and Y in a graph G.

Lemma 2.2.1 ([25, Lemma 3.5]). For every integer $\ell \geq 1$ and every $\gamma>0$ there exists $d_{0}=2+4 /(\gamma(\ell+1))$ such that the following holds for any $d \geq d_{0}$. Let G be a graph on $d n$ vertices such that for every pair of disjoint sets $X, Y \subseteq V(G)$ with $|X|,|Y| \geq \gamma n$ we have $e_{G}(X, Y)>0$. Then for every family $V_{1}, \ldots, V_{\ell} \subseteq V(G)$ of pairwise disjoint sets each of size

2.3. BIJUMBLEDNESS, EXPANSION AND EMBEDDING OF TREES

at least $\gamma d n$, there is a path $P_{n}=\left(x_{1}, \ldots, x_{n}\right)$ in G with $x_{i} \in V_{j}$ for all $1 \leq i \leq n$, where $j \equiv i(\bmod \ell)$.

We will also use the classical Chernoff's inequality and Kővári-Sós-Turán theorem.

Theorem 2.2.2 (Chernoff's inequality). Let $0<\varepsilon \leq 3 / 2$. If X is a sum of independent Bernoulli random variables then

$$
\mathbb{P}(|X-\mathbb{E}[X]|>\varepsilon \mathbb{E}[X]) \leq 2 \cdot e^{-\left(\varepsilon^{2} / 3\right) \mathbb{E}[X]}
$$

Theorem 2.2.3 (Kővári-Sós-Turán [77]). Let $k \geq 1$ and let G be a bipartite graph with x vertices in each vertex class. If G contains no copy of $K_{2 k, 2 k}$, then G has at most $4 x^{2-1 /(2 k)}$ edges.

2.3 Bijumbledness, expansion and embedding of trees

In this section we provide the necessary tools to obtain the desired monochromatic embedding of a power of a tree in the proof of Theorem I. We start by defining the expanding property of a graph.

Property 2.3.1 (Expanding). A graph G is (n, a, b)-expanding if for all $X \subseteq V(G)$ with $|X| \leq a(n-1)$, we have $\left|N_{G}(X)\right| \geq b|X|$.

Here $N_{G}(X)$ is the set of neighbours of X, i.e. all vertices in $V(G)$ that share an edge with some vertex from X. The following embedding result due to Friedman and Pippenger 49] guarantees the existence of copies of bounded degree trees in expanding graphs.

Lemma 2.3.2. Let n and Δ be positive integers and G a non-empty graph. If G is $(n, 2, \Delta+$ $1)$-expanding, then G contains any n-vertex tree with maximum degree Δ as a subgraph.

Owing to Lemma 2.3.2, we are interested in graph properties that guarantee expansion. One such property is bijumbledness, defined below.

Property 2.3.3 (Bijumbledness). A graph G on N vertices is (p, θ)-bijumbled if, for all disjoint sets X and $Y \subseteq V(G)$ with $\theta / p<|X| \leq|Y| \leq p N|X|$, we have $\mid e_{G}(X, Y)$ $p|X||Y| \mid \leq \theta \sqrt{|X||Y|}$.

Note that bijumbledness immediately implies that

$$
\begin{equation*}
\text { for all disjoint sets } X, Y \subseteq V(G) \text { with }|X|,|Y|>\theta / p \text { we have } e_{G}(X, Y)>0 \text {. } \tag{2.2}
\end{equation*}
$$

Moreover, a simple averaging argument guarantees that in a (p, θ)-bijumbled graph G on N vertices we have

$$
\begin{equation*}
\left|e(G)-p\binom{N}{2}\right| \leq \theta N \tag{2.3}
\end{equation*}
$$

We now state the first main novel ingredient in the proof of our main result (TheoremI). The following lemma ensures that in a sufficiently large graph we get an expanding subgraph with appropriate parameters or we get reasonably large disjoint subsets of vertices that span no edges between them. This result was inspired by [88, Theorem 1.5]. Furthermore, we remark that similar results have been proved in [91, 90].
Lemma 2.3.4. Let $f \geq 0, D \geq 0, \ell \geq 2$ and $\eta>0$ be given and let $A=(\ell-1)(D+1)(\eta+$ $f)+\eta$. If G is a graph on at least An vertices, then
(i) there is a non-empty set $Z \subseteq V(G)$ such that $G[Z]$ is (n, f, D)-expanding, or
(ii) there exist disjoint $V_{1}, \ldots, V_{\ell} \subseteq V(G)$ such that $\left|V_{i}\right| \geq \eta n$ for $1 \leq i \leq \ell$ and $e_{G}\left(V_{i}, V_{j}\right)=0$ for $1 \leq i<j \leq \ell$.
Proof. Let us assume that (i) does not hold. Since G is not (n, f, D)-expanding, we can take $V_{1} \subseteq V(G)$ of maximum size satisfying that $\left|V_{1}\right| \leq(\eta+f) n$ and $\left|N_{G}\left(V_{1}\right)\right|<D\left|V_{1}\right|$. We claim that $\left|V_{1}\right| \geq \eta n$. Assume, for the sake of contradiction that $\left|V_{1}\right|<\eta n$. Let

$$
W_{1}=V(G) \backslash\left(V_{1} \cup N_{G}\left(V_{1}\right)\right) .
$$

Then $\left|W_{1}\right|>A n-(D+1) \eta n>0$. Applying that (i) does not hold, we get $X \subseteq W_{1}$ such that $|X| \leq f(n-1)$ and $\left|N_{G\left[W_{1}\right]}(X)\right|<D|X|$. Note that $N_{G}(X) \subseteq N_{G\left[W_{1}\right]}(X) \cup N_{G}\left(V_{1}\right)$. Thus

$$
\left|N_{G}\left(X \cup \dot{U} V_{1}\right)\right|=\left|N_{G\left[W_{1}\right]}(X) \cup N_{G}\left(V_{1}\right)\right|<D\left(|X|+\left|V_{1}\right|\right) .
$$

Also $\left|X \dot{\cup} V_{1}\right| \leq(\eta+f) n$, deriving a contradiction to the maximality of V_{1}.
Let $1 \leq k \leq \ell-2$ and suppose we have disjoint sets $\left(V_{1}, \ldots, V_{k}\right)$ such that
(I) $\left|V_{i}\right| \geq \eta n$, for $1 \leq i \leq k$;
(II) $e\left(V_{i}, V_{j}\right)=0$, for $1 \leq i<j \leq k$;
(III) $\left|\bigcup_{i=1}^{k}\left(V_{i} \cup N_{G}\left(V_{i}\right)\right)\right|<k(D+1)(\eta+f) n$.

We can increase this sequence in the following way. Let $W_{k}=V(G) \backslash \bigcup_{i=1}^{k}\left(V_{i} \cup N_{G}\left(V_{i}\right)\right)$ and note that

$$
\left|W_{k}\right| \stackrel{[\mathrm{IIII})}{\geq} A n-(\ell-2)(D+1)(\eta+f) n \geq(D+1)(\eta+f) n+\eta n>0
$$

2.3. BIJUMBLEDNESS, EXPANSION AND EMBEDDING OF TREES

Since (i) does not hold, there exists $V_{k+1} \subseteq W_{k}$ of maximum size with $\left|V_{k+1}\right| \leq(\eta+f) n$ such that $\left|N_{G\left[W_{k}\right]}\left(V_{k+1}\right)\right|<D\left|V_{k+1}\right|$. Note that $e_{G}\left(V_{i}, V_{k+1}\right) \leq e_{G}\left(V_{i}, W_{k}\right)=0$, for every $1 \leq i \leq k$. Therefore we have that (II) holds for the sequence (V_{1}, \ldots, V_{k+1}). Furthermore, note that

$$
\begin{equation*}
N_{G}\left(V_{k+1}\right) \subseteq \bigcup_{i=1}^{k} N_{G}\left(V_{i}\right) \cup N_{G\left[W_{k}\right]}\left(V_{k+1}\right) . \tag{2.4}
\end{equation*}
$$

This gives us (III) for the sequence $\left(V_{1}, \ldots, V_{k+1}\right)$, since

$$
\begin{aligned}
\left|\bigcup_{i=1}^{k+1}\left(V_{i} \cup N_{G}\left(V_{i}\right)\right)\right| & \stackrel{\boxed{2.4} \cdot}{=}\left|\bigcup_{i=1}^{k}\left(V_{i} \cup N_{G}\left(V_{i}\right)\right) \cup V_{k+1} \cup N_{G\left[W_{k}\right]}\left(V_{k+1}\right)\right| \\
& <(k+1)(D+1)(\eta+f) n .
\end{aligned}
$$

To see that $\left(V_{1}, \ldots, V_{k+1}\right)$ satisfies (I), define

$$
W_{k+1}=V(G) \backslash \bigcup_{i=1}^{k+1}\left(V_{i} \cup N_{G}\left(V_{i}\right)\right) \stackrel{[2.4]}{=} W_{k} \backslash\left(V_{k+1} \cup N_{G\left[W_{k}\right]}\left(V_{k+1}\right)\right) .
$$

Assume that $\left|V_{k+1}\right|<\eta n$ and derive a contradiction as before.
Therefore, we generate a sequence $\left(V_{1}, \ldots, V_{\ell-1}\right)$ with the properties required by (ii). To complete the sequence, note that (III) gives that $\left|W_{\ell-1}\right| \geq \eta n$ and set $V_{\ell}=W_{\ell-1}$.

As a corollary of the previous lemma, we get the following lemma that says that sufficiently large bijumbled graphs contain a non-empty expanding subgraph.

Lemma 2.3.5 (Bijumbledness implies expansion). Let f, θ, D and $c \geq 1$ be positive numbers with $c \geq 4(D+2) \theta$ and $a \geq 2(D+1) f$. If G is a $(c /(a n), \theta)$-bijumbled graph with an vertices, then there exists a non-empty subgraph H of G that is (n, f, D)-expanding.

Proof. Let $p=c /(a n)$ and let G be a (p, θ)-bijumbled graph. Suppose for a contradiction that no subgraph of G is (n, f, D)-expanding. We apply Lemma 2.3.4 with $\ell=2$ and $\eta=\frac{2 \theta a}{c}$. Note that since $a \geq 2(D+1) f$ and $c \geq 4(D+2) \theta$ and from the choice of η we have $a \geq(D+1) f+\frac{a}{2} \geq(D+1) f+\frac{2(D+2) \theta a}{c} \geq(D+1) f+(D+2) \eta=(D+1)(f+\eta)+\eta$.

Then, we get two disjoint sets $V_{1}, V_{2} \subseteq V(G)$ with $\left|V_{1}\right|=\left|V_{2}\right|=\eta n>\theta / p$ such that $e_{G}\left(V_{1}, V_{2}\right)=0$. On the other hand, by 2.2 , we have $e_{G}\left(V_{1}, V_{2}\right)>0$, a contradiction. Therefore, there is some subgraph of G that is (n, f, D)-expanding.

The next lemma is crucial for embedding the desired power of a tree. Let G be a graph and $\ell \geq r$ be positive integers. An (ℓ, r)-blow-up of G is a graph obtained from G by
replacing each vertex of G by a clique of size ℓ and for every edge of G arbitrarily adding a complete bipartite graph $K_{r, r}$ between the cliques corresponding to the vertices of this edge.

Lemma 2.3.6 (Embedding lemma for powers of trees). Given positive integers k and Δ, there exists r_{0} such that the following holds for every n-vertex tree T with maximum degree Δ. There is a tree $T^{\prime}=T^{\prime}(T, k)$ on at most $n+1$ vertices and with maximum degree at most $\Delta^{2 k}$ such that for every graph J with $T^{\prime} \subseteq J$ and any (ℓ, r)-blow-up J^{\prime} of J with $\ell \geq r \geq r_{0}$ we have $T^{k} \subseteq J^{\prime}$.

Proof. Given positive integers k, Δ, take $r_{0}=\Delta^{4 k}$. Let T be an n-vertex tree with maximum degree Δ. Let x_{0} be any vertex in $V(T)$ and consider T as rooted at x_{0}. For each vertex $v \in V(T)$, let $D(v)$ denote the set of descendants of v in T (including v itself). Let $D^{i}(v)$ be the set of vertices $u \in D(v)$ at distance at most i from v in T.

Let T^{\prime} be a tree with vertex set consisting of a special vertex x^{*} and the vertices $x \in V(T)$ such that the distance between x and x_{0} is a multiple of $2 k$. The edge set of T^{\prime} consists of the edge $x^{*} x_{0}$ and the pairs of vertices $x, y \in V\left(T^{\prime}\right) \backslash\left\{x^{*}\right\}$ for which $x \in D^{2 k}(y)$ or $y \in D^{2 k}(x)$. That is,

$$
\begin{aligned}
& V\left(T^{\prime}\right)=\left\{x \in V(T): \operatorname{dist}_{T}\left(x_{0}, x\right) \equiv 0(\bmod 2 k)\right\} \cup\left\{x^{*}\right\} \\
& E\left(T^{\prime}\right)=\left\{x y \in\binom{V\left(T^{\prime}\right) \backslash\left\{x^{*}\right\}}{2}: x \in D^{2 k}(y) \text { or } y \in D^{2 k}(x)\right\} \cup\left\{x^{*} x_{0}\right\} .
\end{aligned}
$$

In particular, note that $\Delta\left(T^{\prime}\right) \leq \Delta^{2 k}$ and $\left|V\left(T^{\prime}\right)\right| \leq n+1$. Let us consider T^{\prime} as a tree rooted at x^{*}.

Now suppose that J is a graph such that $T^{\prime} \subseteq J$ and J^{\prime} is an (ℓ, r)-blow-up of J with $\ell \geq r \geq r_{0}$. Our goal is to show that $T^{k} \subseteq J^{\prime}$. First, since J^{\prime} is an (ℓ, r)-blow-up of J, there is a collection $\{K(x): x \in V(J)\}$ of disjoint ℓ-cliques in J^{\prime} such that for each edge $x y \in E(J)$, there is a copy of $K_{r, r}$ between the vertices of $K(x)$ and $K(y)$. Let us denote by $K(x, y)$ such copy of $K_{r, r}$.

For each $x \in V\left(T^{\prime}\right) \backslash\left\{x^{*}\right\}$, let $D^{+}(x)=D^{k-1}(x)$ and $D^{-}(x)=D^{2 k-1}(x) \backslash D^{k-1}(x)$. In order to fix the notation, it helps to think of $D^{+}(x)$ and $D^{-}(x)$ as the upper and lower half of close descendants of x, respectively. We denote by x^{+}the parent of x in T^{\prime}. Suppose that there exists an injective map $\varphi: V(T) \rightarrow V\left(J^{\prime}\right)$ such that for every $x \in V\left(T^{\prime}\right) \backslash\left\{x^{*}\right\}$, we have
(1) $\varphi\left(D^{+}(x)\right) \subseteq K\left(x, x^{+}\right) \cap K\left(x^{+}\right)$;
(2) $\varphi\left(D^{-}(x)\right) \subseteq K\left(x, x^{+}\right) \cap K(x)$.

Then we claim that such map is in fact an embedding of T^{k} into J^{\prime}. Figure 2.1 should help to visualize the concepts developed so far.

2.3. BIJUMBLEDNESS, EXPANSION AND EMBEDDING OF TREES

(b) Corresponding T^{\prime}.
(a) Tree T.

(c) Embedding T^{k} into an (ℓ, r)-blow-up of T^{\prime}.

Figure 2.1: Illustration of the concepts and notation used throughout the proof of Lemma 2.3.6 when $\Delta=3$ and $k=2$.

Claim 2.3.7. If $\varphi: V(T) \rightarrow V\left(J^{\prime}\right)$ is an injective map such that for all $x \in V\left(T^{\prime}\right) \backslash\left\{x^{*}\right\}$, the properties (1) and (2) hold, then φ is an embedding of T^{k} into J^{\prime}.

Proof. We want to show that if u and v are distinct vertices in T at distance at most k, then $\varphi(u) \varphi(v)$ is an edge in J^{\prime}. Let \tilde{u} and \tilde{v} be vertices in $V\left(T^{\prime}\right) \backslash\left\{x^{*}\right\}$ with $u \in D^{2 k-1}(\tilde{u})$ and $v \in D^{2 k-1}(\tilde{v})$. If $\tilde{u}=\tilde{v}$, then by properties (1) and (2), we have $\varphi(u)$ and $\varphi(v)$ adjacent in J^{\prime}, once all the vertices in $\varphi\left(D^{2 k-1}(\tilde{u})\right)$ are adjacent in J^{\prime} either by edges from $K(\tilde{u}), K\left(\tilde{u}^{+}\right)$ or $K\left(\tilde{u}, \tilde{u}^{+}\right)$. If $\tilde{u}=\tilde{v}^{+}$, then we must have $u \in D^{-}(\tilde{u})$ and $v \in D^{+}(\tilde{v})$ and properties (1) and (2) give us $\varphi(u), \varphi(v) \in K(\tilde{u})$. Analogously, if $\tilde{v}=\tilde{u}^{+}$, then $v \in D^{-}(\tilde{v})$ and $u \in D^{+}(\tilde{u})$ and properties (1) and (2) imply that $\varphi(u), \varphi(v) \in K(\tilde{v})$. If $\tilde{u}^{+}=\tilde{v}^{+}($with $\tilde{u} \neq \tilde{v})$, then we have $u \in D^{+}(\tilde{u})$ and $v \in D^{+}(\tilde{v})$ and property (1) give us $\varphi(u), \varphi(v) \in K\left(\tilde{u}^{+}\right)$.

Therefore we may assume that \tilde{u} and \tilde{v} are at distance at least 2 in T^{\prime} and do not share a parent. But this implies that

$$
\min \left\{\operatorname{dist}_{T}(x, y): x \in D^{2 k-1}(\tilde{u}), y \in D^{2 k-1}(\tilde{v})\right\} \geq 2 k+1
$$

contradicting the fact that u and v are at distance at most k in T.
We conclude the proof by showing that such a map exists.
Claim 2.3.8. There is an injective map $\varphi: V(T) \rightarrow V\left(J^{\prime}\right)$ for which (1) and (2) hold for every $x \in V\left(T^{\prime}\right) \backslash\left\{x^{*}\right\}$.

Proof. We just need to show that for every $x \in V\left(T^{\prime}\right)$, there is enough room in $K(x)$ and in $K\left(x, x^{+}\right)$to guarantee that (1) and (2) hold. In order to do so, $K(x)$ should be large enough to accommodate the set

$$
\begin{equation*}
D^{-}(x) \cup \bigcup_{\substack{y \in V\left(T^{\prime}\right) \\ y^{+}=x}} D^{+}(y) \tag{2.5}
\end{equation*}
$$

Since T^{\prime} has maximum degree at most $\Delta^{2 k}$ and T has maximum degree Δ, we have that the set in (2.5) has at most $\Delta^{4 k}$ vertices. And since $|K(x)|=\ell \geq r_{0}=\Delta^{4 k}, K(x)$ is large enough to accommodate the set in (2.5). Finally, since $\left|K\left(x, x^{+}\right) \cap K(x)\right|=\left|K\left(x, x^{+}\right) \cap K\left(x^{+}\right)\right|=$ $r \geq r_{0}=\Delta^{4 k}$ the set $K\left(x, x^{+}\right)$is also large enough to accommodate $D^{-}(x)$ or $D^{+}(x)$ as in properties (1) and (2).

We end this section discussing a graph property that needs to be inherited by some subgraphs when running the induction in the proof of Theorem \mathbb{I}.

Definition 2.3.9. For positive numbers n, a, b, c, ℓ and θ, let $\mathcal{P}_{n}(a, b, c, \ell, \theta)$ denote the class of all graphs G with the following properties, where $p=c /(a n)$.

2.3. BIJUMBLEDNESS, EXPANSION AND EMBEDDING OF TREES

(i) $|V(G)|=a n$,
(ii) $\Delta(G) \leq b$,
(iii) G has no cycles of length at most 2ℓ,
(iv) G is (p, θ)-bijumbled.

Only mild conditions on a, b, c, ℓ and θ are necessary to guarantee the existence of a graph in $\mathcal{P}_{n}(a, b, c, \ell, \theta)$ for sufficiently large n. These conditions can be seen in (i) (iii) in Definition 2.3.10 below. In order to keep the induction going in our main proof we also need a condition relating k and Δ, which represents, respectively, the power of the tree T we want to embed and the maximum degree of T (see (iv) in the next definition).

Definition 2.3.10. A 7 -tuple $(a, b, c, \ell, \theta, \Delta, k)$ is good if
(i) $a \geq 3$,
(ii) $c \geq \theta \ell$,
(iii) $b \geq 9 c$,
(iv) $\ell \geq 21 \Delta^{2 k}$.

Next we prove that conditions (i) $H($ (iii) in Definition 2.3 .10 together with $\theta \geq 32 \sqrt{c}$ are enough to guarantee that there are graphs in $\mathcal{P}_{n}(a, b, c, \ell, \theta)$ as long as n is large enough. We remark that next lemma is stated for a good 7 -tuple, but condition (iv) of Definition 2.3.10 is not necessary and, therefore, also Δ and k are irrelevant.

Lemma 2.3.11. If ($a, b, c, \ell, \theta, \Delta, k$) is a good 7-tuple with $\theta \geq 32 \sqrt{c}$, then for sufficiently large n the family $\mathcal{P}_{n}(a, b, c, \ell, \theta)$ is non-empty.

Proof. Let ($a, b, c, \ell, \theta, \Delta, k$) be a good 7 -tuple with $\theta \geq 32 \sqrt{c}$ and let n be sufficiently large. Put $N=a n$ and let $G^{*}=G(3 N, p)$ be the binomial random graph with $3 N$ vertices and edge probability $p=c / N$. From Chernoff's inequality (Theorem 2.2.2) we know that almost surely

$$
\begin{equation*}
e\left(G^{*}\right) \leq 2 p\binom{3 N}{2} \leq 9 c N \tag{2.6}
\end{equation*}
$$

From 160, Lemma 8], we know that almost surely G^{*} is $\left(p, e^{2} \sqrt{6 p(3 N)}\right)$-bijumbled, i.e. the following holds almost surely: for all disjoint sets X and $Y \subseteq V\left(G^{*}\right)$ with $e^{2} \sqrt{18 N} / \sqrt{p}<$ $|X| \leq|Y| \leq p(3 N)|X|$, we have

$$
\begin{equation*}
\left|e_{G^{*}}(X, Y)-p\right| X||Y|| \leq\left(e^{2} \sqrt{6}\right) \sqrt{p(3 N)|X||Y|} . \tag{2.7}
\end{equation*}
$$

2.4. PROOF OF THEOREM I

The expected number of cycles of length at most 2ℓ in G^{*} is given by $\mathbb{E}\left(C_{\leq 2 \ell}\right)=$ $\sum_{i=3}^{2 \ell} \mathbb{E}\left(C_{i}\right)$, where C_{i} is the number of cycles of length i. Then,

$$
\mathbb{E}\left(C_{\leq 2 \ell}\right)=\sum_{i=3}^{2 \ell}\binom{3 a n}{i} \frac{(i-1)!}{2} p^{i} \leq \sum_{i=3}^{2 \ell}(3 c)^{i} \leq 2 \ell(3 c)^{2 \ell} .
$$

Then, from Markov's inequality, we have

$$
\begin{equation*}
\mathbb{P}\left(C_{\leq 2 \ell} \geq 4 \ell(3 c)^{2 \ell}\right) \leq \frac{1}{2} \tag{2.8}
\end{equation*}
$$

Since (2.6) and (2.7) hold almost surely and the probability in (2.8) is at most $1 / 2$, for sufficiently large n there exists a ($p, e^{2} \sqrt{18 c}$)-bijumbled graph G^{\prime} with $3 N$ vertices that contains less than $4 \ell(3 c)^{2 \ell}$ cycles of length at most 2ℓ and $e\left(G^{\prime}\right) \leq 2 p\binom{3 N}{2} \leq 9 c N$. Then, by removing $4 \ell(3 c)^{2 \ell}$ vertices we obtain a graph $G^{\prime \prime}$ with no such cycles such that

$$
\left|V\left(G^{\prime \prime}\right)\right|=3 a n-4 \ell(3 c)^{2 \ell} \geq 2 a n \quad \text { and } \quad e\left(G^{\prime \prime}\right) \leq 9 c N
$$

To obtain the desired graph G in $\mathcal{P}_{n}(a, b, c, \ell, \theta)$, we repeatedly remove vertices of highest degree in $G^{\prime \prime}$ until N vertices are left, obtaining a subgraph $G \subseteq G^{\prime \prime}$ such that $\Delta(G) \leq$ $9 c \leq b$, as otherwise we would have deleted more than $e\left(G^{\prime \prime}\right)$ edges. Note that deleting vertices preserves the bijumbledness. Therefore, for all disjoint sets X and $Y \subseteq V(G)$ with $e^{2} \sqrt{18 N} / \sqrt{p}<|X| \leq|Y| \leq p(3 N)|X|$ we have

$$
\begin{equation*}
\left|e_{G}(X, Y)-p\right| X||Y|| \leq\left(e^{2} \sqrt{6}\right) \sqrt{p(3 N)|X||Y|} \leq(32 \sqrt{p N}) \sqrt{|X||Y|} \leq \theta \sqrt{|X||Y|} . \tag{2.9}
\end{equation*}
$$

We obtained a graph G on N vertices and maximum degree $\Delta(G) \leq b$ such that G contains no cycles of length at most 2ℓ and is (p, θ)-bijumbled, for $p=c / N$. Therefore, the proof of the lemma is complete.

2.4 Proof of Theorem I

We derive Theorem \square from Proposition 2.4.1 below. Before continuing, given an integer $\ell \geq 1$, let us define what we mean by a sheared complete blow-up $H\{\ell\}$ of a graph H : this is any graph obtained by replacing each vertex v in $V(H)$ by a complete graph $C(v)$ with ℓ vertices, and by adding all edges but a perfect matching between $C(u)$ and $C(v)$, for each $u v \in E(H)$. We also define the complete blow-up $H(\ell)$ of a graph H analogously, but by adding all the edges between $C(u)$ and $C(v)$, for each $u v \in E(H)$.

Proposition 2.4.1. For all integers $k \geq 1, \Delta \geq 2$, and $s \geq 1$ there exists r_{s} and a good 7 tuple $\left(a_{s}, b_{s}, c_{s}, \ell_{s}, \theta_{s}, \Delta, k\right)$ with $\theta_{s} \geq 32 \sqrt{c_{s}}$ for which the following holds. If n is sufficiently

2.4. PROOF OF THEOREM I

large and $G \in \mathcal{P}_{n}\left(a_{s}, b_{s}, c_{s}, \ell_{s}, \theta_{s}\right)$ then, for any tree T on n vertices with $\Delta(T) \leq \Delta$, we have

$$
G^{r_{s}}\left\{\ell_{s}\right\} \rightarrow\left(T^{k}\right)_{s} .
$$

Theorem $\mathbb{1}$ follows from Proposition 2.4 .1 applied to a certain subgraph of a random graph.

Proof of Theorem [1. Fix positive integers k, Δ and s and let T be an n-vertex tree with maximum degree Δ. Proposition 2.4.1 applied with parameters k, Δ and s gives r_{s} and a good 7-tuple ($a_{s}, b_{s}, c_{s}, \ell_{s}, \theta_{s}, \Delta, k$) with $\theta_{s} \geq 32 \sqrt{c_{s}}$.

Let n be sufficiently large. By Lemma 2.3.11, since $\theta_{s} \geq 32 \sqrt{c_{s}}$, there exists a graph $G \in$ $\mathcal{P}_{n}\left(a_{s}, b_{s}, c_{s}, \ell_{s}, \theta_{s}\right)$. Let χ be an arbitrary s-colouring of $E\left(G^{r_{s}}\left\{\ell_{s}\right\}\right)$. Then, Proposition 2.4.1 gives that $G^{r_{s}}\left\{\ell_{s}\right\} \rightarrow\left(T^{k}\right)_{s}$. Since $|V(G)|=a_{s} n$, the maximum degree of G is bounded by the constant b_{s}, and since r_{s} and ℓ_{s} are constants, we have $e\left(G^{r_{s}}\left\{\ell_{s}\right\}\right)=O_{k, \Delta, s}(n)$, which concludes the proof of Theorem IT.

The proof of Proposition 2.4.1 follows by induction in the number of colours. Before we give this proof, let us state the results for the base case and the induction step.

Lemma 2.4.2 (Base Case). For all integers $h \geq 1, k \geq 1$ and $\Delta \geq 2$ there is an integer r and a good 7 -tuple ($a, b, c, \ell, \theta, \Delta, k$) with $\theta \geq 2^{h-1} 32 \sqrt{c}$ such that if n is sufficiently large, then the following holds for any $G \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$. For any n-vertex tree T with $\Delta(T) \leq \Delta$, the graph $G^{r}\{\ell\}$ contains a copy of T^{k}.

Lemma 2.4.3 (Induction Step). For any positive integers $\Delta \geq 2, s \geq 2, k, r, h \geq 1$ and any good 7-tuple ($a, b, c, \ell, \theta, \Delta, k$) with $\theta \geq 2^{h} 32 \sqrt{c}$, there is a positive integer r^{\prime} and a good 7 -tuple ($a^{\prime}, b^{\prime}, c^{\prime}, \ell^{\prime}, \theta^{\prime}, \Delta, k$) with $\theta^{\prime} \geq 2^{h-1} 32 \sqrt{c^{\prime}}$ such that the following holds. If n is sufficiently large then for any graph $G \in \mathcal{P}_{n}\left(a^{\prime}, b^{\prime}, c^{\prime}, \ell^{\prime}, \theta^{\prime}\right)$ and any s-colouring χ of $E\left(G^{r^{\prime}}\left\{\ell^{\prime}\right\}\right)$
(i) there is a monochromatic copy of T^{k} in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ for any n-vertex tree T with $\Delta(T) \leq \Delta$, or
(ii) there is $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$ such that $H^{r}\{\ell\} \subseteq G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ and $H^{r}\{\ell\}$ is coloured with at most s-1 colours under χ.

Now we are ready to prove Proposition 2.4.1.
Proof of Proposition 2.4.1. Fix integers $k \geq 1, \Delta \geq 2$ and $s \geq 1$ and define $h_{i}=s-i$ for $1 \leq i \leq s$. Let r_{1} and a good 7 -tuple ($a_{1}, b_{1}, c_{1}, \ell_{1}, \theta_{1}, \Delta, k$) with $\theta_{1} \geq 2^{h_{1}} 32 \sqrt{c_{1}}$ be given by Lemma 2.4.2 applied with s, k and Δ.

We will prove the proposition by induction on the number of colours $i \in\{1, \ldots, s\}$ with the additional property that if the colouring has i colours then $\theta_{i} \geq 2^{h_{i}} 32 \sqrt{c_{i}}$.

2.4. PROOF OF THEOREM I

Notice that Lemma 2.4 .2 implies that for sufficiently large n, if $G \in \mathcal{P}_{n}\left(a_{1}, b_{1}, c_{1}, \ell_{1}, \theta_{1}\right)$, then $G^{r_{1}}\left\{\ell_{1}\right\} \rightarrow\left(T^{k}\right)_{1}$. Therefore, since $\theta_{1} \geq 2^{h_{1}} 32 \sqrt{c_{1}}$, if $i=1$, we are done.

