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Prof. Dr. Patŕıcia Romano Cirilo

UNIFESP - São José dos Campos

Co-Orientadora

Rio de Janeiro
2016



Lenarduzzi, Fernando Nera.
Generalized Hénon-Devaney Maps of the Plane / Fernando Nera

Lenarduzzi. - Rio de Janeiro: [s.n.], 2016.
55 f. : il. ; 30cm.

Orientador: Enrique Ramiro Pujals
Co-Orientador: Patŕıcia Romano Cirilo
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“The saddest aspect of life right now is that
science gathers knowledge faster than society
gathers wisdom.”

Isaac Asimov

“I must not fear. Fear is the mind-killer.
Fear is the little-death that brings total oblit-
eration. I will face my fear. I will permit it
to pass over me and through me. And when
it has gone past I will turn the inner eye to
see its path. Where the fear has gone there
will be nothing. Only I will remain.”

Frank Herbert, Dune



Abstract

In this work we are going to consider the two-parameter family given by

fa,b : R2 \ {y = 0} → R2

(x, y) 7→
(
ax+

1

y
, by − b

y
− abx

)
where 0 < a ≤ b ≤ 1, if a = b = 1 this map is known as the “Hénon-Devaney map”.
Here we are going to give some dynamical and ergodic properties to these maps.

For all the parameters, we are going to exhibit two transversal invariant C1-
foliations.

For the case where a < b ≤ 1 we are able to find a global attractor and, via
the projection along the invariant manifolds, establish a one-dimensional map that gives
a strong description in terms of dynamics and ergodic properties.

Even more, in the previous cases we can find some ergodic measures, finite
or infinite depending on b, that are supported on the attractor for the map.

For the case a = b = 1, using the invariant foliation, we get a conjugation to
a subshift providing a global understanding of the map’s behavior.

Key-words: ergodic theory, dynamical systems, Hénon-Devaney map, infinite ergodic
theory.
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Introduction

The foundation of the Classic Ergodic Theory lies on the the kinetic theory
of gases in the XIX century with L. Boltzmann, J. C. Maxwell and J. C. Gibbs. They
were interested in understanding how typical orbits of an hamiltonian flow could cover
a space.

Definition. Let (X,B, µ) be a measure space and T : X → X. We say the measure µ
is T invariant if for any A ∈ B

µ(T−1(A)) = µ(A)

We also say that T is ergodic with respect to the measure µ if it does not have
non-trivial invariant sets, i.e.

T−1(A) = A⇒ µ(A) = 0 or µ(Ac) = 0 A ∈ B

.

Ergodicity was the primal hypothesis that Boltzmann was looking for and
the theory began to develop in order to decide if a given system is ergodic or not. One
fundamental step was given in the 1930’s by J. von Neumann and G. D. Birkhoff, they
proved that time average exists for almost every orbit if the map is measure preserving,
which is known as the Ergodic Theorem:

Theorem (Birkhoff’s Ergodic Theorem). Let (X,B, µ, T ) be an ergodic system and T a
continuous transformation. If X is a probability space then the average time exists for
almost every point x ∈ X and for every A ∈ B of positive measure and it is proportional
to the set A, that is

lim
n→∞

1

n

n−1∑
j=0

χA(T j(x)) = µ(A)

However, the standard assumption that developed the study of this classic
behavior is the fact that the measure associated to this kind of problem has to be finite.
The Poincarré Recurrence Theorem is false if we remove this condition, i.e., we may not
have any recurrence at all, and the previously mentioned Ergodic Theorem does not give
any kind of useful information, the averages always vanish.
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That is where Infinite Ergodic Theory started to deal with those problems.
Recurrence is now asked as hypothesis and systems with infinite measure with this
additional property are the new study objects. E. Hopf and J. Aaronson (see [A0]) were
some of the pioneers to explore this subject. The questions that arose at first were
regarding understanding the velocity of convergence: is it possible to take the averages
in a different way in order to get something? Aaronson crushed that dream with his
Ergodic Theorem. The averages always vanish.

The questions asked had changed. Mathematicians turned their attention
into getting different “types” of ergodicity, understanding the distributional properties
of the averages in the Birkhoff’s theorem, trying to find new dynamical invariants to
relate different systems and some other interesting questions we will discuss later.

Even though this subject is relatively unexplored, it has some intense research
being done names like by F. Ledrappier, M. Lenci, O. Sarig, R. Zweimuller, A. Fisher
and many other great mathematicians.

What about the toy models? Although there are some nice and well known
examples like the Coin-Tossing Random Walk, some Hyperbolic Geodesic Flows and
Boole’s transformation (which we will discuss later), there still is a lack of diversity of
examples with recurrence and that exhibits an interesting infinite measure.

