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Introduction

Literature Review

When dealing with frictionless, arbitrage-free and complete markets, it is well known that there exists

a linear pricing rule and it is uniquely determined. Furthermore, this linear pricing rule induces a state-

price density. The general model for the theory of linear asset pricing was formalized by Harrison and

Kreps [1979], Duffie and fu Huang [1986], Harrison and Pliska [1981a] and Kreps [1981]. This general

framework of linear asset pricing under the hypothesis of no arbitrage opportunities is based on Shubik

[1961] and Cox and Ross [1976]. Shubik [1961] is the root of the theory of asset pricing under the

condition that there are no arbitrage opportunitis, while Cox and Ross [1976] gives the linear price of any

contingent claim as the expected value of its future returns with respect to the unique equivalent probability

measure, the uniqueness being a consequence of the hypothesis of absence of arbitrage opportunities. We

also have Black and Scholes [1973] in the roots of the theory of asset pricing, where the main idea is the

linkage between the concept of arbitrage and trade in continuous time. It was introduced the “principle of

no-arbitrage”, allowing to derive, in certain mathematical frameworks of financial markets (for example,

the Black-Scholes model in Samuelson [2015], also known as Samuelson model), unique prices for certain

contingent claims, for example, options. The Black-Scholes formula is one particular example of a model

that is embedded in the general theory constructed by Harrison and Kreps [1979], Duffie and fu Huang

[1986], Harrison and Pliska [1981a] and Kreps [1981].

The main result in Harrison and Kreps [1979] and Duffie and fu Huang [1986] says that, under the

absence of arbitrage opportunities, the there exists a probability measure under which the price processes

of the assets avaliable to trade is a martingale. Any contingent claim can be perfectly replicated through

the trade of an adequated portfolio and the cost to doing this is given by the expected value of its payoffs

with respect to this probability measure. More than this, it was given a complete characterizations for

certain types of market structures: a mathematical model of a financial market is arbitrage-free if and only

if there exists a risk neutral probability that transforms it in a martingale. This important result in known in

the literature of financial markets as The Fundamental Theorem of Asset Pricing, this nomenclature being

given by Dybvig and Ross [1989]. This result is not just a theorem, but a principle that allows to construct

a link between the no-arbitrage principle and the theory of martingales. With this link established, one

can study precise informations about the cost of replicating and adquiring certain contingent claims.

The first result that turned the general principle of no-arbitrage in a precise theorem was established

for the case of finite probability spaces by Harrison and Pliska [1981a]. A classical example of a model

constructed taking as base a finite probability space is the binomial model, also known as the Cox-Ross-
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Rubinstein model Cox, Ross, and Rubinstein [1979]. But the hypothesis of finite probability space

was very restrictive, being inadequated for dealing even with the first models of the theory of asset

pricing under no-arbitrage, such as the Brownian motion model established in Bachelier [1900] and the

Black-Scholes model. So, the problem of achieve results that can be applyed to more general frameworks

than the case of finite probability spaces remained open. To deal with more general frameworks, one

approach, as used in the Black-Scholes and in the Bachelier model Bachelier [1900], is to use the theory

of stochastic analysis. For example, one important result in this sense is the martingale representation

theorem for Brownian motion, presented in Durrett [1993].

Taking the work Kreps [1981] as initial point, it was developed a long field of research that gives

in results with strong mathematical rigor new versions of the Fundamental Theorem of Asset Pricing.

In this line, we can citet Delbaen and Schachermayer [1994] andDelbaen, Schachermayer, Mathematik,

Technische, and Zurich [2002]. In these papers it was presented a version concerned with general

Rd-valued semi martingales.

When frictions are present in the financial market in consideration, then the cost of replicating a given

contingent claim is not more uniquely determined by the expected value of its payoffs with respect to

an unique martingale measure. Moreover, not all securities can be exactly replicated anymore. In these

situations, the problem is now formulated in terms of super-replication of contingent claims, instead

of perfect replication. The precification of securities via super replication and its connection with the

principle of no-arbitrage has been an active and important topic of research in the literature of financial

markets. In the case of discrete time, we can citet the first established works, Bensaid, Lesne, Pagès, and

Scheinkman [1992], Dalang, Morton, and Willinger [1990] and Jouini and Kallal [1995a]. In continuous

time, we date back to Cvitanic and Karatzas [1993], Delbaen and Schachermayer [1994] and Delbaen and

Schachermayer [1996].

In Bensaid, Lesne, Pagès, and Scheinkman [1992] the initial point was the standard binomial option

pricing model. It was incorporated a friction in this model in the form of bid-ask spreads and then the

optimization problem defining the super-replication price under the hypothesis of no-arbitrage was solved

by dynamic programming. In Jouini and Kallal [1995a] it was considered an infinite state space framework

and the main result provides a characterization of arbitrage-free financial markets with bid-ask spreads, in

terms of martingale measures. Other examples of the incorporation of bid-ask spreads in the standard

frictionless and arbitrage-free model of financial market are Yeoman [1992], Boyle and Vorst [1992],

Dermody and Rockafellar [1991] and Edirisinghe, Naik, and Uppal [1993].

In Yeoman [1992] and Boyle and Vorst [1992] the binomial option pricing model of precification by

replication is generalized to include bid-ask spread on the stock. In Dermody and Rockafellar [1991] and

Edirisinghe, Naik, and Uppal [1993], it was remarked that the cost of perfect replication of contingent

claims can be unnecesseraly high, because there may exist feasible strategies that dominate the payoff of

the contingent claim at a lower initial cost when compared to perfect hedge.

An other type of possible friction is the presence of short sale constraints. In this scenario, the

characterization under absence of arbitrage opportunities is given in Jouini and Kallal [1995b]. In this

paper, it was showed that the financial market with this friction is arbitrage-free only and if only theres

exists an equivalent probability measure and a numeraire such that the price processes of the assets

avaliable to trade, normalized by the numeraire, are super martingales.

Still on the question of characterizing arbitrage-free financial markets through martingales, Naik
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[1995] gives a characterization in a discrete time, event-tree framework. In both papers, Jouini and Kallal

[1995b] and Naik [1995], it is assumed that there is no consumption in intermediate periods, that is, the

assets does not pay dividends in the periods between the first one and the last one. In this sense, Ortu

[2001] gives a contribution in a scenario that allows for intermediate dividend payment and positive

bid-ask spreads on all assets. In this paper, it was showed that the absence of arbitrage opportunities

is equivalent to the existence of mininum cost, super-replication strategies and underlying frictionless

state-prices. The author uses a linearized super replication problem and its dual to supply alternative

characterizations of absence of arbitrage opportunities. It is also presented a characterization of absence

of arbitrage opportunities in terms of martingales. The framework of this paper is the one we are going to

use in Chapter 1.

In the event-tree with dividends payment in the intermediate dates approach, we also have the results

in Baccara, Battauz, and Ortu [2006]. In this paper, it was employed linear programming techniques in

order to characterize absence of arbitrage opportunities in financial markets with bid-ask spreads. An

other innovation of this paper concerned with linear programming approach is that it allows for bid-ask

spreads at liquidation. An other contribution is that it was supplied a proof based on linear programming

to the fact that absence of arbitrage opportunities imposes an upper bound on the bid and a lower bound

on the ask price of a new security.

In a framework with uncertainty and two dates, today and one future period, Araujo, Chateauneuf,

and Faro [2012] gives a characterization of the super-replication price of contingent claims supposing

absence of arbitrage opportunities and incompleteness of a frictionless financial market with a riskless

bond. The uncertainty is given assuming that there are a finite number of possible states of the world and

the state occurred is revelead in the second period. Given a pricing rule

C ∶ RS → R,

that is, a function satisfying certain conditions that will be presented later in the present work, precifying

contingent claims, it was defined the following sets, associated to this function:

FC ∶= {x;C(x) +C(−x) = 0}
LC ∶= {x; y > x⇒ C(y) > C(x)}

It was showed that C ∶ RS → R, where S is the number of possible states of the world, is the super-

replication at minimum cost pricing rule of a frictionless and arbitrage-free financial market with a riskless

bond if and only if FC = LC .

It is well known (see, for example, Theorem 4 in Araujo, Chateauneuf, and Faro [2018]) that a

function C ∶ RS → R is a pricing rule if and only if there exists a unique convex and closed set K ⊂ ∆S−1

of probability measures where at least one is strictly positive such that

C(x) = max
P∈K

EP[x], ∀ x ∈ RS

Taking this characterization, the authors in Araujo, Chateauneuf, Faro, and Holanda [2019] provided a

geometric characterization for the set K of probability measures for the super-replication at mininum cost

pricing rule of a frictionless and arbitrage-free financial market with a riskless asset and one uncertain

future period.

The results in the present thesis are concerned with the same questions as in the last two papers

citetd above. In Chapter 1, in a multi-period framework, it will be presented a characterization of the
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super-replication at minimum cost pricing rule in terms of an equality of sets, for the same market structure

considered in Araujo, Chateauneuf, and Faro [2012], that is, without any kind of friction, arbitrage-free

and with a risk free asset.

Objective

The objective of the present work is to characterize the super-replication pricing rule for different structures

of financial markets under the hypothesis of absence of arbitrage opportunities. We analyse two types of

configuration of financial market: in chapter 1 it is considered a multi-period frictionless and arbitrage-free

financial market. We present a characterization for the minimum cost super-hedging pricing rule in terms

of an equality of two specific sets, extending the result in Araujo, Chateauneuf, and Faro [2012] to the

case of more than one future period. For this, we construct “submarkets” with only one future period

and use the existent results to this case to derive our characterization. In chapter 2, we consider again a

multi-period configuration but this time we incorporate stochastic interest rates for borrowing and lendind,

varying between dates and between assets. Under the no-arbitrage principle, we show the existence of

vector of discount factors to financial markets with this configuration and then use this result to write the

minimum cost super-hedging pricing rule in this case.
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Chapter 1

Markets Without Frictions

1.1 Framework and Definitions

The framework used in the present work is the one specified in Ortu [2001]. We consider a financial

market with a finite time horizon indexed by T = {0,1, ..., T}. In each of the periods, agents can buy

and sell J + 1 kinds of assets, Xj , j ∈ {0,1, ..., J} one of which is riskless and the other J are risky ones.

The randomness of the risky assets’ prices and dividend flows are based on a finite probability space

(Ω,F ,P), being defined as a pair {(qj(t), dj(t))}Tt=0 of stochastic processes, for each asset j ∈ {1, ..., J}.

The uncertainty in each of the dates will be inserted in the framework assuming that there are st states of

the world in time t = 1, ..., T . We consider the σ-algebra of the parts of Ω, F = 2Ω and a strictly positive

probability, P, on 2Ω ∖ ∅. The investors share an information flow described by the filtration {Ft}Tt=0 of

F , where F0 = Ω,FT = F .

The actions of the agents in the market are concretized through couples {θ(t)}Tt=0 = {θA(t), θB(t)}Tt=0

of stochastic processes, with θA(t) = {θAj (t)}Jj=0, θ
B(t) = {θBj (t)}Jj=0, where θAj (t) is the quantity of

units of asset j bought and θBj (t) the quantity sold, in time t. So, as we are considering two stochastic

processes to represent quantities bought and sold, instead of assuming negative values to that sold, we

will say that a dynamic trading strategy is feasible if it is non-negative, and will denote the set of feasible

dynamic trading strategy by Θ. An element θ ∈ Θ gives to its owner a return of xθ(t) in the date

t = 0,1, ..., T . The cashflow process generated in these terms is than given by:

xθ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−q(0) ⋅ [θA(0) − θB(0)] t = 0

d(t) ⋅∑t−1
τ=0[θA(τ) − θB(τ)] − q(t) ⋅ [θA(t) − θB(t)] t = 1, ..., T − 1

d(T ) ⋅∑T−1
τ=0 [θA(τ) − θB(τ)] t = T

In time 0, it is the negative of the initial cost imposed by the dynamic trading strategy θ. In the

intermediate periods t = 1, ..., T − 1, the investor starts with the dividends generated by the net positions

that he owns on the J + 1 assets, referents to the previous dates, and has a cost to update these positions.

So, the cashflow in these stages is the difference between these two quantities. As in the last we assume

there are no more trades, the agents only liquidate their final net positions, gaining the revenue of the

dividends created by these positions.

An important concept in the literature of financial markets is that of arbitrage, that means the possibility

of risk-free gains, positive returns without costs. In our context, an arbitrage opportunity occurs when:
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1. the investor has a positive cashflow in some of the intermediate periods or in the terminal one and a

non-negative in all the other periods (less the initial one), but a null or negative cost, in the initial

date, to trade the strategy (θA(0), θB(0)) or;

2. the investor has a negative cost in the initial date and a non-negative cashflow in all the intermediate

periods and in the terminal one.

In formal terms we are saying that:

Definition 1.1. (Arbitrage)

A dynamic trading strategy θ ∈ Θ such that xθ(t) ≥ 0 ∀ t is an arbitrage opportunity if one of the

following two conditions happens:

1. xθ(t) > 0 for some t > 0;

2. xθ(0) > 0.

The fundamental elements necessary to formally define a financial market are now presented and we

can define:

Definition 1.2. (Frictionless Financial Market)

A frictionless financial market with T periods is a tripleM = (xj ,{qj(t)}Tt=0,{dj(t)}Tt=0; 0 ≤ j ≤ J),

where xj are the assets and Sj , dj are the assets’ price processes and dividend processes, respectively.

Our interest in the present work is to study questions concerned with mathematical implications of

the absence of arbitrage opportunities. Such issues will be discussed further on. By now, we impose the

non-arbitrage condition in the framework:

Definition 1.3. We say the marketM is arbitrage-free if ∄ θ ∈ Θ such that θ is an arbitrage opportunity.

That is, if

θ ∈ Θ, xθ(t) ≥ 0 ∀ t⇒ xθ(t) = 0 ∀ t

In Definition 1.3 the conditions 1. and 2. from Definition 1.1 are put together.

Hypothesis 1.1. The financial marketM we consider here is arbitrage-free.

Now, we have all the components necessary to deal with the goals we are interested in inside the

structure of the financial market being analysed. In the next section, we are going to construct through

steps the problem on which the results are based on.

The main object necessary to specify how the trades made by the investors are precified is what is

called contingent claim in the language of financial markets. So, first of all, let us construct the meaning

of it.