Assume $2 \leq i \leq s$ and suppose the statement holds for $i-1$ colours with the additional property that $\theta_{i-1} \geq 2^{h_{i-1}} 32 \sqrt{c_{i-1}}$, where r_{i-1} and a good 7-tuple ($a_{i-1}, b_{i-1}, c_{i-1}, \ell_{i-1}, \theta_{i-1}, \Delta, k$) are given by the induction hypothesis. Therefore, for any tree T on n vertices with $\Delta(T) \leq$ Δ, we know that for a sufficiently large n

$$
\begin{equation*}
H^{r_{i-1}}\left\{\ell_{i-1}\right\} \rightarrow\left(T^{k}\right)_{i-1} \quad \text { for any } \quad H \in \mathcal{P}_{n}\left(a_{i-1}, b_{s-1}, c_{i-1}, \ell_{i-1}, \theta_{i-1}\right) . \tag{2.10}
\end{equation*}
$$

Note that since $i \leq s$, we have $h_{i-1}=s-(i-1) \geq 1$. Then, since $\theta_{i-1} \geq 2^{h_{i-1}} 32 \sqrt{c_{i-1}}$, we can apply Lemma 2.4.3 with parameters $\Delta, s, k, r_{i-1}, h_{i-1}$ and ($a_{i-1}, b_{i-1}, c_{i-1}, \ell_{i-1}, \theta_{i-1}, \Delta, k$), obtaining r_{i} and $\left(a_{i}, b_{i}, c_{i}, \ell_{i}, \theta_{i}, \Delta, k\right)$ with $\theta_{i} \geq 2^{h_{i}} 32 \sqrt{c_{i}}$.

Let $G \in \mathcal{P}_{n}\left(a_{i}, b_{i}, c_{i}, \ell_{i}, \theta_{i}\right)$ and let n be sufficiently large. Now let χ be an arbitrary i colouring of $E\left(G^{r_{i}}\left\{\ell_{i}\right\}\right)$. From Lemma 2.4.3, we conclude that either (i) there is a monochromatic copy of T^{k} in $G^{r_{i}}\left\{\ell_{i}\right\}$ for any tree T on n vertices with $\Delta(T) \leq \Delta$, in which case the proof is finished, or (ii) there exists a graph $H \in \mathcal{P}_{n}\left(a_{i-1}, b_{i-1}, c_{i-1}, \ell_{i-1}, \theta_{i-1}\right)$ such that $H^{r_{i-1}}\left\{\ell_{i-1}\right\} \subseteq G^{r_{i}}\left\{\ell_{i}\right\}$ and $H^{r_{i-1}}\left\{\ell_{i-1}\right\}$ is coloured with at most $s-1$ colours under χ. In case (ii), the induction hypothesis (2.10) implies that we find the desired monochromatic copy of T^{k} in $H^{r_{i-1}}\left\{\ell_{i-1}\right\} \subseteq G^{r_{i}}\left\{\ell_{i}\right\}$.

The proof of Lemma 2.4 .2 follows by proving that for a good 7 -tuple ($a, b, c, \ell, \theta, \Delta, k$) with $\theta \geq 2^{h-1} 32 \sqrt{c}$, large graphs G in $\mathcal{P}_{n}(a, b, c, \ell, \theta)$ are expanding (using Lemma 2.3.5). Then, we use Lemma 2.3.2 to conclude that G contains the desired tree T. After this step we greedily find an embedding of T^{k} in $G^{k}\{\ell\}$.

Proof of the base case (Lemma 2.4.2). Let $h \geq 1, k \geq 1$ and $\Delta \geq 2$ be integers. Let

$$
r=k, \quad \ell=21 \Delta^{2 k}, \quad \theta=4^{h} 256 \ell, \quad c=\theta \ell, \quad b=9 c
$$

and put $D=\Delta+1$. Note that $\theta \geq 2^{h-1} 32 \sqrt{c}$ and let

$$
a \geq 4(D+1)
$$

Since $\ell \geq 4(\Delta+3)$, we have $c \geq 4(D+2) \theta$. From the lower bounds on c and a we know that we can use the conclusion of Lemma 2.3.5 applying it with $f=2, \theta, D=\Delta+1$ and c.

Note that from our choice of constants, $(a, b, c, \ell, \theta, \Delta, k)$ is a good tuple. Let n be sufficiently large and let T be a tree on n vertices with $\Delta(T) \leq \Delta$. Let $G \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$. From Lemma 2.3 .5 we know that G has an $(n, 2, \Delta+1)$-expanding subgraph and, therefore, from Lemma 2.3.2 we conclude that G contains a copy of T. Clearly, the graph G^{k} contains a copy of T^{k}. It remains to prove that the graph $G^{k}\{\ell\}$ also contains a copy of T^{k}.

2.4. PROOF OF THEOREM I

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertices of T_{n} and denote by T_{j} the subgraph of T induced by $\left\{v_{1}, \ldots, v_{j}\right\}$. Given a vertex $v \in V(G)$, let $C(v)$ denote the ℓ-clique in $G^{k}\{\ell\}$ that corresponds to v. Suppose that for some $1 \leq j<k$ we have embedded T_{j}^{k} in $G^{k}\{\ell\}$ where, for each $1 \leq i \leq j$, the vertex v_{i} was mapped to some $w_{i} \in C\left(v_{i}\right)$.

By the definition of $G^{k}\{\ell\}$, every neighbour v of v_{j+1} in G^{k} is adjacent to all but one vertex of $C\left(v_{j+1}\right)$. Therefore, since $\Delta\left(T^{k}\right) \leq \Delta^{k}$ and $\left|C\left(v_{j+1}\right)\right|=\ell \geq \Delta^{k}+1$, we may thus find a vertex $w_{j+1} \in C\left(v_{j+1}\right)$ such that w_{j+1} is adjacent in $G^{k}\{\ell\}$ to every w_{i} with $1 \leq i \leq j$ such that $v_{i} v_{j+1} \in E\left(T_{j+1}^{k}\right)$. From that we obtain a copy of T_{j+1}^{k} in $G^{k}\{\ell\}$ where $w_{i} \in C\left(v_{i}\right)$ for $1 \leq i \leq j+1$. Therefore, starting with any vertex w_{1} in $C\left(v_{1}\right)$, we may obtain a copy of T^{k} in $G^{k}\{\ell\}$ inductively, which proves the lemma.

The core of the proof of Theorem Π is the induction step (Lemma 2.4.3). We start by presenting a sketch of its proof.

Sketch of the induction step (Lemma 2.4.3). We start by fixing suitable constants $r^{\prime}, a^{\prime}, b^{\prime}$, $c^{\prime}, \ell^{\prime}$ and θ^{\prime}. Let n be sufficiently large and let $G \in \mathcal{P}_{n}\left(a^{\prime}, b^{\prime}, c^{\prime}, \ell^{\prime}, \theta^{\prime}\right)$ be given. Consider an arbitrary colouring χ of the edges of a sheared complete blow-up $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ of $G^{r^{\prime}}$ with s colours. We shall prove that either there is a monochromatic copy of T^{k} in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$, or there is a graph $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$ such that a sheared complete blow-up $H^{r}\{\ell\}$ of H^{r} is a subgraph of $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ and this copy of $H^{r}\{\ell\}$ is coloured with at most $s-1$ colours under χ.

First, note that, by Ramsey's theorem, if ℓ^{\prime} is large then each ℓ^{\prime}-clique $C(v)$ of $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ contains a large monochromatic clique. Let us say that blue is the most common colour of these monochromatic cliques. Let these blue cliques be $C^{\prime}(v) \subseteq C(v)$. Then we consider a graph $J \subseteq G^{r^{\prime}}$ induced by the vertices v corresponding to the blue cliques $C^{\prime}(v)$ and having only the edges $\{u, v\}$ such that there is a blue copy of a large complete bipartite graph under χ in the bipartite graph induced between the blue cliques $C^{\prime}(u)$ and $C^{\prime}(v)$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$.

Then, by Lemma 2.3.4 applied to J, either there is a set $\varnothing \neq Z \subseteq V(J)$ such that $J[Z]$ is expanding, or there are large disjoint sets V_{1}, \ldots, V_{ℓ} with no edges between them in J. In the first case, Lemma 2.3.6 guarantees that there is a tree T^{\prime} such that, if $T^{\prime} \subseteq J[Z]$, then there is a blue copy of T^{k} in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$. To prove that $T^{\prime} \subseteq J[Z]$, we recall that $J[Z]$ is expanding and use Lemma 2.3.2. This finishes the proof of the first case.

Now let us consider the second case, in which there are large disjoint sets V_{1}, \ldots, V_{ℓ} with no edges between them in J. The idea is to obtain a graph $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$ such that $H^{r}\{\ell\} \subseteq G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ and, moreover, $H^{r}\{\ell\}$ does not have any blue edge. For that we first obtain a path Q in G with vertices $\left(x_{1}, \ldots, x_{2 a \ell n}\right)$ such that $x_{i} \in V_{j}$ for all i where $i \equiv j \bmod \ell$. Then we partition Q into 2 an paths $Q_{1}, \ldots, Q_{2 a n}$ with ℓ vertices each, and consider an auxiliary graph H^{\prime} on $V\left(H^{\prime}\right)=\left\{Q_{1}, \ldots, Q_{2 a n}\right\}$ with $Q_{i} Q_{j} \in E\left(H^{\prime}\right)$ if and only $E_{G}\left(V\left(Q_{i}\right), V\left(Q_{j}\right)\right) \neq \varnothing$. To ensure that H^{\prime} inherits properties from G we use that there can bet at most one edge between Q_{i} and Q_{j} in G, because there are no cycles of length less than 2ℓ in G.

We obtain a subgraph $H^{\prime \prime} \subseteq H^{\prime}$ by choosing edges of H^{\prime} uniformly at random with a suitable probability p. Then, successively removing vertices of high degree, we obtain a graph $H \subseteq H^{\prime \prime}$ with $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$. It now remains to find a copy of $H^{r}\{\ell\}$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ with no blue edges. To do so, we first observe that the paths $Q_{i} \in V\left(H^{\prime}\right)$ give rise to ℓ-cliques in $G^{r^{\prime}}\left(r^{\prime} \geq \ell\right)$. One can then prove that there is a copy of $H^{r}\{\ell\}$ in $G^{r^{\prime}}$ that avoids the edges of J. By applying the Lovász local lemma we can further deduce that there is a copy of $H^{r}\{\ell\}$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ with no blue edges.

Proof of the induction step (Lemma 2.4.3). We start by fixing positive integers $\Delta \geq 2, s \geq$ $2, k, r, h$ and a good 7 -tuple ($a, b, c, \ell, \theta, \Delta, k$) with

$$
\theta \geq 2^{h} 32 \sqrt{c}
$$

Recall that from the definition of good 7-tuple, we have

$$
b \geq 9 c
$$

Let d_{0} be obtained from Lemma 2.2.1 applied with ℓ and $\gamma=1 /(2 \ell)$ (note that $d_{0} \leq 10$). Further let

$$
a^{\prime \prime}=\ell\left(\Delta^{2 k}+2\right)\left(2 a \cdot d_{0}+2\right)
$$

Notice that $a^{\prime \prime}$ is an upper bound on the value A given by Lemma 2.3.4 applied with $f=2$, $D=\Delta^{2 k}+1, \ell$ and $\eta=2 a \cdot d_{0}$.

Let r_{0} be given by Lemma 2.3.6 on input Δ and k. We may assume r_{0} is even. Furthermore, let

$$
t=\max \left\{r_{0},\left(40\left(\ell b^{r+1}+\ell\right)\right)^{r_{0}}\right\} \quad \text { and } \quad \ell^{\prime}=\max \left\{4 s \ell^{2}, r_{s}(t)\right\},
$$

where $r_{s}(t)=R_{s}\left(K_{t}\right)$ denotes the s-colour Ramsey number for cliques of order t. Let $a^{\prime}=\ell^{\prime} a$ and note that $a^{\prime} / s \geq 2 a^{\prime \prime}$ because $\ell \geq 21 \Delta^{2 k}$. Define constants c^{*}, c^{\prime} and r^{\prime} as follows.

$$
\begin{equation*}
c^{*}=2 \ell^{\prime} c, \quad c^{\prime}=\frac{\ell^{\prime}}{2 \ell^{2}} c^{*}=\frac{\ell^{\prime 2}}{\ell^{2}} c, \quad r^{\prime}=\ell r . \tag{2.11}
\end{equation*}
$$

Put

$$
b^{\prime}=9 c^{\prime} \quad \text { and } \quad \theta^{\prime}=\frac{c^{*}}{4 c \ell} \theta=\frac{\ell^{\prime}}{2 \ell} \theta
$$

Claim 2.4.4. $\left(a^{\prime}, b^{\prime}, c^{\prime}, \ell^{\prime}, \theta^{\prime}, \Delta, k\right)$ is a good 7-tuple and $\theta^{\prime} \geq 2^{h-1} 32 \sqrt{c^{\prime}}$.

Proof. We have to check all conditions in Definition 2.3.10. Clearly $a^{\prime} \geq 3, b^{\prime} \geq 9 c^{\prime}$ and $\ell^{\prime} \geq \ell \geq 21 \Delta^{2 k}$. Below we prove that the other conditions hold

2.4. PROOF OF THEOREM I

- $c^{\prime} \geq \theta^{\prime} \ell^{\prime}$:

$$
c^{\prime}=\frac{\ell^{\prime 2}}{\ell^{2}} c \geq \frac{\ell^{\prime 2}}{\ell} \theta=2 \theta^{\prime} \ell^{\prime}>\theta^{\prime} \ell^{\prime}
$$

- $\theta^{\prime} \geq 2^{h-1} 32 \sqrt{c^{\prime}}$:

$$
\theta^{\prime}=\frac{\ell^{\prime}}{2 \ell} \theta \geq \frac{\ell^{\prime}}{2 \ell} 2^{h} 32 \sqrt{c}=2^{h-1} 32 \sqrt{c^{\prime}} .
$$

Let G be a graph in $\mathcal{P}_{n}\left(a^{\prime}, b^{\prime}, c^{\prime}, \ell^{\prime}, \theta^{\prime}\right)$. Assume

$$
N_{G}=a^{\prime} n \quad \text { and } \quad p_{G}=c^{\prime} / N_{G}
$$

and let T be an arbitrary tree with n vertices and maximum degree Δ and consider an arbitrary s-colouring $\chi: E\left(G^{r^{\prime}}\left\{\ell^{\prime}\right\}\right) \rightarrow[s]$ of the edges of $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$. We shall prove that either there is a monochromatic copy of T^{k} in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$, or there is a graph $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$ such that a sheared complete blow-up $H^{r}\{\ell\}$ of H^{r} is a subgraph of $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ and this copy of $H^{r}\{\ell\}$ is coloured with at most $s-1$ colours under χ.

By Ramsey's theorem (see, for example, $\left[29 \mid\right.$), since $\ell^{\prime} \geq r_{s}(t)$, each ℓ^{\prime}-clique $C(w)$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}($ for $w \in V(G))$ contains a monochromatic clique of size at least t. Without loss of generality, let us assume that most of those monochromatic cliques are blue. Let $W \subseteq V(G)$ be the set of vertices w such that there is a blue t-clique $C^{\prime}(w) \subseteq C(w)$. We have

$$
\begin{equation*}
|W| \geq \frac{|V(G)|}{s}=\frac{a^{\prime} n}{s} \geq 2 a^{\prime \prime} n \tag{2.12}
\end{equation*}
$$

Define J as the subgraph of $G^{r^{\prime}}$ with vertex set W and edge set

$$
E(J)=\left\{u v \in E\left(G^{r^{\prime}}[W]\right): \text { there is a blue copy of } K_{r_{0}, r_{0}} \text { in } G^{r^{\prime}}\left\{\ell^{\prime}\right\}\left[C^{\prime}(u), C^{\prime}(v)\right]\right\}
$$

That is, J is the subgraph of $G^{r^{\prime}}$ induced by W and the edges $u v$ such that there is a blue copy of $K_{r_{0}, r_{0}}$ under χ in the bipartite graph induced by $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ between the vertex sets of the blue cliques $C^{\prime}(u)$ and $C^{\prime}(v)$.

We now apply Lemma 2.3.4 with $f=2, D=\Delta^{2 k}+1, \ell$, and $\eta=2 a \cdot d_{0}$ to the graph J (notice that $|V(J)| \geq 2 a^{\prime \prime} n$ is large enough so we can apply Lemma 2.3.4), splitting the proof into two cases:
(i) there is $\varnothing \neq Z \subseteq V(J)$ such that $J[Z]$ is $\left(n+1,2, \Delta^{2 k}+1\right)$-expanding,
(ii) there exist $V_{1}, \ldots, V_{\ell} \subseteq V(J)$ such that $\left|V_{i}\right| \geq 2 a d_{0} n$ for $1 \leq i \leq \ell$ and $J\left[V_{i}, V_{j}\right]$ is empty for any $1 \leq i<j \leq \ell$.

In case $J[Z]$ is $\left(n+1,2, \Delta^{2 k}+1\right)$-expanding, we first notice that Lemma 2.3.6 applied to the graph $J[Z]$ implies the existence of a tree $T^{\prime}=T^{\prime}(T, \Delta, k)$ of maximum degree at

2.4. PROOF OF THEOREM I

most $\Delta^{2 k}$ with at most $n+1$ vertices such that if $J[Z]$ contains T^{\prime}, then $T^{k} \subseteq J^{\prime}$ for any $\left(r_{0}, r_{0}\right)$-blow-up J^{\prime} of J. But since $J[Z]$ is $\left(n+1,2, \Delta^{2 k}+1\right)$-expanding, Lemma 2.3.2 implies that $J[Z]$ contains a copy of T^{\prime}. Therefore, the graph $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ contains a blue copy of T^{k}, as we can consider J^{\prime} as the subgraph of $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ containing only edges inside the blue cliques $C^{\prime}(u)$ (which have size $t \geq r_{0}$) and the edges of the complete blue bipartite graphs $K_{r_{0}, r_{0}}$ between the blue cliques $C^{\prime}(u)$. This finishes the proof of the first case.

We may now assume that there are subsets $V_{1}, \ldots, V_{\ell} \subseteq V(J)$ with $\left|V_{i}\right| \geq 2 a d_{0} n$ for $1 \leq i \leq \ell$ and $J\left[V_{i}, V_{j}\right]$ is empty for any $1 \leq i<j \leq \ell$. We want to obtain a graph $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$ such that $H^{r}\{\ell\} \subseteq G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ and contains no blue edges.

Let $J^{\prime}=J\left[V_{1} \cup \cdots \cup V_{\ell}\right], G^{\prime}=G\left[V_{1} \cup \cdots \cup V_{\ell}\right]$ and note that $\left|V\left(G^{\prime}\right)\right|=\left|V\left(J^{\prime}\right)\right| \geq d_{0} \cdot 2 a \ell n$, where we recall that d_{0} is the constant obtained by applying Lemma 2.2.1 with ℓ and $\gamma=1 /(2 \ell)$. We want to use the assertion of Lemma 2.2.1 to obtain a transversal path of length $2 a \ell n$ in G^{\prime} and so we have to check the conditions adjusted to this parameter.

First note, that we have $\left|V_{i}\right| \geq 2 a d_{0} n \geq \gamma d_{0} \cdot 2 a \ell n$ for $1 \leq i \leq \ell$. Moreover, since G^{\prime} is an induced subgraph of G and $G \in \mathcal{P}_{n}\left(a^{\prime}, b^{\prime}, c^{\prime}, \ell, \theta^{\prime}\right)$, we know by 2.2 that for all $X, Y \subseteq V\left(G^{\prime}\right)$ with $|X|,|Y|>\theta^{\prime} a^{\prime} n / c^{\prime}$ we have $e_{G^{\prime}}(X, Y)>0$. Observe that $\theta^{\prime} a^{\prime} n / c^{\prime}\theta^{\prime} \ell^{\prime}$. Therefore, we may use Lemma 2.2.1 to conclude that G^{\prime} contains a path $P_{2 a \ell n}=\left(x_{1}, \ldots, x_{2 a \ell n}\right)$ with $x_{i} \in V_{j}$ for all i, where $j \equiv i(\bmod \ell)$.

We split the obtained path $P_{2 a \ell n}$ of G^{\prime} into consecutive paths $Q_{1}, \ldots, Q_{2 a n}$ each on ℓ vertices. More precisely, we let $Q_{i}=\left(x_{(i-1) \ell+1}, \ldots, x_{i \ell}\right)$ for $i=1, \ldots, 2 a n$. The following auxiliary graph is the base of our desired graph $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$.
H^{\prime} is the graph on $V\left(H^{\prime}\right)=\left\{Q_{1}, \ldots, Q_{2 a n}\right\}$ such that $Q_{i} Q_{j} \in E\left(H^{\prime}\right)$ if and only if there is an edge in G between the vertex sets of Q_{i} and Q_{j}.

Claim 2.4.5. $H^{\prime} \in \mathcal{P}_{n}\left(2 a, \ell b^{\prime}, c^{*}, \ell, \ell \theta^{\prime}\right)$.
Proof. We verify the conditions of Definition 2.3.9. Since H^{\prime} has $2 a n$ vertices, condition (i) clearly holds. Since $\Delta(G) \leq b^{\prime}$ and for any $Q_{i} \in V\left(H^{\prime}\right)$ we have $\left|Q_{i}\right|=\ell$ (as a subset of $V(G)$), there are at most ℓb^{\prime} edges in G with an endpoint in Q_{i}. Then, $\Delta\left(H^{\prime}\right) \leq \ell b^{\prime}$.

For condition (iii), recall that any vertex of H^{\prime} corresponds to a path on ℓ vertices in G. Thus, a cycle of length at most 2ℓ in H^{\prime} implies the existence of a cycle of length at most $2 \ell^{2}$ in G. Since $2 \ell^{\prime} \geq 2 \ell^{2}$ and G has no cycles of length at most $2 \ell^{\prime}$, we conclude that H^{\prime} contains no cycle of length at most 2ℓ, which verifies condition (iii).

Let $N_{H^{\prime}}=2 a n$ and

$$
\begin{equation*}
p_{H^{\prime}}=\frac{c^{*}}{N_{H^{\prime}}}=\frac{c^{*}}{2 a n} . \tag{2.13}
\end{equation*}
$$

Let us verify condition (iv), i.e., we shall prove that H^{\prime} is $\left(p_{H^{\prime}}, \ell \theta^{\prime}\right)$-bijumbled.

2.4. PROOF OF THEOREM I

Consider arbitrary sets X and Y of $V\left(H^{\prime}\right)$ with $\ell \theta^{\prime} / p_{H^{\prime}}<|X| \leq|Y| \leq p_{H^{\prime}} N_{H^{\prime}}|X|$. For simplicity, we may assume that $X=\left\{Q_{1}, \ldots, Q_{x}\right\}$ and $Y=\left\{Q_{x+1}, \ldots, Q_{x+y}\right\}$. Let $X_{G}=$ $\bigcup_{j=1}^{x} Q_{j} \subseteq V(G)$ and $Y_{G}=\bigcup_{j=x+1}^{x+y} Q_{j} \subseteq V(G)$. Note that $\left|X_{G}\right|=\ell|X|$ and $\left|Y_{G}\right|=\ell|Y|$. As there are no cycles of length smaller than 2ℓ in G, we only have at most one edge between the vertex sets of Q_{i} and Q_{j}. Therefore we have

$$
\begin{equation*}
e_{H^{\prime}}(X, Y)=e_{G}\left(X_{G}, Y_{G}\right) \tag{2.14}
\end{equation*}
$$

We shall prove that $\left|e_{H^{\prime}}(X, Y)-p_{H^{\prime}}\right| X||Y|| \leq \ell \theta^{\prime} \sqrt{|X||Y|}$. From the choice of c^{\prime}, we have

$$
\begin{equation*}
p_{H^{\prime}}|X||Y|=\frac{c^{*}}{2 a n}|X||Y|=\frac{c^{\prime}}{a^{\prime} n} \ell|X| \ell|Y|=\frac{c^{\prime}}{a^{\prime} n}\left|X_{G}\right|\left|Y_{G}\right|=p_{G}\left|X_{G}\right|\left|Y_{G}\right| . \tag{2.15}
\end{equation*}
$$

From the choice of $\theta^{\prime}, c^{\prime}$, and $p_{H^{\prime}}$, since $\ell \theta^{\prime} / p_{H^{\prime}}<|X| \leq|Y| \leq p_{H^{\prime}} N_{H^{\prime}}|X|$, we obtain

$$
\frac{\theta^{\prime}}{p_{G}}<\left|X_{G}\right| \leq\left|Y_{G}\right| \leq p_{G} N_{G}\left|X_{G}\right|
$$

Combining (2.15) with (2.14) and the fact that G is $\left(p_{G}, \theta^{\prime}\right)$-bijumbled, we get that

$$
\begin{equation*}
\left|e_{H^{\prime}}(X, Y)-p_{H^{\prime}}\right| X||Y||=\left|e_{G}\left(X_{G}, Y_{G}\right)-p_{G}\right| X_{G}| | Y_{G}| | \leq \theta^{\prime} \sqrt{\left|X_{G}\right|\left|Y_{G}\right|}=\ell \theta^{\prime} \sqrt{|X||Y|} . \tag{2.16}
\end{equation*}
$$

Therefore, H^{\prime} is $\left(p_{H^{\prime}}, \ell \theta^{\prime}\right)$-bijumbled, which verifies condition (iv).

The parameters for $\mathcal{P}_{n}\left(2 a, \ell b^{\prime}, c^{*}, \ell, \ell \theta^{\prime}\right)$ are tightly fitted such that we can find the following subgraph of H^{\prime}.

Claim 2.4.6. There exists $H \subseteq H^{\prime}$ such that $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$.

Proof. We first obtain $H^{\prime \prime} \subseteq H^{\prime}$ by picking each edge of H^{\prime} with probability

$$
p=\frac{2 c}{c^{*}}=\frac{1}{\ell^{\prime}}
$$

independently at random. Note that $p \leq 1 / 2$.
From (2.3), we get

$$
e\left(H^{\prime}\right) \leq p_{H^{\prime}}\binom{2 a n}{2}+\ell \theta^{\prime} 2 a n \leq\left(c^{*}+2 \ell \theta^{\prime}\right) a n \leq\left(c^{*}+2 \ell \frac{c^{\prime}}{\ell^{\prime}}\right) a n \leq 2 c^{*} a n
$$

From Chernoff's inequality, we then know that almost surely we have

$$
\begin{equation*}
e\left(H^{\prime \prime}\right) \leq 2 p \cdot e\left(H^{\prime}\right) \leq 2 \cdot\left(\frac{2 c}{c^{*}}\right) \cdot 2 c^{*} a n \leq 8 a c n \leq a b n . \tag{2.17}
\end{equation*}
$$

Let $N_{H^{\prime \prime}}=2 a n$ and

$$
p_{H^{\prime \prime}}=p \cdot p_{H^{\prime}}=\frac{c}{a n}
$$

We shall prove that $H^{\prime \prime}$ is $\left(p_{H^{\prime \prime}}, \theta\right)$-bijumbled almost surely. For that, we will first prove by using Chernoff's inequality (Theorem 2.2.2) that, for any arbitrary sets X and Y of $V\left(H^{\prime}\right)$ with $\theta / p_{H^{\prime \prime}}<|X| \leq|Y| \leq p_{H^{\prime}} N_{H^{\prime}}|X|$ we have

$$
\begin{equation*}
\left|e_{H^{\prime \prime}}(X, Y)-p \cdot e_{H^{\prime}}(X, Y)\right| \leq \frac{\theta}{2} \sqrt{|X||Y|} \tag{2.18}
\end{equation*}
$$

Note that for such sets X and Y, since $|X|>\theta / p_{H^{\prime \prime}} \geq \ell \theta^{\prime} / p_{H^{\prime}}$, we can use (2.16).
Since $|X|,|Y|>\theta / p_{H^{\prime \prime}}$, we have $\sqrt{|X||Y|}>\theta a n / c$. From $\sqrt{|X||Y|}>\theta a n / c$, we obtain that $\ell^{\prime} \theta<\frac{2 \ell^{\prime} c \sqrt{|X| Y \mid}}{2 a n}$ from which we can conclude that $2 \ell \theta^{\prime}<p_{H^{\prime}} \sqrt{|X||Y|}$. Thus, we get $\ell \theta^{\prime} \sqrt{|X||Y|}<p_{H^{\prime}}|X||Y| / 2$. Therefore, combining this with (2.16) we have

$$
\begin{equation*}
\frac{p_{H^{\prime}}|X||Y|}{2}<e_{H^{\prime}}(X, Y)<2 p_{H^{\prime}}|X||Y| . \tag{2.19}
\end{equation*}
$$

Let $\varepsilon=\theta \sqrt{|X||Y|} /\left(2 p \cdot e_{H^{\prime}}(X, Y)\right)$ and note that from (2.19) we have $\varepsilon<1$. Since $\theta \geq 10 \sqrt{c}$, also from 2.19) we obtain

$$
\frac{\varepsilon^{2} p \cdot e_{H^{\prime}}(X, Y)}{3}=\frac{|X||Y| \ell^{\prime} \theta^{2}}{12 \cdot e_{H^{\prime}}(X, Y)}>4 a n .
$$

Therefore, by using Chernoff's inequality, since there are at most $2^{4 a n}$ choices of pairs of sets $\{X, Y\}$, almost surely we have that for any disjoint subsets X and Y of vertices of $H^{\prime \prime}$ with $\theta / p_{H^{\prime \prime}}<|X| \leq|Y| \leq p_{H^{\prime}} N_{H^{\prime}}|X|$, inequality (2.18) holds.