Some researchers wanted something that could relate to the origins of Ergodic
Theory, something that was related to physics. One remarkable example was studied
by P. Cirilo, Y. Lima and E. Pujals in their paper [C] that describes a phenomenon
that is linked to the Arnold diffusion. These physics driven problems got our attention,
specially the Hénon-Devaney map.

Before stepping into that, let us recall the definition of the Boole’s map

B : R → R
x 7→ x− 1

x

which preserves the Lebesgue measure in the real line and the ergodicity of B was
proved in 1973 by Adler and Weiss in [AW]. Some one-dimensional generalizations of
this map were studied by S. Muñoz in his Ph.D. Thesis [M], by turning the “infinity”
into something else depending on a parameter.

Hénon’s Generating Families and his approach to the Three-Body Problem
has been studied exhaustively by different areas. The asymptotic behavior to “truncated
solutions” of the problem, presented in [H], is given by

f : R2 \ {y = 0} → R2

(x, y) 7→
(
x+

1

y
, y − 1

y
− x
)

This is known today as the Hénon-Devaney map, due the work done by
Devaney in his paper [D], in which he constructed a topological conjugation of f to the
Baker Transformation. It is clear the resemblance between B and f , and that is reason
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why f is considered to be the two-dimensional version of Boole’s map. It is also easy to
see that f preservers the Lebesgue measure in the plane and it is natural to ask about
its ergodicity. This was asked by Devaney in his paper in 1981 and yet remains open.

Generalizing this map and proving some properties of the model is what S.
Muñoz did in [M2]. He considered a two-parameter family that has the Hénon-Devaney
map as the “limit” in the space of parameters. This is a good point to define the family
of maps we are going to study, consider

fa,b : R2 \ {y = 0} → R2

(x, y) 7→
(
ax+

1

y
, by − b

y
− abx

)
where 0 < a ≤ b ≤ 1.

An initial remark regarding this family is given by “looking” towards the
infinity, by taking a look at the differential of each fa,b

Dfa,b(x, y) =

 a − 1

y2

−ab b+
b

y2


and then making |y| → ∞

Dfa,b(x,∞) =

(
a 0

−ab b

)
Here we have our first difference of behavior for different parameters, for

different a, b we have three different possibilities for Dfa,b(x,∞)

a = b = 1 : The matrix is parabolic with only one invariant direction;

a < b ≤ 1 : The matrix has a splitting and a direction that is uniformly contractive;

But in the second case we also have two different behaviors at the infinity.
For a < b = 1, the infinity matrix has a parabolic behavior along the center-unstable
direction and for the other case it has some kind of repulsion.

Our initial goal is to establish a dominated splitting for each one of the
parameters. The idea here is inspired by the classical proof given in [AW], that is,
understanding the pre-images and “controlling” the differential. Our two-dimensional
case requires an use of the graphic transformation and its differentials of higher order to
get a better regularity of induced leaves

Theorem A. For every a ≤ b ≤ 1, there exists two invariant cone fields for fa,b. These
cone fields induce the directions Ecu and Ecs. For a = b = 1, the splitting is not uniformly
dominated. For a < b ≤ 1, the splitting is dominated and Ecs is uniformly contractive.
These that induces a C1-foliation for the every map in the family, moreover if a < b ≤ 1
then these leaves have a C2-differentiability.

3



The main ideas of the proof consist into looking at the graphic transformation
induced by the differential of fa,b and its inverse. These graphic transformations have two
invariant cone fields that are constant for every (x, y). The uniformity of the contraction
rate is natural for the case a < b ≤ 1, due the dominance of it by the parameter a, and
that gets even more contractive if b < 1. The differentiability is achieved by looking at
the differential of the graphic transformation and its dominance again by the parameters.

We actually think the case a < b < 1 can be taken a little bit further because
we conjecture this last case might be an example of a robustly transitive family of maps
with dominated splitting. The reason of that is related to the Theorem B and we are
going to say a few more words about this after its statement.

Next, we give some dynamical and ergodic properties, exhibiting some special
sets for the maps. The first thing we do is find, for every a < b ≤ 1, the set Ra,b: a non-
compact region that is mapped inside itself. This is an attracting region that “grows”
to the whole plane when a tends to 1.

The existence of this attracting region allows us to prove a bit more

Theorem B. For every a < b ≤ 1, there exists a global attractor

Λa,b :=
⋂
n∈N

fna,b(Ra,b) ⊂ Ra,b

which is not compact. This induces an one dimensional dynamics via the projection
along the stable manifold to {x = 0}:

a < b = 1 : the one dimensional map is “Boole-like”;

a < b < 1 : the induced map is like the ones studied in [M], which we will refer as “Boole-like
expanding” maps.