Considering a financial market M = (Xj ,{qj(t)}Tt=0,{dj(t)}Tt=0; 0 ≤ j ≤ J), the assets’ payoffs

is a random variable x ∶ Ω → R∑
T
t=1 st defined on the measurable space (Ω,F). Let us consider the

σ-algebra of subsets of Ω generated by x, that is, denoting it by G, we have G ∶= x−1(B(R∑T
t=1 st)), where

B(R∑T
t=1 st) is the Borel σ-algebra on R∑

T
t=1 st , adopting the Euclidean topology in R∑

T
t=1 st . Consider now

the set B(G) of all bounded (in the Euclidean norm in R∑
T
t=1 st), R∑

T
t=1 st-valued, G-measurable functions

on (Ω,F) equipped with the the sup norm (∥⋅∥∞), that is, B(G) ∶= {f ∶ Ω → R∑
T
t=1 st ; ∥f∥2 ≤ c, for
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some c ∈ R; f G-measurable}, where ∥f∥∞ ∶= sup
ω∈Ω

∥f(ω)∥2. From Charalambos D. Aliprantis [2006],

theorem 4.41, we have that ∀f ∈ B(G) ∃ gf ∶ R∑
T
t=1 st → R∑

T
t=1 st Borel-measurable such that f = gf ○ x.

In this way, we identify the set of random payoffs of derivatives contingent on x with B(G). So, we

define:

Definition 1.4. (Contingent Claim)

A contingent claim is an element f ∈ B(G).

These objects are those that will be priced in the financial market in consideration. We need to specify

this pricing process. The following definition give us the way of doing this.

Definition 1.5. (Pricing Rule) A pricing rule is a R-valued function C ∶ B(G)→ R that satisfies:

1. C(λx) = λC(x) ∀ λ ∈ R;

2. C(x + y) ≤ C(x) +C(y), ∀ x, y ∈ B(G);

3. a) x ≥ 0⇒ C(x) ≥ 0

b) x > 0⇒ C(x) > 0;

4. C(x + k1{Ω}) = C(x) + k, ∀ x ∈ B(G), ∀ k ∈ R;

5. C(1{Ω}) = 1;

6. x, y ∈ B(G), x(t) ≥ y(t) ∀ t⇒ C(x) ≥ C(y)

Condition 1. says that C(⋅) positively homogeneous.

Condition 2. imposes to C(⋅) the property of subadditivity, which says that, given two contingent

claims x, y ∈ B(G), it is more expensive to buy them separately than the combination of both. The

marketed contingent claims in the financial market are priced buy some exogenous pricing rule C ∶
B(G) → R. If an investor wants to buy a contingent claim x ∈ B(G), C(x) is the cost he has in doing

this.

Condition 3. says that the pricing rule is arbitrage-free, that is, if an investor wants to buy a contingent

claim with non-negative payoffs, then he has to spend a non-negative quantity of money when doing this.

Moreover, if the claim has strictly positive returns than the cost of it is strictly positive.

Condition 4. is the property called constant additivity.

Condition 5. says that the pricing rule is normalized and condition 6. is the property of monotonicity,

which says that contingent claims with better payoffs are more expensive.

1.2 Markets with Two Future Periods

When dealing with financial markets, the non-arbitrage hypothesis generates important mathematical

consequences concerned with pricing rules. It is well know that in the case of frictionless complete

markets, the ausence of arbitrage opportunities implies that the contigent claims can be perfectly hedged

and their prices are given by the mathematical expectation of their returns with respect to the unique

existent equivalent martingale measure. The claim is so priced by the called arbitrage pricing rule. This

result was first proved in discrete time by Ross [1976] and in continuous time by Harrison and Pliska
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[1981b]. The equivalent probability can be understood as prices in different states of nature, one period

ahead, of one monetary unity. However, in cases of incomplete markets, not all contingent claims can

be exactly replicated by dynamic trading strategies. Moreover, the equilavent martingale measure is not

more unique. So, in these sceneries, it is necessary to reformulate the problem of finding prices to the

contingent claims, substituting the perfect hedge and uniqueness of the expected payoffs by other proper

notions.

In the literature of financial markets, the most common alternativa of dealing with the difficult of

pricing contingent claims under market frictions is to consider the super-hedging problem. Instead of only

a perfect replication, it is now considered that the duplication will be equal or greater than the claim. In

the following, we define the problem in mathematical terms.

π(x) = inf
θ∈Θ

−xθ(0)

s.t. xθ(t) ≥ x(t) ∀ t ∈ {1, ..., T} (1.1)

In words, π(x) is the minimum cost to construct a dynamic trading strategy that has a return of at least

the return of the contingent claim x, in each period. First of all, let us verify that π(⋅), as defined above, is

a pricing rule according to Definition 1.5.

Lemma 1.1. The function value π(⋅) defined in (1.1) is a pricing rule.

Given a contingent claim x = (x(1), ..., x(T )) ∈ B(G), the solution π(x) to the problem above is

called the super hedging price of x. Our interest is to study certain consequences of the ausence of

arbitrage hypothesis to the prices defined in this way. By Lemma 1.1 we have that π(⋅) is a pricing rule.

In markets with only one future period, we have by Peter J. Huber [2009], Proposition 10.1, the

following characterization of pricing rules:

Theorem 1.1. The function C ∶ RS → R is a pricing rule if and only if there exists a convex and closed

set K of probability measures where at least one of them is strictly positive such that:

C(x) = max
P∈K

EP(x) ∀ x ∈ RS (1.2)

In our context of multi-period financial markets, through the indetification ⨉Tt=1 RSt ≅ R∑
T
t=1 St and

after some symplex normalizations we obtain the result below:

Proposition 1.1. The function C ∶ B(G) → R is a pricing rule as defined in Definition 1.5 if and only

if there exist convex and closed sets Kt ⊆ ∆St−1, t = 1, ..., T,K = ⨉Tt=1Kt of probability measures Pt
defined on (Ωt,At) and P ∶= (P1, ...,PT ) such that

C(x) = max
Pt∈Kt

T

∑
t=1

ctEPt[x(t)] ∀ x = (x(1), ..., x(T )) ∈ B(G),

where ct > 0 are constants.

So, any contingent claim x ∈ B(G) can be precified as the sum of its expected returns in each period,

multiplied by a constant.
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We are interested in understanding the set K = ⨉Tt=1Kt associated to the superhedging pricing rule of

a frictionless and arbitrage-free financial markets with two or more future periods. In the case of only

one future period, Araujo, Chateauneuf, and Faro [2012] showed that C ∶ RS → R written in the form of

equation (1.2) is the superhedging pricing rule of a frictionless and arbitrage-free financial market with

one bond if and only if FC = LC , where

FC = {x;C(x) +C(−x) = 0} (1.3)

LC = {x; y > x⇒ C(y) > C(x)} (1.4)

The set (1.3) is called the set of frictionless securities, that is, the securities whose bid and ask prices

are the same.

The set (1.4) is called the set of undominated securities. These are the securities such that if we take

an other security which payoff is greater than that one, than it is more expensive then the original one.

A first question that appears is: In the context of multi period financial markets, as defined previously,

do we have the same characterization of the super hedging pricing rule in the absence of arbitrage

opportunities? That is, can we say that a pricing rule C ∶ B(G)→ R satisfies FC = LC if and only if it is

the super hedging pricing rule of the market in consideration? We will see that the answer is no. We will

see that, in aa multi-period framework, the set FC of frictionless securities is replaced by a new set GC ,

that is, the characterization will be given by GC = LC .

We are going to see that we still have an equality of sets that characterizes a pricing rule being a super

hedging pricing rule of a frictionless and arbitrage-free multi period financial market, but instead of the

set FC we will have another one, GC , to be defined soon.

The idea to obtain this result is, first, given a financial market with two future periods, we are going

to define markets with only one future period and use them to get conclusions about the multi period

financial market. Then, by an induction argument we use this result to prove the case with three or more

future periods. It will be clear in the next pages after some definitions and specifications. So, let us doing

this.

Consider a financial market with 3 periodsM = (xj ,{qj(t)}2
t=0,{dj(t)}2

t=0,0 ≤ j ≤ J).

Define the following two markets with 2 periods:

M1 ∶= (xj , q1
j , d

1
j ,0 ≤ j ≤ J), where q1

j ∶= qj(0), d1
j ∶= dj(1);

M2 ∶= (xj , q2
j , d

2
j ,0 ≤ j ≤ J), where q2

j ∶= qj(0), d2
j ∶= dj(2).

With these markets defined, we have the following equivalence:

Lemma 1.2. The financial market M is frictionless and arbitrage-free if and only if M1,M2 are

frictionless and arbitrage-free.

Through Lemma 1.2, we can verify if a financial market with three periods is frictionless and arbitrage-

free checking if the “submarkets” with two periods is frictionless and arbitrage free.

In the following example we illustrate Lemma 1.2.
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Example 1.1. Consider the financial marketM = (xj ,{qj(t)}2
t=0,{dj(t)}2

t=0,0 ≤ j ≤ J) such that

dj(1), dj(2) ∽ U(0,1) ∀ j ≠ 0

qj(1) ∽ U(1,2)

The cashflow process for the marketM is

xθ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−q(0) ⋅ [θA(0) − θB(0)] t = 0

d(1) ⋅ [θA(0) − θB(0)] − q(1) ⋅ [θA(1) − θB(1)] t = 1

d(T ) ⋅∑1
τ=0[θA(τ) − θB(τ)] t = 2

The financial marketM1 = (xj , q1
j , d

1
j) is specified by

q1
j ∶= qj(0) ∀j ∈ {0, ..., J}
d1
j ∶= dj(1) ∀j ∈ {0, ..., J},

with cashflow process

x1
θ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−q(0) ⋅ [θA(0) − θB(0)] t = 0

d(1) ⋅ [θA(0) − θB(0)] t = 1

Suppose the marketM1 is not arbitrage-free. Then exists θ ∈ Θ such that

x1
θ(0) = −q(0) ⋅ [θA(0) − θB(0)] ≥ 0;

d(1) ⋅ [θA(0) − θB(0)] > 0

Define

θ̄A(1) ∶= θB(0) ∀j ∈ {0, ..., J} and

θ̄B(1) ∶= θA(0) ∀j ∈ {0, ..., J}

Then we have

θ̄A(1) − θ̄B(1) = −[θA(0) − θB(0)] ∀j
⇒ qj(1)[θAj (1) − θBj (1)] = −qj(1)[θA(0) − θB(0)] ∀j
⇒ dj(1)[θA(0) − θB(0)] − qj(1)[θ̄A(1) − θ̄B(1)] = dj(1)[θA(0) − θB(0)] + qj(1)[θA(0) − θB(0)]

As qj(1) > dj(1) a.s. ∀j, the last inequality implies that

dj(1)[θA(0) − θB(0)] + qj(1)[θA(0) − θB(0)] > 2dj[θAj (0) − θBj (0)],

which implies

xθ̄(1) = d(1) ⋅ [θ̄A(0) − θ̄B(0)]

= 2
J

∑
j=0

dj(1)[θAj (0) − θBj (0)] > 0

So, in summary, we got:

xθ̄(0) ≥ 0;

xθ̄(1) > 0,

that is, θ̄ = (θ̄A, θ̄B) is an arbitrage opportunity in the financial marketM.
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Now, let us link the super hedging pricing rule of the market with two future periods with the super

hedging pricing rules of the markets with only one future period, as defined previously.

Given a pricing rule C ∶ B(G)→ R in the financial marketM, writing

C(x) = max
Pt∈Kt

{
2

∑
t=1

ctEPt[x(t)]} ,

define the following functions:

Ct ∶ RSt → R t = 1,2 such that

C1(x) ∶= 1
c1
C((x; 0))∀x ∈ RS1 ;

C2(x) ∶= 1
c2
C((0;x))∀x ∈ RS2 .

These functions are important because they are the super-replication at mininum cost pricing rules

in the markets with two periods. As we will see, we can use them to know if a given pricing rule

C ∶ B(G)→ R is the super-replication at minimum cost price in the multi-period financial marketM in

which we are interested in.

Also, define the following sets:

FCt ∶= {x ∈ RSt
;Ct(x) +Ct(−x) = 0}, t = 1,2

GC ∶= {x = (x(1), x(2)) ∈ B(G);C((x(1),−x(2))) +C((−x(1), x(2))) = 0}

L1
C ∶= {x = (x(1), x(2)) ∈ B(G); y(1) > x(1)⇒ C(y) > C(x)}

L2
C ∶= {x = (x(1), x(2)) ∈ B(G); y(2) > x(2)⇒ C(y) > C(x)}

LC ∶= L1
C ∩L2

C

LC ∶= {x; y > x⇒ C(y) > C(x)}
In the sets above, y(t) > x(t) means ys(t) ≥ xs(t) ∀ s ∈ St, ys∗(t) > xs∗(t) for some s ∈ St. That is,

if we replace, in some state, the payoff of the contingent claim x by a better payoff from a claim y then y

is strictly more expensive than x.

Observe that the sets FCt are the sets of frictionless securities (as defined previously by Araujo,

Chateauneuf, and Faro [2012]) under the pricing rule Ct in the marketMt, t = 1,2, respectively.

Also, observe that LtC is the projection of LC in RSt , t = 1,2. Indeed, LC = LC , as we prove in the

following Lemma:

Lemma 1.3. LC = LC .

An important and interesting characteristic of the set GC previously defined is that it has an structure

of linear subspace.

Lemma 1.4. GC is a linear subspace.
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An important fact is that the securities in the set GC are such that if x = (x(1), x(2)) ∈ GC then, if

we look to each coordinate, it is a frictionless security in each of the markets with one future period, that

is, x(1) is a frictionless security in the marketM1 and x(2) is a frictionless one in the marketM2.

Lemma 1.5. x = (x(1), x(2)) ∈ GC ⇔ x(t) ∈ FCt , t = 1,2

We also have important relations between the super-replication pricing rule of the market with two

future periods,M and the super-replication prices of the markets with one future period,M1 andM2.

It is interesting that we can recuperate the super-replication at minimum cost pricing rules of the

marketsM1 andM2 through the super-replication price of the financial marketM. This is the statement

of Lemma 1.6.

Lemma 1.6. Suppose the frictionless marketM = (xj ,{Sj}2
t=0,{dj(t)}2

t=0,0 ≤ j ≤ J) is arbitrage-free.

If the function C ∶ B(G)→ R is the super-replication at minimum cost pricing rule in the financial market

M then Ct ∶ Rst → R is the super-replication at minimum cost pricing rule in the financial marketMt,

t = 1,2, respectively.

We also have that, if C1(⋅),C2(⋅) as previously defined are the super-replication at minum cost pricing

rule of the marketsM1,M2, respectively, then C(⋅) is the super-replication at minimum cost pricing rule

of the financial marketM. This result will be constructed by steps, through the next Lemmas.