Observe that $p_{H^{\prime \prime}} N_{H^{\prime \prime}}|X|=2 c|X| \leq c^{*}|X|=p_{H^{\prime}} N_{H^{\prime}}|X|$. Therefore, $H^{\prime \prime}$ is almost surely $\left(p_{H^{\prime \prime}}, \theta\right)$-bijumbled, as by (2.16) and (2.18) we get

$$
\begin{aligned}
\left|e_{H^{\prime \prime}}(X, Y)-p_{H^{\prime \prime}}\right| X||Y|| & \leq\left|e_{H^{\prime \prime}}(X, Y)-p \cdot e_{H^{\prime}}(X, Y)\right|+\left|p \cdot e_{H^{\prime}}(X, Y)-p_{H^{\prime \prime}}\right| X| | Y| | \\
& \stackrel{\frac{22.18}{\leq}}{\leq} \frac{\theta}{2} \sqrt{|X||Y|}+p\left(\left|e_{H^{\prime}}(X, Y)-p_{H^{\prime}}\right| X| | Y| |\right) \\
& \stackrel{\frac{2.16}{}}{\leq} \frac{\theta}{2} \sqrt{|X||Y|}+\frac{\ell \theta^{\prime}}{\ell^{\prime}} \sqrt{|X||Y|} \\
& =\theta \sqrt{|X||Y|} .
\end{aligned}
$$

Therefore, there exists a $\left(p_{H^{\prime \prime}}, \theta\right)$-bijumbled graph $H^{\prime \prime}$ as above. We fix such a graph and construct the desired graph H from this $H^{\prime \prime}$ by sequentially removing the an vertices of highest degree. Notice that H has maximum degree at most b, otherwise this would imply that $H^{\prime \prime}$ has more than abn edges, contradicting (2.17). Since H is a subgraph of H^{\prime}, and H^{\prime} does not contain cycles of length at most 2ℓ, the same holds for H. Finally, since deleting

2.4. PROOF OF THEOREM I

vertices preserves the bijumbledness property, we conclude that $H \in \mathcal{P}_{n}(a, b, c, \ell, \theta)$.
Recall that J is the subgraph of $G^{r^{\prime}}$ induced by W, with $|W| \geq a^{\prime} n / s$ and edges uv such that there is a blue copy of $K_{r_{0}, r_{0}}$ under χ in the bipartite graph induced by the vertex sets of blue cliques $C^{\prime}(u)$ and $C^{\prime}(v)$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$. Furthermore, recall that there are subsets $V_{1}, \ldots, V_{\ell} \subseteq V(J)$ with $\left|V_{i}\right| \geq 2 a d_{0} n$ for $1 \leq i \leq \ell$ and $J\left[V_{i}, V_{j}\right]$ is empty for any $1 \leq i<j \leq \ell$, and we defined $J^{\prime}=J\left[V_{1} \cup \cdots \cup V_{\ell}\right]$ and $G^{\prime}=G\left[V_{1} \cup \cdots \cup V_{\ell}\right]$. Lastly, recall that $Q_{i}=\left(x_{(i-1) \ell+1}, \ldots, x_{i \ell}\right)$ for $i=1, \ldots, 2 a n$, where the vertices x_{i} belong to G^{\prime}. Assume, without loss of generality, $V(H)=\left\{Q_{1}, \ldots, Q_{a n}\right\}$. In what follows, when considering the graph $H^{r}(\ell)$, the ℓ-clique corresponding to Q_{i} is composed of the vertices $x_{(i-1) \ell+1}, \ldots, x_{i \ell}$, and hence one can view $V\left(H^{r}(\ell)\right)$ as a subset of $V\left(G^{\prime}\right)$.
Claim 2.4.7. $H^{r}(\ell) \subseteq G^{r^{\prime}}$. Moreover, $G^{r^{\prime}}$ contains a copy of $H^{r}\{\ell\}$ that avoids the edges of J.

Proof. We will prove that $H^{r}(\ell) \subseteq G^{r^{\prime}}$ where $Q_{1}, \ldots, Q_{a n} \subseteq V(J)$ are the ℓ-cliques of $H^{r}(\ell)$. Suppose that Q_{i} and Q_{j} are at distance at most r in the graph H. Without loss of generality, let $Q_{i}=Q_{1}$ and $Q_{j}=Q_{m}$ for some $m \leq r$. Moreover, let $\left(Q_{1}, Q_{2}, \ldots, Q_{m}\right)$ be a path in H. Note that there exist vertices u_{1}, \ldots, u_{m-1} and $u_{2}^{\prime}, \ldots, u_{m}^{\prime}$ in $V\left(G^{\prime}\right)$ such that $u_{1} \in Q_{1}, u_{m}^{\prime} \in Q_{m}, u_{j}, u_{j}^{\prime} \in Q_{j}$ for all $j=2, \ldots, m-1$ and $\left\{u_{i}, u_{i+1}^{\prime}\right\}$ is an edge of G^{\prime} for $i=1, \ldots, m-1$.

Let $u_{1}^{\prime} \in Q_{1}$ and $u_{m} \in Q_{m}$ be arbitrary vertices. Since for any j, the set Q_{j} is spanned by a path on ℓ vertices in G^{\prime}, it follows that u_{j} and u_{j}^{\prime} are at distance at most $\ell-1$ in G^{\prime} for all $1 \leq j \leq m$. Therefore, u_{1}^{\prime} and u_{m} are at distance at most $(\ell-1) m+(m-1)<\ell r \leq r^{\prime}$ in G^{\prime} and hence $u_{1}^{\prime} u_{m}$ is an edge in $G^{r^{\prime}}\left[V_{1} \cup \ldots \cup V_{\ell}\right] \subseteq G^{r^{\prime}}$. Since the vertices u_{1}^{\prime} and u_{m} were arbitrary, we have shown that if Q_{i} and Q_{j} are adjacent in H^{r} (i.e., Q_{i} and Q_{j} are at distance at most r in H) then $\left(Q_{i}, Q_{j}\right)$ gives a complete bipartite graph $C\left(Q_{i}, Q_{j}\right)$ in $G^{r^{\prime}}$. Moreover, taking $i=j$ we see that each Q_{i} in $G^{r^{\prime}}$ must be complete. This implies that $H^{r}(\ell)$ is a subgraph of $G^{r^{\prime}}$.

For the second part of the claim we consider which of the edges of this copy of $H^{r}(\ell)$ can also be edges of J. Recall from the definition of J^{\prime} that we found subsets $V_{1}, \ldots, V_{\ell} \subseteq J$ such that no edge of J lies between different parts. Moreover each set $Q_{i} \subseteq J$ takes precisely one vertex from each set V_{1}, \ldots, V_{ℓ}. It follows that each Q_{i} is independent in J. Now let us say we have $x \in Q_{i}$ and $y \in Q_{j}(i \neq j)$ that are adjacent in J. We can not have x and y in different parts of the partition $\left\{V_{1}, \ldots, V_{\ell}\right\}$. Thus x and y lie in the same part. Therefore edges from J between Q_{i} and Q_{j} must form a matching. Then we can find a copy of $H^{r}\{\ell\}$ that avoids J by removing a matching between the l-cliques from $H^{r}(\ell)$.

To complete the proof of Lemma 2.4.3, we will embed a copy of the graph $H^{r}\{\ell\} \subseteq G^{r^{\prime}}$ found in Claim 2.4.7 in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ in such a way that $H^{r}\{\ell\}$ uses at most $s-1$ colours.

2.4. PROOF OF THEOREM I

Claim 2.4.8. $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ contains a copy of $H^{r}\{\ell\}$ with no blue edges.

Proof. Recall that each vertex u in J corresponds to a clique $C^{\prime}(u) \subseteq G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ of size t and that this clique is monochromatic in blue in the original colouring χ of $E\left(G^{r^{\prime}}\left\{\ell^{\prime}\right\}\right)$. Recall also that if an edge $\{u, v\}$ of $G^{r^{\prime}}[W]$ is not in J, then there is no blue copy of $K_{r_{0}, r_{0}}$ in the bipartite graph between $C^{\prime}(u)$ and $C^{\prime}(v)$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$. By the Kôvári-Sós-Turán theorem (Theorem 2.2.3), there are at most $4 t^{2-1 / r_{0}}$ blue edges between $C^{\prime}(u)$ and $C^{\prime}(v)$. Recall further that $C^{\prime}(u)$ and $C^{\prime}(v)$ are, respectively, subcliques of the ℓ^{\prime}-cliques $C(u)$ and $C(v)$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$. Since $\{u, v\}$ is an edge of $G^{r^{\prime}}$, there is a complete bipartite graph with a matching removed between $C(u)$ and $C(v)$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ and so there is a complete bipartite graph with at most a matching removed for $C^{\prime}(u)$ and $C^{\prime}(v)$. It follows that there are at least

$$
t^{2}-t-4 t^{2-1 / r_{0}}
$$

non-blue edges between $C^{\prime}(u)$ and $C^{\prime}(v)$.
Using the copy of $H^{r}\{\ell\} \subseteq G^{r^{\prime}}$ avoiding edges of J obtained in Claim 2.4.7 as a 'template', we will embed a copy of $H^{r}\{\ell\}$ in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ with no blue edges. For each vertex $u \in V\left(H^{r}\{\ell\}\right) \subseteq V(J)$ we will pick precisely one vertex from $C^{\prime}(u) \subseteq G^{r^{\prime}}\left\{\ell^{\prime}\right\}$ in our embedding. The argument proceeds by the Lovász Local Lemma.

For each $u \in V\left(H^{r}\{\ell\}\right) \subseteq V(J)$ let us choose $x_{u} \in C^{\prime}(u)$ uniformly and independently at random. Let $e=\{u, v\}$ be an edge of our copy of $H^{r}\{\ell\}$ in $G^{r^{\prime}}$ that is not in J. As pointed out above, we know that there are at least $t^{2}-t-4 t^{2-1 / r_{0}}$ non-blue edges between $C^{\prime}(u)$ and $C^{\prime}(v)$. Letting A_{e} be the event that $\left\{x_{u}, x_{v}\right\}$ is a blue edge or a non-edge in $G^{r^{\prime}}\left\{\ell^{\prime}\right\}$, we have that

$$
\mathbb{P}\left[A_{e}\right] \leq \frac{t+4 t^{2-1 / r_{0}}}{t^{2}} \leq 5 t^{-1 / r_{0}}
$$

The events A_{e} are not independent, but we can define a dependency graph D for the collection of events A_{e} by adding an edge between A_{e} and A_{f} if and only if $e \cap f \neq \varnothing$. Then, $\Delta=\Delta(D) \leq 2 \Delta\left(H^{r}\{\ell\}\right) \leq 2\left(b^{r+1} \ell+\ell\right)$. From our choice of t we get that

$$
4 \Delta \mathbb{P}\left[A_{e}\right] \leq 40\left(b^{r+1} \ell+\ell^{2}\right) t^{-1 / r_{0}} \leq 1
$$

for all e. Then the Local Lemma [5, Lemma 5.1.1] tells us that $\mathbb{P}\left[\bigcap_{e} \bar{A}_{e}\right]>0$, and hence a simultaneous choice of the x_{u} 's $\left(u \in V\left(H^{r}\{\ell\}\right)\right)$ is possible, as required. This concludes the proof of Claim 2.4.8.

The proof of Lemma 2.4 .3 is now complete.

2.5. CONCLUDING REMARKS

2.5 Concluding Remarks

In Chapter 2 , in order to prove Theorem \mathbb{I} we needed to show that the family $\mathcal{P}_{n}(a, b, c, \ell, \theta)$ is non-empty given a good 7 -tuple $(a, b, c, \ell, \theta, \Delta, k)$ with $\theta \geq 32 \sqrt{c}$. We prove this in Lemma 2.3.11 using the binomial random graph. Alternatively, it is possible to replace this by using explicit constructions of high girth expanders. For example, the Ramanujan graphs constructed by Lubotzky, Phillips, and Sarnak [82] can be used to prove Lemma 2.3.11.

As pointed out in Section 2.1, every graph with maximum degree and bounded treewidth is contained in some bounded power of a bounded degree tree and vice versa. This implies that Corollary 2.1.1 is equivalent to Theorem I. For bounded degree graphs, bounded treewidth is equivalent to bounded cliquewidth and also to bounded rankwidth [65]. Therefore, Corollary 2.1.1 also holds with treewidth replaced by any of these parameters.

An obvious direction for further research concerning the size-Ramsey number is to investigate the size-Ramsey number of powers T^{k} of trees T when k and $\Delta(T)$ are no longer bounded. Haxell and Kohaykawa [59] showed that for every positive integer s, there exists a constant C_{s} such that for any tree T with maximum degree at most Δ we have $\hat{r}_{s}(T) \leq C_{s} \Delta|T|$. Our proof of Theorem IT actually shows that $\hat{r}_{s}\left(T^{k}\right) \leq r_{s}\left(2^{\Delta^{5 k}}\right)|T|$, where $r_{s}(t)=R_{s}\left(K_{t}\right)$ denotes the s-colour Ramsey number of K_{t}. It is known (see [29]) that $r_{s}(t)$ grows as a tower of t of height s. It would be nice to improve Theorem \rrbracket to a much smaller constant. In particular, we conjecture that for every positive integer s, there exists a constant C_{s} such that for every tree T with maximum degree at most Δ we have $\hat{r}_{s}\left(T^{k}\right) \leq C_{s} 2^{\Delta^{5 k}}|T|$.

Chapter 3

Covering the Random Graph by Monochromatic Trees

3.1 Introduction

Given a graph G and a positive integer r, let $\operatorname{tc}_{r}(G)$ denote the minimum number k such that in any r-edge-colouring of G, there are k monochromatic trees T_{1}, \ldots, T_{k} such that the union of their vertex sets covers $V(G)$, i.e.,

$$
V(G)=V\left(T_{1}\right) \cup \cdots \cup V\left(T_{k}\right) .
$$

We define $\operatorname{tp}_{r}(G)$ analogously by requiring the union above to be disjoint.
It is easy to see that $\operatorname{tp}_{2}\left(K_{n}\right)=1$ for all $n \geq 1$, and Erdős, Gyárfás and Pyber 42 proved that $\operatorname{tp}_{3}\left(K_{n}\right)=2$ for all $n \geq 1$, and conjectured that $\operatorname{tp}_{r}\left(K_{n}\right)=r-1$ for every n and r. Haxell and Kohayakawa [58] showed that $\operatorname{tp}_{r}\left(K_{n}\right) \leq r$ for all sufficiently large $n \geq n_{0}(r)$. We remark that it is easy to see that $\mathrm{tc}_{r}\left(K_{n}\right) \leq r$ (just pick any vertex $v \in V\left(K_{n}\right)$ and let T_{i}, for $i \in[r]$, be a maximal monochromatic tree of colour i containing v), but it is not even known whether or not $\operatorname{tc}_{r}\left(K_{n}\right) \leq r-1$ for every n and r (as would be implied by the conjecture of Erdős, Gyárfás and Pyber).

Concerning general graphs instead of complete graphs, Gyárfás 54 noted that a wellknown conjecture of Ryser on matchings and transversal sets in hypergraphs is equivalent to the following bound on $\mathrm{tc}_{r}(G)$.

Conjecture 3.1.1 (Gyárfás's reformulation of Ryser's conjecture). For every graph G and integer $r \geq 2$, we have

$$
\begin{equation*}
\mathrm{tc}_{r}(G) \leq(r-1) \alpha(G) \tag{3.1}
\end{equation*}
$$

[^5]
3.1. INTRODUCTION

In particular, Ryser's conjecture, if true, would imply that $\mathrm{tc}_{r}\left(K_{n}\right) \leq r-1$, for every $n \geq 1$ and $r \geq 2$. Ryser's conjecture was proved in the case $r=3$ by Aharoni [1], but for $r \geq 4$ very little is known. For example, Haxell and Scott 61 proved (in the context of Ryser's original conjecture) that there exists $\epsilon>0$ such that for $r \in\{4,5\}$, we have $\operatorname{tc}_{r}(G) \leq(r-\epsilon) \alpha(G)$, for any graph G.

Bal and DeBiasio (7) initiated the study of covering and partitioning random graphs by monochromatic trees. They proved that if $p \ll\left(\frac{\log n}{n}\right)^{1 / r}$, then with high probability ${ }^{1}$ we have $\operatorname{tc}_{r}(G(n, p)) \rightarrow \infty$. They conjectured that for any $r \geq 2$, this was the correct threshold for the event $\operatorname{tp}_{r}(G(n, p)) \leq r$. Kohayakawa, Mota and Schacht 68 proved that this conjecture holds for $r=2$, while Ebsen, Mota and Schnitzer ${ }^{2}$ showed that it does not hold for more than two colours.

Bucić, Korándi and Sudakov 17] proved that if $p \ll\left(\frac{\log n}{n}\right)^{\sqrt{r} / 2^{r-2}}$, then w.h.p. we have $\operatorname{tc}_{r}(G(n, p)) \geq r+1$, which implies that the threshold for the event $\mathrm{tc}_{r}(G) \leq r$ is in fact significantly larger than the one conjectured by Bal and DeBiasio when r is large. Bucić, Korándi and Sudakov also proved that w.h.p. we have $\operatorname{tc}_{r}(G(n, p)) \leq r$ for $p \gg\left(\frac{\log n}{n}\right)^{1 / 2^{r}}$. They were also able to roughly determine the typical behaviour of $\operatorname{tc}_{r}(G(n, p))$ in terms of the range where p lies in (see [17, Theorems 1.3 and 1.4]).

Considering colourings with three colours, the general results from [17, as stated, imply that if $p \gg\left(\frac{\log n}{n}\right)^{1 / 8}$, then w.h.p. we have $\operatorname{tc}_{3}(G(n, p)) \leq 3$, and if $p \gg\left(\frac{\log n}{n}\right)^{1 / 6}$, then w.h.p. $\operatorname{tc}_{3}(G(n, p)) \leq 88$ (the methods from [17] may actually give a somewhat better upper bound than 88 , if one optimizes their calculations). Our main theorem in this chapter improves these bounds.

Theorem II. If $p=p(n)$ satisfies $p \gg\left(\frac{\log n}{n}\right)^{1 / 6}$, then with high probability we have

$$
\operatorname{tc}_{3}(G(n, p)) \leq 3
$$

It can be easily seen that if $1-p \ll n^{-1}$, then w.h.p. there is a 3 -edge-colouring of $G(n, p)$ for which 3 monochromatic trees are needed to cover all vertices - it suffices to consider three non-adjacent vertices x_{1}, x_{2} and x_{3}, and colour the edges incident to x_{i} with colour i and colour all the remaining edges with any colour. Therefore, the bound for $t_{3}(G(n, p))$ in Theorem IT] is the best possible as long as p is not too close to 1 .

We remark that, from the example described in 68, we know that for $p \ll\left(\frac{\log n}{n}\right)^{1 / 4}$, we have w.h.p. $\operatorname{tc}_{3}(G(n, p)) \geq 4$. It would be very interesting to describe the behaviour of $\operatorname{tc}_{3}(G(n, p))$ when $\left(\frac{\log n}{n}\right)^{1 / 4} \ll p \ll\left(\frac{\log n}{n}\right)^{1 / 6}$.

This chapter is organized as follows. In Section 3.2 we present some definitions and auxiliary results that we will use in the proof of Theorem IIT which is outlined in Section 3.3. The details of the proof of Theorem [IT are given in Section 3.4.

[^6]
3.2 Preliminaries

Most of our notation is standard (see [13, 15, 31] and [14, 63]). However, we will mention in the following few definitions regarding hypergraphs that will play a major role in our proofs just for completeness.

We say that a set A of vertices in a hypergraph \mathcal{H} is a vertex cover if every hyperedge of \mathcal{H} contains at least one element of A. The covering number of \mathcal{H}, denoted by $\tau(\mathcal{H})$, is the smallest size of a vertex cover in \mathcal{H}. A matching in \mathcal{H} is a collection of disjoint hyperedges in \mathcal{H}. The matching number of \mathcal{H}, denoted by $\nu(\mathcal{H})$, is the largest size of a matching in \mathcal{H}. An immediate relationship between $\tau(\mathcal{H})$ and $\nu(\mathcal{H})$ is the inequality $\nu(\mathcal{H}) \leq \tau(\mathcal{H})$. If additionally \mathcal{H} is r-uniform, then we have $\tau(\mathcal{H}) \leq r \nu(\mathcal{H})$. A conjecture due to Ryser (which first appeared in the thesis of his Ph.D. student, Henderson [62]) states that for every r-uniform r-partite hypergraph \mathcal{H}, we have $\tau(\mathcal{H}) \leq(r-1) \nu(\mathcal{H})$. Note that the König-Egerváry theorem corresponds to Ryser's conjecture for $r=2$. Aharoni [1] proved that Ryser's conjecture holds for $r=3$, but the conjecture remains open for $r \geq 4$.

Given a vertex v in a 3 -uniform hypergraph \mathcal{H}, the link graph of \mathcal{H} with respect to v is the graph $L_{v}=(V, E)$ with vertex set $V=V(\mathcal{H})$ and edge set $E=\{x y:\{x, y, v\} \subseteq \mathcal{H}\}$.

We will use the following theorem due to Erdős, Gyárfás and Pyber [42] in the proof of our main result.

Theorem 3.2.1 (Erdős, Gyárfás and Pyber). For any 3-edge-colouring of a complete graph K_{n}, there exists a partition of $V\left(K_{n}\right)$ into 2 monochromatic trees.

We will also use the following lemma, which is a simple application of Chernoff's inequality. For a proof of the first item see [74, Lemma 3.8]. The second item is an immediate corollary of [74, Lemma 3.10].

Lemma 3.2.2. Let $\varepsilon>0$. If $p=p(n) \gg\left(\frac{\log n}{n}\right)^{1 / 6}$, then w.h.p. $G \in G(n, p)$ has the following properties.
(i) For any disjoint sets $X, Y \subseteq V(G)$ with $|X|,|Y| \gg \frac{\log n \text {, we have }}{p}$

$$
\left|E_{G}(X, Y)\right|=(1 \pm \varepsilon) p|X||Y| .
$$

(ii) Every vertex $v \in V(G)$ has degree $d_{G}(v)=(1 \pm \varepsilon) p n$ and every set of $i \leq 6$ vertices has $(1 \pm \varepsilon) p^{i} n$ common neighbours.

3.3 A sketch of the proof

In this section we will give an overview of the proof of Theorem II. Let $G=G(n, p)$, with $p \gg\left(\frac{\log n}{n}\right)^{1 / 6}$, and let $\varphi: E(G) \rightarrow\{$ red, green, blue $\}$ be any 3 -edge-colouring of G. We

3.3. A SKETCH OF THE PROOF

consider an auxiliary graph F, with $V(F)=V(G)$ and $i j \in E(F)$ if and only if there is, in the colouring φ, a monochromatic path in G connecting i and j. Then we define a 3-edge-colouring φ^{\prime} of F with $\varphi^{\prime}(i j)$ being the colour of any monochromatic path in G connecting i and j. Note that any covering of F with monochromatic trees with respect to the colouring φ^{\prime} corresponds to a covering of G with monochromatic trees with respect to the colouring φ with the same number of trees.

Next, we consider different cases depending on the value of $\alpha(F)$. If $\alpha(F)=1$, then F is a complete 3-edge-coloured graph and by a theorem of Erdős, Gyárfás and Pyber (see Theorem 3.2.1], there exists a partition of $V(F)$ into 2 monochromatic trees. The remaining proof now is divided into the cases $\alpha(F) \geq 3$ and $\alpha(F)=2$.

Case $\alpha(F) \geq 3$. From the condition on the independence number of G, there exist three vertices $r, b, g \in V(G)$ that pairwise do not have any monochromatic path connecting them. With high probability, they have a common neighbourhood in G of size at least $n p^{3} / 2$. Let $X_{r b g}$ be the largest subset of this common neighbourhood such that for each $i \in\{r, b, g\}$, the edges from i to $X_{r b g}$ in G are all coloured with one colour. Then, since there are no monochromatic paths between any two of r, b, g, we have $\left|X_{r b g}\right| \geq n p^{3} / 12$ and moreover we may assume that all edges between r and $X_{r b g}$ are red, all between b and $X_{r b g}$ are blue and those between g and $X_{r b g}$ are green. Now we notice that all vertices that have a neighbour in $X_{r b g}$ are covered by the union of the spanning trees of the red component of r, the blue component of b and the green component of g.

We are done in the case where every vertex has a neighbour in $X_{r b g}$, as the vertices in $X_{r b g} \cup N_{G}\left(X_{r b g}\right)$ are covered by the red, blue and green component containing r, b and g, respectively. Otherwise, w.h.p. any vertex $y \in V \backslash\left(X_{r b g} \cup N_{G}\left(X_{r b g}\right)\right)$ has many common neighbours with r, b and g in G that are also neighbours of some vertex in $X_{r b g}$. An analysis of the possible colourings of the edges between $X_{r b g}$ and the common neighbourhood of the vertices r, b, g and y yields the following: for some $i \in\{r, b, g\}$, let us say $i=r$, every vertex $y \in X_{r b g}$ can be connected to r by a monochromatic path in colour red or either to g or b by a monochromatic path in the colour blue or green, respectively.

This already gives us that all vertices in G can be covered by 5 monochromatic trees, since all the vertices in $N_{G}\left(X_{r b g}\right)$ lie in the red component of r, or the green component of g, or in the blue component of b and every vertex in $V \backslash N_{G}\left(X_{r b g}\right)$ lies in the red component of r, in the blue component of g or in the green component of b. By analysing the colours of edges to the common neighbourhood of carefully chosen vertices, we are able to show that actually three of those five trees already cover all the vertices of G.

Case $\alpha(F)=2$. Let us consider a 3-uniform hypergraph \mathcal{H} defined as follows (this definition is inspired by a construction of Gyárfás [54] and also appears in [17]). The vertices of \mathcal{H} are the monochromatic components of F and three vertices form a hyperedge if the corresponding three components have a vertex in common (in particular, those three monochromatic
components must be of different colours). Hence, \mathcal{H} is a 3-uniform 3-partite hypergraph.
We observe that if A is a vertex cover of \mathcal{H}, then the monochromatic components associated with the vertices in A cover all the vertices of G. This implies that $\operatorname{tc}_{3}(G) \leq \tau(\mathcal{H})$. Also, it is easy to see that $\nu(\mathcal{H}) \leq \alpha(F)=2$. Now, recall that Aharoni's result [1] (which corresponds to Ryser's conjecture for $r=3$) states that for every 3 -uniform 3-partite hypergraph \mathcal{H} we have $\tau(\mathcal{H}) \leq 2 \nu(\mathcal{H})$. Together with the previous observation, this implies $\operatorname{tc}_{3}(G) \leq 4$. But our goal is to prove that $\mathrm{tc}_{3}(G) \leq 3$. To this aim, we analyse the hypergraph \mathcal{H} more carefully, reducing the situation to a few possible settings of components covering all vertices. In each of those cases, we can again analyse the possible colouring of edges of common neighbours of specific vertices, inferring that indeed there are 3 monochromatic components which cover all vertices.

3.4 Proof of Theorem II

Instead of analysing the colouring of the graph $G=G(n, p)$, it will be helpful to analyse the following auxiliary graph.

Definition 3.4.1 (Shortcut graph). Let G be a graph and φ be a 3-edge-colouring of G. The shortcut graph of G (with respect to φ) is the graph $F=F(G, \varphi)$ that has $V(G)$ as the vertex set and the following edge set:
$\{u v: u, v \in V(G)$ and u and v are connected in G by a path monochromatic under $\varphi\}$.
Let us consider an edge-multicolouring φ^{\prime} of $F=F(G, \varphi)$ which assigns to an edge $u v \in$ $E(F(G, \varphi))$ the list of all the colours of monochromatic paths connecting u and v in G under the colouring φ. We will say that φ^{\prime} is the inherited colouring ${ }^{3}$ of $F(G, \varphi)$. We say that an edge $e \in F(G, \varphi)$ has colour ρ (or is coloured with ρ) if ρ belongs to the list of colours assigned to e by φ^{\prime}. We say that a subgraph H of $F(G, \varphi)$ is monochromatic under φ^{\prime} if all the edges of H are coloured with a common colour. Let $\operatorname{tc}\left(F, \varphi^{\prime}\right)$ be the minimum number k such that there are k trees T_{1}, \ldots, T_{k} which are monochromatic under φ^{\prime} such that $V(F)=V\left(T_{1}\right) \cup \cdots \cup V\left(T_{k}\right)$. Note that any covering of $F(G, \varphi)$ with monochromatic trees under φ^{\prime} corresponds to a covering of G with monochromatic trees under the colouring φ. In particular, if we show that for every 3-edge-colouring φ of G, we have $\operatorname{tc}\left(F, \varphi^{\prime}\right) \leq 3$, where $F=F(G, \varphi)$ is the shortcut graph of G with respect to φ, and φ^{\prime} is the inherited colouring of F, then we have shown that $\operatorname{tc}_{3}(G) \leq 3$. Therefore, Theorem II follows from the following lemma.

[^7]
3.4. PROOF OF THEOREM II

Lemma 3.4.2. Let $p \gg\left(\frac{\log n}{n}\right)^{1 / 6}$ and let $G=G(n, p)$. The following holds with high probability. For any 3-edge-colouring φ of G, we have $\operatorname{tc}\left(F, \varphi^{\prime}\right) \leq 3$, where F is the shortcut graph $F=F(G, \varphi)$ and φ^{\prime} is the inherited colouring of F.

The proof of Lemma 3.4 .2 is divided into two different cases, depending on the independence number of F. Subsections 3.4 .1 and 3.4 .2 are devoted, respectively, to the proof of Lemma 3.4.2 when $\alpha(F) \geq 3$ and $\alpha(F) \leq 2$.

From now on, we fix $\varepsilon>0$ and assume that $p \gg\left(\frac{\log n}{n}\right)^{1 / 6}$ and n is sufficiently large. Then, by Lemma 3.2.2, we may assume that the following holds w.h.p.:

1. There is an edge between any two sets of size $\omega((\log n) / p)$.
2. Every vertex $v \in V(G)$ has degree $d_{G}(v)=(1 \pm \varepsilon) p n$.
3. Every set of $i \leq 6$ vertices has $(1 \pm \varepsilon) p^{i} n$ common neighbours.

3.4.1 Shortcut graphs with independence number at least three

Proof of Lemma 3.4.2 for $\alpha(F) \geq 3$. Since $\alpha(F) \geq 3$, there exist three vertices $r, b, g \in$ $V(G)$ that pairwise do not have any monochromatic path connecting them in G. In particular, if v is a common neighbour of r, b and g in G, then the edges $v r, v b$ and $v g$ have all different colours. The common neighbourhood of r, b and g in G has size at least $n p^{3} / 2$. Let $X_{r b g}$ be the largest subset of this common neighbourhood such that for each $i \in\{r, b, g\}$, the edges between i and the vertices of $X_{r b g}$ are all coloured with the same colour in G. Then $\left|X_{r b g}\right| \geq n p^{3} / 12$. Without loss of generality, assume that all edges between r and the vertices of $X_{r b g}$ are red, between b and the vertices of $X_{r b g}$ are blue and those between g and the vertices of $X_{r b g}$ are green. Let $C_{\text {red }}(r), C_{\mathrm{blue}}(b)$ and $C_{\text {green }}(g)$ be respectively the red, blue and green components in G containing r, g and b.

Notice that all vertices of F that have a neighbour in $X_{r b g}$ are covered by $C_{\text {red }}(r), C_{\text {blue }}(b)$ or $C_{\text {green }}(g)$. Therefore, the proof would be finished if every vertex had a neighbour in $X_{r b g}$. If this is not the case, we fix an arbitrary vertex $y \in V \backslash\left(X_{r b g} \cup N_{G}\left(X_{r b g}\right)\right)$. By our choice of p, there are at least $n p^{4} / 2$ common neighbours of y, r, b and g. Let $X_{y r b g}$ be the largest subset of the common neighbourhood of y, r, b and g such that for each $i \in\{r, b, g\}$, the edges between i and $X_{y r b g}$ are all coloured the same. Then $\left|X_{y r b g}\right| \geq n p^{4} / 12$. Note that since $y \notin N_{G}\left(X_{r b g}\right)$, the sets $X_{y r b g}$ and $X_{r b g}$ are disjoint. Furthermore, since $\left|X_{y r b g}\right|,\left|X_{r b g}\right| \gg$ $\frac{\log n}{p}$, we have

$$
\left|E_{G}\left(X_{y r b g}, X_{r b g}\right)\right| \geq 1 .
$$

We now analyse the colours between r, b, g and the set $X_{y r b g}$. Again, since there is no monochromatic path connecting any two of r, b and g, all $i \in\{r, b, g\}$ have to connect

Figure 3.1: Analysis of the colouring of the edges incident on $X_{r b g}$ and on $X_{y r b g}$.
to $X_{y r b g}$ in different colours. Since $X_{y r b g}$ is disjoint from $X_{r b g}$, by the maximality of $X_{r b g}$ we cannot have r, b and g being simultaneously connected to $X_{y r b g}$ by red, blue and green edges, respectively. Assume first that for each $i \in\{r, b, g\}$, the edges between i and $X_{y r b g}$ have different colours from the edges between i and $X_{r b g}$. Then let $u v$ be an edge between $X_{y r b g}$ and $X_{r b g}$ and notice that whatever the colour of $u v$ is, we will have a monochromatic path connecting two of the vertices in $\{r, g, b\}$. Therefore, we can assume that for some $i \in$ $\{r, g, b\}$, we have that all the edges between i and $X_{r b g}$ and all the edges between i and $X_{y r b g}$ coloured the same. Without loss of generality, we may say that such i is r. In this case, the edges between b and $X_{y r b g}$ are green and the edges between g and $X_{y r b g}$ are blue. Finally, all the edges between $X_{y r b g}$ and $X_{r b g}$ are red, otherwise we would be able to connect b and g by some monochromatic path. Figure 3.1 shows the colouring of the edges that we have analysed so far.