To clarify what we mean by “Boole-like” maps it is necessary to make a
definition. We say that a map g : R \ {0} → R is Boole-like if

(i) g(x) < x for x > 0 and g(x) > x for x < 0. Also, limx→±∞ g(x) = ±∞;

(ii) g is increasing for every x ∈ R \ {0};

(iii) lim|x|→∞ g
′(x) = 1 and lim|x|→0 g

′(x) =∞;

(iv) lim|x|→∞ |g(k)(x)| bounded for every k ∈ N,

in roughly words, the graphic of the map is similar to the graphic of the Boole, a
perturbation of it without creating fixed points.

We need to establish the notion of “Boole-like expanding” as well, a particular
case of the maps known as expanding alternating systems. The formal definition consists
in a map g : R \ {0} → R that is almost a “Boole-like” but with some additional
properties
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(i’) Conditions (i), (ii) and (iv) as before;

(ii’) lim|x|→∞ g
′(x) ≤ a < 1 and lim|x|→0 g

′(x) =∞;

And all of them imply that

(iii’) there exists an interval I that contains the discontinuity such that the return map
gI : I → I is expanding.

The idea behind this definition is to think of something like the traditional
Boole but instead of having the asymptote in the {x = y} this map has an asymptote
line that is below the identity. An example of it, taken form Corollary 22 in [M], is the
map

Ba : R \ {0} → R

x 7→ ax− 1

x

for a < 1. This kind of map have some interesting dynamical properties, while Boole’s
map is transitive it is not robustly transitive but these maps are.

The main ideas behind theorem B consists into finding a non-compact region
that is mapped inside itself and use it to determine where the attractor lies. The next
step is to study the bahavior of the holonomies “near the infinity”, that is, if y is big
enough the holonomy at Dfa,b can be approximated by the one induced by the straight
lines that form the foliation of Dfa,b(∞) and are easier to work with. We use these
simplified holonomies to project the map along the stable manifolds to the set {x = 0}.
All that is left is to check the definitions of Boole-like and Boole-like expanding, that in
this case, will only require to be checked the properties at the infinity, which will follow
from the simple foliation induced by Da,b(∞).

After this theorem the reason we think the case a < b < 1 is a robust transitive
system get more evident. We already know that the Hénon-Devaney map is transitive
but it is not robust transitive, by the same principles that do not let the Boole’s map
robust transitive. For the case where a < b < 1 the one-dimensional reduction is the
map that are studied in [M] and it is shown there that these maps are robust transitive.
So it is natural to think that small perturbations of the attractor when projected should
be that perturbations of the Boole-like expanding maps, that are robust transitive.

The ergodic properties are given over the attractor we found, the measure
that is object of our interest comes naturally using the differentiability the foliation, a
projection along the leaves and some standard methods of finding ergodic measures for
generalized Boole’s map, which gives up the following theorem

Theorem C. For a < b ≤ 1, there exists a SRB measure µa,b supported in an attractor
Λa,b such that it can be disintegrated over the unstable manifold Wu(Λa,b) of the attractor
inside Ra,b and we also have that µua,b is absolute continuous with respect to the one-
dimensional Lebesgue measure. Also

a < b < 1 : The measure µa,b is finite and the attractor Λa,b lies inside a non-compact region;
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a < b = 1 : The measure µa,b is infinite and the attractor Λa,b lies in a non-compact region.

We have two cases to be dealt with and the proofs differ in essence but for
both, the proof is based in the projection we got in the previous theorem. There exists
a compactification to the projected map and it has a natural finite measure. Here is
where the difference lies, if b = 1 the induced measure is infinite and we cannot say if the
measure is ergodic or not for this case. However, if we look at the case b < 1 the map
that induces the compactification integrable and the measure before compactificating is
finite and ergodic. Then, we pull the measure back using the holonomy and can conclude
the proof for a < b < 1

To the other case, the idea is the same but the methods are different. The
projection will induce an Boole-like map in the real line and this induced map has a
natural construction to find a infinite measure: the Boole-like maps have a set that are
delimited by first two pre-images of the discontinuity and this set have the property that
every point is mapped inside it at finite time, just like the original Boole. We use this
compact set to find an ergodic measure there and then spread it to all the real line using
the dynamics. The measure that was spread is infinite and ergodic. Pulling the measure
again via the holonomy, we get what we wanted.