Lemma 1.7. IfCt ∶ RSt → R defined byC1(x) ∶= ( 1
c1
)C(x; 0), ∀ x ∈ RS1 ,C2(y) ∶= ( 1

c2
)C(0; y) ∀ y ∈

RS2 is the super-replication at minnimum cost pricing rule of the frictionless and arbitrage-free financial

marketM1,M2, respectively, then C ∶ B(G)→ R is linear and strictly posive in GC and has the form

C(x) = max
P∈QC

{c1EP1[x(1)] + c2EP2[x(2)]} ∀ x = (x(1), x(2)) ∈ RS1 ×RS2 ,

where

QC ∶= {P = (P1;P2) ∈ ∆S1−1
++ ×∆S2−1

++ ; c1EP1[x(1)]+c2EP2[x(2)] = C(x) ∀ x = (x(1), x(2)) ∈ GC)},

c1, c2 > 0 constants

Lemma 1.8. If the function C ∶ RS1 ×RS2 → R is linear and strictly positive in GC and has the form

C(x) = max
P∈QC

{c1EP1[x(1)] + c2EP2[x(2)]} ∀ x = (x(1), x(2)) ∈ RS1 ×RS2 ,

where

QC ∶= {P = (P1;P2) ∈ ∆S1−1
++ ×∆S2−1

++ ; c1EP1[x(1)]+c2EP2[x(2)] = C(x) ∀ x = (x(1), x(2)) ∈ GC)},

c1, c2 > 0 constants, then C ∶ RS1 ×RS2 → R is the super-replication at mininum cost pricing rule of the

financial marketM.

Lemma 1.7 and Lemma 1.8 together implies the following result, which allows to know, given a

pricing rule C(⋅) in the market M, if it is the super-replication at minimum cost price through the

super-replication at minimum cost price of the marketsMt, t = 1,2:
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Lemma 1.9. Consider the two frictionless and arbitrage-free financial marketsM1,M2. If Ct ∶ RSt → R
is the super-replication at minimum cost pricing rule of the financial marketMt, t = 1,2, respectively,

then C ∶ B(G)→ R is the super-replication at minimum cost pricing rule of the financial marketM.

Finally, joining Lemma 1.6 and Lemma 1.9 we have the following Proposition:

Proposition 1.2. Consider the frictionless and arbitrage-free financial marketM. Then C ∶ B(G)→ R,

C(x) = max
Pt∈Kt

2

∑
t=1

ctEPt[x(t)]

is the super-replication at minimum cost pricing rule ofM if and only if Ct ∶ RSt → R, t = 1,2 defined by

C1(x) ∶= 1
c1
C(x; 0) ∀ x ∈ RS1 ,C2(y) ∶= 1

c2
C(0; y) ∀ y ∈ RS2 is the super-replication at minimum cost

pricing rule ofM1,M2, respectively.

Corollary 1.1. x = (x(1), x(2)) ∈ GC ⇔ x ∈ LC

Finally, as a consequence of the previous proposition and corollary, we have:

Proposition 1.3. The function C ∶ B(G)→ R is the super-replication at minimum cost pricing rule of a

frictionless and arbitrage-free financial market with 3 periodsM = (xj ,{qj(t)}2
t=0,{dj(t)}2

t=0,0 ≤ j ≤ J)
if and only if GC = LC .

The following example is an adaptation of an example in Castagnoli, Maccheroni, and Marinacci

[2002].

Example 1.2. Consider we have a financial market with three periods: today (t = 0) and two future dates

(t = 1,2, T = 3). We assume that in the second and in the third period there are two possible states of the

world, that is, S1 = S2 = 2. Define the following probabilities P = (P1;P2) ∈ ∆S1−1
++ ,∆S2−1

++ :

P1
t ∶= (1

2
,
1

2
) , t = 1,2

P2
t ∶= (1

3
,
2

3
) , t = 1,2

And the pricing rule C ∶ B(G)→ R by

C(x) ∶ max
P=(P1;P2)∈K

{EP1[x(1)] +EP2[x(2)]}

where

K = {αP1 + (1 − α)P2;α ∈ [0,1]}

Then

C(x) = max
α∈[0,1]

{α
2
[x1(1) + x2(1)] +

1 − α
3

[x1(2) + x2(2)]} , ∀ x = (x(1), x(2)) ∈ B(G)

For any x = (x(1), x(2)) ∈ B(G) we have

C((x(1),−x(2))) = max
α∈[0,1]

{α
2
[x1(1) + x2(1)] −

1 − α
3

[x1(1) + x2(2)]}
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C((−x(1), x(2))) = max
α∈[0,1]

{−α
2
[x1(1) + x2(1)] +

1 − α
3

[x1(1) + x2(2)]}

Let α1, α2 ∈ [0,1] such that

C((x(1),−x(2))) = α1

2 [x1(1) + x2(1)] − 1−α1

3 [x1(1) + x2(2)];

C((−x(1), x(2))) = −α2

2 [x1(1) + x2(1)] + 1−α2

3 [x1(1) + x2(2)]

Then we have C((x(1),−x(2))) +C((−x(1), x(2))) = 0 if and only if

α1

2
[x1(1) + x2(1)] −

1 − α1

3
[x1(1) + x2(2)] −

α2

2
[x1(1) + x2(1)] +

1 − α2

3
[x1(1) + x2(2)] = 0

⇔ α1 − α2

2
[x1(1) + x2(1)] +

α1−2

3
[x1(2) + x2(2)] = 0

⇔ 3(α1 − α2)[x1(1) + x2(1)] + 2(α1 − α2[x1(2) + x2(2)])
6

= 0

⇔ 3(α1 − α2)[x1(1) + x2(1)] = −2(α1 − α2[x1(2) + x2(2)]

⇔ [x1(1) + x2(1)] = −
2

3
[x1(2) + x2(2)]

Then

GC = {x = (x(1), x(2)) ∈ B(G); [x1(1) + x2(1)] = −
2

3
[x1(2) + x2(2)]}

By analogous calculations we obtain

FC = {x = (x(1), x(2)) ∈ B(G); [x1(1) + x2(1)] =
2

3
[x1(2) + x2(2)]}

So, we have

GC ≠ LC

Now, take x = ((1,1), (2,2)). It is easy to verify that x ∈ LC .

Take y ∈ B(G) such that y1(1) > x1(1), y2(1) ≥ x2(1), y(2) ≥ x(2). Then

y1(1) + y2(1) > x1(1) + x2(1),

Implying that
α

2
[y1(1) + y2(1)] >

α

2
[x1(1) + x2(1)] (1.5)

Moreover

y1(2) + y2(2) ≥ x1(2) + x2(2)

Implying that
1 − α

3
[y1(2) + y2(2)] ≥

1 − α
3

[x1(2) + x2(2)] (1.6)
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(1.5) and (1.6) together implies

C(y) > C(x),

By analogous arguments we show that if y2(1) > x2(1), y1(1) ≥ x1(1), y(2) ≥ x(2) or y(1) ≥
x(1), y(2) > x(2) then

C(y) > C(x),

that is, x ∈ LC .

So, in summary, x ∉ GC , x ∈ LC , so GC ≠ LC .

Therefore, by Proposition 1.3, C(⋅, ⋅) is not the super-replication at minimum cost pricing rule of the

financial market in question.

1.3 Markets with More than Two Future Periods

Now, consider a financial market with 4 periodsM = (xj ,{qj(t)}3
t=0,{dj(t)}3

t=0,0 ≤ j ≤ J).

Giving a pricing rule C ∶ B(G)→ R in the marketM, define the following sets:

G1
C ∶= {C(xD1) +C(−xD1) = 0}

G2
C ∶= {C(xD2) +C(−xD2) = 0}

G3
C ∶= {C(xD3) +C(−xD3) = 0},

where Dt, t = 1,2,3 are the diagonal matrices defined by

Dt[ii] ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if St−1 + 1 ≤ i ≤ St
−1 otherwise

Similarly to the case with three periods, we are going to define, for the case with four periods, two

financial markets with three periods, in the following way:

M1 ∶= (xj ,{q1
j (t)}2

t=0,{d1
j(t)}2

t=0,0 ≤ j ≤ J);

q1
j (t) ∶= qj(t), d1

j(t) ∶= dj(t),∀t,∀j

M2 ∶= (xj ,{q2
j (t)}2

t=0,{d2
j(t)}2

t=0,0 ≤ j ≤ J);

q2
j (t) ∶= qj(t), d2

j(t) ∶= dj(t), t = 0,1;

S2
j (2) ∶= qj(3), d2

j(2) ∶= dj(3),∀j

And then define the following functions:
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C1 ∶ RS1 ×RS2 → R; C2 ∶ RS1 ×RS3 → R such that

C1((x(1); (x(2)))) ∶= C((x(1);x(2); 0));

C2((x(1); (x(3)))) ∶= C((x(1); 0;x(3)))

And the sets

GC1 ∶= {x ∈ ⨉2
t=1 RSt ;C1((x(1),−x(2))) +C1(−x(1);x(2)) = 0}

GC2 ∶= {x ∈ RS1 ×RS3 ;C2((x(1);−x(3))) +C2((−x(1);x(3))) = 0}

We have then the following results, analogous to the previous case with 3 periods:

Lemma 1.10. The financial market M is frictionless and arbitrage-free if and only if M1,M2 are

frictionless and arbitrage-free.

Proposition 1.4. Suppose the market M is arbitrage-free. Then the function C ∶ B(G) → R is the

super-replication at minimum cost pricing rule in the financial marketM if and only if C1 ∶ Rs1 ×Rs2 →
R,C2 ∶ Rs1 × Rs3 → R is the super-replication at minimum cost pricing rule in the financial market

M1,M2, respectively.

Lemma 1.11. x = (x(1);x(2);x(3)) ∈ GC ⇔ (x(1), x(2)) ∈ GC1 and (x(1);x(3)) ∈ GC2

Corollary 1.2. x = (x(1);x(2);x(3)) ∈ GC = G1
C ∩G2

C ∩G3
C ⇔ x ∈ LC = L1

C ∩L2
C ∩LC3.

As consequence of Lemma 1.11 and Corollary 1.2, we have the result for the case with 4 periods (3

future periods).

Proposition 1.5. The function C ∶ B(G)→ R is the super-replication at minimum cost pricing rule of a

frictionless and arbitrage-free financial market with 4 periodsM = (xj ,{qj(t)}3
t=0,{dj(t)}3

t=0,0 ≤ j ≤ J)
if and only if GC = LC .

This bring us to the general case with T periods, defining

GtC ∶= {x;C(xDt) +C(−xDt)} = 0, t = 1, ..., T,

where Dt, t = 1, ..., T are the diagonal matrices defined by

Dt[ii] ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if St−1 + 1 ≤ i ≤ St
−1 otherwise

GC ∶= ⋂Tt=1G
t
C , LC ∶= ⋂Tt=1L

t
C .

Notice that each set GtC as defined above suggests the intuition that, if we consider contingent claims

in the format y = xDt, then GtC would be the set of frictionless securities of a market with only one future

period and claims in the form y = xDt.
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So, by an induction argument, we have the following result for the general case with T periods:

Theorem 1.2. The function C ∶ B(G)→ R is the super-replication at minimum cost pricing rule of a fric-

tionless and arbitrage-free financial market with T periodsM = (xj ,{qj(t)}Tt=0,{dj(t)}Tt=0,0 ≤ j ≤ J)
if and only if GC = LC .

To see that Theorem 1.2 is a generalization on Theorem 5 in Araujo, Chateauneuf, and Faro [2012],

let us show that, in Examples 1.2 and 1.3, that GC ≠ FC .

We saw that

GC = {x = (x(1), x(2)) ∈ B(G); [x1(1) + x2(1)] = −
2

3
[x1(2) + x2(2)]}

By analogous calculation to that used to find GC we obtain

FC = {x = (x(1), x(2)) ∈ B(G); [x1(1) + x2(1)] =
2

3
[x1(2) + x2(2)]}

So, we have

GC ≠ LC

Example 1.3. Consider a financial market with two future periods but uncertainty only in the last period,

in which we have two states of nature, that is, S1 = 1, S2 = 2. Also, consider a pricing rule given by

C(x) = max
α∈[0, 1

2
]
{αx(1) + (1 − α)[x1(2) + x2(2)]}

Graphically, we can see that the sets FC and GC are different:

Araujo, Chateauneuf, and Faro [2012] gave a geometric characterization for the super-hedging at

minimum cost pricing rule of a frictionless and arbitrage-free market with one future period, in terms of a

property called non-expansibility.

In the next, we present this property and we give an other characterization for the super-hedging at

minimum cost pricing rule for our market framework, in terms of this property.
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Definition 1.6. (Non-expansible Set) We say that K ⊂ ∆ is non-expansible if:

P, Q ∈ K⇒ {αP + (1 − α)Q;α ∈ R} ∩∆ ⊂ K

Now, in order to give a characterization in terms of the non-expansibility property we will rewrite the

pricing rule, through the following Proposition:

Proposition 1.6. The function C ∶ ⨉Tt=1 RSt → R is a pricing rule if and only if there exist convex and

closed sets Kt ⊆ ∆St−1, t = 1, ..., T,K = ⨉Tt=1Kt of probability measures Pt defined on (Ωt,At) and

P ∶= (P1, ...,PT ) such that

C(x) = max
Pt∈Kt

T

∑
t=1

ctEPt[x(t)] ∀ x = (x(1), ..., x(T )) ∈
T

⨉
t=1

RSt ,

where ct > 0 are constants.

In Araujo et al. [2019], it was proved that, in a one future period framework, that:

Proposition 1.7. Let K be a non-expansible polytope with at least one interior point, then

C(X) ∶= max
P∈K

EP[X] (1.7)

satisfy LC = FC . Also, if C is a pricing rule satisfying FC = LC , then K is a non-expansible polytope

with at least one interior point.

As a consequence of the Theorem 1.2 , Proposition 1.6, Proposition 1.7, Lemma 1.3 and 1.5 together

we have (because we than have several markets with only one future period satisfying conditions of

Theorem 5 in Araujo et al. [2012] and so FC = LC for each of them):

Corollary 1.3. A pricing rule

C(x) = max
Pt∈Kt

T

∑
t=1

ctEPt[x(t)],∀x = (x(1);⋯;x(T )) ∈
T

⨉
t=1

RSt

is the super-hedging at minimum cost pricing rule of a frictionless and arbitrage-free financial market

with T periods if and only if the sets Kt ⊂ ∆St−1 are non-expansible.
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Chapter 2

Markets with Interest Rates

2.1 Framework and Definitions

In the previous section, we dealt with frictionless financial markets. Now, we impose a type of friction:

transaction costs. We study the implications of ausence of arbitrage opportunities to the assets’ prices.