Let us now consider any further vertex $x \in V \backslash\left(X_{r b g} \cup N_{G}\left(X_{r b g}\right)\right)$ with $x \neq y$, if such a vertex exists. We define $X_{x r b g}$ analogously to $X_{y r b g}$ and observe that the colour pattern from r, b, g to $X_{x r b g}$ must be the same as the one to $X_{y r b g}$. Indeed, if this is not the case, then a similar analysis of the colours of the edges between $\{r, b, g\}$ and $X_{x r b g}$ yields that for some $i \in\{b, g\}$, we know that the edges connecting i to $X_{x r b g}$ are of the same colour as the edges connecting i to $X_{r b g}$. Without loss of generality, let us say that i is g. Then the edges between b and $X_{x r b g}$ are red and the edges between r and $X_{x r b g}$ are green, otherwise $X_{x r b g}$ and $X_{r b g}$ would not be disjoints sets. Figure 3.2 shows the colouring of the edges incident to $X_{y r b g}$ and $X_{x r b g}$. Since $\left|X_{y r b g}\right|,\left|X_{x r b g}\right| \gg \frac{\log n}{p}$, we have that there is some edge $u v$ between $X_{y r b g}$ and $X_{x r b g}$. But then however we colour $u v$, we will get a monochromatic path connecting two vertices in $\{r, b, g\}$, which is a contradiction. Thus, the colour pattern of edges between $\{r, b, g\}$ and $X_{x r b g}$ is the same as the colour pattern of the edges between $\{r, b, g\}$ and $X_{y r b g}$.

Therefore, we have that each vertex in $X_{r b g} \cup N_{G}\left(X_{r b g}\right)$ belongs to one of the monochromatic components $C_{\text {red }}(r), C_{\text {blue }}(b)$ or $C_{\text {green }}(g)$, while a vertex in $V(G) \backslash\left(X_{r b g} \cup N_{G}\left(X_{r b g}\right)\right)$ belongs to one of the monochromatic components $C_{\text {red }}(r), C_{\text {green }}(b)$ or $C_{\text {blue }}(g)$ where the

3.4. PROOF OF THEOREM II

Figure 3.2: Analysis of the colour of the edges incident on $X_{y r b g}$ and on $X_{x r b g}$.
latter two are the green component containing b and the blue component containing g, respectively. This gives a covering of G with five monochromatic trees. Next we will show that actually three of those trees already cover all the vertices.

Suppose that at least four among the components $C_{\text {red }}(r), C_{\text {blue }}(b), C_{\text {green }}(b), C_{\text {green }}(g)$, and $C_{\text {blue }}(g)$ are needed to cover all vertices. Since there does not exist any monochromatic path between any two of r, b, g, we know that for each $i \in\{r, b, g\}$, any monochromatic component containing i does not intersect $\{r, g, b\} \backslash\{i\}$. Hence, for each $i \in\{r, b, g\}$, one of these components contains i. Also, one element in $\{r, b, g\}$ belongs to two of these components. Without loss of generality, let us say that b belongs to two of these components. Therefore, $C_{\text {red }}(r), C_{\mathrm{blue}}(b)$ and $C_{\text {green }}(b)$ are three of these at least four components needed to cover all the vertices. Now there are two cases regarding the fourth component: we need $C_{\text {green }}(g)$ as the fourth component or we need $C_{\text {blue }}(g)$ (those two cases might intersect).

We begin with the first case, where we need the components $C_{\text {red }}(r), C_{\text {blue }}(b), C_{\text {green }}(b)$ and $C_{\text {green }}(g)$ to cover all the vertices of G. Let

$$
\tilde{b} \in C_{\text {blue }}(b) \backslash\left(C_{\text {red }}(r) \cup C_{\text {green }}(b) \cup C_{\text {green }}(g)\right)
$$

and let

$$
\tilde{g} \in C_{\text {green }}(b) \backslash\left(C_{\text {red }}(r) \cup C_{\text {blue }}(b) \cup C_{\text {green }}(g)\right) .
$$

Then let $X_{\tilde{b} \tilde{g} r b g}$ be the maximum set of common neighbours of $\tilde{b}, \tilde{g}, r, g, b$ such that for each $i \in\{\tilde{b}, \tilde{g}, r, b, g\}$, the edges from i to $X_{\tilde{b} \tilde{g} r b g}$ are all coloured the same. Since $\left|X_{\tilde{b} \tilde{g} r b g}\right| \geq$ $n p^{5} / 240 \gg \frac{\log n}{p}$, we have

$$
\left|E_{G}\left(X_{\tilde{b} \tilde{g} r b g}, X_{y r b g}\right)\right| \geq 1 \quad \text { and } \quad\left|E_{G}\left(X_{\tilde{b} \tilde{g} r b g}, X_{r b g}\right)\right| \geq 1
$$

We will analyse the possible colours of the edges between the specified vertices and $X_{\tilde{b} \tilde{g} r b g}$. If for each of r, b, g, the colour it sends to $X_{\tilde{b} \tilde{g} r b g}$ is different from the colour it sends to $X_{r b g}$, then any edge between $X_{\tilde{b} \tilde{g} r b g}$ and $X_{r b g}$ ensures a monochromatic path between two of r, b, g (in the colour of that edge). Similarly, it cannot happen that for each of r, b, g, the colour
it sends to $X_{\tilde{b} \tilde{g} r b g}$ is different from the colour it sends to $X_{y r b g}$. Thus, since r sends red to both $X_{r b g}$ and $X_{y r b g}$ while the colours from b (and g) to $X_{r b g}$ and $X_{y r b g}$ are switched, the colour of the edges between r and $X_{\tilde{b} \tilde{g} r b g}$ is red.

Now note that, by the choice of \tilde{b} and \tilde{g}, the edges between each of them and $X_{\tilde{b} \tilde{g} r b g}$ can not be red. Further, the choice implies that an edge between \tilde{b} and $X_{\tilde{b} \tilde{g} r b g}$ can not be of the same colour (green or blue) as an edge between \tilde{g} and $X_{\tilde{b} \tilde{g} r b g}$. If g would send blue (and hence b would send green) edges to $X_{\tilde{b} \tilde{g} r b g}$, there would either be a blue path between b and g (if the edges between \tilde{b} and $X_{\tilde{b} \tilde{g} r b g}$ are blue) or \tilde{b} would lie in $C_{\text {green }}(b)$ (if the edges between \tilde{b} and $X_{\tilde{b} \tilde{g} r b g}$ are green). Since both those situations would mean a contradiction, we may assume that each of r, b, g sends edges with that colour to $X_{\tilde{b} \tilde{g} r b g}$ as it does to $X_{r b g}$. But then $X_{\tilde{b} \tilde{g} r b g}$ is actually a subset of $X_{r b g}$ and since \tilde{g} has an edge to $X_{r b g}$, it lies in one of $C_{\text {red }}(r), C_{\text {blue }}(b)$, or $C_{\text {green }}(g)$; a contradiction.

In the case where the forth component that we need is $C_{\mathrm{blue}}(g)$, we repeat the construction of $X_{\tilde{b} \tilde{g} r b g}$ similarly as before by letting

$$
\tilde{b} \in C_{\text {blue }}(b) \backslash\left(C_{\text {red }}(r) \cup C_{\text {green }}(b) \cup C_{\text {blue }}(g)\right)
$$

and

$$
\tilde{g} \in C_{\text {green }}(b) \backslash\left(C_{\text {red }}(r) \cup C_{\text {blue }}(b) \cup C_{\text {blue }}(g)\right) .
$$

Also as before, we end up with $X_{\tilde{b} \tilde{g} r b g}$ being part of $X_{r b g}$. From the choice of \tilde{g}, the edges it sends to $X_{\tilde{\partial} \tilde{g} r b g}$ have to be green, since otherwise it would be in $C_{\text {red }}(r)$ or $C_{\text {blue }}(b)$. But that gives a green path between b and g, a contradiction.

Summarising, we infer that three components among $C_{\text {red }}(r), C_{\text {blue }}(b), C_{\text {green }}(b), C_{\text {green }}(g)$ and $C_{\text {blue }}(g)$ cover the vertex set of G.

3.4.2 Shortcut graphs with independence number at most two

Proof of Lemma 3.4.2 for $\alpha(F) \leq 2$. We start by noticing that if $\alpha(F)=1$, then the graph F together with the colouring φ^{\prime} is a complete 3-coloured graph and therefore, by Theorem 3.2.1, there exists a partition of $V(F)$ into 2 monochromatic trees. Thus, we may assume that $\alpha(F)=2$.

Let \mathcal{H} be the 3-uniform hypergraph with $V(\mathcal{H})$ being the collection of all the monochromatic components of F under the colouring φ^{\prime} and three monochromatic components form a hyperedge in \mathcal{H} if they share a vertex. Notice that \mathcal{H} is 3-partite, since distinct monochromatic components of the same colour do not have a common vertex and therefore they can not belong to the same hyperedge. In other words, the colour of each component give us a 3partition of the vertex set of \mathcal{H}. We denote by $V_{\text {red }}, V_{\text {blue }}$ and $V_{\text {green }}$ the set of vertices of $V(\mathcal{H})$ that correspond to, respectively, red, blue and green components. Such construction was inspired by a construction due to Gyárfás [54] and it was also used in [17].

3.4. PROOF OF THEOREM II

Note that every vertex v of F is contained in a monochromatic component for each one of the colours (a monochromatic component could consist only of v). Therefore, any vertex cover of \mathcal{H} corresponds to a covering of the vertices of F with monochromatic trees. Indeed, if A is a vertex cover of \mathcal{H}, then consider the monochromatic components corresponding to each vertex in A. If any vertex v of F is not covered by those components, then the vertices in \mathcal{H} corresponding to the red, green and blue components in F containing v do not belong to A and they form an hyperedge. But this contradicts the fact that A is a vertex cover of \mathcal{H}. Therefore,

$$
\begin{equation*}
\operatorname{tc}\left(F, \varphi^{\prime}\right) \leq \tau(\mathcal{H}) \tag{3.2}
\end{equation*}
$$

The inequality (3.2) corresponds to Proposition 4.1 in [17] in our setting.
Let $L=\bigcup_{s \in V_{\text {red }}} L_{s}$ be the union of the link graphs L_{s} of all vertices $s \in V_{\text {red }}$. Any vertex cover of this bipartite graph L corresponds to a vertex cover of \mathcal{H} of the same size. Therefore,

$$
\begin{equation*}
\tau(\mathcal{H}) \leq \tau(L) \tag{3.3}
\end{equation*}
$$

Furthermore, by the König-Egerváry theorem we know that $\tau(L)=\nu(L)$. Thus, if $\nu(L) \leq 3$, then by (3.2) and (3.3), we have

$$
\operatorname{tc}\left(F, \varphi^{\prime}\right) \leq \tau(\mathcal{H}) \leq \tau(L)=\nu(L) \leq 3
$$

Therefore, we may assume that $\nu(L) \geq 4$, and fix a matching M_{L} of size at least four in L. Let us say that M_{L} consists of the edges $G_{1} B_{1}, G_{2} B_{2}, G_{3} B_{3}$, and $G_{4} B_{4}$, where $\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\} \subseteq V_{\text {green }}$ and $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\} \subseteq V_{\text {blue }}$.

Now we give an upper bound for $\nu(\mathcal{H})$. Note that any matching $M_{\mathcal{H}}$ in \mathcal{H} gives us an independent set I in F. Indeed, for each hyperedge $e \in M_{\mathcal{H}}$, let $v_{e} \in V(F)$ be any vertex in the intersection of those monochromatic components associated to the vertices in e and let $I=\left\{v_{e}: e \in M_{\mathcal{H}}\right\}$. We claim that I is an independent set in F. Indeed, if v_{e} and v_{f} were adjacent vertices in I, then e and f intersect, as the edge connecting v_{e} to v_{f} in F will connect the monochromatic components containing v_{e} and v_{f} of that colour that is given to the edge $v_{e} v_{f}$. Therefore, since $\alpha(F)=2$, we have

$$
\begin{equation*}
\nu(\mathcal{H}) \leq \alpha(F)=2 . \tag{3.4}
\end{equation*}
$$

Now, if there are three different edges in M_{L} that are edges in the link graphs of three different vertices of $V_{\text {red }}$, then there would be a matching of size 3 in \mathcal{H}, contradicting (3.4). Therefore, we may assume that M_{L} is contained in the union of at most two link graphs, say $L_{R_{1}}$ and $L_{R_{2}}$, of vertices $R_{1}, R_{2} \in V_{\text {red }}$. Now we are left with three cases: (Case 1) two
edges of M_{L} belong to $L_{R_{1}}$ and two belong to $L_{R_{2}}$; (Case 2) three edges of M_{L} belong to $L_{R_{1}}$ and one to $L_{R_{2}}$; (Case 3) the four edges of M_{L} belong to $L_{R_{1}}$. Without loss of generality, we can describe each of those three cases as follows (see Figures 3.3, 3.4 and 3.5):

Case 1: The edges $G_{1} B_{1}$ and $G_{2} B_{2}$ belong to $L_{R_{1}}$ and the edges $G_{3} B_{3}$ and $G_{4} B_{4}$ belong to $L_{R_{2}}$. That means that all the following four sets are non-empty:

$$
\begin{aligned}
J_{1} & :=R_{1} \cap G_{1} \cap B_{1}, \\
J_{2} & :=R_{1} \cap G_{2} \cap B_{2}, \\
J_{3} & :=R_{2} \cap G_{3} \cap B_{3}, \\
J_{4} & :=R_{2} \cap G_{4} \cap B_{4} .
\end{aligned}
$$

Case 2: The edges $G_{1} B_{1}, G_{2} B_{2}$ and $G_{3} B_{3}$ belong to $L_{R_{1}}$ and the edge $G_{4} B_{4}$ belongs to $L_{R_{2}}$. That means that all the following four sets are non-empty:

$$
\begin{aligned}
J_{1} & :=R_{1} \cap G_{1} \cap B_{1}, \\
J_{2} & :=R_{1} \cap G_{2} \cap B_{2}, \\
J_{3} & :=R_{1} \cap G_{3} \cap B_{3}, \\
J_{4} & :=R_{2} \cap G_{4} \cap B_{4} .
\end{aligned}
$$

Case 3: The edges $G_{1} B_{1}, G_{2} B_{2}, G_{3} B_{3}$ and $G_{4} B_{4}$ belong to $L_{R_{1}}$. That means that all the following four sets are non-empty:

$$
\begin{aligned}
J_{1} & :=R_{1} \cap G_{1} \cap B_{1}, \\
J_{2} & :=R_{1} \cap G_{2} \cap B_{2}, \\
J_{3} & :=R_{1} \cap G_{3} \cap B_{3}, \\
J_{4} & :=R_{1} \cap G_{4} \cap B_{4} .
\end{aligned}
$$

In this case, let R_{2} be any other red component different from R_{1} and let B and G be, respectively, a blue and a green component with $R_{2} \cap B \cap G \neq \varnothing$. Suppose that $G \notin\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$. Then the three of the edges $G_{1} B_{1}, G_{2} B_{2}, G_{3} B_{3}$ and $G_{4} B_{4}$ are not incident to $G B$ (because B must be different from at least three of the sets B_{1}, B_{2}, B_{3} and B_{4}) and these three edges together with $G B$ may be analysed just as in Case 2. Therefore, we may suppose that $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$. Let us say, without loss of generality, that $G=G_{4}$. If $B \notin\left\{B_{1}, B_{2}, B_{3}\right\}$, then the edges $G_{1} B_{1}, G_{2} B_{2}$ and $G_{3} B_{3}$ belong to $L_{R_{1}}$, the edge $G B$ belongs to $L_{R_{2}}$ and this case may be analysed, again, just as in Case 2. Therefore, we may assume that $B \in\left\{B_{1}, B_{2}, B_{3}\right\}$. Let us say, without loss of generality that $B=B_{3}$.

3.4. PROOF OF THEOREM II

Figure 3.3: Case 1

Then let J_{5} be the following non-empty set:

$$
\begin{equation*}
J_{5}:=R_{2} \cap G_{4} \cap B_{3} . \tag{3.5}
\end{equation*}
$$

Let us further remark that, since $\nu(\mathcal{H}) \leq 2$, in each of the three cases above, we have

$$
V(F)=R_{1} \cup R_{2} \cup G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup B_{1} \cup B_{2} \cup B_{3} \cup B_{4} .
$$

Otherwise, for any uncovered vertex $v \in V(F)$, the hyperedge given by the red, blue and green components containing v together with the hyperedges $R_{1} B_{1} G_{1}$ and $R_{2} B_{3} G_{3}$ (in Cases 1 and 2) or $R_{2} B_{3} G_{4}$ (in Case 3) is a matching of size 3 in \mathcal{H}.

Let us start with Case 1.
Proof in Case 1; We will prove that R_{1} and R_{2} together with possibly one further monochromatic component cover $V(F)$. For each $i \in\{1,2,3,4\}$, let $\tilde{B}_{i}=B_{i} \backslash\left(R_{1} \cup R_{2}\right)$ and $\tilde{G}_{i}=G_{i} \backslash\left(R_{1} \cup R_{2}\right)$.

Pick vertices $j_{i} \in J_{i}$, with $i \in\{1,2,3,4\}$, arbitrarily. Consider a vertex $o \in \tilde{B}_{1}$ (if such a vertex exists). Since $\alpha(F)=2$, there is an edge connecting two of o, j_{2}, j_{3}. Because j_{2} and j_{3} belong to different components of each colour, such an edge must be incident to o. So let us say that such edge is $o j_{i}$, for some $i \in\{2,3\}$. Since $o \notin R_{1} \cup R_{2}$, the edge $o j_{i}$ cannot be red. And since $o \in B_{1}, o j_{i}$ cannot be blue either, otherwise we would connect the blue components B_{1} and B_{i}. Now assume that o and j_{2} are not adjacent. Then $o j_{3}$ is a green edge in F. By analogously analysing the edge between o, j_{2} and j_{4} together with the supposition that $o j_{2}$ is not an edge in F, we get that $o j_{4}$ must be a green edge in F. But then we have a green path $j_{3} \circ j_{4}$ connecting j_{3} to j_{4}, a contradiction. Therefore $o j_{2}$ is an edge in F and it is green. That implies that $o \in G_{2}$. Therefore $\tilde{B}_{1} \subseteq G_{2}$. Analogously, we can conclude the following:

$$
\begin{array}{ll}
\tilde{B}_{1} \subseteq G_{2}, & \tilde{G}_{1} \subseteq B_{2}, \\
\tilde{B}_{2} \subseteq G_{1}, & \tilde{G}_{2} \subseteq B_{1}, \\
\tilde{B}_{3} \subseteq G_{4}, & \tilde{G}_{3} \subseteq B_{4}, \tag{3.6}\\
\tilde{B}_{4} \subseteq G_{3}, & \tilde{G}_{4} \subseteq B_{3} .
\end{array}
$$

Claim 3.4.3. We have $\tilde{B}_{1} \cup \tilde{G}_{1} \cup \tilde{B}_{2} \cup \tilde{G}_{2}=\varnothing$ or $\tilde{B}_{3} \cup \tilde{G}_{3} \cup \tilde{B}_{4} \cup \tilde{G}_{4}=\varnothing$.
Proof. Suppose for a contradiction that there exist $o_{1} \in \tilde{B}_{1} \cup \tilde{G}_{1} \cup \tilde{B}_{2} \cup \tilde{G}_{2}$ and $o_{2} \in$ $\tilde{B}_{3} \cup \tilde{G}_{3} \cup \tilde{B}_{4} \cup \tilde{G}_{4}$. Recall that from our choice of p, there is some $z \in N\left(j_{1}, j_{2}, j_{3}, j_{4}, o_{1}, o_{2}\right)$. Two of the edges $z j_{i}$, for $i \in\{1,2,3,4\}$, have the same colour. Since each j_{i} belongs to different green and blue components, those two edges are red. Since $\left\{j_{1}, j_{2}\right\} \in R_{1}$ and $\left\{j_{3}, j_{4}\right\} \in R_{2}$, those two red edges are either $z j_{1}$ and $z j_{2}$ or $z j_{3}$ and $z j_{4}$. Let us say that $z j_{1}$ and $z j_{2}$ are red (the other case is similar). Then one of the edges $z j_{3}$ and $z j_{4}$ has to be green and the other blue. Now, since $o_{1} \notin R_{1}$, the edge $z o_{1}$ is either green or blue. Then one of the paths $o_{1} z j_{3}$ or $o_{1} z j_{4}$ is green or blue. This implies that $o_{1} \in B_{3} \cup G_{3} \cup B_{4} \cup G_{4}$. On the other hand, (3.6) implies that $o_{1} \in\left(B_{1} \cup B_{2}\right) \cap\left(G_{1} \cup G_{2}\right)$. But then we reached a contradiction, since that would mean that o_{1} belongs to two different components of the same colour.

We may assume without loss of generality that $\tilde{B}_{3} \cup \tilde{G}_{3} \cup \tilde{B}_{4} \cup \tilde{G}_{4}$ is empty. Then, recalling that $\nu(\mathcal{H}) \leq 2$ and in view of (3.6), the union of the components R_{1}, B_{1}, G_{1} and R_{2} covers every vertex of F. If we show that $B_{1} \subseteq G_{1} \cup R_{1} \cup R_{2}$ or that $G_{1} \subseteq B_{1} \cup R_{1} \cup R_{2}$, then we get three monochromatic components covering the vertices of F. Our next claim states precisely that.
Claim 3.4.4. We have $\tilde{B}_{1} \backslash G_{1}=\varnothing$ or $\tilde{G}_{1} \backslash B_{1}=\varnothing$.
Proof. Suppose that there exist two distinct vertices $b \in \tilde{B}_{1} \backslash G_{1}$ and $g \in \tilde{G}_{1} \backslash B_{1}$. Let $z \in$ $N\left(j_{1}, j_{2}, j_{3}, j_{4}, b, g\right)$. As before, either $z j_{1}$ and $z j_{2}$ or $z j_{3}$ and $z j_{4}$ are red edges. First assume that $z j_{1}$ and $z j_{2}$ are red. Then one of the edges $z j_{3}$ and $z j_{4}$ has to be green and the other blue. Now, since $b \notin R_{1}$, the edge $z b$ is either green or blue. Then one of the paths $b z j_{3}$ or $b z j_{4}$ is green or blue. This implies that $b \in B_{3} \cup G_{3} \cup B_{4} \cup G_{4}$. On the other hand, (3.6) implies that $b \in B_{1} \cap G_{2}$. Then we reached a contradiction, since that would mean that b belongs to two different components of the same colour.

Therefore, the edges $z j_{3}$ and $z j_{4}$ are red and one of the edges $z j_{1}$ and $z j_{2}$ is green and the other is blue. First let us say that $z j_{1}$ is green and $z j_{2}$ is blue. Since $b \notin\left(R_{1} \cup R_{2}\right)$, the edge $z b$ cannot be red. Also the edge $z b$ cannot be blue otherwise the path $b z j_{2}$ would connect the components B_{1} and B_{2}. Finally, $z b$ cannot be green, otherwise the path $b z j_{1}$ would gives us that $b \in G_{1}$. Therefore, $z j_{1}$ is blue and $z j_{2}$ is green. But this case analogously leads to a contradiction (with g and G_{i} instead of b and B_{i} and green and blue switched).

We proceed to the proof of Case 2.
Proof in Case 2, As in Case 1, pick vertices $j_{i} \in J_{i}$, with $i \in\{1,2,3,4\}$ arbitrarily. We claim that $V(F) \subseteq R_{1} \cup R_{2} \cup B_{4} \cup G_{4}$. Indeed, let $o \in V(F) \backslash\left(R_{1} \cup R_{2}\right)$. Notice that since $\alpha(F)=2$, there is an edge in each of the following sets of three vertices: $\left\{o, j_{4}, j_{1}\right\},\left\{o, j_{4}, j_{2}\right\}$, and $\left\{o, j_{4}, j_{3}\right\}$. We claim that $o j_{4}$ is an edge of F. Indeed,

3.4. PROOF OF THEOREM II

Figure 3.4: Case 2
if this was not the case, then since there cannot be an edge between j_{4} and j_{i} for $i=1,2,3$, we would have the edges $o j_{1}, o j_{2}$ and $o j_{3}$ and all of them would be coloured green or blue. Thus, two of them would be coloured the same, connecting two distinct components of one colour in this colour, a contradiction. So $o j_{4} \in E(F)$ and since $o j_{4}$ cannot be red, we conclude that $o \in\left(B_{4} \cup G_{4}\right)$. Therefore, R_{1}, R_{2}, B_{4} and G_{4} cover all vertices of F.

If $B_{4} \backslash\left(R_{1} \cup R_{2} \cup G_{4}\right)=\varnothing$ or $G_{4} \backslash\left(R_{1} \cup R_{2} \cup B_{4}\right)=\varnothing$, then we get three monochromatic components covering $V(F)$. So let us assume that there exist $b \in B_{4} \backslash\left(R_{1} \cup R_{2} \cup G_{4}\right)$ and $g \in G_{4} \backslash\left(R_{1} \cup R_{2} \cup B_{4}\right)$. If b and g are not adjacent, then since each of the sets $\left\{b, g, j_{i}\right\}$, for $i=1,2,3$, has to induce at least one edge, there are two edges between b and $\left\{j_{1}, j_{2}, j_{3}\right\}$ or two edges between g and $\left\{j_{1}, j_{2}, j_{3}\right\}$. However, from the choice of b, we know that all the edges between b and $\left\{j_{1}, j_{2}, j_{3}\right\}$ are green, and therefore, two of such edges would give us a green connection between two different green components, a contradiction. Similarly, from the choice of g, we know that all the edges between b and $\left\{j_{1}, j_{2}, j_{3}\right\}$ are blue, and two of such edges would give us a blue connection between two different blue components, again a contradiction.

Hence, we conclude that $b g \in F$ for any $b \in B_{4} \backslash\left(R_{1} \cup R_{2} \cup G_{4}\right)$ and any $g \in G_{4} \backslash$ $\left(R_{1} \cup R_{2} \cup B_{4}\right)$ and any such edge $b g$ is red. Therefore, there is a red component R_{3} covering $\left(B_{4} \triangle G_{4}\right) \backslash\left(R_{1} \cup R_{2}\right)$, where $B_{4} \triangle G_{4}$ denotes the symmetric difference. If ($B_{4} \cap$ $\left.G_{4}\right) \backslash\left(R_{1} \cup R_{2}\right)=\varnothing$, then R_{1}, R_{2} and R_{3} cover $V(F)$ and we are done. Therefore, suppose there is a vertex $x \in\left(B_{4} \cap G_{4}\right) \backslash\left(R_{1} \cup R_{2}\right)$. If $R_{2} \backslash\left(B_{4} \cup G_{4}\right)=\varnothing$, then R_{1}, B_{4}, G_{4} cover $V(F)$ and we are done. Therefore, suppose there is a vertex $y \in R_{2} \backslash\left(B_{4} \cup G_{4}\right)$. Note that $x y \notin E(F)$, since x and y belong to different components in each of the colours. Also, $x j_{i} \notin E(F)$, for $i \in\{1,2,3\}$, since otherwise two different components of the same colour would be connected in that colour by the edge $x j_{i}$. Now $\alpha(F)=2$ implies that $y j_{i} \in E(F)$, for $i \in\{1,2,3\}$ (otherwise, $\left\{x, y, j_{i}\right\}$ would be an independent set). But these edges must all be green or blue, hence two of them are of the same colour, connecting two different components of one colour in that colour, a contradiction.

We arrived at the last case, Case 3.
Proof in Case 3; Similarly to the previous cases, let us pick vertices $j_{i} \in J_{i}$, with $i \in$ $\{1,2,3,4,5\}$ arbitrarily. We will show first that we can cover all vertices of F with four

Figure 3.5: Case 3
monochromatic components. Let $o_{1}, o_{2} \in V(F) \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$ and let z be a vertex in $N\left(j_{1}, j_{2}, j_{3}, o_{1}, o_{2}, j_{5}\right)$. At least one of the edges $z j_{1}, z j_{2}$ and $z j_{3}$ is red, as otherwise we would connect two distinct components of one colour in that colour. Therefore, $z \in R_{1}$. Since $o_{1}, o_{2}, j_{5} \notin R_{1}$, the edges $z o_{1}, z o_{2}$ and $z j_{5}$ cannot be red. Furthermore, $o_{1} z$ and $o_{2} z$ are coloured with a colour different from the colour of the edge $j_{5} z$, as otherwise they would belong to B_{3} or G_{4}. Thus, o_{1} and o_{2} are connected by a monochromatic path in green or blue. Hence, we showed that any two vertices of $V(F) \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$ are connected by a monochromatic path in green or blue. We infer that there is a green or blue component covering $V(F) \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$. Therefore, R_{1}, B_{3}, G_{4} and one further blue or green component C cover all vertices of G. Let us assume that C is a green component; the case where C is a blue component is analogous.

We claim that $R_{1} \cup B_{3} \cup C$, or $R_{1} \cup G_{4} \cup C$, or $R_{1} \cup B_{3} \cup G_{4}$ covers $V(F)$. Indeed, suppose for the sake of contradiction that there exist vertices $g \in G_{4} \backslash\left(R_{1} \cup B_{3} \cup C\right), b \in B_{3} \backslash\left(R_{1} \cup G_{4} \cup C\right)$ and $c \in C \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$. Let $z \in N\left(j_{1}, j_{2}, j_{3}, g, b, c\right)$ and note that one of $z j_{1}, z j_{2}$ and $z j_{3}$ is red. Consequently $g z, c z$ and $b z$ are not red. Notice, however, that $g z$ and $b z$ can not be both green and neither both blue. Now let us say $c z$ is green. Since $c \notin G_{4}$ and $g \in G_{4}$, we would have $g z$ blue in this case. But then $b z$ must be green and since $c \in C$ and C is a green component, we have $b \in C$, which is a contradiction. Therefore, $c z$ must be blue. Then, since $c \notin B_{3}$ and $b \in B_{3}$, the edge $b z$ should be green. Thus the edge $g z$ is blue. Since this argument holds for any $g \in G_{4} \backslash\left(R_{1} \cup B_{3} \cup C\right)$ and $c \in C \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$, we conclude that $V(F) \backslash\left(R_{1} \cup B_{3}\right)$ can be covered by one blue tree. Hence, G can be covered by the three monochromatic trees. This finishes the last case and thereby the proof of Lemma 3.4.2.