It is important to notice that this one-dimensional reduction allow us to
completely understand the dynamics for the parameters a < b ≤ 1. However for the
limit case, we do not know if it is possible to make this reduction for an one-dimensional
dynamic. But to fully understand the dynamics, the stable and unstable foliations will
give us a tool to decode the map and see exactly how the map behaves.

To get that, we focus on trying to understand how the images and pre-images
of each discontinuity spread throughout the plane. Understanding how they spread give
us some important information about how the invariant manifolds are, that they lie
within these images of the discontinuities and help us to code the Hénon-Devaney map
in a way that it describes exactly where each orbit is in the plane.

Theorem D. There exists Σi,Σj  Σ := {−2,−1, 0, 1, 2}Z and h : R2 → Σi × Σj an
homeomorphism such that the following diagram commutes

R2 f //

h
��

R2

h
��

Σi × Σj σ
// Σi × Σj

where
σ : Σi × Σj → Σi × Σj

is the product of the usual shift maps restricted to each one of its respective spaces, that
induces a subshift for Σi × Σj.

The proof starts by looking at the invariant manifolds and their behavior with
respect to the discontinuities turning them into a new system of coordinates of the plane.
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We study of where each region comes from and is mapped to with respect these new
coordinates, identifying a region where the dynamics changes drastically. The coding
comes naturally with these coordinates, 1 representing the region where the dynamics
change, 2 the region outside of it, -1 and -2 the reflected regions and 0 the points which
will not have any other forward or backward iterate.

Even tough the ergodicity of the Hénon-Devaney map remains an open prob-
lem, if one can manage to prove that the map f is recurrent or, equivalently, that
Lebesgue almost every point enters the “interesting” region R1,1 (the special region for
the coding), the ergodicity should come naturally using some classical arguments.... but
once again.... that is just a big “if”...

7



Chapter 1

The Two-Parameter Family

One of the most famous examples in Infinite Ergodic Theory is the Boole’s
Map defined by

B : R → R
x 7→ x− 1

x

and it is easy to see that it preserves Lebesgue measure in the real line. In 1973, Adler
and Weiss studied the ergodicity of this map in their paper [AW]. The main idea here,
in simple words, is to understand how the pre-images of the discontinuity spread out
through the real line and how it is possible to control the differential map.

Some one-dimensional generalizations of this map were studied by S. Muñoz
in his PhD. Thesis [M], in which he finds some topological properties for the maps with
a different behavior of the “infinity”, that is, turning the indifferent fixed point that
infinity is into something else depending on the parameter.

Hénon introduced a two-dimensional version of the Boole map, the Hénon-
Devaney map we talked about a little bit in the introduction. He was studying the
restricted three-body problem and using “truncated solutions” of the problem, the so
called generating families.

A generalization to this map was object of study and S. Muñoz proposed
and exhibited some properties of a two-parameter model of generalization in [M2]. The
two-family is defined by

fa,b : R2 \ {y = 0} → R2

(x, y) 7→
(
ax+

1

y
, by − b

y
− abx

)
and here we will only consider 0 < a ≤ b ≤ 1. Observe that the Hénon-Devaney map is
the “limit” in the space of parameters, that is, f1,1 = f .

This family will be the object of study throughout this thesis. At first, we
will focus on giving some hyperbolic properties and finding an attracting region to these
maps. It will become clear that this attracting region does not “exist” in the limit case.

8



It is an important remark that we will look at the RP2 as {(x, 1);x ∈ R and −
∞ = ∞}. The idea behind it is that every point in the projective space will be the
direction of the tangent of the unstable (respectively the stable) manifold.

Figure 1.1: The projective space RP2.

Recall that the differential of each fa,b is given by

Dfa,b(x, y) =

 a − 1

y2

−ab b+
b

y2


and when |y| → ∞ we get that

Dfa,b(x,∞) =

(
a 0

−ab b

)
that have two invariant directions in the projective space, namely, [(0, 1)] and

[(
(b− a)

ab
, 1

)]
.

Here we can see the first difference between the approach given to each one
of the cases: when both parameters converge to their limit case 1, the second invariant
direction collapses to the first one. In fact, this fact depends only on the a-parameter,
he is the one playing the role of splitting those two directions.

In this chapter we want to prove theorem A

Theorem (A). For every a ≤ b ≤ 1, there exists two invariant cone fields for fa,b.
These cone fields induce the directions Ecu and Ecs. For a = b = 1, the splitting is not
uniformly dominated. For a < b ≤ 1, the splitting is dominated and Ecs is uniformly
contractive. These that induces a C1-foliation for the every map in the family, moreover
if a < b ≤ 1 then these leaves have a C2-differentiability.