First, we define the structure of this new market, considering the friction mentioned.

As previously, we consider J + 1 assets, where one is the frictionless bond and the other J are risky

assets. But now the return of the assets are specified through different interest rates for borrowing and

lending. Based on the same probability space (Ω,F ,P) and filtration {Ft}Tt=0 defined in the previous

section, we mantain the adapted stochastic processes {qj(t)}Tt=0 representing the prices of the assets,

j ∈ {0, ..., J} and introduce new processes {αj(t)}Tt=0,{βj(t)}Tt=0 also adapted to the filtration {Ft}Tt=0

denoting the interest rates of each asset j, with αj(t) ≥ 0 and 1 > βj(t) ≥ 0. The investor gets

(1 − βj(t))qj(t) if selling one unit of asset j in time t and pays (1 + αj(t))qj(t) if buying one unit of

asset j.

We assume again dynamic trading strategies as couples {θj(t)}Tt=0 = {θAj (t),
θBj (t)}Tt=1 ∈ Θ of stochastic processes adapted to {Ft}Tt=0, where θAj (t), θBj (t) are the quantities of units

of asset j bought and sold, respectively, in time t ∈ {0, ..., T}.

For each asset j and each period t we create the functions φtj ∶ RJ+1 × RJ+1 → R defined in the

following way:

φtj ∶ RJ+1 ×RJ+1 → R defined by

φtj(e, f) ∶= (1 + βj(t))e − (1 + αj(t))f ∀ e, f ∈ R ×R

And the map φ ∶ RJ+1 ×RJ+1 → RJ+1 specified by

φt(x, y) ∶= (φt0(x, y), ..., φtJ(x, y)) ∀ x, y ∈ RJ+1 ×RJ+1

We suppose the investor has an endowment ν ∈ R in time t = 0 and then with this motivation let us

define the cone:

V0 ∶= {(a, θ) ∈ R ×Θ;a ≥ q(0) ⋅ φ0(θA(0), θB(0))} (2.1)

In time 0, one pays xθ(0) to construct the portfolio θ(0). So, supposing he has a in cash in time 0,

what condition (2.1) says is that a trader needs to have a quantity in cash that is equal or higher than the
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cost of imposing the portfolio θ(0).

Example 2.1. Suppose we are inside a financial market with three periods: today, tomorrow and after

tomorrow and some trader has $ x in cash in her bank account today. She wants to protect herself

against losses due to fluctuations over some financial instrument, an investment, for example. To this, she

constructs a strategy θ(0) today that will give some return tomorrow and after tomorrow and costs $ 200.

The condition in the cone V0 specifies that it is allowed only if x > 200.

We also define the sets:

Zt ∶= {θ ∈ Θ; q(t) ⋅ φt(θA(t) − θA(t − 1), θB(t) − θB(t − 1)) ≤ 0}, t ∈ T/{0, T} (2.2)

The relation in (2.2) is a self-financing condition: when liquidating, in period t, the portfolio θ(t − 1)
obtained in period t − 1, its value needs to be at least the cost q(t)φt(θ) of constructing the portfolio θ(t)
in time t. That is, a portfolio θ(t − 1) can be rebalanced, in time t, to a portfolio θ(t) if θ ∈ Zt.

Definition 2.1. (Self-financing Strategies)

We will say that a dynamic trading strategy θ ∈ Θ is a self-financing strategy if θ ∈ Zt ∀ t ∈ T/{0}.

Now, let us define cones with the motivation of imposing conditions to superhede contingent claims.

Vt ∶= {(θ, b) ∈ Θ ×RSt ; q(t) ⋅ φt(θA(t − 1), θB(t − 1)) ≥ b},∀ t ∈ T/{0} (2.3)

If an investor wants to hedge a certain contigent claim b in period t, then he needs that the return

obtained liquidating the portfolio constructed in the previous period be at least the return of the contingent

claim. This is the condition in (2.3).

Definition 2.2. (Hedging Strategy)

(ν, θ, x) ∈ R ×Θ ×⨉Tt=1 RSt such that θ is a self-financing strategy is an hedging strategy if (ν, θ) ∈ V0

a.s. and (θ, x(t)) ∈ Vt a.s., ∀t ∈ T/{0}.

Let us denote byH the set of all hedging strategies:

H ∶= {(ν, θ, x) ∈ R ×Θ ×
T

⨉
t=1

RSt ; (ν, θ, x) is an hedging strategy}

Definition 2.3. (Arbitrage Opportunity)

(ν, θ, x) ∈H such that ν ≤ 0 and x ≥ 0 is an arbitrage opportunity if one of the following two conditions

is true:

1. ν < 0;

2. x(t) > 0 for some t ∈ {1, ..., T}.

Definition 2.4. (arbitrage-free)

We say the marketM = ({xj}Jj=0,H) is arbitrage-free if there is no arbitrage opportunities, that is, if:

ν ≤ 0, x(t) ≥ 0 ∀ t ∈ T/{0}⇒ ν = 0, x(t) = 0 ∀ t ∈ T/{0},∀(ν, θ, x) ∈H
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Let m0 ∈ R++, mt ∶ Ωt → RSt++ Ft-measurable such that EPt[mtx(t)] is well defined and finite

∀ t ∈ {1, ..., T}, where mtx(t) = (m1x1(t), ..., qt,StxSt(t)) ∈ RSt . Then we define

Definition 2.5. (Vector of Discount Factors)

We say that (m0, ...,mT ) ∈ ⨉Tt=0 R
St++ is a vector of discount factors if

T

∑
t=1

EPt[mtx(t)] −m0ν ≤ 0,∀ (ν, θ, x) ∈H

We will denote the set of vectors of discount factors by Q:

Q ∶= {m ∈
T

⨉
t=0

RSt++;m is a vector of discount factors} (2.4)

Consider a financial market with three periods: today, tomorrow and after tomorrow. Assume there are

two states of the world in both future periods: high prices for a certain good and low prices, and the price

of this good in some way has influence over the returns of some investiment. In all periods, participants of

the financial market can trade two assets: one riskless aset and a risky one. Suppose the price process

of the stock has uniform distribution over the interval (1,2) at future periods. About the interest rates,

the lending rate has a uniform distribution over (1
2 ,1) and the borrowing rate is uniform in (1,2). Let us

write these ideas in mathematical terms, according to our previously defined framework:

M = ({xj}1
j=0,H)

S1 = S2 = 2

α0(t) = 0, t = 0,1,2

β0(t) = 0, t = 0,1,2

α1(t) ∼ U(1,2), t = 0,1,2

β1(t) ∼ U(1
2 ,1), t = 0,1,2

S1(t) ∼ U(1,2), t = 0,1,2

Let us find the set of state-prices vectors. For this, according to inequality (??), we need first to know

the cone of hedging strategiesH.

By definition ??, (ν, θ, x) is an hedging strategy, that is, (ν, θ, x) ∈H if:

1. (ν, θ) ∈ V0;

2. (θ, x(t)) ∈ Vt, t = 1,2;

3. θ ∈ Zt, t = 1,2.
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So, let us write these three conditions.

(ν, θ) ∈ V0 ∶ ν ≥ [θA0 (0) − θB0 (0)] + [2θA1 (0) − 1
2θ
B
1 (0)]

Multiplying by q0 > 0 we get:

q0ν ≥ q0[θA0 (0) − θB0 (0)] + q0[2θA1 (0) − 1

2
θB1 (0)] (2.5)

Equation (2.5) together with (??) give us that the following is necessary to (q0, q1, q2) be a state-prices

vector, that is, (q0, q1, q2) ∈ Q:

q0[θA0 (0) − θB0 (0)] + q0[2θA1 (0) − 1

2
θB1 (0)] ≥

2

∑
t=1

⟨qt, x(t)⟩,∀ (ν, θ, x) ∈H (2.6)

Let us derive the second condition in order to obtain the cone of hedging strategiesH:

(θ, x(t)) ∈ Vt, t = 1,2 ∶ First, for t = 1, we need (θ, x(1)) ∈ V1, that is:

−
1

∑
j=0

Sj(1)φ1
j(θAj (0), θBj (0)) ≥ x(1)

⇒ −[(θA0 (0) − θB0 (0)) + S1(1)((1 + α1(1))θA1 (0) − (1 − β1(1))θB1 (0))] ≥ x(1) (2.7)

As S1(1) > 1,1 + α1(1) > 2 and 1 − β1(1) > 1
2 , we have:

−[(θA0 (0)−θB0 (0))+S1(1)((1+α1(1))θA1 (0)−(1−β1(1))θB1 (0))] > −[θA0 (0)−θB0 (0)]−2θA1 (0)+1

2
θB1 (0)
(2.8)

So, inequalities (2.7) and (2.8) together give us that (θ, x(1)) ∈ V1 if and only if:

− [θA0 (0) − θB0 (0)] − 2θA1 (0) + 1

2
θB1 (0) ≥ xs(1), s = 1,2 (2.9)

Similarly, for t = 2, we have that (θ, x(2)) ∈ V2 if and only if:

− [θA0 (1) − θB0 (1)] − 2θA1 (1) + 1

2
θB1 (1) ≥ xs(2), s = 1,2 (2.10)

Now, let us study the condition that guarantees θ ∈ Θ is a self-financing strategy, that is, θ ∈ Zt, t = 1,2:

θ ∈ Zt, t = 1,2 ∶ For t = 1, by the definition of the cone Z − 1 we need:

1

∑
j=0

Sj(1)φ1
j(θAj (1) − θAj (0), θBj (1) − θBj (0)) ≤ 0

⇒
1

∑
j=0

Sj(1)[(1 + αj(1))(θAj (1) − θAj (0)) − (1 − βj(1))(θBj (1) − θBj (0))] ≤ 0 (2.11)
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As S1(1) < 2, α1(1) < 2, β1(1) > 1
2 , we get:

1

∑
j=0

Sj(1)[(1+αj(1))(θAj (1)−θAj (0))−(1−βj(1))(θBj (1)−θBj (0))] < 2[3(θAj (1)−θAj (0))−
1

2
(θBj (1)−θBj (0))]

(2.12)

Inequalities (2.11) and (2.12) together give us that θ ∈ Z1 if and only if:

[(θA0 (1) − θA0 (0)) − (θB0 (1) − θB0 (0))] + 2[3(θAj (1) − θAj (0)) −
1

2
(θBj (1) − θBj (0))] ≤ 0 (2.13)

Similarly, for t = 2, we have that θ ∈ Z2 if and only if:

[(θA0 (2) − θA0 (1)) − (θB0 (2) − θB0 (1))] + 2[3(θAj (2) − θAj (1)) −
1

2
(θBj (2) − θBj (1))] ≤ 0 (2.14)

2.2 Results

In this section, we first give an equivalence between the hypothesis of absence of arbitrage opportunities

and existence of at least one vector of discount factors. Then we define what is the superhedging at

minimum cost pricing rule in this framework with interest rates and writes it in function of vectors of

discount factors. Finally, we give a characterization to it.

Proposition 2.1. The financial marketM = ({xj}Jj=0,H) is arbitrage-free if and only if there exists a

vector of regular discount factors (m0, ...,mT ).

Definition 2.6. (Pricing Rule)

A Pricing Rule is a R-valued function C ∶ ⨉Tt=1 RSt → R that satisfies:

1. C(λx) = λC(x),∀λ ∈ R+;

2. C(x + y) ≤ C(x) +C(y),∀x, y ∈ ⨉Tt=1 RSt ;

3. a) x ≥ 0⇒ C(x) ≥ 0;

b) x > 0⇒ C(x) > 0

4. C(x + k1{Ω}) = C(x) + k,∀ x ∈ ⨉Tt=1 RSt ,∀ k ∈ R;

5. C(1{Ω}) = 1;

6. x, y ∈ ⨉Tt=1 RSt ;x(t) ≥ y(t) (componentwise) ∀ t⇒ C(x) ≥ C(y)

The pricing rule we are interested in is the super-hedging pricing rule, defined as

π(x) ∶= inf
ν∈Vx

ν = inf
(ν,θ,x)∈H

ν,

where

Vx ∶= {ν ∈ R;∃ θ ∈ Θ such that (ν, θ, x) ∈H}
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By duality, we have:

π(x) =max
λ≥0

λ
T

∑
t=1

mt ⋅ x(t)

s.t. m0λ = 1

As m ∈ Q, then m > 0. So, we can rewrite the restriction as λ = 1
m0

and obtain

π(x) = max
m0>0

1

m0

T

∑
t=1

mt ⋅ x(t)

⇒
π(x) = max

m∈Q
1

m0

T

∑
t=1

mt ⋅ x(t) (2.15)

Using expression (2.15), we can manipulate the set of vectors of discount factors and obtain the following

characterization for the superhedging pricing rule:

Theorem 2.1. C ∶ ⨉Tt=1 RSt → R is the superhedging at minimum cost pricing rule of an arbitrage-

free market M = ({xj}Jj=0,H) with interest rates {αj(t)}Tt=0,{βj(t)}Tt=0 if and only if ∃ γj(t) ∈
[αj(t), βj(t)] such that

C(x) = max
m∈L

1

m0

T

∑
t=1

mt ⋅ x(t),

where

L =
⎧⎪⎪⎨⎪⎪⎩
m ∈

St

⨉
t=0

RSt ∶ {(
St

∑
s=1

ms, t) [1 + γ(t)]q(t)}
T

t=0

is a martingale
⎫⎪⎪⎬⎪⎪⎭
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Appendix A

Appendix

Proof. of Lemma 1.2

(⇒)Let θ(1) ∈ Θ(1) ∶= Π(1)(Θ)

xθ(1)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xθ(0) t = 0;

d(1) ⋅ [θA(0) − θB(0)] t = 1.

Let θ(1) ∈ R2(J+1) such that ∑Jj=0 dj(1) ⋅ (θAj (0) − θBj (0)) > 0.

If ∑Jj=0 θ
(1)
j ⋅ q(1)j = 0, then xθ(0) = 0. So, defining

θAj (1) ∶= c ∈ R, θBj (1) ∶= −θAj (1);

θAj (2) ∶= c ∈ R, θBj (2) ∶= −θAj (2), ∀j ∈ {0, . . . , J}, we have:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xθ(1) > 0;

xθ(2) = 0;

xθ(0) = 0,

that is, θ is an arbitrage oportunity in the 3-period market. So, we must have

∑Jj=0 θ
(1)
j ⋅ q(1)j = xθ(0) > 0.