3.5 Concluding Remarks

The prove Theorem $[I]$ relied mainly on the fact the random graph $G(n, p)$ has the properties stated in Lemma 3.2.2. It is easy to see that if G is graph on n vertices with $\delta(G) \geq$ $(1-\varepsilon) n$, for some $\varepsilon>0$, then every set of at most 6 vertices in G has a common neighbour. Furthermore, for every sufficiently large sets $X, Y \subseteq V(G)$, we will have $e(X, Y)>0$. This

3.5. CONCLUDING REMARKS

allows us to prove, by following the same ideas from the proof of Theorem IT , that for sufficiently small $\varepsilon>0$, every graph G with $\delta(G) \geq(1-\varepsilon) n$ is such that $\operatorname{tc}_{3}(G) \leq 3$. It would be interesting to determine the maximum ε for which this is still true. Bal and DeBiasio [7] proved that $\varepsilon \geq 1 /(6 e)$ and they notice that ε cannot be larger than $1 / 4$ (they in fact generalized this to r colours obtaining the bounds $1 /(e r!) \leq \varepsilon \leq 1 /(r+1)$). Our proof, however, does not yield a better value of ε.

The proof of Theorem $I I$ was divided into two cases: $\alpha(F) \geq 3$ and $\alpha(G) \leq 2$. In order to generalize Theorem II for $r>3$, one could consider the cases $\alpha(F) \geq r$ and $\alpha(F) \leq r-1$. Each of those cases has its own difficulty and it is not clear how to systematically generalize our arguments in those cases for larger values of r. Notice that our approach to the second case relied on analysing a construction of Gyárfás, proving a better upper bound than the one given by Ryser's conjecture, which for $r=3$ corresponds to a theorem of Aharoni [1]. However we did not need to use Aharoni's result per se and perhaps in order to generalize our arguments for larger value of r one can also avoid Ryser's conjecture.

Chapter 4

Tiling Edge-coloured Complete Graphs

4.1 Introduction

A conjecture of Lehel states that the vertices of any 2-edge-coloured complete graph can be partitioned into two monochromatic cycles of different colours. Here, single vertices and edges are considered cycles. This conjecture first appeared in [6], where it was also proved for some special types of colourings of K_{n}. Łuczak, Rödl and Szemerédi [83] proved Lehel's conjecture for sufficiently large n using the regularity method. Allen [2] gave an alternative proof, with a better bound on n. Finally, Bessy and Thomassé 11] proved Lehel's conjecture for all integers $n \geq 1$.

For colourings with more colours, Erdős, Gyárfás and Pyber [42] proved that the vertices of every r-edge-coloured complete graph on n vertices can be partitioned into $O\left(r^{2} \log r\right)$ monochromatic cycles. They further conjectured that r cycles should be enough. The currently best-known upper bound is due to Gyárfás, Ruszinkó, Sárközy and Szemerédi [55], who showed that $O(r \log r)$ cycles suffice. However, the conjecture was refuted by Pokrovskiy 89], who showed that, for every $r \geq 3$, there exist infinitely many r-edge-coloured complete graphs which cannot be vertex-partitioned into r monochromatic cycles. Nevertheless, Pokrovskiy conjectured that in every r-edge-coloured complete graph one can find r vertexdisjoint monochromatic cycles which cover all but at most c_{r} vertices for some $c_{r} \geq 1$ only depending on r (in his counterexample $c_{r}=1$ is possible).

In this chapter, we study similar problems in which we are given a family of graphs \mathcal{F} and an edge-coloured complete graph K_{n} and our goal is to partition $V\left(K_{n}\right)$ into monochromatic copies of graphs from \mathcal{F}. All families of graphs \mathcal{F} we consider here are of the form $\mathcal{F}=$ $\left\{F_{1}, F_{2}, \ldots\right\}$, where F_{i} is a graph on i vertices for every $i \in \mathbb{N}$. We call such a family a sequence of graphs. A collection \mathcal{H} of vertex-disjoint subgraphs of a graph G is an \mathcal{F}-tiling of G if \mathcal{H} consists of copies of graphs from \mathcal{F} with $V(G)=\bigcup_{H \in \mathcal{H}} V(H)$. If G is edgecoloured, we say that \mathcal{H} is monochromatic if every $H \in \mathcal{H}$ is monochromatic. Let $\tau_{r}(\mathcal{F}, n)$

[^8]
4.1. INTRODUCTION

be the minimum $t \in \mathbb{N}$ such that for every r-edge-coloured K_{n}, there is a monochromatic \mathcal{F}-tiling of size at most t. We define the tiling number of \mathcal{F} as

$$
\tau_{r}(\mathcal{F})=\sup _{n \in \mathbb{N}} \tau_{r}(\mathcal{F}, n) .
$$

Using this notation, the results of Pokrovskiy [89] and of Gyárfás, Ruszinkó, Sárközy and Szemerédi [55] mentioned above imply that $r+1 \leq \tau_{r}\left(\mathcal{F}_{\text {cycles }}\right)=O(r \log r)$, where $\mathcal{F}_{\text {cycles }}$ is the family of cycles. Note that, in general, it is not clear at all that $\tau_{r}(\mathcal{F})$ is finite and it is a natural question to ask for which families this is the case.

The study of such tiling problems for general families of graphs was initiated by Grinshpun and Sárközy [53]. The maximum degree $\Delta(\mathcal{F})$ of a sequence of graphs \mathcal{F} is given by $\sup _{F \in \mathcal{F}} \Delta(F)$, where $\Delta(F)$ is the maximum degree of F. We denote by \mathcal{F}_{Δ} the collection of all sequences of graphs \mathcal{F} with $\Delta(\mathcal{F}) \leq \Delta$. Grinshpun and Sárközy proved that $\tau_{2}(\mathcal{F}) \leq 2^{O(\Delta \log \Delta)}$ for all $\mathcal{F} \in \mathcal{F}_{\Delta}$. In particular, $\tau_{2}(\mathcal{F})$ is finite whenever $\Delta(\mathcal{F})$ is finite. They also proved that $\tau_{2}(\mathcal{F}) \leq 2^{O(\Delta)}$ for every sequence of bipartite graphs \mathcal{F} of maximum degree at most Δ, and showed that this is best possible up to a constant factor in the exponent (see also Section 4.8 for a more detailed discussion on the lower bound).

Sárközy [95] further proved that $\tau_{2}\left(\mathcal{F}_{k \text {-cycles }}\right)=O\left(k^{2} \log k\right)$, where $\mathcal{F}_{k \text {-cycles }}$ denotes the family of k th power of cycles 1 . For more than two colours less is known. Answering a question of Elekes, Soukup, Soukup and Szentmiklóssy [37], Bustamante, Corsten, Frankl, Pokrovskiy, and Skokan [21] proved that $\tau_{r}\left(\mathcal{F}_{k \text {-cycles }}\right)$ is finite for all $r, k \in \mathbb{N}$. Grinshpun and Sárközy [53] conjectured that the same should be true for all families of graphs of bounded degree with an exponential bound.

Conjecture 4.1.1 (Grinshpun-Sárközy [53], 2016). For every $r, \Delta \in \mathbb{N}$ and $\mathcal{F} \in \mathcal{F}_{\Delta}, \tau_{r}(\mathcal{F})$ is finite. Moreover, there is some $C_{r}>0$ such that $\tau_{r}(\mathcal{F}) \leq \exp \left(\Delta^{C_{r}}\right)$.

The main theorem in this chapter shows that $\tau_{r}(\mathcal{F})$ is indeed finite. For a given positive integer k, we denote by $\exp ^{k}$ the k th-composition of the exponential function.

Theorem III. There is an absolute constant $K>0$ such that for all integers $r, \Delta \geq 2$, we have

$$
\tau_{r}(\mathcal{F}) \leq \exp ^{2}\left(r^{K r \Delta^{3}}\right)
$$

for every sequence $\mathcal{F}=\left\{F_{i}: i \in \mathbb{N}\right\}$ of graphs with $\left|F_{i}\right|=i$ and $\Delta\left(F_{i}\right) \leq \Delta$, for each $i \in \mathbb{N}$.
In order to prove Theorem III, we shall prove an absorption lemma (see Lemma 4.5.1) whose proof relies on a density increment argument. This is responsible for the double exponential bound in Theorem III.

[^9]
4.2. PROOF OVERVIEW

The chapter is organized as follows. In Section 4.2, we present an overview of the proof of Theorem III and the proof of our absorption lemma. In Section 4.3 we collect a few lemmas regarding regular pairs and regular cylinders that we shall use repeatedly in later sections. The proof of our absorption lemma and Theorem III can be found in Section 4.5 and Section 4.6. respectively. Finally, we finish the chapter with some concluding remarks in Section 4.8.

4.2 Proof overview

The proof of Theorem III, similarly to the proof of the two colour result of Grinshpun and Sárközy [53], combines ideas from the absorption method as in the original paper of Erdős, Gyárfás and Pyber [42] with some modern approaches involving the blow-up lemma and the weak regularity lemma of Duke, Lefmann and Rödl [35]. However, in order to extend these ideas to more colours, we need to prove a significantly more complicated absorption lemma, requiring new ideas involving a density increment argument.

Our absorption lemma (Lemma 4.5.1) states that if we have $k:=\Delta+2$ disjoint sets of vertices V_{1}, \ldots, V_{k} with $\left|V_{i}\right| \geq 2\left|V_{1}\right|$ for all $i=2, \ldots, k$ such that every vertex in V_{1} belongs to at least $\delta\left|V_{2}\right| \cdots\left|V_{k}\right|$ monochromatic k-cliques transversa $\|^{2}$ in $\left(V_{1}, \ldots, V_{k}\right)$, then it is possible to cover the vertices in V_{1} with a constant number (depending on δ, r and Δ) of monochromatic vertex disjoint copies of graphs from \mathcal{F}. Furthermore, we can choose such a covering using no more than $\left|V_{1}\right|$ vertices in each V_{2}, \ldots, V_{k}.

To deduce Theorem III from the absorption lemma, we need to partition $V\left(K_{n}\right)$ in a similar fashion as in [21: first we find $k-1$ monochromatic super-regular cylinders Z_{1}, \ldots, Z_{k-1} covering a positive proportion of the vertices of K_{n} (see Section 4.3 for the definition of super-regular cylinders). Then we apply a result of Fox and Sudakov [46] to greedily cover with few disjoint monochromatic copies of graphs from \mathcal{F} almost all of the vertices in $V\left(K_{n}\right) \backslash\left(Z_{1} \cup \cdots \cup Z_{k-1}\right)$, leaving uncovered a set R of size much smaller than $\left|Z_{k-1}\right|$ (see Proposition 4.4.2).

Now we split R into two sets: the set R_{1} of vertices belonging to at least $\delta\left|Z_{1}\right| \cdots\left|Z_{k-1}\right|$ monochromatic k-cliques transversal in $\left(R, Z_{1}, \ldots, Z_{k-1}\right)$, and the set $R_{2}=R \backslash R_{1}$. Using our absorption lemma we can cover the vertices in R_{1} using no more than $\left|R_{1}\right|$ vertices of each of the cylinders Z_{1}, \ldots, Z_{k-1}. For each $i=1, \ldots, k-1$, let Z_{i}^{\prime} be the set of vertices in Z_{i} that has not been used to cover R_{1}. Since we $\left|R_{1}\right|$ is significantly smaller than $\left|Z_{i}\right|$, it follows that each Z_{i}^{\prime} is still a super-regular cylinder. Now, if the set R_{2} was empty, then we would be done. Indeed, a consequence of the blow-up lemma (Lemma 4.3.3) guarantees that we can cover each of the cylinders $Z_{1}^{\prime}, \ldots, Z_{k-1}^{\prime}$ with $k+1$ copies of vertex disjoint monochromatic graphs from \mathcal{F}.

[^10]
4.2. PROOF OVERVIEW

So let us consider the case where R_{2} is non-empty. In this case, we repeat the process above. This time we first find a reasonably large regular cylinder Z_{k} in R_{2}, then we greedily cover most of the vertices in $R_{2} \backslash Z_{k}$ and apply the absorption lemma to those vertices that have not yet been covered and belong to many monochromatic k-cliques transversal in R_{2} and $k-1$ of the cylinders $Z_{1}^{\prime}, \ldots, Z_{k-1}^{\prime}, Z_{k}$. The set of leftover vertices, which we denote by R_{3}, is either empty (and in this case we are done, as above) or is non-empty, in which case we repeat the process to cover R_{3}. Finally, using a lemma from [21] (see Lemma 4.6.1) and Ramsey's theorem, we can show that this process must stop after $R_{r}\left(K_{k}\right)$ many iterations, where $R_{r}\left(K_{k}\right)$ denotes the r-colour Ramsey number of the graph K_{k}.

In order to prove the absorption lemma, we employ a density increment argument. This is the most difficult part of the proof and the key new idea in this result. First, we partition V_{1} into r sets $V_{1}^{(1)}, \ldots, V_{1}^{(r)}$ so that for every $j \in[r]$, every $v \in V_{i}^{(j)}$ is incident to at least $d / r \cdot\left|V_{2}\right| \cdots\left|V_{k}\right|$ monochromatic cliques of colour j which are transversal in $\left(V_{1}, \ldots, V_{k}\right)$. We will cover each of these sets separately, making sure not to repeat vertices. Let us illustrate how to cover $V_{1}^{(1)}$.

We start by finding a large k-cylinder $Z=\left(U_{1}, \ldots, U_{k}\right)$ with $U_{1} \subset V_{1}^{(1)}, U_{2} \subset V_{2}, \ldots U_{k} \subset$ V_{k} which is super-regular in colour 1 . We shall use Z as an absorber at the end of the proof to cover any small set of leftovers. Next, we greedily cover most of $V_{1}^{(1)} \backslash U_{1}$ by monochromatic copies of \mathcal{F} until the set of uncovered vertices R has size much smaller then $\left|U_{1}\right|$. To cover the set R, we will find a partition $R=S \cup T_{2} \cup \ldots \cup T_{k}$, where each vertex in S belongs to many monochromatic k-cliques of colour 1 which are transversal in $\left(S, U_{2}, \ldots, U_{k}\right.$) (allowing S to be absorbed into the cylinder Z at the end of the proof) and each vertex in T_{i}, for $i \in\{2, \ldots, k\}$, belongs to at least $(\delta+\eta)\left|V_{2}\right| \cdots\left|V_{i-1}\right|\left|U_{i}\right| \cdots\left|U_{k}\right|$ monochromatic k-cliques transversal in $\left(T_{i}, V_{2}, \ldots, V_{i}, U_{i+1}, \ldots, U_{k}\right)$, for some $\eta \ll \delta$.

To cover the vertices in each T_{i}, with $i \in\{2, \ldots, k\}$, we repeat the argument with $\left(V_{1}, \ldots, V_{k}\right)$ replaced by $\left(T_{i}, V_{2}, \ldots, V_{i}, U_{i+1}, \ldots, U_{k}\right)$ and δ replaced by $\delta+\eta$. This is our density increment argument. Since every time we repeat the argument we significantly increase the density of k-cliques, we can bound the number of required repetitions in terms of the initial density of k-cliques.

While covering each of the sets T_{2}, \ldots, T_{k}, we shall guarantee that the set of vertices $X_{i} \subseteq U_{i}$ that we use to cover them has size much smaller than $\left|U_{i}\right|$ for all $i=2, \ldots, k$. This way, the cylinder $Z^{\prime}=\left(U_{1} \cup S, U_{2} \backslash X_{2}, \ldots, U_{k} \backslash X_{k}\right)$ will be super-regular in colour 1 and thus we can cover Z^{\prime} using the blow-up lemma. Repeating this for every colour $j \in[r]$, we get a covering of V_{1} with $O_{\delta, r, \Delta}(1)$ many monochromatic disjoint copies of graphs from \mathcal{F}.

4.3 Regularity

In this section, we will gather all the notations and results related to the classical regularity technique which we require for the proof. We start by introducing some relevant notations. Let $G=\left(V_{1}, V_{2}, E\right)$ be a bipartite graph with parts V_{1} and V_{2}. For any $U_{i} \subseteq V_{i}, i=1,2$, the density of the pair $\left(U_{1}, U_{2}\right)$ in G is given by

$$
d\left(U_{1}, U_{2}\right)=\frac{e\left(U_{1}, U_{2}\right)}{\left|U_{1}\right|\left|U_{2}\right|}
$$

We say that G (or the pair $\left(V_{1}, V_{2}\right)$) is ε-regular if for all $U_{i} \subseteq V_{i}$ with $\left|U_{i}\right| \geq \varepsilon\left|V_{i}\right|, i=1,2$, we have

$$
\left|d\left(U_{1}, U_{2}\right)-d\left(V_{1}, V_{2}\right)\right| \leq \varepsilon
$$

If additionally we have $d\left(V_{1}, V_{2}\right) \geq d$ and $\operatorname{deg}\left(v, V_{i}\right) \geq \delta\left|V_{i}\right|$ for all $v \in V_{3-i}, i=1,2$, then we say that G (or $\left.\left(V_{1}, V_{2}\right)\right)$ is (ε, d, δ)-super-regular. We often say that G is (ϵ, d)-super-regular instead of (ϵ, d, d)-super-regular.

We begin with some simple facts about super-regular pairs. The first one is known as the slicing lemma and roughly says that if we take a large induced subgraph in a dense regular pair we still get a dense regular pair. Its proof is straightforward from the definition of a regular pair.

Lemma 4.3.1 (Slicing lemma). Let $\beta>\varepsilon>0, d \in[0,1]$ and let $\left(V_{1}, V_{2}\right)$ be an $(\epsilon, d, 0)$ -super-regular pair. Then any pair $\left(U_{1}, U_{2}\right)$ with $\left|U_{i}\right| \geq \beta\left|V_{i}\right|$ and $U_{i} \subseteq V_{i}, i=1,2$, is $\left(\epsilon^{\prime}, d^{\prime}, 0\right)$-super-regular with $\epsilon^{\prime}=\max \{\epsilon / \beta, 2 \epsilon\}$ and $d^{\prime}=d-\epsilon$.

The following lemma essentially says that after removing few vertices from a superregular pair and adding few new vertices with large degree, we still have a super-regular pair. The reader can find a proof of it in Section 4.7.

Lemma 4.3.2. Let $0<\varepsilon<1 / 2$ and let $d, \delta \in[0,1]$ so that $\delta \geq 4 \varepsilon$. Let $\left(V_{1}, V_{2}\right)$ be an (ϵ, d, δ)-super-regular pair in a graph G. Let $X_{i} \subseteq V_{i}$ for $i \in\{1,2\}$, and let Y_{1}, Y_{2} be disjoint subsets of $V(G) \backslash\left(V_{1} \cup V_{2}\right)$. Suppose that for each $i \in\{1,2\}$ we have $\left|X_{i}\right|,\left|Y_{i}\right| \leq \varepsilon^{2}\left|V_{i}\right|$ and $\operatorname{deg}\left(v, V_{i}\right) \geq \delta\left|V_{i}\right|$ for every $v \in Y_{3-i}$. Then the pair $\left(\left(V_{1} \backslash X_{1}\right) \cup Y_{1},\left(V_{2} \backslash X_{2}\right) \cup Y_{2}\right)$ is ($8 \epsilon, d-8 \varepsilon, \delta / 2$)-super-regular.

Let $k \geq 2$ be an integer and let G be a graph. Given disjoint sets of vertices $V_{1}, \ldots, V_{k} \subseteq$ $V(G)$, we call $Z=\left(V_{1}, \ldots, V_{k}\right)$ a k-cylinder and often identify it with the induced k-partite subgraph $G\left[V_{1}, \ldots, V_{k}\right]$. We write $V_{i}(Z)=V_{i}$ for every $i \in[k]$. We say that Z is ε-balanced if

$$
\max _{i \in[k]}\left|V_{i}(Z)\right| \leq(1+\varepsilon) \min _{i \in[k]}\left|V_{i}(Z)\right|
$$

4.3. REGULARITY

and balanced if it is 0-balanced. Furthermore, we say that Z is ϵ-regular if all the $\binom{k}{2}$ pairs $\left(V_{i}, V_{j}\right)$ are ϵ-regular. If G is an r-edge-coloured graph and $i \in[r]$, we say that Z is ε-regular in colour i if it is ε-regular in G_{i}, the graph consisting of all edges of G with colour i. Similarly, we define (ε, d)-regular and (ϵ, d, δ)-super-regular cylinders.

As sketched in Section 4.2, we will use super-regular cylinders as absorbers. The following lemma, which Grinshpun and Sárközy [53] deduced from the blow-up lemma [73, 72, 96] and the Hajnal-Szemerédi theorem $[56]^{3}$ allows us to do this.

Lemma 4.3.3. There is a constant K, such that for all $0 \leq \delta \leq d \leq 1 / 2, \Delta \in \mathbb{N}, k=\Delta+2$, $0<\varepsilon \leq\left(\delta d^{\Delta}\right)^{K}$, and $\mathcal{F} \in \mathcal{F}_{\Delta}$, the following is true for every (ε, d, δ)-super-regular k-cylinder $Z=\left(V_{1}, \ldots, V_{k}\right)$.
(i) If Z is ε-balanced, then its vertices can be partitioned into at most $\Delta+3$ copies of graphs from \mathcal{F}.
(ii) If $\left|V_{i}\right| \geq\left|V_{1}\right|$ for all $i=2, \ldots, k$, then there is a copy of a graph from \mathcal{F} covering V_{1} and at most $\left|V_{1}\right|$ vertices of each of V_{2}, \ldots, V_{k}.

It is important in the proof of Theorem III that we can find super-regular k-cylinders which cover linearly many vertices. The existence of such a pair follows readily from the regularity lemma. Conlon and Fox [27, Lemma 5.3] used the weak regularity lemma of Duke, Lefmann, and Rödl [35] to obtain better constants. We shall use the following coloured version of their result, the proof of which is very similar and can be found in Section 4.7. See also [53, Lemma 2] for a 2-coloured version which follows readily from the non-coloured version.

Lemma 4.3.4. Let $k, r \geq 2,0<\varepsilon<1 /(r k)$ and $\gamma=\varepsilon^{r^{8 r k} \varepsilon^{-5}}$. Then every r-edge-coloured complete graph on $n \geq 1 / \gamma$ vertices contains, in one of the colours, a balanced $(\varepsilon, 1 / 2 r)$ -super-regular k-cylinder $Z=\left(U_{1}, \ldots, U_{k}\right)$ with parts of size at least γn.

The following lemma further guarantees that this remains possible as long as the hostgraph has many k-cliques. It is also a straightforward consequence of the weak regularity lemma of Duke, Lefmann, and Rödl and we provide a proof in Section 4.7.

Lemma 4.3.5. Let $k \geq 2$, and let $0<\varepsilon<1 / 2$ and $2 k \varepsilon \leq d \leq 1$. Let $\gamma=\varepsilon^{k^{2} \varepsilon^{-12}}$. Suppose that G is a k-partite graph with parts V_{1}, \ldots, V_{k} with at least $d\left|V_{1}\right| \cdots\left|V_{k}\right|$ cliques of size k. Then there is some $\gamma^{\prime} \in[\gamma, \varepsilon]$ and an $(\varepsilon, d / 2)$-super-regular k-cylinder $Z=\left(U_{1}, \ldots, U_{k}\right)$ in G with $U_{i} \subset V_{i}$ and $\left|U_{i}\right|=\left\lfloor\gamma^{\prime}\left|V_{i}\right|\right\rfloor$ for every $i \in[k]$.

[^11]
4.4. GREEDILY COVERING MOST VERTICES

4.4 Greedily covering most vertices

In the proof, we will use the following theorem of Fox and Sudakov [46] about r-colour Ramsey numbers of bounded-degree graphs.

Theorem 4.4.1 ([46, Theorem 4.3]). Let $k, \Delta, r, n \in \mathbb{N}$ with $r \geq 2$ and let H_{1}, \ldots, H_{r} be k-partite graphs with n vertices and maximum degree at most Δ. Then

$$
R\left(H_{1}, \ldots, H_{r}\right) \leq r^{2 r k \Delta} n
$$

Recall that \mathcal{F}_{Δ} denotes the collection of all sequences of graphs \mathcal{F} with $\Delta(F) \leq \Delta$, for every $F \in \mathcal{F}$, and let $\mathcal{F}_{\Delta, k}$ be the collection of sequences $\mathcal{F} \in \mathcal{F}_{\Delta}$ such that F is k partite, for every $F \in \mathcal{F}$. Note that $\mathcal{F}_{\Delta}=\mathcal{F}_{\Delta, \Delta+1}$. The following consequence of the previous theorem states that, for each $\mathcal{F} \in \mathcal{F}_{k, \Delta}$, we can cover almost all vertices of K_{n} with monochromatic copies of graphs from \mathcal{F}. The proof basically follows by greedily taking a large monochromatic copy of a graph in \mathcal{F} covering vertices that has not been covered yet.

Proposition 4.4.2. Let $\Delta, k, r \in \mathbb{N}$, let $\gamma>0$ and let $C=4 r^{2 r k \Delta} \log (1 / \gamma)$. Then, for every $\mathcal{F} \in \mathcal{F}_{\Delta, k}$ and every r-edge-coloured K_{n} with $n \geq r^{-2 r k \Delta}$, it is possible to cover all but γn vertices of K_{n} with at most C vertex-disjoint monochromatic copies of graphs from \mathcal{F}.

Proof. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots\right\} \in \mathcal{F}_{\Delta, k}, t=r^{-2 r k \Delta}, C=(4 / t) \log (1 / \gamma)$ and $n \geq r^{-2 r k \Delta}$. Consider $n_{1}=\lfloor t n\rfloor \geq t n / 2$. By Theorem 4.4.1, since $R_{r}\left(F_{n_{1}}\right) \leq t^{-1} n_{1} \leq n$, there is a monochromatic copy of $F_{n_{1}}$ in K_{n}. Let H_{1} be such copy and let $V_{1}=V \backslash V\left(H_{1}\right)$. Note that $\left|V_{1}\right|=n-n_{1} \leq(1-t / 2) n$.

Suppose that we have inductively found vertex-disjoint monochromatic graphs $H_{1}, \ldots, H_{i} \subseteq$ K_{n} that are copies of graphs in \mathcal{F} and such that $V_{i}:=V\left(K_{n}\right) \backslash\left(V\left(H_{1}\right) \cup \cdots \cup V\left(H_{i}\right)\right)$ has at most $(1-t / 2)^{i} n$ vertices. If $\left|V_{i}\right| \leq 2 / t$, then we cover the vertices in V_{i} with single vertices and stop the process. Therefore, suppose that $\left|V_{i}\right| \geq 2 / t$. Then let $n_{i+1}=$ $\left\lfloor t\left|V_{i}\right|\right\rfloor \geq t\left|V_{i}\right| / 2$. Again by Theorem 4.4.1, since $R_{r}\left(F_{n_{i+1}}\right) \leq t^{-1} n_{i+1} \leq\left|V_{i}\right|$, there is a monochromatic copy of $F_{n_{i+1}}$ contained in V_{i}. Let H_{i+1} be such a copy. Thus the set $V_{i+1}:=V\left(K_{n}\right) \backslash\left(V\left(H_{1}\right) \cup \cdots \cup V\left(H_{i+1}\right)\right)$ has size

$$
\left|V_{i+1}\right|=\left|V_{i}\right|-n_{i+1} \leq(1-t / 2)\left|V_{i}\right| \leq(1-t / 2)^{i+1} n .
$$

Now, after $C / 2$ steps, we have covered all but at most

$$
(1-t / 2)^{C / 2} n \leq e^{-(t / 4) C} n \leq \gamma n
$$

vertices of K_{n} using at most $C / 2+2 / t \leq C$ vertex-disjoint monochromatic copies of graphs from \mathcal{F}.

4.5. THE ABSORPTION LEMMA

In particular, by choosing $\gamma=1 / n$, we get the following corollary.
Corollary 4.4.3. Let $\Delta, k, r \in \mathbb{N}$ and let $C=4 r^{2 r k \Delta} \log n$. Then, for every $\mathcal{F} \in \mathcal{F}_{\Delta, k}$ and every r-edge-coloured K_{n}, there is a collection of at most C monochromatic vertex-disjoint copies of graphs from \mathcal{F} whose vertex-sets partition $V(G)$.

4.5 The Absorption Lemma

Given a graph G and $U \subseteq V$, recall that we denote by $G[U]$ the subgraph of G induced by U. Given disjoint sets $V_{1}, \ldots, V_{k} \subseteq V(G)$, with $k \geq 2$, we denote by $G\left[V_{1}, \ldots, V_{k}\right]$ the subgraph of G with vertex set $V_{1} \cup \cdots \cup V_{k}$ containing only edges that are between two of the sets V_{1}, \ldots, V_{k}. Furthermore, for each $v \in V_{1}$, let

$$
\operatorname{deg}_{G}\left(v, V_{2}, \ldots, V_{k}\right)=\mid\left\{\left(v_{2}, \ldots, v_{k}\right) \in V_{2} \times \cdots \times V_{k}:\left\{v, v_{2}, \ldots, v_{k}\right\} \text { is a } k \text {-clique in } G\right\} \mid
$$

and

$$
\mathrm{d}_{G}\left(v, V_{2}, \ldots, V_{k}\right):=\frac{\operatorname{deg}_{G}\left(v, V_{2}, \ldots, V_{k}\right)}{\left|V_{2}\right| \cdots\left|V_{k}\right|}
$$

If additionally, we have an edge colouring $\chi: E(G) \rightarrow[r]$ of $E(G)$, then we denote by $\operatorname{deg}_{G, i}\left(v, V_{2}, \ldots, V_{k}\right)=\operatorname{deg}_{G_{i}}\left(v, V_{2}, \ldots, V_{k}\right)$, where G_{i} is the graph with vertex set $V(G)$ consisting of the edges of G with colour i. We define $\mathrm{d}_{G, i}\left(v, V_{2}, \ldots, V_{k}\right)$ similarly and denote $\mathrm{d}_{G, I}\left(v, V_{2}, \ldots, V_{k}\right):=\sum_{i \in I} \mathrm{~d}_{G, i}\left(v, V_{2}, \ldots, V_{k}\right)$, for each $I \subseteq[r]$. If the graph G is clear from context, we may drop the G in the subscript.