1.1 The Hénon-Devaney Map

Recall once again the Hénon map we defined in the introduction

f : R2 \ {y = 0} → R2

(x, y) 7→
(
x+

1

y
, y − 1

y
− x
)

9



and observe that its differential is given by

Df(x, y) =

 1 − 1

y2

−1 1 +
1

y2


The first thing we want to see is that f preservers the Lebesgue measure m

and that is easy to see once we have that det(Df(x, y)) = 1.

1.1.1 Invariant Cone Fields

Let us check that Df(x, y) is hyperbolic for every finite y ∈ R∗

Df(x, y)

(
u
v

)
=

(
λu
λv

)
in which we have 

u− 1

y2
v = λu

−u+

(
1 +

1

y2

)
v = λv

Replacing the first equation in the second we get

v = y2(1− λ)u (1.1)

Then
y2 − y2λ− λ = y2λ− y2λ2

and follows that
y2λ2 − (2y2 + 1)λ+ y2 = 0

Therefore

|λ+| =

∣∣∣∣∣1 +
1 +

√
1 + 4y2

2y2

∣∣∣∣∣ > 1

and also

|λ−| =

∣∣∣∣∣1 +
1−

√
1 + 4y2

2y2

∣∣∣∣∣ < 1

From the equation 1.1, we can see that unstable eigenspace is located at the
second and fourth quadrants and the stable one is the first and third. In terms of the
projective space, the unstable eigenspace is a point (u, 1) for some negative u and the
stable one is a point with some posite u.

10



Although Df(x, y) is non-uniformly hyperbolic because both λ+ and λ− con-
verge to 1 when |y| → ∞, in fact, we have that

Df(x,∞) =

(
1 0
−1 1

)
and, using the notation we introduced before, we can see that (0, 1) is the invariant
direction to Df(x,∞).

Figure 1.2: The transition from hyperbolic state to parabolic state.

In order to find the invariant direction we want to find an unstable cone field
that does not depend on y that will be contracted by the differential on the projective
space. Note that

Df(x, y)

(
u
1

)
=

 u− 1

y2

−u+ 1 +
1

y2


and define

Lf(x,y) : RP2
(x,y) → RP2f(x,y)

u 7→
u− 1

y2

−u+ 1 + 1
y2

=
y2u− 1

−y2u+ y2 + 1

Lemma 1.1. Lf(x,y) is a contraction in (−∞, 0).

Proof. Let’s compute
∂Lf

(x,y)

∂u
to see how it behaves∣∣∣∣∣∂L

f
(x,y)

∂u
(u)

∣∣∣∣∣ =

∣∣∣∣y2(−y2u+ y2 + 1) + y2(y2 − 1)

(−y2u+ y2 + 1)2

∣∣∣∣ =
y4

(−y2u+ y2 + 1)2

If u ∈ (−∞, 0) then

−y2u ≥ 0⇒ (−y2u+ y2 + 1)2 ≥ (y2 + 1)2

11



and hence ∣∣∣∣∣∂L
f
(x,y)

∂u
(u)

∣∣∣∣∣ ≤ y4

y4 + 2y2 + 1
< 1 ∀u ∈ (−∞, 0)

Observe that λ(y) := y4

y4+2y2+1
is uniform in (u, 1) ∈ RP2(x,y), if u < 0. Consider

now the unstable cone in the tangent space

Cu(x, y) = {(u, v) ∈ R2 / uv < 0}

and observe that the cone at the projective space is given by

[Cu(x, y)] = {(u, 1) ∈ RP2(x,y) / u < 0}

Observe also that although we defined the cone as Cu(x, y), it does not actually depend
on the base point (x, y).

The previous lemma tells us that [Cu(x, y)] is mapped by Lf(x,y) inside the

[Cu(f(x, y))], that is, if we look at the cone field in the tangent space we get

Df(x, y)(Cu(x, y)) ⊂ Cu(f(x, y)) ∀(x, y) ∈ R2 \ {y = 0}

once we have that

Lf(x,y)(0) = − 1

y2 + 1
< 0

Lf(x,y)(∞) = Lf(x,y)(−∞) = −1 < 0

Let us check the same cone property for the inverse, we want to see what
happens to the stable direction. Note that

f−1 : R2 \ {x = −y} → R2

(x, y) 7→
(
x− 1

x+ y
, x+ y

)
and observe that its differential is given by

Df−1(x, y) =

 1 +
1

(x+ y)2
1

(x+ y)2

1 1


Proceeding in the same way as before we can define

Lf
−1

(x,y) : RP2(x,y) → RP2f−1(x,y)

u 7→ u

u+ 1
+

1

(x+ y)2

12



Lemma 1.2. Lf
−1

(x,y) is a contraction in (0,∞).