Now, let θ(1) ∈ R2(J+1) such that ∑Jj=0 dj(1) ⋅ (θAj (0) − θBj (0)) = 0.

If ∑Jj=0 θ
(1)
j ⋅ q(1)j > 0, then xθ(0) > 0. So, defining θAj (1) = θBj (1) ∶= c ∈ R,∀j, we have:

xθ(1) = xθ(2) = 0; xθ(0) > 0,
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that is, xθ ≥ 0 /⇒ xθ =Mθ = 0

So, θ is an arbitrage oportunity inM. Then, we must have xθ(0) = ∑Jj=0 θj ⋅ qj = 0. So, we proved:

M arbitrage-free⇒M1,M2 arbitrage-free.

(⇐) Now, supposeM1,M2 arbitrage-free.

If ∃ θ ∈ Θ such that xθ =Mθ > 0, then:

∑Jj=0 dj(2) ⋅ [θAj (0) − θBj (0)] +∑Jj=0 dj(2) ⋅ [θAj (1) − θBj (1)] > 0

Then, we have ne of the following four cases:

1. ∑Jj=0 dj(2)[θAj (0) − θBj (0)] < 0 < ∑Jj=0 dj(2)[θAj (1) − θBj (1)];

2. ∑Jj=0 dj(2)[θAj (1) − θBj (1)] < 0 < ∑Jj=0 dj(2)[θAj (0) − θBj (0)]⇒ x
(2)
θ > 0;

3. ∑Jj=0 dj(2)[θAj (0) − θBj (0)] > ∑Jj=0 dj(2)[θAj (1) − θBj (1)] > 0⇒ x
(2)
θ > 0;

4. ∑Jj=0 dj(2)[θAj (1) − θBj (1)] > ∑Jj=0 dj(2)[θAj (0) − θBj (0)] > 0⇒ x
(2)
θ > 0

The first condition implies that ∑Jj=0 dj(2)[θAj (1) − θBj (1)] −∑Jj=0 dj(2)[θAj (0) − θBj (0)] > 0

Define ∗θAj (0) ∶= θBj (0), ∗θBj (0) ∶= θAj (0).

Then

∑Jj=0 dj(2)[∗θAj (0) − ∗θBj (0)] = ∑Jj=0 dj(2)[θBj (0) − θAj (0)] = −∑Jj=0 dj(2)[θAj (0) − θBj (0)] > 0

x∗θ(0) = −q(0) ⋅ [θB(0) − θA(0)] = q(0) ⋅ [θA(0) − θB(0)] = −xθ(0) < 0

Let 0θAj (0), 0θBj (0) ∈ [0,+∞) such that:

• −∑Jj=0 qj(0)[∗θAj (0)−∗θBj (0)]−∑Jj=0 qj(0)[0θAj (0)−0θBj (0)] = −∑Jj=0 qj(0)[(θBj (0)+0θAj (0))−
(θAj (0) + 0θBj (0))] > 0 and

• ∑Jj=0 dj(2)[0θAj (0) − 0θBj (0)] > 0 ⇒ ∑Jj=0 dj(2)[(θBj (0) + 0θAj (0)) − (θAj (0) + 0θBj (0))] =
∑Jj=0 dj(2)[θBj (0) − θAj (0)] +∑Jj=0 dj(2)[0θAj (0) − 0θBj (0)] = ∑Jj=0 dj(2)[∗θAj (0) − ∗θBj (0)] +
∑Jj=0 dj(2)[0θAj (0) − 0θBj (0)] > 0

So, defining (θ̃A; θ̃B) ∶= (∗θAj + 0θAj ; ∗θBj + 0θBj ) = (θB + 0θA; θA + 0θB), we have:
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x
(2)
0θ

> 0⇒ 0θ is an arbitrage-oportunity inM2,

contradicting the hypothesis thatM2 is arbitrage-free. Then, we must have xθ = Mθ = 0 ∀ θ ∈ Θ

such that xθ =Mθ ≥ 0, that is,M is arbitrage-free. So, we proved:

M1,M2 arbitrage-free⇒M arbitrage-free.

Proof. of Lemma 1.7

Let x = (x(1), x(2)), y = (y(1); y(2)) ∈ GC . Then, by Lemma 1.5, we have x(1), y(1) ∈ FC1 , x(2), y(2) ∈
FC2 .

As GC is a linear subspace then x+ y = (x(1)+ y(1);x(2)+ y(2)) ∈ GC . So, we can avaliate C(⋅; ⋅)
in x + y.

Also, by Lemma 3 in Araujo, Chateauneuf, and Faro [2012], we know that x(1)+ y(1) ∈ FC1 , x(2)+
y(2) ∈ FC2 . So, we can avaliate C1(⋅) in x(1) + y(1) and C2(⋅) in x(2) + y(2).

By Lemma 21 in Araujo, Chateauneuf, and Faro [2012] we know that C1∣FC1
and C2∣FC2

are both

linear. Moreover they have the following representation:

C1(x) = max
P1∈QC1

EP1 ∀ x ∈ RS1 ,

where QC1 = {P1 ∈ ∆S1−1
++ ;EP1[x] = C1(x) ∀ x ∈ FC1}

And

C2(y) = max
P2∈QC2

EP2 ∀ y ∈ RS2 ,

where QC2 = {P2 ∈ ∆S2−1
++ ;EP2[y] = C2(y) ∀ y ∈ FC2}

First, take x = (x(1), x(2)) ∈ GC . Then x(1) ∈ FC1 , x(2) ∈ FC2 .

C(x) =C(x(1), x(2))
= C((x(1); 0) + (0;x(2)))
≤ C((x(1),0)) +C((0, x(2)))
= c1C1(x(1)) + c2C2(x(2))
= c1EP1[x(1)] + c2EP2[x(2)] ∀ P1 ∈ QC1 ,P2 ∈ QC2

≤ max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)]}

Suppose that

C(x) < max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)]}
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Then

C1(x(1)) = ( 1

c1
)C((x(1),0))

= C((x(1), x(2)) + (0;−x(2)))
≤ C(x(1), x(2)) +C(0;−x(2))
= C(x(1), x(2)) +C2(−x(2))

< max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)]} +C2(−x(2))

As −x(2) ∈ FC2 because x(2) ∈ FC2 and FC2 is as linear subspace, then the above inequality implies

C1(x(1)) < max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)]} +EP2[−x(2)]

= max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)]} −EP2[x(2)]

= max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)]} −C2(x(2))

= max
P1∈QC1

,P2∈QC2

{C1(x(1)) +C2(x(2))} −C2(x(2))

= C1(x(1)) +C2(x(2)) −C2(x(2))
= C1(x(1)),

because x(2) ∈ FC2 ⇒ C2(x(2)) −C2(x(2)) = 0.

So, we arrive at C1(x(1)) < C1(x(1)), an absurd. Then we must have

C(x) = max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)]}

= max
P=(P1,P2)∈QC

max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)]} ∀ x = (x(1), x(2)) ∈ GC ,

where

QC ∶= {P = (P1;P2) ∈ ∆S1−1
++ ×∆S2−1

++ ; c1EP1[x(1)]+c2EP2[x(2)] = C(x) ∀ x = (x(1), x(2)) ∈ GC)},

c1, c2 > 0 constants

As Ct∣FCt
, t = 1,2 are both strictly positive, then for all x ∈ GC we have

C(x) = c1EP1[x(1)] + c2EP2[x(2)]
= c1C1(x(1)) + c2C2(x(2))
> 0 + 0

= 0 ∀ x ∈ GC ,

that is, C ∣GC
is strictly positive.

Let us check that C ∣GC
is linear.

32



Let x̄, ȳ ∈ GC . Then x̄+ȳ ∈ GC , x̄(1), ȳ(1) ∈ FC1 , x̄(2), ȳ(2) ∈ FC2 , x̄(1)+ȳ(1) ∈ FC1 , x̄(2)+ȳ(2) ∈
FC2 and

C(x̄ + ȳ) = max
P1∈QC1

,P2∈QC2

{c1EP1[x̄(1) + ȳ(1)] + c2EP2[x̄(2) + ȳ(2)]}

= max
P1∈QC1

,P2∈QC2

{c1EP1[x̄(1)] + c1EP1[ȳ(1)] + c2EP2[x̄(2)] + c2EP2[ȳ(2)]}

As EPt[x] = Ct(x) ∀ x ∈ FCt , t = 1,2 and x̄(1), ȳ(1) ∈ FC1 , x̄(2), ȳ(2) ∈ FC2 then

C(x̄ + ȳ) = max
P1∈QC1

,P2∈QC2

{c1C1(x̄(1)) + c1C1(ȳ(1)) + c2C2(x̄(2)) + c2C2(ȳ(2))}

= c1C1(x̄(1)) + c1C1(ȳ(1)) + c2C2(x̄(2)) + c2C2(ȳ(2))
= (c1EP1[x̄(1)] + c2EP2[x̄(2)]) + (c1EP1[ȳ(1)] + c2EP2[ȳ(2)])

But, as x̄ = (x̄(1), x̄(2)), ȳ = (ȳ(1), ȳ(2)) ∈ GC and P ∶= (P1,P2) ∈ QC1 ×QC2 ⇒ P ∈ QC , the above

inequality is equal to

C(x̄ + ȳ) = C(x̄(1); x̄(2)) +C(ȳ(1); ȳ(2))
= C(x̄) +C(ȳ)

Now, since C ∣GC
is linear and strictly positive, then, through the indentification RS1 ×RS2 ≃ RS1+S2 ,

by theorem 6 in Clark [1993] we have that there exists a linear and strictly positive extension h of C ∣GC

to RS1+S2 . Then, h is a linear and strictly positive extension of C ∣GC
to RS1 ×RS2 .

Finally, consider a base {b0, ..., bJ} of GC with b0 = 1{Ω} (because 1{Ω} ∈ GC) and take y =
(y(1); y(2)) = ∑Jj=0 λjbj ∈ B(G/GC).

As h(1{Ω}) = 1, ∃P = (P∗1 ;P∗2) such that EP∗1[x(1)]+EP∗2[x(2)] = h(x) = C(x)∀ x = (x(1), x(2)) ∈
RS1 ×RS2 . In particular, EP∗1[bj(1)] +EP∗2[bj(2)] = h(bj) = C(bj) ∀ j. Then

C(y) = h(y) = h(
J

∑
j=0

λjbj)

=
J

∑
j=0

λjh(bj)

=
J

∑
j=0

{λjEP∗1[bj(1)] + λjEP∗2[bj(2)]}

= max
P=(P1;P2)∈QC

{
J

∑
j=0

[λjEP1[bj(1)] + λjEP2[bj(2)]]}

= max
P=(P1;P2)∈QC

{
J

∑
j=0

[EP1[λjbj(1)] +EP2[λjbj(2)]]}

= max
P=(P1;P2)∈QC

{EP1[y(1)] +EP2[y(2)]},

where

QC ∶= max
P1∈QC1

,P2∈QC2

{c1EP1[x(1)] + c2EP2[x(2)] = C(x) ∀ x = (x(1), x(2)) ∈ GC},

c1, c2 > 0 constants.

33



Proof. of Lemma 1.3

Let x = (x(1), ..., x(T )) ∈ L. Suppose x ∉ LC . Then there exists y ∈ RL, L = ∑Tt=1 St such that ys∗ > xs∗ ,

ys ≥ xs∀s ∈ S = ⋃Tt=1 S and C(y) ≤ C(x).

Through the identification RL ≅ ⨉Tt=1 RSt we can see y = (y1, ..., yL) ∈ RL as y = (y(1); ...; y(T )) ∈
⨉Tt=1 RSt .

Moreover, define

t∗ ∶= t ∈ {1, ..., T} such that s∗ ∈ St∗

So, we have

y(t∗) > x(t∗) with C(y) ≤ C(x),

contradicting the hypothesis that x ∈ Lt∗C . So, we must have x ∈ LC . This concludes the proof of the

inclusion LC ⊂ LC .

Now, take x ∈ LC and suppose x ∉ LC . Then there exists t̄ ∈ {1, ..., T} such that x ∉ Lt̄C .

Then there exists y ∈ ⨉Tt=1 RSt such that

y(t̄) > x(t̄),C(y) ≤ C(x)

Again through the identification RL ≅ ⨉Tt=1 RSt we can see y = (y(1); ...; y(T )) ∈ ⨉Tt=1 RSt as y =
(y1, ..., yL) ∈ RL.

Then, y > x and C(y) ≤ C(x), contradicting the hypothesis that x ∈ LC . So we must have x ∈ LC .

This concludes the proof of the inclusion LC ⊂ LC .

Proof. of Lemma 1.4

Let x = (x(1), x(2)) ∈ GC , λ > 0 scalar.

By positive homogeneity of C(⋅, ⋅) we have

C(λ(x(1);−x(2))) +C(λ(−x(1);x(2))) = λC((x(1),−x(2))) + λC((−x(1), x(2)))
= λ[C((x(1),−x(2))) +C((−x(1), x(2)))]
= λ × 0

= 0 (A.1)

Then we have λx ∈ GC for λ > 0.

Now, if λ < 0 then −x ∈ GC and −λ > 0, implying that, by the positive homogeneity, that

λx = (−λ)(−x) ∈ GC .

So, we conclude that λx ∈ GC ∀ λ ∈ R.

Now, let y = (y(1); y(2)), z = (z(1); z(2)) ∈ GC . Then

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C((y(1);−y(2))) +C((−y(1); y(2))) = 0

C((z(1);−z(2))) +C((−z(1); z(2))) = 0
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By sublinearity we get

C((y(1) + z(1);−y(2) − z(2))) = C((y(1);−y(2)) + (z(1);−z(2)))
≤ C((y(1);−y(2))) +C(z(1);−z(2))

And

C((−y(1) − z(1); y(2) + z(2))) = C((−y(1); y(2)) + (−z(1); z(2)))
≤ C((−y(1); y(2))) +C(−z(1); z(2))

Summing both inequalities we have

C((y(1) + z(1);−y(2) − z(2))) +C((−y(1) − z(1); y(2) + z(2))) ≤ C((y(1);−y(2))) +C(z(1);−z(2))+
C((−y(1); y(2))) +C(−z(1); z(2)) = [C((y(1);−y(2))) +C((−y(1); y(2)))]+
[C(z(1);−z(2)) +C(−z(1); z(2))] = 0 + 0 = 0

By other side we have

C((−y(1) − z(1); y(2) + z(2))) +C((y(1) + z(1);−y(2) − z(2))) ≥ C((−y(1) − z(1)); y(2) + z(2))+
(y(1)z(1);−y(2) − z(2)) = C(0; 0) = 0

So we arrived at

0 ≥ C((y(1) + z(1);−y(2) − z(2))) +C((y(1) + z(1);−y(2) − z(2))) ≤ 0

∴ C((y(1) + z(1);−y(2) − z(2))) +C((y(1) + z(1);−y(2) − z(2))) = 0, that is, y + z ∈ GC .