Given a set V, we denote by $K(V)$ the complete graph with vertex set V. Given disjoint sets V_{1}, \ldots, V_{k}, we denote by $K\left(V_{1}, \ldots, V_{k}\right)$ the complete k-partite graph with parts V_{1}, \ldots, V_{k}. Let $G=K\left(V_{1}\right) \cup K\left(V_{1}, \ldots, V_{k}\right)$ and let \mathcal{H} be a collection of subgraphs of G. We denote by $\cup \mathcal{H}$ the graph with edge set $\bigcup_{H \in \mathcal{H}} E(H)$ and vertex set $V(\mathcal{H}):=\bigcup_{H \in \mathcal{H}} V(H)$. We say that \mathcal{H} canonically covers V_{1} if $V_{1} \subseteq V(\mathcal{H})$ and

$$
\left|V(\mathcal{H}) \cap V_{i}\right| \leq\left|V(\mathcal{H}) \cap V_{1}\right|
$$

for all $i \in[2, k] .^{\top}$ The following lemma is the key ingredient of the proof of Theorem III.
Lemma 4.5.1 (Absorption Lemma). There is some absolute constant $K>0$, such that the following is true for all $d>0$, all integers $\Delta, r \geq 2$ and for every $\mathcal{F} \in \mathcal{F}_{\Delta}$. Let $k=\Delta+2$ and let

$$
C=\exp ^{2}\left(\left(\frac{r}{d}\right)^{K \Delta}\right)
$$

Consider k disjoint sets V_{1}, \ldots, V_{k} with $\left|V_{i}\right| \geq 4\left|V_{1}\right|$, for all $i \in[2, k]$, and let $G=$ $K\left(V_{1}\right) \cup K\left(V_{1}, \ldots, V_{k}\right)$. Suppose that $\chi: E(G) \rightarrow[r]$ is a colouring in which for every $v \in V_{1}$

[^12]we have $\mathrm{d}_{[r]}\left(v, V_{2}, \ldots, V_{k}\right) \geq d$. Then, there is a collection of at most C vertex-disjoint monochromatic copies of graphs from \mathcal{F} in G which canonically covers V_{1}.

The edges of G inside V_{1} will only be used to find copies from \mathcal{F} which lie entirely in V_{1} in order to greedily cover most vertices of V_{1}. The difficult part is finding monochromatic copies in $K\left(V_{1}, \ldots, V_{k}\right)$ covering the remaining vertices. To do so, we will reduce the problem to only one colour within $K\left(V_{1}, \ldots, V_{k}\right)$ and then deduce Lemma 4.5.1 from the following lemma.

Lemma 4.5.2. There is some absolute constant $K>0$, such that the following is true for all $d>0$, all integers $\Delta, r \geq 2$ and for every $\mathcal{F} \in \mathcal{F}_{\Delta}$. Let $k=\Delta+2$ and let

$$
C=\exp ^{2}\left(\left(\frac{r}{d}\right)^{K \Delta}\right)
$$

Consider k disjoint sets V_{1}, \ldots, V_{k} with $\left|V_{i}\right| \geq 2\left|V_{1}\right|$, for all $i \in[2, k]$ and let $G=$ $K\left(V_{1}\right) \cup K\left(V_{1}, \ldots, V_{k}\right)$. Suppose that $\chi: E(G) \rightarrow[r]$ is a colouring in which for every $v \in V_{1}$ we have $\mathrm{d}_{1}\left(v, V_{2}, \ldots, V_{k}\right) \geq d$. Then, there is a collection of at most C vertex-disjoint monochromatic copies of graphs from \mathcal{F} in G which canonically covers V_{1}.

Lemma 4.5.1 follows routinely from Lemma 4.5.2.
Proof of Lemma 4.5.1. Let K^{\prime} be the absolute constant from Lemma 4.5.2 and let $d^{\prime}=$ $d /(2 r), \gamma=d^{\prime} /(k r)$, and $C^{\prime}=\exp ^{2}\left(\left(r / d^{\prime}\right)^{K^{\prime} \Delta}\right)$. Partition $V_{1}=U_{1} \cup \ldots \cup U_{r}$ such that for each $j \in[r]$ we have $\mathrm{d}_{j}\left(v, V_{2}, \ldots, V_{k}\right) \geq 2 d^{\prime}$, for all $v \in U_{j}$. We will inductively cover U_{j}, for each $j \in[k]$.

Let us first consider the base case, i.e., $j=1$. From Proposition 4.4.2, there is a collection \mathcal{H}^{\prime} of at most ${ }^{5} C^{\prime}$ disjoint monochromatic copies of graphs from \mathcal{F} covering all but $\gamma\left|U_{1}\right| \leq \gamma\left|V_{1}\right|$ vertices of $G\left[U_{1}\right]$. Let $V_{1}^{\prime}=U_{1} \backslash V\left(\mathcal{H}^{\prime}\right)$. By applying Lemma 4.5.2 to $G^{\prime}:=G\left[V_{1}^{\prime} \cup V_{2} \cup \cdots \cup V_{k}\right]$ (with d^{\prime}), there is a collection $\mathcal{H}^{\prime \prime}$ of at most C^{\prime} disjoint monochromatic copies of graphs from \mathcal{F} in G^{\prime} which canonically covers V_{1}^{\prime}. Let $\mathcal{H}_{1}=\mathcal{H}^{\prime} \cup \mathcal{H}^{\prime \prime}$. Note that \mathcal{H}_{1} canonically covers U_{1} and covers at most $\gamma\left|V_{1}\right|$ vertices of V_{i}, for each $i \in[2, k]$.

Now consider $j \geq 2$ and suppose that we have found a collection \mathcal{H}_{j-1} of at most $2(j-1) C^{\prime}$ disjoint monochromatic copies of graphs from \mathcal{F} in G that canonically covers $U_{1} \cup \cdots \cup U_{j-1}$ and covers at most $(j-1) \gamma\left|V_{1}\right|$ vertices of V_{i}, for each $i \in[2, k]$. From Proposition 4.4.2, there is a collection \mathcal{H}^{\prime} of at most C^{\prime} disjoint monochromatic copies of graphs from \mathcal{F} covering all but $\gamma\left|U_{j}\right| \leq \gamma\left|V_{1}\right|$ vertices of $G\left[U_{j}\right]$. Let $V_{1}^{\prime}=U_{j} \backslash V\left(\mathcal{H}^{\prime}\right)$ and let $V_{i}^{\prime}:=V_{i} \backslash V\left(\mathcal{H}_{j-1}\right)$, for each $i \in[2, k]$. Note that

$$
\left|V_{i}^{\prime}\right| \geq\left|V_{i}\right|-(j-1) \gamma\left|V_{1}\right| \geq 4\left|V_{1}\right|-r \gamma\left|V_{i}\right| \geq 2\left|V_{1}\right| \geq 2\left|V_{1}^{\prime}\right| .
$$

[^13]
4.5. THE ABSORPTION LEMMA

Also, for each $v \in V_{1}^{\prime}$, we have

$$
\operatorname{deg}_{j}\left(v, V_{2}^{\prime}, \ldots, V_{k}^{\prime}\right) \geq \operatorname{deg}_{j}\left(v, V_{2}, \ldots, V_{k}\right)-k(j-1) \gamma\left|V_{2}\right| \cdots\left|V_{k}\right| .
$$

Consequently,

$$
\mathrm{d}_{j}\left(v, V_{2}^{\prime}, \ldots, V_{k}^{\prime}\right) \geq \mathrm{d}_{j}\left(v, V_{2}, \ldots, V_{k}\right)-k r \gamma \geq 2 d^{\prime}-d^{\prime} \geq d^{\prime}
$$

Therefore, we can apply Lemma 4.5 .2 to $G^{\prime}:=G\left[V_{1}^{\prime} \cup \cdots \cup V_{k}^{\prime}\right]$ and get a collection $\mathcal{H}^{\prime \prime}$ of at most C^{\prime} disjoint monochromatic copies of graphs from \mathcal{F} in G that canonically covers V_{1}^{\prime}. In particular, $\mathcal{H}^{\prime \prime}$ covers at most $\left|V_{1}^{\prime}\right| \leq \gamma\left|V_{1}\right|$ vertices of V_{i}, for each $i \in[2, k]$. Let $\mathcal{H}_{j}=\mathcal{H}_{j-1} \cup \mathcal{H}^{\prime} \cup \mathcal{H}^{\prime \prime}$. Then \mathcal{H}_{j} is a collection of at most $2 j C^{\prime}$ disjoint monochromatic copies of graphs from \mathcal{F} in G that canonically covers $U_{1} \cup \cdots \cup U_{j}$ and covers at most $j \gamma\left|V_{1}\right|$ vertices of V_{i}, for each $i \in[2, k]$.

In the end, we have found a collection \mathcal{H}_{r} of disjoint monochromatic copies of graphs from \mathcal{F} that canonically covers V_{1}. Furthermore, \mathcal{H}_{r} has at most $2 r C^{\prime} \leq \exp ^{2}\left((r / d)^{4 K^{\prime} \Delta}\right)$ graphs, finishing the proof.

The proof of Lemma 4.5 .2 is quite long and technical (see Section 4.2 for a sketch), and we will therefore break it up into smaller claims. We use \square to denote the end of the proof of a claim and \square to denote the end of the main proof.

Proof of Lemma 4.5.2. Let Δ and r be given positive integers, $k=\Delta+2$ and $\mathcal{F} \in \mathcal{F}_{\Delta}$. For each $d>0$, let $C(d)$ be the smallest positive integer C such that the following holds:
(*) Let V_{1}, \ldots, V_{k} be disjoint sets with $\left|V_{i}\right| \geq 2\left|V_{1}\right|$ for all $i \in[2, k]$, let $H \subset K\left(V_{1}, \ldots, V_{k}\right)$ be a graph with $\mathrm{d}_{H}\left(v, V_{2}, \ldots, V_{k}\right) \geq d$ for every $v \in V_{1}$ and $G=K\left(V_{1}\right) \cup H$. Let $\chi: E(G) \rightarrow[r]$ be a colouring such that every edge in $E(H)$ receives colour 1. Then, there is a collection \mathcal{H} of at most C vertex-disjoint monochromatic copies of graphs from \mathcal{F} contained in G that canonically covers V_{1}.

Note that $C(d)$ is a decreasing function in d, and that $C(d)=0$ for every $d>1$. Our goal is to show that $C(d)$ is finite for every $d>0$. We will do this by establishing a recursive upper bound (see Equation 4.1)).

Let us first define all relevant constants used in the proof. Let K^{\prime} be the universal constant given by Lemma 4.3.3 and fix some $0<d \leq 1$. Define

$$
\varepsilon=\left(\frac{d}{100}\right)^{2 K^{\prime} \Delta}, \quad \gamma=\frac{1}{r} \cdot \varepsilon^{k^{2} \varepsilon^{-12}} \quad \text { and } \quad \eta=\frac{d \gamma^{k}}{2}
$$

It might be of benefit for the reader to have in mind that those constants obey the following hierarchy:

$$
1 \geq d \gg \varepsilon \gg \gamma \gg \eta>0
$$

Furthermore, define

$$
P(d):=4 r^{4 r k^{2}} \log \left(2 / \eta^{2}\right)+1
$$

We will prove that for every $d^{\prime} \geq d$ we have

$$
\begin{equation*}
C\left(d^{\prime}\right) \leq P(d)+k C\left(d^{\prime}+\eta\right) \tag{4.1}
\end{equation*}
$$

Since $C\left(d^{\prime}\right)=0$ if $d^{\prime}>1$, it follows by iterating that $C(d) \leq(2 k)^{2 / \eta} P(d)$. Furthermore, we have

$$
2 / \eta \leq \gamma^{-2 k} \leq \varepsilon^{-2 r k^{3} \varepsilon^{-12}} \leq \exp \left(r \varepsilon^{-20}\right) \leq \exp \left((r / d)^{400 K^{\prime} \Delta}\right)
$$

It follows that

$$
C(d) \leq \exp ^{2}\left((r / d)^{500 K^{\prime} \Delta}\right) P(d) \leq \exp ^{2}\left((r / d)^{1000 K^{\prime} \Delta}\right)
$$

concluding the proof of Lemma 4.5.2.

It remains to prove Equation (4.1). Let $d^{\prime} \geq d$ be fixed now and let V_{1}, \ldots, V_{k}, G and $\chi: E(G) \rightarrow[r]$ be as in (\star) (with d^{\prime} playing the role of d). By assumption, there are at least $d\left|V_{1}\right|\left|V_{2}\right| \cdots\left|V_{k}\right|$ cliques of size k in $G\left[V_{1}, V_{2}, \ldots, V_{k}\right]$ each of which is monochromatic in colour 1. Since $\gamma=\varepsilon^{k^{2} \varepsilon^{-12}}$ and $d \geq 2 k \varepsilon$, we can apply Lemma 4.3.5 to get some $\gamma^{\prime} \geq \gamma$ and a k-cylinder $Z=\left(U_{1}, \ldots, U_{k}\right)$ which is ($\varepsilon, d / 2$)-super-regular with $U_{i} \subset V_{i}$ and $\left|U_{i}\right|=\left\lfloor\gamma^{\prime}\left|V_{i}\right|\right\rfloor$ for every $i \in[k]$. Without loss of generality we may assume that $\gamma\left|V_{i}\right|$ is an integer for every $i \in[k]$ and that we have $\gamma^{\prime}=\gamma$. By Proposition 4.4.2, there is a collection \mathcal{H}_{R} of at most $4 r^{4 r k^{2}} \log \left(2 / \eta^{2}\right)$ vertex-disjoint monochromatic copies of graphs from \mathcal{F} contained in $K\left(V_{1} \backslash U_{1}\right)$ covering all vertices in $V_{1} \backslash U_{1}$ except for a set R with $|R| \leq \eta^{2}\left|V_{1}\right|$. We remark here that

$$
\begin{equation*}
|R| \leq \eta /(4 k) \cdot\left|U_{1}\right| \leq \varepsilon^{2}\left|U_{1}\right| . \tag{4.2}
\end{equation*}
$$

It remains now to cover the vertices in R. For each $i \in[k]$, let

$$
\begin{equation*}
d_{i}=\frac{1-\gamma^{i}}{1-\gamma^{k}} \cdot d^{\prime} \tag{4.3}
\end{equation*}
$$

4.5. THE ABSORPTION LEMMA

and note that $(1-\gamma) d^{\prime} \leq d_{1} \leq \cdots \leq d_{k}=d^{\prime}$. For $i \in[2, k]$, let $\tilde{V}_{i}=V_{i} \backslash U_{i}$ and define

$$
\begin{aligned}
& S_{i}=\left\{v \in R: \mathrm{d}\left(v, V_{2}, \ldots, V_{i-1}, V_{i}, U_{i+1}, \ldots, U_{k}\right) \geq d_{i}\right\}, \\
& T_{i}=\left\{v \in R: \mathrm{d}\left(v, V_{2}, \ldots, V_{i-1}, \tilde{V}_{i}, U_{i+1}, \ldots, U_{k}\right)>d^{\prime}+2 \eta\right\} .
\end{aligned}
$$

We will prove Equation (4.1) using a series of claims, which we shall prove at the end.
Claim 4.5.3. We have $R=S_{1} \cup T_{2} \cup \ldots \cup T_{k}$.
Without loss of generality, we may assume that $S_{1}, T_{2}, \ldots, T_{k}$ are pairwise disjoint (more formally, we can define $T_{i}^{\prime}:=T_{i} \backslash\left(S_{1} \cup T_{2} \cup \ldots \cup T_{i-1}\right)$ for all $i \in[2, k]$ and continue the proof with these sets). Our goal now is to cover each of the sets $S_{1}, T_{2}, \ldots, T_{k}$ one by one using the following claims.

Claim 4.5.4. For every $i \in[2, k]$ and every set $A \subseteq V(G) \backslash T_{i}$ with $\left|A \cap V_{s}\right| \leq|R|$ for all $s \in[2, k]$, there is a collection \mathcal{H}_{i} of at most $C\left(d^{\prime}+\eta\right)$ monochromatic disjoint copies of graphs from \mathcal{F} in G, such that
(i) $V\left(\mathcal{H}_{i}\right) \cap V_{1}=T_{i}$,
(ii) $V\left(\mathcal{H}_{i}\right) \cap A=\varnothing$, and
(iii) $\left|V\left(\mathcal{H}_{i}\right) \cap V_{j}\right| \leq\left|T_{i}\right|$ for all $j \in[2, k]$.

Claim 4.5.5. For every set $A \subseteq V(G) \backslash\left(S_{1} \cup U_{1}\right)$ with $\left|A \cap V_{s}\right| \leq|R|$ for all $s \in[2, k]$, there is a monochromatic copy H_{1} of a graph from \mathcal{F} in G, such that
(i) $V\left(H_{1}\right) \cap V_{1}=S_{1} \cup U_{1}$,
(ii) $V\left(H_{1}\right) \cap A=\varnothing$ and
(iii) $\left|V\left(H_{1}\right) \cap V_{j}\right| \leq\left|S_{1} \cup U_{1}\right|$ for all $j \in[2, k]$.

With these claims at hand, we can now prove Equation (4.1). First, we apply Claim 4.5.4 repeatedly to get collections $\mathcal{H}_{2}, \ldots, \mathcal{H}_{k}$ of at most $C\left(d^{\prime}+\eta\right)$ disjoint monochromatic copies of graphs from \mathcal{F} that canonically covers T_{2}, \ldots, T_{k}, respectively, as follows. Let $i \in\{2, \ldots, k\}$ and suppose we have constructed $\mathcal{H}_{2}, \ldots, \mathcal{H}_{i-1}$. Let $A_{i}:=V\left(\mathcal{H}_{2}\right) \cup \ldots \cup V\left(\mathcal{H}_{i-1}\right)$ and note that $\left|A_{i} \cap V_{s}\right| \leq\left|T_{2}\right|+\cdots+\left|T_{i-1}\right| \leq|R|$ for all $s \in[2, k]$. Apply now Claim 4.5.4 for i and $A=A_{i}$ to get the desired collection \mathcal{H}_{i}.

Next, we apply Claim 4.5.5 with $A=V\left(\mathcal{H}_{2}\right) \cup \ldots \cup V\left(\mathcal{H}_{k}\right)$ to get a copy H_{1} of a graph from \mathcal{F} with the desired properties. Note that, similarly as above, we have $\left|A \cap V_{s}\right| \leq|R|$ for all $s \in[2, k]$. By construction $V\left(H_{1}\right), V\left(\mathcal{H}_{2}\right), \ldots, V\left(\mathcal{H}_{k}\right)$ and $V\left(\mathcal{H}_{R}\right)$ are disjoint and cover V_{1}. Moreover, for every $s \in[2, k]$, we have

$$
\left|\left(V\left(H_{1}\right) \cup \ldots \cup V\left(\mathcal{H}_{k}\right) \cup V\left(\mathcal{H}_{R}\right)\right) \cap V_{s}\right| \leq\left|S_{1} \cup U_{1}\right|+\left|T_{1}\right|+\left|T_{2}\right|+\cdots+\left|T_{k}\right|
$$

$$
\leq\left|U_{1} \cup R\right| \leq\left|V_{1}\right| .
$$

Hence, $\left\{H_{1}\right\} \cup \ldots \cup \mathcal{H}_{k} \cup \mathcal{H}_{R}$ canonically covers V_{1}. Finally, we have $\left|\left\{H_{1}\right\} \cup \ldots \cup \mathcal{H}_{k} \cup \mathcal{H}_{R}\right| \leq$ $P(d)+k C\left(d^{\prime}+\eta\right)$, proving Equation 4.1. It remains now to prove Claims 4.5.3 to 4.5.5.

Proof of Claim 4.5.3. Since $S_{k}=R$, it suffices to show $S_{i} \subseteq S_{i-1} \cup T_{i}$ for each $i \in[2, k]$. Let $i \in[2, k]$ and let $v \in S_{i} \backslash S_{i-1}$. We have

$$
\begin{aligned}
\operatorname{deg}\left(v, V_{2}, \ldots, V_{i-1}, \tilde{V}_{i}, U_{i+1}, \ldots, U_{k}\right)= & \operatorname{deg}\left(v, V_{2}, \ldots, V_{i-1}, V_{i}, U_{i+1}, \ldots, U_{k}\right) \\
& -\operatorname{deg}\left(v, V_{2}, \ldots, V_{i-1}, U_{i}, U_{i+1}, \ldots, U_{k}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{d}\left(v, V_{2}, \ldots, V_{i-1}, \tilde{V}_{i}, U_{i+1}, \ldots, U_{k}\right)= & \mathrm{d}\left(v, V_{2}, \ldots, V_{i-1}, V_{i}, U_{i+1}, \ldots, U_{k}\right) \frac{\left|V_{i}\right|}{\left|\tilde{V}_{i}\right|} \\
& -\mathrm{d}\left(v, V_{2}, \ldots, V_{i-1}, U_{i}, U_{i+1}, \ldots, U_{k}\right) \frac{\left|U_{i}\right|}{\left|\tilde{V}_{i}\right|} \\
& >d_{i} \frac{\left|V_{i}\right|}{\left|\tilde{V}_{i}\right|}-d_{i-1} \frac{\left|U_{i}\right|}{\left|\tilde{V}_{i}\right|} \\
= & \frac{d_{i}-\gamma d_{i-1}}{1-\gamma} \\
= & \frac{\left(1-\gamma^{i}\right) d^{\prime}-\gamma\left(1-\gamma^{i-1}\right) d^{\prime}}{(1-\gamma)\left(1-\gamma^{k}\right)} \\
= & \frac{d^{\prime}}{1-\gamma^{k}} \geq d^{\prime}+2 \eta
\end{aligned}
$$

where we use Equation (4.3) and the definition of η to obtain the last identities. Thus $v \in T_{i}$ and hence $S_{i} \subseteq S_{i-1} \cup T_{i}$.

Proof of Claim 4.5.4. Let $V_{s}^{\prime}:=V_{s} \backslash A$ for all $s \in[2, i-1], \tilde{V}_{i}^{\prime}:=\tilde{V}_{i} \backslash A$ and $U_{s}^{\prime}:=U_{s} \backslash A$ for all $s \in[i+1, k]$. Then, by Equation (4.2), we have

$$
\begin{aligned}
& \left|V_{s}^{\prime}\right| \geq\left|V_{s}\right|-|R| \geq\left(1-\frac{\eta}{4 k}\right)\left|V_{s}\right| \geq \frac{\left|V_{s}\right|}{2}, \text { for } s=2, \ldots, i-1, \\
& \left|\tilde{V}_{i}^{\prime}\right| \geq\left|\tilde{V}_{i}\right|-|R| \geq\left(1-\frac{\eta}{4 k}\right)\left|\tilde{V}_{i}\right| \geq \frac{\left|\tilde{V}_{i}\right|}{2}, \text { and } \\
& \left|U_{s}^{\prime}\right| \geq\left|U_{s}\right|-|R| \geq\left(1-\frac{\eta}{4 k}\right)\left|U_{s}\right| \geq \frac{\left|U_{j}\right|}{2}, \text { for } s=i+1, \ldots, k .
\end{aligned}
$$

In particular, it follows that

$$
\begin{aligned}
& \left|V_{s} \backslash V_{s}^{\prime}\right| \leq|R| \leq \frac{\eta}{4 k}\left|V_{s}\right| \leq \frac{\eta}{2 k}\left|V_{s}^{\prime}\right|, \text { for } s=2, \ldots, i-1, \\
& \left|V_{i} \backslash V_{i}^{\prime}\right| \leq|R| \leq \frac{\eta}{4 k}\left|V_{i}\right| \leq \frac{\eta}{2 k}\left|V_{i}^{\prime}\right|, \text { and }
\end{aligned}
$$

4.6. PROOF OF THEOREM III

$$
\left|U_{s} \backslash U_{s}^{\prime}\right| \leq|R| \leq \frac{\eta}{4 k}\left|U_{s}\right| \leq \frac{\eta}{2 k}\left|U_{s}^{\prime}\right|, \text { for } s=i+1, \ldots, k
$$

Therefore, for every $v \in T_{i}$, we have

$$
\begin{aligned}
& \mathrm{d}\left(v, V_{2}^{\prime}, \ldots, V_{i-1}^{\prime}, \tilde{V}_{i}^{\prime}, U_{i+1}^{\prime}, \ldots, U_{k}^{\prime}\right) \\
& \geq d^{\prime}+2 \eta-\sum_{s=2}^{i-1} \frac{\left|V_{s} \backslash V_{s}^{\prime}\right|}{\left|V_{s}^{\prime}\right|}-\frac{\left|\tilde{V}_{i} \backslash \tilde{V}_{i}^{\prime}\right|}{\left|\tilde{V}_{i}^{\prime}\right|}-\sum_{s=i+1}^{k} \frac{\left|U_{s} \backslash U_{s}^{\prime}\right|}{\left|U_{s}^{\prime}\right|} \\
& \geq d^{\prime}+2 \eta-(k-1) \frac{\eta}{2 k} \geq d^{\prime}+\eta .
\end{aligned}
$$

Hence, by definition of $C\left(d^{\prime}+\eta\right)$ (see (\star)), there exists a collection \mathcal{H}_{i} of at most $C\left(d^{\prime}+\eta\right)$ monochromatic copies of graphs from \mathcal{F} that canonically covers T_{i} in the graph

$$
K\left(T_{i}\right) \cup K\left(T_{i}, V_{2}^{\prime}, \ldots, V_{i-1}^{\prime}, \tilde{V}_{i}^{\prime}, U_{i+1}^{\prime}, \ldots, U_{k}^{\prime}\right)
$$

By construction, \mathcal{H}_{i} satisfies the requirements of the claim (note that (iii) holds since \mathcal{H}_{i} is a canonical covering).

Proof of Claim 4.5.5. Let $Y_{1}=S_{1}$ and, for each $i \in[2, k]$, let $X_{i}=U_{i} \cap A$. Observe that $\left|Y_{1}\right| \leq|R| \leq \varepsilon^{2}\left|U_{1}\right|$ and $\left|X_{i}\right| \leq|R| \leq \varepsilon^{2}\left|U_{i}\right|$ for all $i \in[2, k]$. Let $U_{1}^{\prime}=U_{1} \cup Y_{1}$ and, for each $i \in[2, k]$, let $U_{i}^{\prime}:=U_{i} \backslash X_{i}$. We now consider the cylinder $Z^{\prime}:=\left(U_{1}^{\prime}, \ldots, U_{k}^{\prime}\right)$. By definition of S_{1}, we have $\mathrm{d}\left(v, U_{2}, \ldots, U_{k}\right) \geq d_{1} \geq d / 2$ and in particular $\operatorname{deg}\left(v, U_{i}\right) \geq d / 2 \cdot\left|U_{i}\right|$ for all $v \in Y_{1}$ and $i \in[2, k]$.

Hence, by Lemma 4.3.2, Z^{\prime} is $(8 \varepsilon, d / 4)$-super-regular. Furthermore, we have $\left|U_{1}^{\prime}\right| \leq\left|U_{i}^{\prime}\right|$ for all $i \in[k]$. Thus, by Lemma 4.3.3, there is a monochromatic copy H_{1} of a graph from \mathcal{F} in Z that covers $U_{1}^{\prime}=U_{1} \cup S_{1}$ and at most $\left|U_{1}^{\prime}\right|$ vertices from each of $U_{2}^{\prime}, \ldots, U_{k}^{\prime}$. By construction, this copy satisfies the requirements of the claim.

This finishes the proof of Lemma 4.5.2.

4.6 Proof of Theorem III

In this section, we will finish the proof of Theorem III. We will make use of the following lemma from [21] and follow the same proof technique. Since our proof of this lemma is short, we include it here for completeness. Given a k-uniform hypergraph \mathcal{H}, a vertex $v \in V(\mathcal{H})$ and sets $B_{2}, \ldots, B_{k} \subseteq V(\mathcal{H})$, we define

$$
\operatorname{deg}_{\mathcal{H}}\left(v, B_{2}, \ldots, B_{k}\right):=\left|\left\{\left(v_{2}, \ldots, v_{k}\right) \in B_{2} \times \ldots \times B_{k}:\left\{v, v_{2}, \ldots, v_{k}\right\} \in E(\mathcal{H})\right\}\right| .
$$

Lemma 4.6.1. Let k and N be positive integers and let \mathcal{H} be a k-uniform hypergraph. Suppose that $B_{1}, \ldots, B_{N} \subseteq V(\mathcal{H})$ are non-empty disjoint sets such that for every $1 \leq i_{1}<$ $\cdots<i_{k} \leq N$ we have

$$
\operatorname{deg}_{\mathcal{H}}\left(v, B_{i_{2}}, \ldots, B_{i_{k}}\right)<\binom{N}{k}^{-1}\left|B_{i_{2}}\right| \cdots\left|B_{i_{k}}\right|
$$

for all $v \in B_{i_{1}}$. Then, there exists an independent set $\left\{v_{1}, \ldots, v_{N}\right\}$ with $v_{i} \in B_{i}$, for each $i \in[N]$.

Proof. For each $i \in[N]$, let v_{i} be chosen uniformly at random from B_{i}. Let $I=\left\{v_{1}, \ldots, v_{N}\right\}$. Then we have

$$
\begin{aligned}
\mathbb{P}[I \text { is not an independent set }] & \leq \sum_{1 \leq i_{1}<\cdots<i_{k} \leq N} \mathbb{P}\left[\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in E(\mathcal{H})\right] \\
& =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq N} \frac{1}{\left|B_{i_{1}}\right|} \sum_{v \in B_{1}} \mathbb{P}\left[\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\} \in E(\mathcal{H}) \mid v_{i_{1}}=v\right] \\
& =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq N} \frac{1}{\left|B_{i_{1}}\right|} \sum_{v \in B_{1}} \frac{\operatorname{deg}_{\mathcal{H}}\left(v, B_{i_{2}}, \ldots, B_{i_{k}}\right)}{\left|B_{i_{2}}\right| \cdots\left|B_{i_{k}}\right|} \\
& <\sum_{1 \leq i_{1}<\cdots<i_{k} \leq N}\binom{N}{k}^{-1}=1 .
\end{aligned}
$$

Therefore, there exists an independent set $\left\{v_{1}, \ldots, v_{N}\right\}$ with $v_{i} \in B_{i}$, for each $i \in[N]$.

We are now able to prove Theorem III. The main idea is to find reasonably large cylinders that are super-regular for one of the colours, greedily cover most of the remaining vertices using Proposition 4.4.2 and then apply the Absorption Lemma (Lemma 4.5.1) to the set of remaining vertices that share many monochromatic cliques with the cylinders. We then iterate this process until no vertices remain. Using Lemma 4.6.1, we will show that a bounded number of iterations suffices.