Proof. Like before, just do the computation

∂Lf
−1

(x,y)

∂u
(u) =

1

(u+ 1)2
< 1 ∀u > 0

Consider now the stable cone in the tangent space

Cs(x, y) = {(u, v) ∈ R2 / uv > 0}

and observe that the cone at the projective space is given by

[Cs(x, y)] = {(u, 1) ∈ RP2(x,y) / u > 0}

The same independence of the base point (x, y) we said before applies here.

Hence, as before, we get

Df−1(x, y)(Cs(x, y)) ⊂ Cs(f−1(x, y)) ∀(x, y) ∈ R2 \ {x = −y}

once we have that

Lf
−1

(x,y)(0) =
1

(x+ y)2
> 0

Lf
−1

(x,y)(∞) = Lf
−1

(x,y)(−∞) = 1 +
1

(x+ y)2
> 0

1.1.2 Invariant Manifolds

In this section we go a little further in the study we started before. We want to achieve
the existence of invariant manifolds for almost every point of the plane. To conclude
that we want to prove first that the intersection of the cone field is actually just one
direction, that is, a dominated splitting given by

Cu(x, y) :=
⋂
n∈N

Dfn(f−n(x, y))(Cu(f−n(x, y)))

Due the independence of each cone Cu(x, y) and the fact we discussed in the
previous section, we have only two possibilities for Cu(x, y): either it is a single point in
the projective space or it is an interval inside [Cu] = [−∞, 0].

Once we know that

Df(x,∞) =

(
1 0
−1 1

)
13



we can define in a similar way as we did before

Lf∞(u) :=

[
Df(x,∞)

(
u
1

)]
=

u

−u+ 1

which is increasing for u ∈ Cu because the differential with respect to u is given by

∂Lf∞
∂u

(u) =
1

(−u+ 1)2

and is increasing when u < 0.

Recall that  Lf(x,y)(0) =
−1

y2 + 1
< 0

Lf(x,y)(−∞) = −1

Then we get also that Cu(x, y) is contained in an interval that is given by

Df(x−1, y−1)(Cu) =

[
−1,

−1

y2−1 + 1

]
where f−1(x, y) = (x−1, y−1)

Extrapolating the notation above, denote by (x−n, y−n) := f−n(x, y), once we
know that

Cu(x, y) ⊂ Dfn(x−n, y−n)(Cu) ⊂
[
−1,

−1

y2−1 + 1

]
∀n > 0

it is possible to improve the estimative we got earlier using the fact that we can control
where the cone lies in every step and the fact that the ∂Lf

∂u
is increasing in u:∣∣∣∣∣∂L

f
(x−n,y−n)

∂u

(
−1

y2−1 + 1

)∣∣∣∣∣ =
y4−n(

y2−n

(
−1

y2−1+1

)
+ y2−n + 1

)2 =
(y2−1 + 1)2(

y2−1 + 2 +
y2−1

y2−n
+ 1

y2−n

)2
Hence ∣∣∣∣∣∣∣

∂Lf(x−n,y−n)
∂u

∣∣∣∣∣[
−1, −1

y2−1+1

]
∣∣∣∣∣∣∣ ≤

(y2−1 + 1)2(
y2−1 + 2

)2 < 1 ∀n > 0

The worst-case scenario is when “y = ∞”, but even in that case we get the
same contraction rate ∣∣∣∣∣∣ ∂L

f
∞

∂u

∣∣∣∣[
−1, −1

y2−1+1

]
∣∣∣∣∣∣ ≤ (y2−1 + 1)2(

y2−1 + 2
)2 < 1

14



and it only have one fixed point, namely u = 0.

To conclude that [Cu(x, y)] is a single point in the projective space, all that is
necessary is to have all the pre-images of (x, y) defined. This means we can only achieve
this outside the set of the pre-images of the discontinuity of f−1: ∪n≥0fn({y = −x}).