Proof. of Lemma 1.5

(⇒) Let x = (x(1), x(2)) ∈ GC . Then

C((x(1),−x(2))) +C((−x(1), x(2))) = 0

As C1(x(1)) = C(x(1); 0), we can rewrite it as

C1(x(1)) = C((x(1);−x(2)) + (0;x(2)))

As C(⋅, ⋅) is a pricing rule, it is sublinear, so we get

C1(x(1)) ≤ C((x(1),−x(2))) +C((0, x(2))) (A.2)

Analogously, we can rewrite C1(−x(1)) = C((−x(1),0)) as

C1(−x(1)) = C((−x(1);x(2)) + (0;−x(2))),

implying that

C1(−x(1)) ≤ C((−x(1), x(2))) +C((0,−x(2))) (A.3)

Summing equations (A.2) and (A.3) we obtained

C1(x(1)) +C1(−x(1)) ≤ [C((x(1),−x(2))) +C((0, x(2)))] + [C((−x(1), x(2))) +C((0,−x(2)))]
⇒ C1(x(1)) +C1(−x(1)) ≤ [C((x(1),−x(2))) +C((−x(1), x(2)))] + [C((0, x(2))) +C((0,−x(2)))]

= [C((x(1),−x(2))) +C((−x(1), x(2)))] + [C2(x(2)) +C2(−x(2))]
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As x = (x(1), x(2)) ∈ GC , C((x(1),−x(2))) +C((−x(1), x(2))), implying that

C1(x(1)) +C1(−x(1)) ≤ C2(x(2)) +C2(−x(2)) (A.4)

By other side, we can rewrite C2(x(2)) = C((0, x(2))) as

C2(x(2)) = C((−x(1);x(2)) + (x(1); 0))
≤ C((−x(1), x(2))) +C(x(1); 0)
= C((−x(1), x(2))) +C1(x(1)) (A.5)

And

C2(−x(2)) = C((x(1);−x(2)) + (−x(1); 0))
≤ C((x(1),−x(2))) +C(−x(1); 0)
= C((x(1),−x(2))) +C1(−x(1)) (A.6)

Summing (A.5) and (A.6) we get

C2(x(2)) +C2(−x(2)) ≤ [C((−x(1), x(2))) +C((x(1),−x(2)))] + [C1(x(1)) +C1(−x(1))]

As x = (x(1), x(2)) ∈ GC , C((−x(1), x(2))) + C((x(1),−x(2))) = 0. Then the inequality above

implies that

C1(x(1)) +C1(−x(1)) ≥ C2(x(2)) +C2(−x(2)) (A.7)

Equations (A.4) and (A.7) together implies that

C1(x(1)) +C1(−x(1)) = C2(x(2)) +C2(−x(2))

By the sublinearity of the pricing rules, we know that

Ct(x(t)) +Ct(−x(t)) ≥ 0, t = 1,2

As we are supposing x(1) ∉ FC1 , x(2) ∉ FC2 , we are supposing

C1(x(1)) +C1(−x(1)) = C2(x(2)) +C2(−x(2)) > 0,

that is,

C((x(1),0)) +C((−x(1),0)) = C((0, x(2))) +C((0,−x(2))) > 0,

But, by the sublinearity of C(⋅, ⋅), we have

0 < C((0,−x(2))) +C((0, x(2)))
= [C((x(1);−x(2)) + (−x(1); 0))] + [C((−x(1);x(2)) + (x(1); 0))]
≤ [C((x(1),−x(2))) +C((−x(1),0))] + [C((−x(1), x(2))) +C((x(1),0))]
= [C((x(1),−x(2))) +C((−x(1), x(2)))] + [C((−x(1),0)) +C((x(1),0))]

Then

C((x(1),−x(2))) +C((−x(1), x(2))) > −[C((−x(1),0)) +C((x(1),0))]
> −0

= 0
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So, we obtained

C((x(1),−x(2))) +C((−x(1), x(2))) > 0,

contradicting the hypothesis x = (x(1), x(2)) ∈ GC . Then we must have x(1) ∈ FC1 and x(2) ∈ FC2 .

(⇐) Suppose x(1) ∈ FC1 and x(2) ∈ FC2 . Then

C1(x(1)) +C1(−x(1)) = 0;

C2(x(2)) +C2(−x(2)) = 0

Summing both equations we have

C1(x(1)) +C1(−x(1)) +C2(x(2)) +C2(−x(2)) = 0 (A.8)

We want to show that

C((x(1),−x(2))) +C((−x(1), x(2))) = 0

We know by the sublinearity of C(⋅, ⋅) that

C((x(1),−x(2))) +C((−x(1), x(2))) ≥ 0

We can rewrite C((x(1),−x(2))) +C((−x(1), x(2))) as

C((x(1),−x(2))) +C((−x(1), x(2))) = [C((x(1); 0) + (0;−x(2)))] + [C((−x(1); 0) + (0;x(2)))]
≥ [C((x(1),0)) +C((0,−x(2)))] + [C((−x(1),0)) +C((0, x(2)))]
= [C((x(1),0)) +C((−x(1),0))] + [C((0,−x(2))) +C((0, x(2)))]

If C((x(1),−x(2))) +C((−x(1), x(2))) > 0 we have

[C((x(1),0)) +C((−x(1),0))] + [C((0,−x(2))) +C((0, x(2)))] > 0,

contradicting (A.8). So, we must have

C((x(1),−x(2))) +C((−x(1), x(2))) = 0,

that is, x = (x(1), x(2)) ∈ GC .

Proof. of Corollary 1.1

We know from Lemma 1.5 that x = (x(1), x(2)) ∈ GC if and only if x(1) ∈ FC1 , x(2) ∈ FC2 .

As C1 ∶ RS1 → R,C2 ∶ RS2 → R are the super-replication at minimum cost pricing rule of the markets

M1,M2, respectively, We know by Araujo, Chateauneuf, and Faro [2012] that x(1) ∈ FC1 if and only if

x(1) ∈ LC1 and x(2) ∈ FC2 if and only if x(2) ∈ LC2 .

So, we have that x = (x(1), x(2)) ∈ GC if and only if x ∈ LC .
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Proof. of Lemma 1.6

Let C ∶ B(G)→ R the super-replication at minimum cost pricing rule in the market

M = (xj ,{qj(t)}2
t=0,{dj(t)}2

t=0,0 ≤ j ≤ J) ,

that is,

C((x(1); (x(2)))) = π((x(1), x(2))) = inf
θ∈Θ

−xθ(0)

s.t. xθ(1) ≥ x(1);
xθ(2) ≥ x(2)

The super-replication at minimum cost pricing rule of the marketM2 is given by

π2(x) = inf
θ∈Θ

−xθ(0)

s.t. xθ(2) ≥ x

As

C2(x(2)) = C((0, x(2))) = inf
θ∈Θ

−xθ(0)

s.t. xθ(1) ≥ x(1) = 0;

xθ(2) ≥ x(2),

the constraint xθ(1) ≥ 0 is unecessary, because x = (x(1), x(2)) ≥ 0 ∀ x ∈ B(G). This implies that

C2(x(2)) = π2(x(2))∀x(2) ∈ RS2 , that is, C2(⋅) is the super-replication at minimum cost pricing rule of

the marketM2.

Now, let us verify for C1(⋅).

The super-replication at minimum cost pricing rule of the marketM1 is given by

π1(x) = inf
θ∈Θ

−xθ(0)

s.t. d(1) ⋅ [θA(0) − θB(0)] ≥ x,

As C1(x(1)) = C((x(1),0)), we have

C1(x(1)) = inf
θ∈Θ

−xθ(0)

s.t. xθ(1) ≥ x(1)
xθ(2) ≥ 0

As x ≥ 0 ∀ x = (x(1), x(2)) ∈ B(G), the restriction xθ(2) ≥ 0 is irrelevant. So, we get

C1(x(1)) = inf
θ∈Θ

−xθ(0)

s.t. xθ(1) ≥ x(1)
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Substituting xθ(1) = d(1) ⋅ [θA(0) − θB(0)] − q(1) ⋅ [θA(1) − θB(1)] we get:

C1(x(1)) = inf
θ∈Θ

−xθ(0)

s.t. d(1) ⋅ [θA(0) − θB(0)] ≥ x(1) + q(1) ⋅ [θA(1) − θB(1)]

xθ(2) = d(2) ⋅
1

∑
τ=0

[θA(τ) − θB(τ)] ≥ 0

In order to have C1(x(1)) = π1(x(1)), we need that q(1) ⋅ [θA(1) − θB(1)] ≥ 0, implying that the

restriction d(1) ⋅ [θA(0) − θB(0)] in the problem defining π1(⋅) is satisfied.

Suppose q(1)⋅[θA(1)−θB(1)] < 0. Then exists j∗ ∈ {0, ..., J} such that Sj∗[θAj∗(1)−θBj∗(1)] < 0 a.s..

As Sj∗(1) a.s., we have

Sj∗[θAj∗(1) − θBj∗(1)] < 0⇔ θAj∗(1) − θBj∗(1) < 0,

implying that

dj∗2(2)[θAj∗(1) − θBj∗(1)] < 0 a.s,

because dj∗(2) > 0 a.s..

Define

J∗ ∶= {j ∈ {0, ..., J}; qj(1)[θAj (1) − θBj (1)] < 0 a.s.}

And

J̄ ∶= J/J∗

Then q(1) ⋅ [θA(1) − θB(1)] < 0⇔∣ ∑j∈J∗ qj(1)[θAj (1) − θBj (1)] ∣> ∑j∈J̄ qj(1)[θAj (1) − θBj (1)].

But if this happens, asM is arbitrage-free, we have

∑
j∈J∗

dj(2)[θA(1) − θB(1)] +∑
j∈J̄

dj(2)[θA(1) − θB(1)] < 0,

which implies, together withM being arbitrage-free, that∑j∈J dj(2) ⋅ [θA(0)−θB(0)] < 0, contradicting

the restriction ∑j∈J dj(2) ⋅ [θA(0) − θB(0)] < 0 in the problem defining C2(x(2)) = C((0, x(2))). So,

we must have q(1) ⋅ [θA(1) − θB(1)] ≥ 0 a.s., implying that

d(1) ⋅ [θA(0) − θB(0)] ≥ x(1) + q(1) ⋅ [θA(1) − θB(1)] ≥ x(1),

that is, the restriction of the problem defining C1(⋅) is the restriction of the problem defining π1(⋅). So

C1(x) = π1(x) ∀ x ∈ RS1 ,

that is, C1(⋅) is the super-replication at minimum cost pricing rule of the financial marketM1.

Proof. of Lemma 1.8

Let x = (x(1), x(2)) ∈ B(G).
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For P = (P1,P2) ∈ QC the equality in the set QC is

EP1[x(1)] +EP2[x(2)] = c1∑S1
m=1 P1,mxm(1) + c2∑S2

n=1 P2,nxn(2)

Defining
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φm ∶= c1P1,m 1 ≤m ≤ S1

ρn ∶= c2P2,n 1 ≤ n ≤ S2

And then

ψi ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φi 1 ≤ i ≤ S1

ρi−n S1 + 1 ≤ i ≤ S1 + S2

,

As c1 > 0, c2 > 0, we have ψ ∈ RS1+S2++ and through the identification RS1 × RS2 ≃ RS1+S2 , writing

x = (x(1), x(2)) ∈ B(G) as x = (x1, ..., xS1+S2) we can rewrite the above equality as

EP1[x(1)] +EP2[x(2)] =
S1

∑
m=1

φmxm(1) +
S2

∑
n=1

ρnxn(2)

=
S1

∑
i=1

ψixi +
S1+S2

∑
i=S1+1

ψixi

=
S1+S2

∑
i=1

ψixi

= ψ ⋅ x

Then

C(x) = max
ψ∈Ψ

ψ ⋅ x = max
(1,ψ̃)T ∈D

,

where

Ψ = {ψ ∈ RS1+S2++ ;ψ ⋅ x = C(x) ∀ x ∈ GC}

D =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1

ψ

⎞
⎠

;ψ ∈ Ψ

⎫⎪⎪⎬⎪⎪⎭

D =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1

ψ

⎞
⎠

;ψ ∈ RS1+S2++ , ψ ⋅ x = C(x) ∀ x ∈ GC
⎫⎪⎪⎬⎪⎪⎭

As C ∣GC
is linear and strictly positive, then, by Theorem 6 in Clark [1993] there exists an extension h

linear and strictly positive of C ∣GC
to all RS1+S2 .

As 1{Ω} ∈ GC we can consider {b0, ..., bJ} a basis of GC with b0 = 1{Ω}.

As h(1{Ω}) = 1, there exist ψ0 ∈ RS1+S2++ such that

ψ0 ⋅ x = h(x) = C(x) ∀ x = (x(1), x(2)) = (x1, ..., xS1+S2) ∈ RS1+S2

Then

max
(1,ψ)T ∈D

ψ ⋅ x = C(x) = ψ0 ⋅ x ∀ x ∈ RS1+S2
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Then ∀x is RS1+S2 it is true that

C(x) = ψ0 ⋅ x ≥ ψ ⋅ x ∀ (1, ψ)T ∈ D (A.9)

But this statement is equivalent to

ψ0 ⋅ x = max
(1,ψ)T ∈D̃

ψ ⋅ x = C(x) ∀ x ∈ RS1+S2 ,

where

D̃ =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1

ψ

⎞
⎠

;ψ ∈ RS1+S2++ ;ψ ⋅ x = C(x) ∀ x ∈ RS1+S2

⎫⎪⎪⎬⎪⎪⎭
Denote by π(⋅) the super-replication at minimum cost pricing rule of the financial marketM. Let us see

that C(x) ≤ π(x) ∀ x ∈ RS1+S2 .

Suppose C(y) > π(y) for some y ∈ RS1+S2 .