Proof of Theorem [IIT. Fix $r, \Delta \geq 2, \mathcal{F} \in \mathcal{F}_{\Delta}$. Let G be an r-edge-coloured complete graph on n vertices. Let

$$
k=\Delta+2, \quad N=r^{r k}, \quad \delta=\binom{N}{k}^{-1} \quad \text { and } \quad d=\frac{1}{2 r} .
$$

In order to use Lemma 4.3.3 and Lemma 4.3.4, respectively, consider the constants

$$
\varepsilon=\left(\delta d^{\Delta}\right)^{2 K^{\prime}} \quad \text { and } \quad \gamma=\varepsilon^{r^{8 r k} \varepsilon^{-5}}
$$

4.6. PROOF OF THEOREM III

where K^{\prime} is the universal constant given by Lemma 4.3.3. Consider also the constants

$$
\alpha=\varepsilon^{2} \quad \text { and } \quad C_{1}=4 r^{2 r k \Delta} \log \left(\frac{4}{\alpha \gamma}\right)
$$

in order to use Proposition 4.4.2. Finally, let

$$
C_{2}=\exp ^{2}\left((2 r / \delta)^{\tilde{K} \Delta}\right) \leq \exp ^{2}\left(r^{16 \tilde{K} r \Delta^{3}}\right)
$$

where \tilde{K} is the universal constant from Lemma 4.5.1, and let $K=20 \tilde{K}$.
We will build a framework consisting of many k-cylinders working as absorbers and small sets that can be absorbed by them. More precisely, our goal is to define sets with the following properties (Figure 4.1 should help the reader to understand the structure of those sets as we define them):

Framework. There are sets $Z_{1}, \ldots, Z_{N}, S_{k-1}, \ldots, S_{N}, R_{k}, \ldots, R_{N+1}, R_{k}^{\prime}, \ldots, R_{N+1}^{\prime}$ with the following properties.
(F.1) $V(G)=\bigcup_{i=1}^{N} Z_{i} \cup \bigcup_{i=k-1}^{N} S_{i} \cup \bigcup_{i=k}^{N+1} R_{i}^{\prime}$ is a partition.
(F.2) $Z_{1}, \ldots, Z_{N}{ }^{6}$ are k-cylinders which are (ε, d)-super-regular in one of the colours (or empty).
(F.3) S_{k-1}, \ldots, S_{N} are sets of vertices which we will cover greedily by monochromatic copies of graphs from \mathcal{F}.
(F.4) For each $i \in[k, N+1], R_{i}^{\prime}$ can be partitioned into sets $R_{i, I}^{\prime}$ for all $I \in\binom{[i-1]}{k-1}$, such that, for each $I=\left\{i_{1}, \ldots, i_{k-1}\right\} \subseteq[i]$, we have $\mathrm{d}_{[r]}\left(u, Z_{i_{1}}, \ldots, Z_{i_{k-1}}\right) \geq$ δ for all $u \in R_{i+1, I}^{\prime}$.
(F.5) For each $k \leq i<j \leq N+1$, we have $S_{j} \cup Z_{j} \cup R_{j}^{\prime} \subseteq R_{i}$ and $\left|R_{i}\right| \leq \alpha\left|Z_{i-1}\right|$.

So let us construct those sets from the framework. First, if $n<1 / 4 \gamma$, then Corollary 4.4.3 gives a covering with at most C_{2} monochromatic vertex-disjoint copies of graphs from \mathcal{F}. Therefore we may assume that $n \geq 1 / 4 \gamma$. Hence, by applying Lemma 4.3.4 multiple times, we find $k-1$ vertex-disjoint k-cylinders Z_{1}, \ldots, Z_{k-1} such that each of them is (ε, d)-superregular in some colour (not necessarily the same) and $\left|Z_{1}\right| \geq \cdots \geq\left|Z_{k-1}\right| \geq \gamma n / 2$. Let $V_{k-1}=V(G) \backslash\left(Z_{1} \cup \cdots \cup Z_{k-1}\right)$. By Proposition 4.4.2, there is a collection of at most C_{1} monochromatic vertex-disjoint copies from \mathcal{F} in V_{k-1} covering a set S_{k-1} such that the leftover vertices $R_{k}=V_{k-1} \backslash S_{k-1}$ satisfies $\left|R_{k}\right| \leq \alpha \gamma n / 2 \leq \alpha\left|Z_{k-1}\right|$. Let $R_{k}^{\prime} \subseteq R_{k}$ be the set of vertices $u \in R_{k}$ with $\mathrm{d}_{[r]}\left(u, Z_{1}, \ldots, Z_{k-1}\right) \geq \delta$. Let $R_{k,[k-1]}^{\prime}=R_{k}^{\prime}$ and $V_{k}=R_{k} \backslash R_{k}^{\prime}$.

Inductively, for each $i=k, \ldots, N$, we do the following. If $\left|V_{i}\right|<1 / 4 \gamma$, we use Corollary 4.4.3 to cover V_{i} using at most C_{2} monochromatic vertex-disjoint copies from \mathcal{F} and

[^14]

Figure 4.1: A partition of $V(G)$. Each set in the picture is much smaller than the closest cylinder Z_{i} to the left.
let $Z_{i}=S_{i}=R_{i+1}=R_{i+1}^{\prime}=V_{i+1}=\varnothing$. Otherwise, we apply Lemma 4.3.4 to find a monochromatic (ε, d)-super-regular k-cylinder Z_{i} contained in V_{i} with $\left|Z_{i}\right| \geq \gamma\left|V_{i}\right|$. By Proposition 4.4.2, there is a collection of at most C_{1} monochromatic, vertex-disjoint copies from \mathcal{F} in $V_{i} \backslash Z_{i}$ covering a set $S_{i} \subseteq V_{i}$, so that the set of leftover vertices $R_{i+1}=V_{i} \backslash S_{i}$ has size at most $\alpha \gamma\left|V_{i}\right| \leq \alpha\left|Z_{i}\right|$.

Let R_{i+1}^{\prime} be the set of vertices u in R_{i+1} for which there is a set $I=\left\{i_{1}, \ldots, i_{k-1}\right\} \subseteq[i]$ such that $\mathrm{d}_{[r]}\left(u, Z_{i_{1}}, \ldots, Z_{i_{k-1}}\right) \geq \delta$. Let

$$
R_{i+1}^{\prime}=\bigcup_{I \in\binom{[i]}{k-1}} R_{i+1, I}^{\prime}
$$

be a partition of R_{i+1}^{\prime} so that, for each $I=\left\{i_{1}, \ldots, i_{k-1}\right\} \subseteq[i]$, we have $\mathrm{d}_{[r]}\left(u, Z_{i_{1}}, \ldots, Z_{i_{k-1}}\right) \geq$ δ for all $u \in R_{i+1, I}^{\prime}$. Finally, let $V_{i+1}=R_{i+1} \backslash R_{i+1}^{\prime}$.

The following claim implies that these sets partition $V(G)$ as in Item (F.1).
Claim 4.6.2. The set V_{N+1} is empty.
Proof. Define a k-uniform hypergraph \mathcal{H} with vertex set $U=Z_{1} \cup \ldots \cup Z_{N} \cup V_{N+1}$ and hyperedges corresponding to monochromatic k-cliques in $G[U]$. If V_{N+1} is non-empty, then so are Z_{1}, \ldots, Z_{N}. Since for each $i=k, \ldots, N$ we have $Z_{i} \subseteq R_{i} \backslash R_{i}^{\prime}$ and $V_{N+1}=R_{N+1} \backslash R_{N+1}^{\prime}$, it follows that \mathcal{H} satisfies the hypothesis of Lemma 4.6.1. Therefore, there is an independent set $\left\{v_{1}, \ldots, v_{N+1}\right\}$ in \mathcal{H} of size $N+1$. On the other hand, since $N \geq R_{r}\left(K_{k}\right)$, it follows that the set $\left\{v_{1}, \ldots, v_{N+1}\right\}$ has a monochromatic k-clique in $G[U]$, which is a contradiction.

The vertices in $S_{k-1} \cup \cdots \cup S_{N}$ are already covered by monochromatic copies of graphs from \mathcal{F}. Our goal now is to cover the sets $R_{k}^{\prime}, \ldots, R_{N+1}^{\prime}$ using Lemma 4.5.1 without using

4.6. PROOF OF THEOREM III

too many vertices from the cylinders Z_{1}, \ldots, Z_{N}. This way, we can cover the remaining vertices in $Z_{1} \cup \cdots \cup Z_{N}$ using Lemma 4.3.3.

Claim 4.6.3. Let $i \in\{k, \ldots, N+1\}$ and $I=\left\{i_{2}, \ldots, i_{k}\right\} \subseteq[i-1]$. Let $A \subseteq V(G) \backslash R_{i, I}$ be a set with $\left|A \cap Z_{j}\right| \leq \alpha\left|Z_{j}\right|$ for each $j \in I$. Then there is a collection of at most C_{2} monochromatic vertex-disjoint copies of graphs from \mathcal{F} in

$$
G^{\prime}=K\left(R_{i, I}^{\prime}\right) \cup K\left(R_{i, I}^{\prime}, Z_{i_{2}}, \ldots, Z_{i_{k}}\right)
$$

which are disjoint from A and canonically cover $R_{i, I}^{\prime}$.
Proof. Let $\tilde{V}_{1}=R_{i, I}^{\prime}$ and for $j \in[k] \backslash\{1\}$, let $\tilde{V}_{j}=Z_{i_{j}} \backslash A$. Note that $\left|\tilde{V}_{j}\right| \geq 4\left|\tilde{V}_{1}\right|$ for every $j \in[k] \backslash\{1\}$ and

$$
\begin{aligned}
\operatorname{deg}_{[r]}\left(v, \tilde{V}_{2}, \ldots, \tilde{V}_{k}\right) & \geq \operatorname{deg}_{[r]}\left(v, Z_{i_{2}}, \ldots, Z_{i_{k}}\right)-k \alpha\left|Z_{i_{2}}\right| \cdots\left|Z_{i_{k}}\right| \\
& \geq(\delta-k \alpha)\left|Z_{i_{2}}\right| \cdots\left|Z_{i_{k}}\right| \\
& \geq \delta / 2 \cdot\left|Z_{i_{2}}\right| \cdots\left|Z_{i_{k}}\right|
\end{aligned}
$$

for every $v \in \tilde{V}_{1}$. Hence, by Lemma 4.5.1, there is a collection of at most C_{2} vertex-disjoint copies from \mathcal{F} in $\tilde{V}_{1} \cup \ldots \cup \tilde{V}_{k}$ that canonically covers \tilde{V}_{1}, finishing the proof.

We will use Claim 4.6.3 now to cover $\bigcup_{i=k}^{N+1} R_{i}^{\prime}$. Let \prec be a linear order on $\mathcal{I}:=$ $\left\{(i, I): i \in[k, N+1], I \in\binom{[i-1]}{k-1}\right\}$. Let $(i, I) \in \mathcal{I}$ and suppose that, for all $\left(i^{\prime}, I^{\prime}\right) \in \mathcal{I}$ with $\left(i^{\prime}, I^{\prime}\right) \prec(i, I)$, we have already constructed a family $\mathcal{H}_{i^{\prime} . I^{\prime}}$ of monochromatic copies of graphs from \mathcal{F} which canonically covers $R_{i^{\prime}, I^{\prime}}^{\prime}$ in $K\left(R_{i^{\prime}, I^{\prime}}^{\prime}\right) \cup K\left(R_{i^{\prime}, I^{\prime}}^{\prime}, Z_{i_{2}^{\prime}}, \ldots, Z_{i_{k}^{\prime}}\right)$, where $I^{\prime}=\left\{i_{2}^{\prime}, \ldots, i_{k}^{\prime}\right\}$, and such that the sets $V\left(\mathcal{H}_{i^{\prime}, I^{\prime}}\right)$, for $\left(i^{\prime}, I^{\prime}\right) \prec(i, I)$, are disjoint.

Let $A=\bigcup_{\left(i^{\prime}, I^{\prime}\right) \prec(i, I)} V\left(\mathcal{H}_{i^{\prime}, I^{\prime}}\right)$ be the set of already covered vertices. We claim that

$$
\begin{equation*}
\left|A \cap Z_{j}\right| \leq \alpha\left|Z_{j}\right| \tag{4.4}
\end{equation*}
$$

for each $j \in[N]$. Indeed, given some $j \in[N]$, for all $\left(i^{\prime}, I^{\prime}\right) \in \mathcal{I}$ with $i^{\prime} \leq j$, we have $V\left(\mathcal{H}_{i^{\prime}, I^{\prime}}\right) \cap Z_{j}=\varnothing$, since $\mathcal{H}_{i^{\prime}, I^{\prime}}$ canonically covers $R_{i^{\prime}, I^{\prime}}^{\prime}$ in $K\left(R_{i^{\prime}, I^{\prime}}^{\prime}\right) \cup K\left(R_{i^{\prime}, I^{\prime}}^{\prime}, Z_{i_{2}^{\prime}}, \ldots, Z_{i_{k}^{\prime}}\right)$. Now for all $\left(i^{\prime}, I^{\prime}\right) \in \mathcal{I}$ with $i^{\prime}>j$, we have $\left|V\left(\mathcal{H}_{i^{\prime}, I^{\prime}}\right) \cap Z_{j}\right| \leq\left|R_{i^{\prime}, I^{\prime}}^{\prime}\right|$, again because $\mathcal{H}_{i, I}$ canonically covers $R_{i^{\prime}, I^{\prime}}^{\prime}$. Therefore,

$$
\left|A \cap Z_{j}\right| \leq \sum_{\left(i^{\prime}, I^{\prime}\right) \prec(i, I)}\left|V\left(\mathcal{H}_{i^{\prime}, I^{\prime}}\right) \cap Z_{j}\right| \leq \sum_{\left(i^{\prime}, I^{\prime}\right) \in \mathcal{I}: i^{\prime}>j}\left|R_{i^{\prime}, I^{\prime}}^{\prime}\right| \leq\left|R_{j+1}\right|,
$$

since the sets $\left\{R_{i^{\prime}, I^{\prime}}^{\prime}:\left(i^{\prime}, I^{\prime}\right) \in \mathcal{I}, i>j\right\}$ are disjoint subsets of R_{j+1}. Finally, since $\left|R_{j+1}\right| \leq \alpha\left|Z_{j}\right|$, this implies Equation (4.4). In particular, by Claim 4.6.3, there is a collection $\mathcal{H}_{i, I}$ of monochromatic copies of graphs from \mathcal{F} that canonically covers $R_{i, I}^{\prime}$ in
$K\left(R_{i, I}^{\prime}\right) \cup K\left(R_{i, I}^{\prime}, Z_{i_{2}}, \ldots, Z_{i_{k}}\right)$, where $I=\left\{i_{2}, \ldots, i_{k}\right\}$, and such that $V\left(\mathcal{H}_{i, I}\right)$ is disjoint from A.

It remains to cover $\bigcup_{i=1}^{N} Z_{i}$. Let $A:=\bigcup_{(i, I) \in \mathcal{I}} V\left(\mathcal{H}_{i, I}\right)$ be the set of vertices covered in the previous step. Note that, similarly as in Equation (4.4), we have $\left|A \cap Z_{j}\right| \leq \alpha\left|Z_{j}\right|$ for all $j \in[N]$. Therefore, by Lemma 4.3.2, the cylinder \tilde{Z}_{j} obtained from Z_{j} by removing all vertices in A is ($8 \varepsilon, d / 2$)-super-regular and ε-balanced for every $j \in[N]$. It follows from Lemma 4.3.3 that, for every $j \in[N]$, there is a collection \mathcal{H}_{j} of at most $\Delta+3$ monochromatic vertex-disjoint copies of graphs from \mathcal{F} contained in Z_{j} covering $V\left(Z_{j}\right)$.

In total, the number of monochromatic copies we used to cover $V(G)$ is at most

$$
\begin{aligned}
N \cdot C_{1}+N^{k} \cdot C_{2}+N \cdot(\Delta+3) & \leq 2 N^{k} C_{2} \\
& \leq 2 r^{r k^{2}} \cdot \exp ^{2}\left(r^{16 \tilde{K} r \Delta^{3}}\right) \\
& \leq \exp ^{2}\left(r^{K r \Delta^{3}}\right) .
\end{aligned}
$$

This concludes the proof of Theorem III.

4.7 Proofs of the auxiliary lemmas

In this section, we shall prove the lemmas stated in Section 4.3 for which we could not find a proof in the literature. Their proofs however are standard and not difficult.

Proof of Lemma 4.3.2. Let $U_{i}=\left(V_{i} \backslash X_{i}\right) \cup Y_{i}$ for $i \in\{1,2\}$. We will show that $\left(U_{1}, U_{2}\right)$ is ($8 \varepsilon, d-8 \varepsilon, \delta / 2$)-super-regular. Let now $Z_{i} \subseteq U_{i}$ with $\left|Z_{i}\right| \geq 8 \varepsilon\left|U_{i}\right|$, and let $Z_{i}^{\prime}=Z_{i} \backslash Y_{i}$ and $Z_{i}^{\prime \prime}=Z_{i} \cap Y_{i}$ for $i \in\{1,2\}$. Note that we have

$$
\begin{align*}
& \left|Z_{i}\right| \geq 8 \varepsilon\left|U_{i}\right| \geq \varepsilon\left|V_{i}\right|, \tag{4.5}\\
& \left|Z_{i}^{\prime \prime}\right| \leq\left|Y_{i}\right| \leq \varepsilon^{2}\left|V_{i}\right| \stackrel{|4.5|}{\leq} \varepsilon\left|Z_{i}\right| \text { and } \tag{4.6}\\
& \left|Z_{i}^{\prime}\right|=\left|Z_{i}\right|-\left|Z_{i}^{\prime \prime}\right| \stackrel{\mid 4.6}{\geq}(1-\varepsilon)\left|Z_{i}\right| \tag{4.7}
\end{align*}
$$

for both $i \in\{1,2\}$. We therefore have

$$
e\left(Z_{1}, Z_{2}\right) \leq e\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)+e\left(Z_{1}^{\prime \prime}, Z_{2}\right)+e\left(Z_{1}, Z_{2}^{\prime \prime}\right) \stackrel{\sqrt{4.6}}{\leq} e\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)+2 \varepsilon\left|Z_{1}\right|\left|Z_{2}\right|
$$

and thus

$$
d\left(Z_{1}, Z_{2}\right) \leq d\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)+2 \varepsilon
$$

4.7. PROOFS OF THE AUXILIARY LEMMAS

On the other hand, we have

$$
\begin{aligned}
d\left(Z_{1}, Z_{2}\right) & =\frac{e\left(Z_{1}, Z_{2}\right)}{\left|Z_{1}\right|\left|Z_{2}\right|} \geq \frac{e\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)}{\left|Z_{1}^{\prime}\right|\left|Z_{2}^{\prime}\right|} \cdot \frac{\left|Z_{1}^{\prime}\right|\left|Z_{2}^{\prime}\right|}{\left|Z_{1}\right|\left|Z_{2}\right|} \\
& \stackrel{4.7}{\geq} d\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)(1-\varepsilon)^{2} \geq d\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)-2 \varepsilon
\end{aligned}
$$

and hence $d\left(Z_{1}, Z_{2}\right)=d\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right) \pm 2 \varepsilon$. Furthermore, by ε-regularity of $\left(V_{1}, V_{2}\right)$, we have $d\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)=d\left(V_{1}, V_{2}\right) \pm \varepsilon$ and we conclude

$$
d\left(Z_{1}, Z_{2}\right)=d\left(V_{1}, V_{2}\right) \pm 3 \varepsilon
$$

This holds in particular for $Z_{1}=U_{1}$ and $Z_{2}=U_{2}$ and therefore the pair $\left(U_{1}, U_{2}\right)$ is $(8 \varepsilon, d-$ $8 \varepsilon, 0)$-super-regular. Let $u_{1} \in U_{1}$ now. By assumption, we have $\operatorname{deg}\left(u_{1}, V_{2}\right) \geq \delta\left|V_{2}\right|$ and therefore

$$
\begin{aligned}
\operatorname{deg}\left(u_{1}, U_{2}\right) \geq \operatorname{deg}\left(u_{1}, V_{2} \backslash X_{2}\right) & \geq\left(\delta-\varepsilon^{2}\right)\left|V_{2}\right| \\
& \geq\left(\delta-\varepsilon^{2}\right)\left|U_{2}\right| \geq \delta / 2 \cdot\left|U_{2}\right|
\end{aligned}
$$

A similar statement is true for every $u_{2} \in U_{2}$ finishing the proof.
The following consequence of the slicing lemma will be useful when we prove Lemmas 4.3.4 and 4.3.5.

Lemma 4.7.1. Let k be a positive integer and $d, \varepsilon>0$ with $\varepsilon \leq 1 /(2 k)$. If $Z=\left(V_{1}, \ldots, V_{k}\right)$ is an ε-regular k-cylinder and $d\left(V_{i}, V_{j}\right) \geq d$ for all $1 \leq i<j \leq k$, then there is some $\gamma \leq k \varepsilon$ and sets $\tilde{V}_{1} \subseteq V_{1}, \ldots, \tilde{V}_{k} \subseteq V_{k}$ with $\left|\tilde{V}_{i}\right|=\left\lceil(1-\gamma)\left|V_{i}\right|\right\rceil$ for all $i \in[k]$ so that the k-cylinder $\tilde{Z}=\left(\tilde{V}_{1}, \ldots, \tilde{V}_{k}\right)$ is $(2 \varepsilon, d-k \varepsilon)$-super-regular.

Proof. For $i \neq j \in[k]$, let $A_{i, j}:=\left\{v \in V_{i}: \operatorname{deg}\left(v, V_{j}\right)<(d-\varepsilon)\left|V_{j}\right|\right\}$. By definition of $\varepsilon-$ regularity, we have $\left|A_{i, j}\right|<\varepsilon\left|V_{i}\right|$ for every $i \neq j \in[k]$. For each $i \in[k]$, let $A_{i}=\bigcup_{j \in[k] \backslash\{i\}} A_{i, j}$. Clearly $\left|A_{i}\right|<(k-1) \varepsilon\left|V_{i}\right|$ for every $i \in[k]$, so we can add arbitrary vertices from $V_{i} \backslash A_{i}$ to A_{i} until $\left|A_{i}\right|=\left\lfloor(k-1) \varepsilon\left|V_{i}\right|\right\rfloor$ for every $i \in[k]$. Let now $\tilde{V}_{i}=V_{i} \backslash \tilde{A}_{i}$ for every $i \in[k]$ and let $\tilde{Z}=\left(\tilde{V}_{1}, \ldots, \tilde{V}_{k}\right)$. Observe that $\left|\tilde{V}_{i}\right|=\left\lceil(1-\gamma)\left|V_{i}\right|\right\rceil$ for all $i \in[k]$, where $\gamma=(k-1) \varepsilon$. It follows from Lemma 4.3.1 and definition of A_{i} that \tilde{Z} is $(2 \varepsilon, d-\varepsilon, d-k \varepsilon)$-super-regular.

Given k disjoint sets V_{1}, \ldots, V_{k}, we call a cylinder $\left(U_{1}, \ldots, U_{k}\right)$ relatively balanced (w.r.t. $\left.\left(V_{1}, \ldots, V_{k}\right)\right)$ if there exists some $\gamma>0$ so that $U_{i} \subset V_{i}$ with $\left|U_{i}\right|=\left\lfloor\gamma\left|V_{i}\right|\right\rfloor$ for every $i \in[k]$. We say that a partition \mathcal{K} of $V_{1} \times \cdots \times V_{k}$ is cylindrical if each partition class is of the form $W_{1} \times \cdots \times W_{k}$ (which we associate with the k-cylinder $Z=\left(W_{1}, \ldots, W_{k}\right)$) with $W_{j} \subseteq V_{j}$ for every $j \in[k]$. Finally, we say that $\mathcal{K}=\left\{Z_{1}, \ldots, Z_{N}\right\}$ is ε-regular if
(i) \mathcal{K} is a cylindrical partition of $V_{1} \times \cdots \times V_{k}$,
(ii) each $Z_{i}, i \in[k]$, is a relatively balanced w.r.t. $\left(V_{1}, \ldots, V_{k}\right)$, and
(iii) all but $\varepsilon\left|V_{1}\right| \cdots\left|V_{k}\right|$ of the k-tuples $\left(v_{1}, \ldots, v_{k}\right) \in V_{1} \times \cdots \times V_{k}$ are in ε-regular cylinders.

For technical reasons, we will allow some of the sets V_{1}, \ldots, V_{k} to be empty. In this case (A, \varnothing) is considered ε-regular for every set A and $\varepsilon>0$. If G is an r-edge-coloured graph and $i \in[r]$, we say that a cylinder \mathcal{K} is ε-regular in colour i if is ε-regular in G_{i} (the graph on $V(G)$ with all edges of colour i).

In 27, Conlon and Fox used the weak regularity lemma of Duke, Lefmann and Rödl 35] to find a reasonably large balanced k-cylinder in a k-partite graph. In order to prove a coloured version of Conlon and Fox's result, we will need the following coloured version of the weak regularity lemma of Duke, Lefmann and Rödl. Note that, like the weak regularity lemma of Frieze and Kannan [50], we get an exponential bound on the number of cylinders, in contrast to the much worse tower-type bound required by Szemerédi's regularity lemma (see [45]).

Theorem 4.7.2 (Duke-Lefmann-Rödl $|35|)$. Let $0<\varepsilon<1 / 2, k, r \in \mathbb{N}$ and let $\beta=\varepsilon^{r k^{2} \varepsilon^{-5}}$. Let G be an r-edge-coloured k-partite graph with parts V_{1}, \ldots, V_{k}. Then there exist some $N \leq \beta^{-k}$, sets $R_{1} \subseteq V_{1}, \ldots, R_{k} \subseteq V_{k}$ with $\left|R_{i}\right| \leq \beta^{-1}$ and a partition $\mathcal{K}=\left\{Z_{1}, \ldots, Z_{N}\right\}$ of $\left(V_{1} \backslash R_{1}\right) \times \cdots \times\left(V_{k} \backslash R_{k}\right)$ so that \mathcal{K} is ε-regular in every colour and $V_{i}\left(Z_{j}\right) \geq\left\lfloor\beta\left|V_{i}\right|\right\rfloor$ for every $i \in[k]$ and $j \in[N]$.

Although the original statement of Duke, Lefmann and Rödl [35, Proposition 2.1] does not involve the colouring and assume that sets V_{1}, \ldots, V_{k} have the same size, their proof can be easily adapted to prove Theorem 4.7.2.

We are now ready to prove Lemmas 4.3 .4 and 4.3.5.
Proof of Lemma 4.3.4. Let $k, r \geq 2,0<\varepsilon<1 /(r k)$ and $\gamma=\varepsilon^{r^{8 r k} \varepsilon^{-5}}$. Let $n \geq 1 / \gamma$ and suppose we are given an r-edge coloured K_{n}. Let $\tilde{k}=r^{r k}$ and let $V_{1}, \ldots, V_{\tilde{k}} \subseteq[n]$ be disjoint sets of size $\lfloor n / \tilde{k}\rfloor$ and let G be the \tilde{k}-partite subgraph of K_{n} induced by $V_{1}, \ldots, V_{\tilde{k}}$ (inheriting the colouring). Let $\tilde{\varepsilon}=\varepsilon / 2$ and $\beta=\tilde{\varepsilon}^{r^{2 r k+1} \tilde{\varepsilon}^{-5}}$. We apply Theorem 4.7.2 to get some $N \leq \beta^{-\tilde{k}}$, sets $R_{1} \subseteq V_{1}, \ldots, R_{\tilde{k}} \subseteq V_{\tilde{k}}$ each of which of size at most β^{-1} and a partition $\mathcal{K}=\left\{Z_{1}, \ldots, Z_{N}\right\}$ of $\left(V_{1} \backslash R_{i}\right) \times \cdots \times\left(V_{\tilde{k}} \backslash R_{\tilde{k}}\right)$ which is $\tilde{\varepsilon}$-regular in every colour, and with $V_{i}\left(Z_{j}\right) \geq\left\lfloor\beta\left|V_{i}\right|\right\rfloor \geq 2 \gamma n$ for every $i \in[\tilde{k}]$ and $j \in[N]$. Note that one of the cylinders (say Z_{1}) must be $\tilde{\varepsilon}$-regular in every colour and, since $\left(V_{1}, \ldots, V_{k}\right)$ is balanced, so is Z_{1}. We consider now the complete graph with vertex-set $\left\{V_{1}\left(Z_{1}\right), \ldots, V_{\tilde{k}}\left(Z_{1}\right)\right\}$ and colour every edge $V_{i}\left(Z_{1}\right) V_{j}\left(Z_{1}\right), 1 \leq i<j \leq \tilde{k}$, with a colour $c \in[r]$ so that the density of the pair $\left(V_{i}\left(Z_{1}\right), V_{j}\left(Z_{1}\right)\right)$ in colour c is at least $1 / r$. By Ramsey's theorem [92, 43], there is a colour, say 1 , and k parts (say $\left.V_{1}\left(Z_{1}\right), \ldots, V_{k}\left(Z_{1}\right)\right)$ so that the cylinder $\left(V_{1}\left(Z_{1}\right), \ldots, V_{k}\left(Z_{1}\right)\right)$ is ($\tilde{\varepsilon}, 1 / r, 0)$-super-regular in colour 1. By Lemma 4.7.1, there is an $(\varepsilon, 1 /(2 r))$-super-regular balanced subcylinder \tilde{Z}_{1} with parts of size at least γn.

4.8. CONCLUDING REMARKS

Proof of Lemma 4.3.5. Let $k \geq 2$, and let $d, \varepsilon>0$ with $2 k \varepsilon \leq d \leq 1$. Let $\gamma=\varepsilon^{k^{2} \varepsilon^{-12}}$ and let G be a k-partite graph with parts V_{1}, \ldots, V_{k}. Let $\tilde{\varepsilon}=\varepsilon / 4$ and $\beta=\tilde{\varepsilon}^{k^{2} \tilde{\varepsilon}^{-5}}$. We may assume that $\left|V_{i}\right| \geq 1 / \gamma$ for every $i \in[k]$ (otherwise we set $U_{i}:=\varnothing$ for all $i \in[k]$ with $\left|V_{i}\right|<1 / \gamma$). In particular, we have $\left|V_{i}\right| \geq k /(\tilde{\varepsilon} \beta)$ for all $i \in[k]$.

We apply Theorem 4.7.2 (with $r=1$) to get some $N \leq \beta^{-k}$, sets $R_{1} \subseteq V_{1}, \ldots, R_{k} \subseteq$ V_{k}, each of which of size at most β^{-1}, and an $\tilde{\varepsilon}$-regular partition $\mathcal{K}=\left\{Z_{1}, \ldots, Z_{N}\right\}$ of $\left(V_{1} \backslash R_{1}\right) \times \cdots \times\left(V_{k} \backslash R_{k}\right)$ with $V_{i}\left(Z_{j}\right) \geq\left\lfloor\beta\left|V_{i}\right|\right\rfloor$ for every $i \in[k]$ and $j \in[N]$.

Note that the number of cliques of size k incident to $R=R_{1} \cup \ldots \cup R_{k}$ is at most

$$
\sum_{i=1}^{k} \beta^{-1} \prod_{j \in[k] \backslash i\}}\left|V_{j}\right| \leq \tilde{\varepsilon}\left|V_{1}\right| \cdots\left|V_{k}\right| .
$$

Furthermore, since \mathcal{K} is $\tilde{\varepsilon}$-regular, there are at most $\tilde{\varepsilon}\left|V_{1}\right| \cdots\left|V_{k}\right|$ cliques of size k in G that belong to a cylinder of \mathcal{K} that is not ε-regular. Suppose that each cylinder $Z \in \mathcal{K}$ has at most $(d-2 \tilde{\varepsilon})\left|V_{1}(Z)\right| \cdots\left|V_{k}(Z)\right|$ cliques of size k. Then the number of k-cliques in G is at most

$$
\tilde{\varepsilon}\left|V_{1}\right| \cdots\left|V_{k}\right|+\sum_{Z \in \mathcal{K}}(d-2 \tilde{\varepsilon})\left|V_{1}(Z)\right| \cdots\left|V_{k}(Z)\right| \leq(d-\tilde{\varepsilon})\left|V_{1}\right| \cdots\left|V_{k}\right|,
$$

which contradicts our hypothesis over G. Therefore, there is a cylinder \tilde{Z} in \mathcal{K} that contains at least $(d-2 \tilde{\varepsilon})\left|V_{1}(\tilde{Z})\right| \cdots\left|V_{k}(\tilde{Z})\right|$ cliques of size k. In particular, \tilde{Z} is $(\tilde{\varepsilon}, d-2 \tilde{\varepsilon}, 0)$ -super-regular and relatively balanced with parts of size at least $\left\lfloor\beta\left|V_{i}\right|\right\rfloor$. Finally, we apply Lemma 4.7.1 (and possibly delete a single vertex from some parts) to get a relatively balanced $(\varepsilon, d-(k+2) \tilde{\varepsilon})$-super-regular k-cylinder Z with parts of size at least $\frac{\beta}{2}\left|V_{i}\right| \geq \gamma\left|V_{i}\right|$. This completes the proof since $(k+2) \tilde{\varepsilon} \leq k \varepsilon \leq d / 2$.