The same idea will be used to get the stable direction. Consider now

Cs(x, y) :=
⋂
n∈N

Df−n(fn(x, y))(Cs(fn(x, y)))

Once again Cs(x, y) is contained in the interval

Df−1(x1, y1)(Cs) =

[
1

(x1 + y1)2
, 1 +

1

(x1 + y1)2

]
where f(x, y) = (x1, y1). Using the same extrapolation of the notation and the fact that
∂Lf−1

∂u
is decreasing in u∣∣∣∣∣∂L

f−1

(xn,yn)

∂u

(
1

(x1 + y1)2

)∣∣∣∣∣ =
1(

1
(x1+y1)2

+ 1
)2 =

(x1 + y1)
2

((x1 + y1)2 + 1)2

getting ∣∣∣∣∣∣∣
∂Lf

−1

(xn,yn)

∂u

∣∣∣∣∣[
1

(x1+y1)
2 ,1+

1
(x1+y1)

2

]
∣∣∣∣∣∣∣ ≤

(x1 + y1)
2

((x1 + y1)2 + 1)2
< 1 ∀n > 0

To finish this part of the proof it is necessary, once again, bypass the set that
all the images of (x, y) are not defined. Now we have to rule out the pre-images of the
discontinuity of f : ∪n≥0f−n({y = 0}). This set, alongside with the analogous of f−1,
will be explored in the next section, and it will help to understand how the lamination
given by the discontinuities behave alongside of the invariant manifolds found here.

1.1.3 C1-Foliation

To establish the C1-variation of the foliation of the directions, all that is necessary is
to study the differential of the graphic transformation, it is necessary to check that it is
also a contraction for some special cone fields. And the cone fields are indeed special, in
fact, they are the same cone fields used for Lfx,y and Lf−1

x,y .

Observe we know that

•
∂Lf(x,y)
∂u

(u) =
y4

(−y2u+ y2 + 1)2

15



•
∂Lf(x,y)
∂x

(u) = 0

•
∂Lf(x,y)
∂y

(u) =
2y

(−y2u+ y2 + 1)2

which implies that

∂Lf(x,y)
∂u

(u) +
∂Lf(x,y)
∂x

(u) +
∂Lf(x,y)
∂y

(u) =
y4 + 2y

(−y2u+ y2 + 1)2
< 1

for all u ∈ Cu, just suppose the contrary and you will obtain a contradiction.

All the differentials of Lf
−1

(x,y)

•
∂Lf

−1

(x,y)

∂u
(u) =

1

(u+ 1)2

•
∂Lf

−1

(x,y)

∂x
(u) =

−2

(x+ y)3

•
∂Lf

−1

(x,y)

∂y
(u) =

−2

(x+ y)3

and, again we get analogously that

∂Lf
−1

(x,y)

∂u
(u) +

∂Lf
−1

(x,y)

∂x
(u) +

∂Lf
−1

(x,y)

∂y
(u) =

(x+ y)3 − 4(u+ 1)2

(x+ y)3(u+ 1)2
< 1

for all u ∈ Cs.
To conclude, just proceed in the same way we did before.

1.2 Dominated Splitting for the Family

In this section we make the first moves towards the understanding and describing this
two-parameter family. We want to find unstable and stable cones in order to determine
a dominated splitting and invariant manifolds for fa,b in Lebesgue-almost every point.

To do so, let us compute

Dfa,b(x, y)

(
u
1

)
=

 au− 1

y2

−abu+ b+
b

y2
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and look at it in the projective space. This defines the map bellow

Lfa,b(x,y) : RP2(x,y) → RP2f(x,y)

u 7→
au− 1

y2

−abu+ b+ b
y2

=
ay2u− 1

−aby2u+ by2 + b

Lemma 1.3. Lfa,b(x,y) is a contraction in (−∞, (b−a)
ab

).

Proof. Computing
∂L

fa,b
(x,y)

∂u
to see its behavior∣∣∣∣∣∂L

fa,b
(x,y)

∂u
(u)

∣∣∣∣∣ =

∣∣∣∣ay2(−aby2u+ by2 + b) + aby2(ay2 − 1)

(−aby2u+ by2 + b)2

∣∣∣∣ =
aby4

(−aby2u+ by2 + b)2

For u ∈ (−∞, 0) we get

−aby2u ≥ 0⇒ (−aby2u+ by2 + b)2 ≥ (by2 + b)2

and hence ∣∣∣∣∣∂L
fa,b
(x,y)

∂u
(u)

∣∣∣∣∣ ≤ a

b
· y4

y4 + y2 + 1
< 1 ∀u ∈ (−∞, 0)

For 0 ≤ u ≤ (b−a)
ab

, we have that

Lfa,b(x,y)

(
(b− a)

ab

)
= −y

2(b− a)− 1

aby2 + b2

Lfa,b(x,y)(0) =
−1

by2 + b
< 0

Hence, subtracting one from the other we have

Lfa,b(x,y)

(
(b− a)

ab

)
− Lfa,b(x,y)(0) =

by4(b− a)

(aby2 + b2)(by2 + b)
> 0

and comparing the length of each one of the intervals we get

by4(b− a)