We know that, for any (1, ψ)T ∈ D̃ it is true that ψ ⋅ x = C(x) ∀ x ∈ RS1+S2 . Then, in particular for

x = M̃θ we have

ψT (M̃θ) = C(M̃θ) ∀ θ ∈ Θ (A.10)

Then if exists y ∈ RS1+S2 such that C(y) > π(y), there exists, from y = M̃θ0, θ0 ∈ Θ such that

ψT (M̃θ0) = C(M̃θ0) > ψT (M̃θ) ∀ θ ∈ Θ

But this contradicts the restriction set from Theorem 2 in Ortu [2001], because this set,

Ψ =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1

ψ̃

⎞
⎠

; ψ̃ ∈ RS1+S2++ , ψ̃ ⋅ x ≤ π(x) ∀ x ∈ RS1+S2

⎫⎪⎪⎬⎪⎪⎭
,

which is equivalent to

Ψ =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1

ψ̃

⎞
⎠

; ψ̃ ∈ RS1+S2++ , ψ̃T ⋅ M̃θ ≤ π(M̃θ) ∀ θ ∈ Θ

⎫⎪⎪⎬⎪⎪⎭

Therefore, we conclude that D̃ = Ψ, implying that C(x) = π(x) ∀ x ∈ RS1+S2 . In particular, C(x) =
π(x) ∀ x ∈ B(G), that is, C ∶ B(G) → R is the super-replication at minimum cost pricing rule of the

financial marketM.

Proof. of Lemma 1.10

(⇒) SupposeM1 is not arbitrage-free.

Define the financial markets with two periodsM1,1 = (xj , q1,1
j , d1,1

j ,0 ≤ j ≤ J),M1,2 = (xj , q1,2
j , d1,2

j ,0 ≤
j ≤ J),M1,3 = (xj , q1,3

j , d1,3
j ,0 ≤ j ≤ J) in the following way:

q1,1
j ∶= qj(0), d1,1

j ∶= dj(1),∀j

q1,2
j ∶= qj(0), d1,2

j ∶= dj(2),∀j

q1,3
j ∶= qj(0), d1,3

j ∶= dj(3),∀j
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The cashflow process in the marketM1,1,M1,2,M1,3 is given, respectively, by:

x1,1
θ (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−q(0) ⋅ [θA(0) − θB(0)] t = 0

d(1) ⋅ [θA(0) − θB(0)] t = 1

x1,2
θ (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−q(0) ⋅ [θA(0) − θB(0)] t = 0

d(2) ⋅ [θA(0) − θB(0)] t = 1

x1,3
θ (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−q(0) ⋅ [θA(0) − θB(0)] t = 0

d(3) ⋅ [θA(0) − θB(0)] t = 1

By Lemma 1.2, ifM1 is not arbitrage-free, thenM1,1,M1,2 andM1,3 are not arbitrage-free.

IfM1,1 is not arbitrage-free, then exists 1θ such that x1,1
1θ

(t) ≥ 0 ∀ t ∈ {0,1} and

1. x1,1
1θ

(0) or;

2. x1,1
1θ

(1) > 0

Let us analyse the two cases.

1. x1,1
1θ

(0) > 0

Remember that the cashflow process for a dynamic trading strategy θ ∈ Θ in the financial market

M = (xj ,{qj(t)}3
t=0,{dj(t)}3

t=0) is given by

xθ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−q(0) ⋅ [θA(0) − θB(0)] t = 0

d(t) ⋅∑t−1
τ=0[θA(τ) − θB(τ)] − q(t) ⋅ [θA(t) − θB(t)] t = 1,2

d(3) ⋅∑2
τ=0[θA(τ) − θB(τ)] t = 3

Define θ̃ in the following way:

• θ̃(0) ∶= θ(0)

⇒ xθ̃(0) = x1
1θ(0) > 0

• θ̃A1 (1) ∶= dj(1)1θAj (0)
2qj(1) , θ̃B1 (1) ∶= dj(1)1θBj (0)

2qj(1)

⇒ xθ̃(1) = d(1) ⋅ [
1θA(0) −1 θB(0)] − q(1) ⋅ [θ̃A1 (1) − θ̃B1 (1)]

= 1

2
d(1) ⋅ [1θA(0) −1 θB(0)]

= 1

2
x1,1

1θ
(1)

≥ 0
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• θ̃Aj (2) ∶=
dj(2)[θ̃Aj (0)+θ̃Aj (1)]

qj(2) , θ̃Aj (2) ∶=
dj(2)[θ̃Bj (0)+θ̃Bj (1)]

qj(2)

⇒ xθ̃(2) = d(2) ⋅ [(θ̃
A
j (0) − θ̃Bj (0)) + (θ̃Aj (1) − θ̃Bj (1))]−

J

∑
j=0

⎡⎢⎢⎢⎢⎣

qj(2)dj(2)[(θ̃Aj (0) − θ̃Bj (0)) + (θ̃Aj (1) − θ̃Bj (1))]
qj(2)

⎤⎥⎥⎥⎥⎦
= 0

• θ̃Aj (3) ∶= dj(3)3θAj (0) +
dj(2)2θAj (0)+dj(1)1θAj (0)

dj(3)

θ̃Bj (3) ∶= dj(3)3θBj (0) + dj(2)2θBj (0)+dj(1)1θBj (0)
dj(3)

xθ̃(3) = d(3) ⋅
2

∑
τ=0

[θ̃A(τ) − θ̃B(τ)]

= x1,1
1θ

(1) + x1,2
2θ

(1) + x1,3
3θ

(1)
≥ 0,

that is, θ̃ is an arbitrage opportunity in the marketM, contradicting the hypothesis thatM is arbitrage-free.

Now, let us analyse the second case.

2. x1,1
1θ

(1) > 0

Using the same θ̃ constructed in the case 1 and by the same arguments we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xθ̃(0) = x
1,1
1θ

(1) ≥ 0;

xθ̃(1) =
1
2x

1,1
1θ

(1) > 0;

xθ̃(2) = 0;

xθ̃(3) = x
1,1
1θ

(1) + x1,2
2θ

(1) + x1,3
3θ

(1) > 0,

that is, θ̃ is again an arbitrage opportuniy in the financial marketM.

So, we must haveM1 arbitrage-free.

By analogous calculations, we can show that ifM2 orM3 is not arbitrage-free, then we can construct

an arbitrage opportunity in the financial marketM. So, we also must haveM1,M2 arbitrage-free.

(⇐) Suppose thatM is not arbitrage-free.

Then exists θ ∈ Θ such that xθ(t) ≥ 0 ∀ t ∈ {0,1,2,3} and

1. xθ(0) > 0 or;

2. xθ(t) > 0 for some t ∈ {1,2,3}
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Let us analyse the two cases.

1. xθ(0) > 0

Consider the marketM1.1 defined in the same way as in the implication⇒ of the proof.

Define a dynamic trading strategy θ̃ in the financial marketM1.1 in the following way:

• θ̃(0) ∶= θ(0)
⇒ x1,1

θ̃
(0) = xθ(0) > 0

• x1,1

θ̃
(1) = xθ(1) + q(1) ⋅ [θA(1) − θB(1)]

If q(1) ⋅ [θA(1) − θB(1)] < 0, then we can construct an arbitrage opportunity in the market

M = (xj ,{q1
j (t)}2

t=0,{d1
j(t)}2

t=0) defined by

q1
j (t) ∶ qj(t) ∀ t ∈ {0,1,2}, ∀ j
d1
j(t) ∶= dj(t) ∀ t ∈ {0,1,2}, ∀ j,

contradicting the hypothesis thatM1 is arbitrage-free. Then we must have q(1) ⋅[θA(1)−θB(1)] ≥
0, implying that

x1,1

θ̃
(1) = xθ(1) + q(1) ⋅ [θA(1) − θB(1)],

that is, defining θ̃(1) ∶= θ(1) we have that θ̃ is an arbitrage opportunity inM1,1. But this implies,

by Lemma 1.2, thatM1 is not arbitrage-free, contradicting the hypothesis. So, we must haveM1

arbitrage-free.

Now let us verify the second case.

2. xθ(1) > 0

Defining θ̃ ∶= θ in the marketM1 we have:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1
θ̃
(0) = xθ(0) ≥ 0;

x1
θ̃
(1) = xθ(1) > 0;

x1
θ̃
(2) = xθ(2) + q(2) ⋅ [θA(2) − θB(2)];

If q(2) ⋅ [θA(2) − θB(2)] < 0 we can construct an arbitrage opportunity in the market

M2 = (xj ,{q2
j (t)}2

t=0,{d2
j(t)}2

t=0)

defined by

q2
j (t) ∶= qj(t) for t = 0,1 and for all j

S2
j (3) ∶= qj(3) ∀ j

d2
j(t) ∶= dj(t) for t = 0,1 and for all j
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d2
j(3) ∶= dj(3) ∀ j,

contradicting the hypothesis thatM2 is arbitrage-free. So, we must have q(2) ⋅ [θA(2) − θB(2)] ≥ 0,

implying that

x1
θ̃
(2) = xθ(2) + q(2) ⋅ [θA(2) − θB(2)] ≥ 0

In summary, we have
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1
θ̃
(0) = xθ(0) ≥ 0;

x1
θ̃
(1) = xθ(1) > 0;

x1
θ̃
(2) = xθ(2) + q(2) ⋅ [θA(2) − θB(2)] ≥ 0;

, that is, θ̃ is an arbitrage opportunity in the financial marketM1, contradicting the hypothesis.

By analogous arguments, we show that if xθ(2) > 0 or xθ(3) > 0, we can construct an arbitrage

opportunity in one of the financial marketsM1,M2 orM3, contradicting the htpothesis.

So, we can conclude that we must haveM arbitrage-free. This finishes the proof of the Lemma.

Proof. of Proposition 1.4

First, write C ∶ B(G)→ R in the form

C(x) = max
Pt∈Kt

T

∑
t=1

ctEPt[x(t)]

By Lemma 1.10, the marketsMt, t = 1,2 are frictionless and arbitrage-free.

Define the following financial markets with one future period:

N 1 ∶= (xj ,{l1j (t)}1
t=0, v

1
j (t)1

t=0,0 ≤ j ≤ J) lj(t) ∶= qj(t), l1j (t) ∶= d1
j(t), t = 0,1

N 2 ∶= (xj ,{l2j (t)}1
t=0, v

2
j (t)1

t=0,0 ≤ j ≤ J) l2j (0) ∶= qj(0), l2j (0) ∶= qj(0), l2j (1) ∶= dj(2), l2j (1) ∶=
qj(2)

N 3 ∶= (xj ,{l3j (t)}1
t=0, v

3
j (t)1

t=0,0 ≤ j ≤ J) l3j (0) ∶= qj(0), l3j (0) ∶= qj(0), l3j (1) ∶= dj(3), l2j (1) ∶=
qj(3)

By Lemma 1.2, N t, t = 1,2,3 is frictionless and arbitrage-free.

Also, by Proposition 1.2, ft ∶ RSt → R, t = 1,2,3 defined by

f1(x) ∶= C(x; 0; 0)

f2(y) ∶= C(0; y; 0)

f3(z) ∶= C(0; 0; z)

are the super-replication at minimum cost pricing pricing of the marketsMt, t = 1,2,3, respectively,

if and only if C ∶ B(G → R) is the super-replication at minimum cost pricing rule ofM.
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But f1(x) = 1
c1
C1(x; 0), f2(y) = 1

c2
C2(0; y), f3(z) = 1

c3
C3(0; z).

Therefore, again by Proposition 1.2, C is the super-replication at minimum cost pricing rule of

M if and only if C1,C2 are the is the super-replication at minimum cost pricing rule ofMt, t = 1,2,

respectively.

Proof. of Lemma 1.11

Take x = (x(1);x(2);x(3)) ∈ GC = ⋂3
t=1G

t
C .

First of all, let us note that

[C1(−x(1);x(2))+C1(x(1);−x(2))]+[C2(x(1);−x(3))+C2(−x(1);x(3))]+[C3(x(2);−x(3))+
C(−x(2);x(3))] ≥ C1(0; 0) +C2(0; 0) +C3(0; 0) = 0.

If the above inequality is strictly positive than at least one of the three terms is strictly positive (observe

that each one is bigger than or equal to zero, by property of pricing rules). Suppose, without loss of

generality, that it is the first one.

We have the following inequalities, by sublinearity of pricing rules:

C(−x(1);x(2);x(3)) +C((x(1);−x(2); 0)) ≥ C((0; 0;x(3)));

C(x(1);−x(2);−x(3)) +C((−x(1);x(2); 0)) ≥ C((0; 0;−x(3))

By other side,

C((−x(1), x(2), x(3))) ≤ C((−x(1);x(2); 0)) + C((0; 0;x(3))); C((x(1),−x(2),−x(3))) ≤
C((x(1);−x(2); 0)) +C((0; 0;−x(3)))

These four inequalities together implies

C((−x(1), x(2), x(3)))+C((x(1),−x(2),−x(3))) = [C((0; 0;x(3)))+C((0; 0;−x(3)))]+[C((−x(1);x(2); 0))+
C((x(1);−x(2); 0))] > 0,

contradicting the hypothesis that x ∈ G1
C .

By the same arguments we can show that the second or the third terms in the inequality is strictly

positive, than x ∉ G2
C or x ∉ G3

C , contradicting the hypothesis that x ∈ GC . So, we must have

C1((−x(1), x(2))) +C1((x(1),−x(2))) = 0

C2((−x(1);x(3))) +C1((x(1);−x(3))) = 0

C3((−x(2);x(3))) +C1((x(2);−x(3))) = 0

Therefore, we conclude that x ∈ GCt , t = 1,2,3. This proofs that x ∈ GC ⇒ (x(1), x(2)) ∈ GC1 , (x(1);x(3)) ∈
GC2 , (x(2);x(3)) ∈ GC3 .
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Now, let us prove the other direction.

We know that

C((x(1),−x(2),−x(3))) = C((x(1);−x(2); 0) + (0; 0;−x(3)))
≤ C((x(1);−x(2); 0)) +C((0; 0;−x(3)))
= C1((x(1),−x(2))) +C3((0;−x(3)))

C((−x(1), x(2), x(3))) = C((−x(1);x(2); 0) + (0; 0;x(3)))
≤ C((−x(1);x(2); 0)) +C((0; 0;x(3)))
= C1((−x(1), x(2))) +C3((0;x(3)))

Joining both inequalities we getC((x(1),−x(2),−x(3)))+C((−x(1), x(2), x(3))) ≤ [C1((x(1),−x(2)))+
C1((−x(1), x(2)))] + [C3((0;−x(3))) +C3((0;x(3)))]

As (x(1), x(2)) ∈ GC1 we have C1((x(1),−x(2))) +C1((−x(1), x(2))) = 0.