4.8 Concluding Remarks

We were able to prove that sequences of graphs with maximum degree Δ have finite r-colour tiling number for every $r \geq 3$, but our bound is super-exponential in Δ. Grinshpun and Sárközy [53] conjectured that it is possible to prove an upper bound which is essentially exponential in Δ (see Conjecture 4.1.1). The problem becomes somewhat easier when restricted to bipartite graphs. In fact, our proof gives a double exponential upper bound in Δ for r-colour tiling numbers of sequences of bipartite graph with maximum degree Δ. Indeed, the factor k in the recursive bound Equation (4.1) can be dropped for bipartite graphs. It would be very interesting to confirm Conjecture 4.1.1 for sequences of bipartite graphs.

Another interesting problem is to prove a version of Theorem III for other sequences of graphs. Given a sequence of graphs $\mathcal{F}=\left\{F_{i}: i \in \mathbb{N}\right\}$ with $\left|F_{i}\right|=i$, for every $i \in \mathbb{N}$,
let $\rho_{r}(\mathcal{F})=\sup _{i \in \mathbb{N}} R_{r}\left(F_{i}\right) / i$. If $\rho_{r}(\mathcal{F})$ is finite, then we say that \mathcal{F} has linear r-colour Ramsey number. If \mathcal{F} is increasing ${ }^{7}$] then it follows from the pigeon-hole principle that $\tau_{r}(\mathcal{F}) \geq \rho_{r}(\mathcal{F})$. Indeed, for each $n \in \mathbb{N}$, every r-edge-coloured K_{n} contains a monochromatic copy from \mathcal{F} of size at least $i=\left\lceil n / \tau_{r}(\mathcal{F})\right\rceil$. In particular, since \mathcal{F} is increasing, there is a monochromatic copy of F_{i} in every r-edge colouring of K_{n}. This implies that $R_{r}\left(F_{i}\right) \leq$ $\tau_{r}(\mathcal{F}) \cdot i$, and therefore $\rho_{r}(\mathcal{F}) \leq \tau_{r}(\mathcal{F})$.

Graham, Rödl and Ruciński 52 proved that there exists a sequence of bipartite graphs $\mathcal{F}=\left\{F_{i}: i \in \mathbb{N}\right\}$ with $\rho_{2}(\mathcal{F}) \geq 2^{\Omega(\Delta)}$. Grinshpun and Sárközy observed that one can make this sequence increasing, thereby showing that $\tau_{2}(\mathcal{F}) \geq 2^{\Omega(\Delta)}$ as well. Conlon, Fox and Sudakov [28] proved that for every sequence of graphs with degree at most Δ, we have $\rho_{2}(\mathcal{F}) \leq 2^{O(\Delta \log \Delta)}$ while Grinshpun and Sárközy 53] proved that $\tau_{2}(\mathcal{F}) \leq 2^{O(\Delta \log \Delta)}$. For more colours, Fox and Sudakov [46] proved that for every sequence of graphs with degree at most Δ, we have $\rho_{r}(\mathcal{F}) \leq 2^{O_{r}\left(\Delta^{2}\right)}$, while Theorem III shows that $\tau_{r}(\mathcal{F}) \leq \exp ^{3}\left(O_{r}\left(\Delta^{3}\right)\right)$.

With these results in mind, one can naturally ask if there exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every sequence of graphs $\mathcal{F}=\left\{F_{i}: i \in \mathbb{N}\right\}$ we have $\tau_{r}(\mathcal{F}) \leq f\left(\rho_{r}(\mathcal{F})\right)$. That is, if it is possible to bound $\tau_{r}(\mathcal{F})$ in terms of $\rho_{r}(\mathcal{F})$. In particular, this would imply that sequences of graphs with linear Ramsey number have finite tiling number. However, the following example due to Alexey Pokrovskiy (personal communication) shows that $\tau_{r}(\mathcal{F})$ cannot be bounded by $\rho_{r}(\mathcal{F})$ in general. Let S_{i} be a star with i vertices and let $\mathcal{S}=\left\{S_{i}: i \in \mathbb{N}\right\}$ be the family of stars. It follows readily from the pigeonhole principle that $R_{r}\left(S_{i}\right) \leq r(i-2)+2$, for every $i \in \mathbb{N}$, and thus $\rho_{r}(\mathcal{S}) \leq r$. However, the following shows that $\tau_{r}(\mathcal{S})=\infty$, for every $r \geq 2$.

Example 4.8.1. For all $r \geq 2$ and all sufficiently large n, we have $\tau_{r}(\mathcal{S}, n) \geq r \cdot \log (n / 8)$.
Proof. Let $\tau=r \log (n / 8)$ and colour $E\left(K_{n}\right)$ uniformly at random with r colours. Given a vertex $v \in[n]$ and a colour c, let $S_{c}(v)$ be the star centred at v formed by all the edges of colour c incident on v. Note that there is a monochromatic \mathcal{S}-tiling of size at most τ if and only if there are distinct vertices v_{1}, \ldots, v_{τ} and colours $c_{1}, \ldots, c_{\tau} \in[r]$ such that $\bigcup_{i \in[\tau]} V\left(S_{c_{i}}\left(v_{i}\right)\right)=[n]$.

Fix distinct vertices $v_{1}, \ldots, v_{\tau} \in[n]$ and colours $c_{1}, \ldots, c_{\tau} \in[r]$. Let U be the random set $U=\bigcup_{i \in[\tau]} V\left(S_{c_{i}}\left(v_{i}\right)\right)$. Note that the events $\{v \in U\}$, for $v \in[n] \backslash\left\{v_{1}, \ldots, v_{\tau}\right\}$, are independent and each has probability $1-(1-1 / r)^{\tau}$. Therefore, using $e^{-x /(1-x)} \leq 1-x \leq e^{x}$ for all $x \leq 1$, we get

$$
\begin{aligned}
\mathbb{P}[U=[n]] & =\left(1-(1-1 / r)^{\tau}\right)^{n-\tau} \\
& \leq \exp \left(-(n-\tau)(1-1 / r)^{\tau}\right) \\
& \leq \exp \left(-n(1-1 / r)^{\tau+1}\right)
\end{aligned}
$$

[^15]
4.8. CONCLUDING REMARKS

$$
\begin{aligned}
& \leq \exp (-n \exp (-4 \tau / r)) \\
& \leq \exp (-\sqrt{n})
\end{aligned}
$$

Taking a union bound over all choices of v_{1}, \ldots, v_{τ} and c_{1}, \ldots, c_{τ}, we conclude that the probability that there is a monochromatic \mathcal{S}-tiling of size τ is at most

$$
(r n)^{-\tau} \cdot e^{-\sqrt{n}}<1
$$

for all sufficiently large n. Hence, there exists an r-colouring of $E\left(K_{n}\right)$ without a monochromatic \mathcal{S}-tiling of size at most τ, finishing the proof.

Lee [80] proved that graphs with bounded degeneracy ${ }^{8}$ have linear Ramsey number. Example 4.8.1 shows however that it is not possible to extend this result to a tiling result. Nevertheless, it may be possible to allow unbounded degrees in this case.

Question 1. Is there a function $\omega: \mathbb{N} \rightarrow \infty$ with $\lim _{n \rightarrow \infty} \omega(n)=\infty$, such that the following is true for all integers $r, d \geq 2$? If $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots\right\}$ is a sequence of d-degenerate graphs with $v\left(F_{n}\right)=n$ and $\Delta\left(F_{n}\right) \leq \omega(n)$ for all $n \in \mathbb{N}$, then $\tau_{r}(\mathcal{F})<\infty$.

Böttcher, Kohayakawa and Taraz [16] proved an extension of the blow-up lemma to graphs H of bounded arrangeability ${ }^{9}$ with $\Delta(H) \leq \sqrt{n} / \log (n)$. Using their result, it is possible to prove the following strengthening of Theorem III.

Theorem 4.8.2. For all integers $r, a \geq 2$ and all sequences of a-arrangeable graphs $\mathcal{F}=$ $\left\{F_{1}, F_{2}, \ldots\right\}$ with $\left|F_{n}\right|=n$ and $\Delta\left(F_{n}\right) \leq \sqrt{n} / \log (n)$ for all $n \in \mathbb{N}$, we have $\tau_{r}(\mathcal{F})<\infty$.

The proof is almost identical, with the following two differences. First, instead of Lemma 4.3.3, we need to use the blow-up lemma mentioned above together with the following alternative to Hajnal's and Szemerédi's theorem which guarantees balanced partitions of graphs with small degree. Given a sequence $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots\right\}$ of a-arrangeable graphs with $\Delta\left(F_{n}\right) \leq \sqrt{n} / \log (n)$ for every $n \in \mathbb{N}$, we define another sequence of graphs $\tilde{\mathcal{F}}=\left\{\tilde{F}_{1}, \tilde{F}_{2}, \ldots\right\}$ as follows. Since every a-arrangeable graph is ($a+2$)-colourable, we can fix a partition of $V\left(F_{n}\right)=V_{1}\left(F_{n}\right) \cup \ldots \cup V_{k}\left(F_{n}\right)$ into independent sets, where $k=a+2$. Then, for every $j \in \mathbb{N}$, we define $\tilde{F_{j k}}$ to be the disjoint union of k copies of F_{j}. Note that each $\tilde{F}_{j k}$ has a k-partition into parts of equal sizes (by rotating each copy around). Finally, for each $j \in \mathbb{N} \cup\{0\}$ and every $i \in[k-1]$, we define $\tilde{F}_{j k+i}$ to be the disjoint union of $\tilde{F}_{j k}$ and i isolated vertices (here \tilde{F}_{0} is the empty graph). Observe that all \tilde{F}_{n} have k-partitions into

[^16]
4.8. CONCLUDING REMARKS

parts of almost equal sizes. Furthermore, every $\tilde{\mathcal{F}}$-tiling \mathcal{T} corresponds to an \mathcal{F}-tiling $\tilde{\mathcal{T}}$ of size at most $(2 k-1)|\mathcal{T}|$. Therefore, it suffices to prove Theorem 4.8.2 for graphs with balanced $(a+2)$-partitions.

Second, we need to replace Theorem 4.4.1 with a similar theorem for a-arrangeable graphs G with $\Delta(G) \leq \sqrt{n} / \log (n)$, where $n=v(G)$. For two colours, such a theorem was proved by Chen and Schelp [22]. For more than two colours, this was (to the best of the author's knowledge) never explicitly stated, but is easy to obtain using modern tools (for example, by applying the above mentioned blow-up lemma for a-arrangeable graphs).

Bibliography

[1] R. Aharoni. "Ryser's conjecture for tripartite 3-graphs". In: Combinatorica 21.1 (2001), pp. 1-4.
[2] P. Allen. "Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles". In: Combin. Probab. Comput. 17.4 (2008), pp. 471-486.
[3] P. Allen, G. Brightwell, and J. Skokan. "Ramsey-goodness-and otherwise". In: Combinatorica 33.2 (2013), pp. 125-160.
[4] N. Alon and F. R. K. Chung. "Explicit construction of linear sized tolerant networks". In: Proceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986). Vol. 72. 1-3. 1988, pp. 15-19.
[5] N. Alon and J. H. Spencer. The probabilistic method. Fourth. Wiley Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., Hoboken, NJ, 2016, pp. xiv +375 .
[6] J. Ayel. "Sur l'existence de deux cycles supplémentaires unicolores, disjoints et de couleurs différentes dans un graphe complet bicolore". Theses. Université JosephFourier - Grenoble I, 1979.
[7] D. Bal and L. DeBiasio. "Partitioning random graphs into monochromatic components". In: Electron. J. Combin. 24.1 (2017), Paper 1.18, 25.
[8] I. Balla, A. Pokrovskiy, and B. Sudakov. "Ramsey Goodness of Bounded Degree Trees". In: Combinatorics, Probability and Computing 27.3 (2018), pp. 289-309.
[9] J. Balogh, R. Morris, and W. Samotij. "Independent sets in hypergraphs". In: J. Amer. Math. Soc. 28.3 (2015), pp. 669-709.
[10] J. Beck. "On size Ramsey number of paths, trees, and circuits. I". In: J. Graph Theory 7.1 (1983), pp. 115-129.
[11] S. Bessy and S. Thomassé. "Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture". In: J. Combin. Theory Ser. B 100.2 (2010), pp. 176-180.
[12] B. Bollobás. Extremal graph theory with emphasis on probabilistic methods. Vol. 62. CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986, pp. viii +64 .
[13] B. Bollobás. Modern graph theory. Vol. 184. Graduate Texts in Mathematics. SpringerVerlag, New York, 1998, pp. xiv +394.
[14] B. Bollobás. Random graphs. Second. Vol. 73. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2001, pp. xviii +498.
[15] J. A. Bondy and U. S. R. Murty. Graph theory. Vol. 244. Graduate Texts in Mathematics. Springer, New York, 2008, pp. xii +651 .
[16] J. Böttcher, Y. Kohayakawa, A. Taraz, and A. Würfl. "An Extension of the Blowup Lemma to Arrangeable Graphs". In: SIAM Journal on Discrete Mathematics 29.2 (2015), pp. 962-1001.
[17] M. Bucić, D. Korándi, and B. Sudakov. Covering graphs by monochromatic trees and Helly-type results for hypergraphs. 2019. URL: http://arxiv.org/abs/1902.05055v3.
[18] S. A. Burr. "Ramsey Numbers Involving Graphs with Long Suspended Paths". In: Journal of the London Mathematical Society s2-24.3 (1981), pp. 405-413.
[19] S. A. Burr and P. Erdôs. "On the magnitude of generalized Ramsey numbers for graphs". In: Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdốs on his 60th birthday), Vol. 1. 1975, 215-240. Colloq. Math. Soc. János Bolyai, Vol. 10.
[20] S. A. Burr and P. Erdős. "Generalizations of a Ramsey-theoretic result of chvátal". In: Journal of Graph Theory 7.1 (1983), pp. 39-51.
[21] S. Bustamante, J. Corsten, N. Frankl, A. Pokrovskiy, and J. Skokan. Partitioning Edge-Coloured Hypergraphs Into Few Monochromatic Tight Cycles. 2019. URL: http: //arxiv.org/abs/1903.04471v1.
[22] G. Chen and R. H. Schelp. "Graphs with Linearly Bounded Ramsey Numbers". In: Journal of Combinatorial Theory, Series B 57.1 (1993), pp. 138-149.
[23] C. Chvatál, V. Rödl, E. Szemerédi, and W. T. Trotter Jr. "The Ramsey number of a graph with bounded maximum degree". In: J. Combin. Theory Ser. B 34.3 (1983), pp. 239-243.
[24] V. Chvátal. "Tree-complete graph ramsey numbers". In: Journal of Graph Theory 1.1 (1977), pp. 93-93.
[25] D. Clemens, M. Jenssen, Y. Kohayakawa, N. Morrison, G. O. Mota, D. Reding, and B. Roberts. "The size-Ramsey number of powers of paths". In: J. Graph Theory 91.3 (2019), pp. 290-299.

BIBLIOGRAPHY

[26] D. Conlon. "A new upper bound for diagonal Ramsey numbers". In: Ann. of Math. (2) 170.2 (2009), pp. 941-960.
[27] D. Conlon and J. Fox. "Bounds for graph regularity and removal lemmas". In: Geom. Funct. Anal. 22.5 (2012), pp. 1191-1256.
[28] D. Conlon, J. Fox, and B. Sudakov. "On two problems in graph Ramsey theory". In: Combinatorica 32.5 (2012), pp. 513-535.
[29] D. Conlon, J. Fox, and B. Sudakov. "Recent developments in graph Ramsey theory". In: Surveys in combinatorics 2015. Vol. 424. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2015, pp. 49-118.
[30] D. Dellamonica Jr. "The size-Ramsey number of trees". In: Random Structures Algorithms 40.1 (2012), pp. 49-73.
[31] R. Diestel. Graph theory. Fifth. Vol. 173. Graduate Texts in Mathematics. Paperback edition of [MR3644391]. Springer, Berlin, 2018, pp. xviii +428 .
[32] G. Ding and B. Oporowski. "Some results on tree decomposition of graphs". In: J. Graph Theory 20.4 (1995), pp. 481-499.
[33] A. Dudek and P. Prałat. "An alternative proof of the linearity of the size-Ramsey number of paths". In: Combin. Probab. Comput. 24.3 (2015), pp. 551-555.
[34] A. Dudek and P. Prałat. "On some multicolor Ramsey properties of random graphs". In: SIAM J. Discrete Math. 31.3 (2017), pp. 2079-2092.
[35] R. A. Duke, H. Lefmann, and V. Rödl. "A fast approximation algorithm for computing the frequencies of subgraphs in a given graph". In: SIAM J. Comput. 24.3 (1995), pp. 598-620.
[36] N. Eaton. "Ramsey numbers for sparse graphs". In: Discrete Math. 185.1-3 (1998), pp. 63-75.
[37] M. Elekes, D. T. Soukup, L. Soukup, and Z. Szentmiklóssy. "Decompositions of edgecolored infinite complete graphs into monochromatic paths". In: Discrete Math. 340.8 (2017), pp. 2053-2069.
[38] P. Erdős. "On some of my conjectures in number theory and combinatorics". In: Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing. 1983, pp. 3-19.
[39] P. Erdős. "On the combinatorial problems which I would most like to see solved". In: Combinatorica 1.1 (1981), pp. 25-42.
[40] P. Erdôs. "Some remarks on the theory of graphs". In: Bull. Amer. Math. Soc. 53 (1947), pp. 292-294.
[41] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp. "The size Ramsey number". In: Period. Math. Hungar. 9.1-2 (1978), pp. 145-161.
[42] P. Erdős, A. Gyárfás, and L. Pyber. "Vertex coverings by monochromatic cycles and trees". In: J. Combin. Theory Ser. B 51.1 (1991), pp. 90-95.
[43] P. Erdős and G. Szekeres. "A combinatorial problem in geometry". In: Compositio Math. 2 (1935), pp. 463-470.
[44] G. Fiz Pontiveros, S. Griffiths, R. Morris, D. Saxton, and J. Skokan. "The Ramsey number of the clique and the hypercube". In: Journal of the London Mathematical Society 89.3 (2014), pp. 680-702.
[45] J. Fox and L. M. Lovász. "A tight lower bound for Szemerédi's regularity lemma". In: Combinatorica 37.5 (2017), pp. 911-951.
[46] J. Fox and B. Sudakov. "Density theorems for bipartite graphs and related Ramseytype results". In: Combinatorica 29.2 (2009), pp. 153-196.
[47] J. Fox and B. Sudakov. "Two remarks on the Burr-Erdős conjecture". In: European Journal of Combinatorics 30.7 (2009), pp. 1630-1645.
[48] P. Frankl and V. Rödl. "Large triangle-free subgraphs in graphs without K_{4} ". In: Graphs Combin. 2.2 (1986), pp. 135-144.
[49] J. Friedman and N. Pippenger. "Expanding graphs contain all small trees". In: Combinatorica 7.1 (1987), pp. 71-76.
[50] A. M. Frieze and R. Kannan. "The Regularity Lemma and Approximation Schemes for Dense Problems". In: 37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington, Vermont, USA, 14-16 October, 1996. 1996, pp. 12-20.
[51] L. Gerencsér and A. Gyárfás. "On Ramsey-type problems". In: Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), pp. 167-170.
[52] R. L. Graham, V. Rödl, and A. Ruciński. "On graphs with linear Ramsey numbers". In: J. Graph Theory 35.3 (2000), pp. 176-192.
[53] A. Grinshpun and G. N. Sárközy. "Monochromatic bounded degree subgraph partitions". In: Discrete Math. 339.1 (2016), pp. 46-53.
[54] A. Gyárfás. Particiófedések és lefogóhalmazok hipergráfokban: Kandidátusi értekezés. 71. MTA Számítástechnikai és Automatizálási Kutató Intézet, 1977.
[55] A. Gyárfás, M. Ruszinkó, G. N. Sárközy, and E. Szemerédi. "An improved bound for the monochromatic cycle partition number". In: J. Combin. Theory Ser. B 96.6 (2006), pp. 855-873.
[56] A. Hajnal and E. Szemerédi. "Proof of a conjecture of P. Erdős". In: Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969). 1970, pp. 601-623.

BIBLIOGRAPHY

[57] J. Han, M. Jenssen, Y. Kohayakawa, G. O. Mota, and B. Roberts. The Multicolour Size-Ramsey Number of Powers of Paths. 2018. URL: http://arxiv.org/abs/1811. 00844v1.
[58] P. E. Haxell and Y. Kohayakawa. "Partitioning by monochromatic trees". In: J. Combin. Theory Ser. B 68.2 (1996), pp. 218-222.
[59] P. E. Haxell and Y. Kohayakawa. "The size-Ramsey number of trees". In: Israel J. Math. 89.1-3 (1995), pp. 261-274.
[60] P. E. Haxell, Y. Kohayakawa, and T. Łuczak. "The induced size-Ramsey number of cycles". In: Combin. Probab. Comput. 4.3 (1995), pp. 217-239.
[61] P. E. Haxell and A. D. Scott. "On Ryser's conjecture". In: Electron. J. Combin. 19.1 (2012), Paper 23, 10.
[62] J. R. Henderson. "Permutation decomposition of (0,1)-matrices and decomposition transversals". PhD thesis. California Institute of Technology, 1971.
[63] S. Janson, T. Łuczak, and A. Ruciński. Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000, pp. xii +333 .
[64] N. Kamcev, A. Liebenau, D. R. Wood, and L. Yepremyan. The Size Ramsey Number of Graphs With Bounded Treewidth. 2019. URL: http://arxiv.org/abs/1906.09185v2.
[65] M. Kamiński, V. V. Lozin, and M. Milanič. "Recent developments on graphs of bounded clique-width". In: Discrete Applied Mathematics 157.12 (2009), pp. 27472761.
[66] X. Ke. "The size Ramsey number of trees with bounded degree". In: Random Structures Algorithms 4.1 (1993), pp. 85-97.
[67] Y. Kohayakawa and B. Kreuter. "Threshold functions for asymmetric Ramsey properties involving cycles". In: Random Structures Algorithms 11.3 (1997), pp. 245-276.
[68] Y. Kohayakawa, G. O. Mota, and M. Schacht. "Monochromatic trees in random graphs". In: Math. Proc. Cambridge Philos. Soc. 166.1 (2019), pp. 191-208.
[69] Y. Kohayakawa, T. Retter, and V. Rödl. "The size Ramsey number of short subdivisions of bounded degree graphs". In: Random Structures Algorithms 54.2 (2019), pp. 304-339.
[70] Y. Kohayakawa, V. Rödl, M. Schacht, and E. Szemerédi. "Sparse partition universal graphs for graphs of bounded degree". In: Adv. Math. 226.6 (2011), pp. 5041-5065.
[71] Y. Kohayakawa, M. Schacht, and R. Spöhel. "Upper bounds on probability thresholds for asymmetric Ramsey properties". In: Random Structures Algorithms 44.1 (2012), pp. 1-28.
[72] J. Komlós, G. N. Sárközy, and E. Szemerédi. "An algorithmic version of the blow-up lemma". In: Random Structures Algorithms 12.3 (1998), pp. 297-312.
[73] J. Komlós, G. N. Sárközy, and E. Szemerédi. "Blow-up lemma". In: Combinatorica 17.1 (1997), pp. 109-123.
[74] D. Korándi, F. Mousset, R. Nenadov, N. Škorić, and B. Sudakov. "Monochromatic cycle covers in random graphs". In: Random Structures Algorithms 53.4 (2018), pp. 667691.
[75] A. Kostochka and V. Rödl. "On Graphs With Small Ramsey Numbers, II". In: Combinatorica 24.3 (2004), pp. 389-401.
[76] A. Kostochka and B. Sudakov. "On Ramsey Numbers of Sparse Graphs". In: Combinatorics, Probability and Computing 12 (2003), pp. 627-641.
[77] T. Kövari, V. T. Sós, and P. Turán. "On a problem of K. Zarankiewicz". In: Colloq. Math. 3 (1954), pp. 50-57.
[78] M. Krivelevich. "Long cycles in locally expanding graphs, with applications". In: Combinatorica 39.1 (2019), pp. 135-151.
[79] R. Lang and A. Lo. Monochromatic cycle partitions in random graphs. 2018. URL: http://arxiv.org/abs/1807.06607v1.
[80] C. Lee. "Ramsey numbers of degenerate graphs". In: Annals of Mathematics 185.3 (2017), pp. 791-829.
[81] S. Letzter. "Path Ramsey number for random graphs". In: Combin. Probab. Comput. 25.4 (2016), pp. 612-622.
[82] A. Lubotzky, R. Phillips, and P. Sarnak. "Ramanujan graphs". In: Combinatorica 8.3 (1988), pp. 261-277.
[83] T. Łuczak, V. Rödl, and E. Szemerédi. "Partitioning two-coloured complete graphs into two monochromatic cycles". In: Combin. Probab. Comput. 7.4 (1998), pp. 423436.
[84] T. Łuczak, A. Ruciński, and B. Voigt. "Ramsey properties of random graphs". In: J. Combin. Theory Ser. B 56.1 (1992), pp. 55-68.
[85] M. Marciniszyn, J. Skokan, R. Spöhel, and A. Steger. "Asymmetric Ramsey properties of random graphs involving cliques". In: Random Structures Algorithms 34.4 (2009), pp. 419-453.
[86] F. Mousset, R. Nenadov, and W. Samotij. Towards the Kohayakawa-Kreuter Conjecture on Asymmetric Ramsey Properties. 2018. URL: http://arxiv.org/abs/1808. 05070v1.

BIBLIOGRAPHY

[87] J. Nešetřil and V. Rödl. "The Ramsey property for graphs with forbidden complete subgraphs". In: J. Combinatorial Theory Ser. B 20.3 (1976), pp. 243-249.
[88] A. Pokrovskiy. "Calculating Ramsey numbers by partitioning colored graphs". In: J. Graph Theory 84.4 (2017), pp. 477-500.
[89] A. Pokrovskiy. "Partitioning edge-coloured complete graphs into monochromatic cycles and paths". In: J. Combin. Theory Ser. B 106 (2014), pp. 70-97.
[90] A. Pokrovskiy and B. Sudakov. Ramsey Goodness of Cycles. 2018. url: http:// arxiv.org/abs/1807.02313v1.
[91] A. Pokrovskiy and B. Sudakov. "Ramsey goodness of paths". In: J. Combin. Theory Ser. B 122 (2017), pp. 384-390.
[92] F. P. Ramsey. "On a Problem of Formal Logic". In: Proc. London Math. Soc. (2) 30.4 (1929), pp. 264-286.
[93] V. Rödl and A. Ruciński. "Threshold functions for Ramsey properties". In: J. Amer. Math. Soc. 8.4 (1995), pp. 917-942.
[94] V. Rödl and E. Szemerédi. "On size Ramsey numbers of graphs with bounded degree". In: Combinatorica 20.2 (2000), pp. 257-262.
[95] G. N. Sárközy. "Monochromatic cycle power partitions". In: Discrete Math. 340.2 (2017), pp. 72-80.
[96] G. N. Sárközy. A Quantitative Version of the Blow-Up Lemma. 2014. URL: http: //arxiv.org/abs/1405.7302v1.
[97] D. Saxton and A. Thomason. "Hypergraph containers". In: Invent. Math. 201.3 (2015), pp. 925-992.
[98] J. Spencer. "Ramsey's theorem-A new lower bound". In: Journal of Combinatorial Theory, Series A 18.1 (1975), pp. 108-115.
[99] D. R. Wood. "On tree-partition-width". In: European J. Combin. 30.5 (2009), pp. 12451253.

[^0]: ${ }^{1}$ The k th power of a graph G is the graph G^{k} with vertex set $V(G)$ and edges consisting of pairs of vertices at distance at most k in G.

[^1]: ${ }^{2}$ In this thesis, we adopt the convention that a vertex corresponds to a cycle of size one, while an edge corresponds to a cycle of size two.

[^2]: ${ }^{3}$ Their proof is described in 68].

[^3]: The work described in this chapter was developed in a joint project with Sören Berger, Yoshiharu Kohayakawa, Giulia Satiko Maesaka, Taísa Martins, Guilherme Oliveira Mota and Olaf Parczyk.

[^4]: ${ }^{1}$ They in fact formulate this for the general 2-colour size-Ramsey number $\hat{r}\left(H_{1}, H_{2}\right)$.

[^5]: The work described in this chapter was developed in a joint project with Yoshiharu Kohayakawa, Guilherme Oliveira Mota and Bjarne Schülke.

[^6]: ${ }^{1}$ We will write shortly w.h.p. for with high probability.
 ${ }^{2} \mathrm{~A}$ description of this construction can be found in 68 .

[^7]: ${ }^{3}$ Although φ^{\prime} is a multicolouring, in the sense that we assigned several colours to each edge, we will refer to it as colouring, for simplicity.

[^8]: The work described in this chapter was developed in a joint project with Jan Corsten.

[^9]: ${ }^{1}$ The k-th power of a graph H is the graph obtained from H by adding an edge between any two vertices at distance at most k

[^10]: ${ }^{2} \mathrm{~A} k$-clique is transversal in $\left(V_{1}, \ldots, V_{k}\right)$ if it contains one vertex in each one of the sets V_{1}, \ldots, V_{k}.

[^11]: ${ }^{3}$ The second part of the theorem is not explicitly stated in 53 but follows readily from the blow-up lemma and the Hajnal-Szemerédi theorem.

[^12]: ${ }^{4}$ Here, we denote by $[i, j]$ the set of integers z with $i \leq z \leq j$.

[^13]: ${ }^{5}$ Note that the constant from Proposition 4.4.2 is smaller than C^{\prime}.

[^14]: ${ }^{6}$ We shall identify the cylinders with their vertex-set.

[^15]: ${ }^{7}$ That is, $F_{i} \subseteq F_{i+1}$, for every $i \in \mathbb{N}$.

[^16]: ${ }^{8} \mathrm{~A}$ graph G is d-degenerate if there is an ordering of its vertices so that every $v \in V(G)$ is adjacent to at most d vertices which come before v.
 ${ }^{9}$ A graph G is called a-arrangeable for some $a \in \mathbb{N}$ if its vertices can be ordered in such a way that for every $v \in V(G)$, there are at most a vertices to the left of v that have some common neighbour with v to the right of v.