We know that C3((0;−x(3))) +C3((0;x(3))) ≥ 0. If it is strictly positive we have

C3((0;x(3))) +C3((0;−x(3))) = [C3((−x(2);x(3)) + (x(2); 0))] + [C3((x(2);−x(3)) + (−x(2); 0))]
≤ C3((−x(2);x(3))) +C3((x(2);−x(3))) +C3((x(2); 0)) +C3((−x(2); 0))

Then

C3((−x(2);x(3))) +C3((x(2);−x(3))) ≥ [C3((0;x(3))) +C3((0;−x(3)))] − [C3((x(2); 0)) +C3((−x(2); 0))]
> 0 − 0 = 0,

contradicting (x(2);x(3)) ∈ GC3 . So, we must have C3((0;−x(3))) +C3((0;x(3))) = 0, implying that

C((x(1),−x(2),−x(3))) +C((−x(1), x(2), x(3))) ≤ 0 (A.11)

By other side, we have

C((x(1),−x(2),−x(3))) +C((−x(1), x(2), x(3))) ≥ C((0; 0; 0)) = 0 (A.12)

(A.11) and (A.12) together implies

C((x(1),−x(2),−x(3))) +C((−x(1), x(2), x(3))) = 0,

that is, x ∈ G1
C .

By analogous arguments we prove that x ∈ G2
C and x ∈ G3

C .

Proof. of Corollary 1.2

By Lemma 1.11, we know that x ∈ GC if and only if (x(1), x(2)) ∈ GC1 , (x(1);x(3)) ∈ GC2 , (x(2), x(3)) ∈
GC3 .
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By Lemma 1.5, (x(1), x(2)) ∈ GC1 if and only if x(t) ∈ Fft , t = 1,2, (x(1);x(3)) ∈ GC2 if and only

if x(t) ∈ Fft , t = 1,3 and (x(2);x(3)) ∈ GC3 if and only if x(t) ∈ Fft , t = 2,3.

This implies, by Corollary 1.1, that x ∈ L1
C1
∩L2

C1
, x ∈ L2

C2
.

As L1
C1

= L1
C , L

2
C1

= L2
C , L

2
C2

= L3
C , we conclude that x ∈ ⋂3

t=1L
t
C .

Proof. of Theorem 1.2

We know from Proposition 1.5 that it is true for T = 4.

Suppose it is true for t = T > 4. Denoting the superhedging pricing rule of this market by C̄, we then

have GC̄ = ⋂Tt=1G
t
C̄
= ⋂Tt=1L

t
C̄
= LC̄ .

Let x ∈ GC = ⋂T+1
t=1 GtC .

We can rewrite GC as GC = (⋂Tt=1G
T
C) ∩GT+1

C .

Identifying ⨉T+1
t=1 RSt with RL, L = ∑T+1

t=1 St, we can consider x = (x(1); ...;x(T +1)) ∈ ⨉T+1
t=1 RSt as

(x(1); ...;x(T );x(T+1)) ∈ ⨉Tt=1 RSt×RT+1. So, defining appropriately a financial market with T periods,

we have that (x(1), ..., x(T )) ∈ GC̄ , C̄ is the super-replication at minimum cost pricing rule of this market

with T periods. Then, by the induction hypothesis, (x(1), ..., x(T )) ∈ LC̄ . But (x(1), ..., x(T )) ∈ LC̄ =
⋂Tt=1L

t
C̄

implies that x = (x(1), ..., x(T )) ∈ ⋂Tt=1L
T
C (because C̄(x(1), ..., x(T )) = 1

cT
C(x)).

But we also know that x ∈ GT+1
C , where

GT+1
C = {x ∶ C(xDT+1) +C(−xDT+1) = 0}

Through the identification ⨉T+1
t=1 RSt ≅ RL, L = ∑T+1

t=1 St, we can see GT+1
C as the set of frictionless

securities of a frictionless and arbitrage-free market with one future period, where the contingent claims

are of the form y = xDT+1 ∈ RL. That is, denoting the super-replication at minimum cost pricing rule of

this market by P we have

GT+1
C = FP = {y = xDT+1 ∈ RL ∶ P (y) + P (−y) = 0}

Therefore, by Theorem 5 in Araujo, Chateauneuf, and Faro [2012], GT+1
C = FP = LP .

But LP = LT+1
C . As we also have x ∈ ⋂Tt=1, we conclude that x ∈ ⋂T+1

t=1 LtC = LC . So, by Lemma 1.3

we conclude that x ∈ LC .
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Appendix B

Appendix

Proof. of Proposition 2.1

(⇒) If there exists (m0, ...,mT ) a vector discount factors thanH is arbitrage-free.

Define the following cone:

C ∶= {(ν, x) ∈ R ×
T

⨉
t=1

RSt ;ν ≤ 0, x ≥ 0}

Then the hypothesis of absence of arbitrage opportunities is equivalent to

H ∩ C = {0}

Let (m0, ...,mT ) a vector of discount factors and (ν, x) ∈H ∩ C.

We need to show that (ν, x) = 0.

We have ν ≤ 0, x ≥ 0⇒ −ν ≥ 0, x ≥ 0

By Definition 2.5 we know that

T

∑
t=1

EPt[mtx(t)] −EP0[m0ν] ≤ 0

As (m0, ...,mT ) is strictly positive and −ν ≥ 0, x ≥ 0, the only way of the above inequality be true is if

−ν = 0, x = 0, that is,H ∩ C = {0}. So,H is arbitrage-free.

(⇐) IfH is arbitrage-free then there exists (m0, ...,mT ) a vector of regular discount factors.

Consider tha same cone C as in (⇒). Since C is closed, proper, we are supposing H closed and the

hypothesis of absence of arbitrage opportunities is equivalent to

H ∩ C = {0},

applying Corollary 11.4.2 of Rockafellar [1970] we have:

∃ L ∈ C+ such that L ⋅ h ≤ 0 ∀ h ∈H,

where C+ ∶= {z ∈ C∗; z ⋅ y ≥ 0 ∀ y ∈ C}, C∗ being the dual cone of C, that is, C∗ = {z; z ⋅ y ≥ 0 ∀ ∈ C}.
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Any linear functional F in R ×⨉Tt=1 RSt can be written as

F (x) =
T

∑
t=1

Eµt[mtx(t)] −Eµ0[m0x(0)] ∀ x = (x(0); ...;x(T )) ∈ R ×
T

⨉
t=1

RSt ,

for some m0 ∈ R, (m1, ...,mT ) ∈ ⨉Tt=1 RSt .

Then, writting the functional L as

L((ν, x)) =
T

∑
t=1

Eµt[mtx(t)] −Eµ0[m0ν],

we have that L ∈ C+ if and only if m0 and (m1, ...,mT ) are strictly positive. But (m0, ...,mT ) strictly

positive implies

L((ν, x)) =
T

∑
t=1

Eµt[mtx(t)] −Eµ0[m0ν] ≤ 0 ∀ (ν, θ, x) ∈H,

which is exactly the definition of vector of regular discount factors (Definition 2.5).

Proof. of Theorem 2.1

First, we can rewrite the cones Zt as

Zt = {θ ∈ Θ ∶ θ(t − 1) − θ(t) ∈Mt, θ(t − 1) ∈ R2(J+1)
+ }, (B.1)

for some closed cone Mt ⊂ R2(J+1)
+ .

Define the cone Z∗
t by

Z∗
t ∶= {(c, d) ∈ R +J+1 ×R+J+1 ∶ d ⋅ θ(t − 1) ≤ c ⋅ θ(t) ∀θ ∈ Zt}

Take m = (m0, ...,mT ) a vector of discount factors. Then

T

∑
t=1

EPt[mt(x)] − q0ν ≤ 0 ∀ (ν, θ, x) ∈H (B.2)

Define the optimization problem

max
(ν,θ,x)∈H

f((ν, x)),

where

f((ν, x)) ∶=
T

∑
t=1

EPt[mt(x)] − q0ν ∀ (ν, θ, x) ∈H

We can rewrite the problem as

max
(ν,x)

f((ν, x))

(ν, θ) ∈ V0

s.t. (θ, x(t)) ∈ Vt, t = 1, ..., T

θ ∈ Zt, t = 1, ..., T
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Then

max
(ν,x)

f((ν, x))

ν ≥ q(0) ⋅ φ0(θA(0), θB(0))
s.t. q(t) ⋅ φt(θA(t) − θA(t − 1), θB(t) − θB(t − 1)) ≥ x(t), t = 1, ..., T

q(t) ⋅ φt(θA(t) − θA(t − 1), θB(t) − θB(t − 1)) ≤ 0, t = 1, ..., T

As m = (m0, ...,mT ) is a vector of discount factors, 0 is a maximum value for the function f((ν, x)). By

Kuhn-Tucker theorem, there exist p0, p1, ..., pT Lagrange multipliers such that

f((ν, x))+E[p0[ν−q(0)⋅φ0(θA(0), θB(0))]]+
T

∑
t=1

E[ptq(t)⋅φt(θA(t−1)−θA(t), θB(t−1)−θB(t))−x(t)] ≤ 0

(B.3)

Rearranging terms in (B.3) we have

f((ν, x)) +E[p0[ν − q(0) ⋅ φ0(θA(0), θB(0))]] +E[p1q(1) ⋅ φ1(θA(0) − θA(1), θB(0) − θB(1) − x(1))]+

+
T

∑
t=1

E[pt+1q(t + 1) ⋅ φt+1(θA(t) − θA(t + 1), θB(t) − θB(t + 1)) − x(t + 1)] ≤ 0 (B.4)

As θ ∈ Zt we have that (θ,0) ∈ Vt. Then (B.7) is valid “without” the terms x(t) (because x = 0). Then we

have

f((ν, x)) +E[p0[ν − q(0) ⋅ φ0(θA(0), θB(0))]] +E[p1q(1) ⋅ φ1(θA(0) − θA(1), θB(0) − θB(1))]+
T

∑
t=1

E[pt+1q(t + 1) ⋅ φt+1(θA(t) − θA(t + 1), θB(t) − θB(t + 1))] ≤ 0 (B.5)

The inequality (B.5) is true if and only if each term is non-positive. In particular:

E[ptq(t) ⋅ φt+1(θA(t) − θA(t + 1), θB(t) − θB(t + 1))] ≤ 0,

implying that

ptq(t) ⋅ φt+1(θA(t), θB(t)) −E[pt+1q(t + 1) ⋅ φt+1(θA(t + 1), θB(t + 1)∣Ft)] ≤ 01

Then

[q(t + 1) ⋅ φt+1(θA(t), θB(t))] − q(t + 1) ⋅ φt+1(θA(t + 1), θB(t + 1))E[pt+1∣Ft] ≤ 0

So,

[θA(t) − θB(t)]pt − [θA(t + 1) − θB(t + 1)]E[pt+1∣Ft] ≤ 0, (B.6)

which is equivalent to

[θA(t) − θB(t)] ⋅ pt ≤ [θA(t + 1) − θB(t + 1)]E ⋅ [pt+1∣Ft]

That is,

(pt,E[pt+1∣Ft]) ∈ Z∗
t

1ptq(t) = (p
0
t q0(t), ..., p

J
t qJ(t))
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But as Zt has the form (B.1), it implies that we can rewrite Z∗
t as

Z∗
t = {(x, y) ∈ RJ+1

+ ×RJ+1
+ ∶ −c ∈M∗

t , c − d ∈ (RJ+1
+ )∗}

As (RJ+1+ )∗ = {0} and (pt,E[pt+1∣Ft]) ∈ Z∗
t , we conclude that pt −E[pt+1∣Ft] ∈ {0}, that is

pt −E[pt+1∣Ft] = 0

Therefore, {pt}Tt=0 is a martingale.

Now, let us define the following maximization problem

max
θ

{pt ⋅ [θB(t − 1) − θA(t − 1) − (θB(t) − θA(t))]}

s.t. − q(t) ⋅ φt(θA(t) − θA(t − 1), θB(t) − θB(t − 1)) ≥ 0

As pt ⋅ [θB(t − 1) − θA(t − 1) − (θB(t) − θA(t))] ≤ 0 (because (θ ∈ Zt) implies (θ,0) ∈ Vt) we have that

0 is the maximum value of the function

g(θ) ∶= pt ⋅ [θB(t − 1) − θA(t − 1) − (θB(t) − θA(t))]

By Kuhn-Tucker theorem, there exists λt such that

pt ⋅ [θB(t − 1) − θA(t − 1) − (θB(t) − θA(t))] − λtq(t) ⋅ φt(θA(t) − θA(t − 1), θB(t) − θB(t − 1)) ≤ 0,∀ θ ∈ Θ

It is true if and only if

pjt ⋅ [θBj (t − 1) − θAj (t − 1) − (θBj (t) − θAj (t))] − λtq(t) ⋅ φt(θAj (t) − θAj (t − 1), θBj (t) − θBj (t − 1)) ≤ 0 ∀ j

Then

pjt(b − a) − λtqj(t)φtj(a, b) ≤ 0 ∀ a, b ∈ R (B.7)

For r = b − a < 0, (B.7) is equivalent to

λtqj(t)(1 + βj(t)) ≤ pjt , ∀ j

For r = b − a > 0, (B.7) is equivalent to

λtqj(t)(1 + αj(t)) ≥ pjt , ∀ j

By the above inequality and the restrictions defining the coneH of hedging strategies, we have

(
St

∑
s=1

mt, s) qj(t)(1 + αj(t)) ≤ pjt ≤ (
St

∑
s=1

mt, s) qj(t)(1 + βj(t)), t = 1, ..., T (B.8)

So, there exists γj(t) ∈ [αj(t), βj(t)] such that pjt = (∑St
s=1mt, s) qj(t)(1 + γj(t)),∀j. As {pt} is a

martingale, we have that {(∑St
s=1mt, s) qj(t)(1 + γj(t))}Tt=0 is a martingale.

So, we proved that ifm = (m0, ...,mT ) is a vector of discount factors if and only if {(∑St
s=1mt, s) qj(t)(1+

γj(t))}Tt=0 is a martingale. Then, from (2.15), we have the implication⇒ of the theorem.

To prove the converse, we know that (∑St
s=1mt, s) qj(t)(1 + γj(t))}Tt=0 is a martingale if and only

if m = (m0, ...,mT ) is a vector of discount factors. Taking {αj(t)}Tt=0,{βj(t)}Tt=0 stochastic processes

such that αj(t) ≤ γj(t) ≤ βj(t) ∀j,∀t and defining x ∶= C(x),∀x ∈ ⨉Tt=1 RSt , we have that C(⋅) is

the superhedging at minimum cost pricing rule of the financial marketM = ({xj}Jj=0,H) with price

processes {qj(t)}Tt=0 and interest rates {αj(t)}Tt=0,{βj(t)}Tt=0.
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