(aby2 + b2)(by2 + b)
· ab

(b− a)
=

ab2y4

ab2y4 + ab2y2 + b4y2 + b3
< 1

Observe that λ(a, b, x, y) := a
b
· y4

y4+y2+1
< 1 is uniform in (u, 1) ∈ RP2(x,y), if

u < 0. Even more, it is interesting to see also that for every (x, y) ∈ R2 \ {y = 0} we get
an uniform control of the contraction

y4 + 2y2 + 1 ≥ y4 ⇒ λ(a, b, x, y) ≤ ay4

by4
=
a

b
< 1
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Also it is important to note that even though we denote λ as a function of 4 parameters,
the contraction is once again linked directly to the parameter a. Once more, this differs
deeply from the limit case a = b = 1, where we do not have an uniform bound for this
interval. However, we do not have uniformity of control in the interval (0, (b−a)

ab
).

We are in a good place of defining what will be the unstable cone in the
tangent space. Indeed, define by

Cu(x, y) =

{
(u, v) ∈ R2 /(u, v) lies outside the region delimited by v = 0 and u =

(b− a)

ab
v

}
and its representation in the projective space is given by

[Cu(x, y)] =

{
(u, 1) ∈ RP2(x,y) / u <

(b− a)

ab

}
Observe also that although we defined the cone as Cu(x, y), it does not actually depend
on the base point (x, y).

Let us take a moment to stress something here that might be overlooked,
the definition of the unstable cone does not depend on the parameters a and b. It is
defined like that because, even if we lose the uniformity of the bound, the same cone is
contracted for all fa,b, for a = b = 1 included.

The previous lemma tells us that [Cu(x, y)] is mapped by Lfa,b(x,y) inside the

[Cu(fa,b(x, y))], that is, if we look at the cone field in the tangent space we get

Dfa,b(x, y)(Cu(x, y)) ⊂ Cu(fa,b(x, y)) ∀(x, y) ∈ R2 \ {y = 0}

once we have that

Lfa,b(x,y)

(
(b− a)

ab

)
= −y

2(b− a)− 1

aby2 + b2
<

(b− a)

ab

Lfa,b(x,y)(∞) = Lfa,b(x,y)(−∞) = −1

b
< 0

and repeat here the same argument we used in the first section to get the existence of
Ecu, that is, the intersection of the unstable cones is a single point.

Now it is time to check the cone property for the inverse, the objective is to
draw the same consequences in order to get the stable direction. As the reader already
knows

f−1a,b : R2 \ {bx = −y} → R2

(x, y) 7→
(
x

a
− 1

a(x+ y
b
)
, x+

y

b

)
and observe that its differential is given by

Df−1a,b (x, y) =


1

a
+

1

a(x+ y
b
)2

1

ab(x+ y
b
)2

1
1

b
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Define now the graphic operator for the inverse

Lf
−1
a,b

(x,y) : RP2(x,y) → RP2
f−1
a,b (x,y)

u 7→
b(x+ y

b
)2u+ bu+ 1

ab(u+ 1
b
)(x+ y

b
)2

and at this point we have to split the study a bit more due a divergence of behavior
depending on the value of b.This get clearer when looking at the differential with respect
to the u-coordinate

∂Lf
−1
a,b

(x,y)

∂u
(u) =

1

ab(u+ 1
b
)2

∀u ∈ R

exhibiting a stable cone that depends on a, corroborating and making explicit that the
even the limit case we have separated directions Ecu and Ecs which does not happen
when a = b = 1.

Lemma 1.4. Lf
−1
a,b

(x,y) is a contraction in ( (b−a)
ab

,∞).

Proof. Just like the previous lemma, start by computing the following differential

∂Lf
−1
a,b

(x,y)

∂u
(u) =

1

ab(u+ 1
b
)2
< 1 ∀u > (b− a)

ab

Here we get an uniform control of the contraction because

(
u+

1

b

)2

≥
(

(b− a)

ab
+

1

b

)2

⇒
∂Lf

−1
a,b

(x,y)

∂u
(u) =

1

ab(u+ 1)2
≤ a

b
< 1 ∀u > (b− a)

ab

Consider now the stable cone in the tangent space

Cs(x, y) =

{
(u, v) ∈ R2 /(u, v) lies inside the region delimited by v = 0 and u =

(b− a)

ab
v

}
and observe that the cone at the projective space is given by

[Cs(x, y)] =

{
(u, 1) ∈ RP2(x,y) / u >

(b− a)

ab

}
The same independence of the base point (x, y) we said before applies here.

Hence, as before, we get

Df−1a,b (x, y)(Cs(x, y)) ⊂ Cs(f−1a,b (x, y)) ∀(x, y) ∈ R2 \ {bx = −y}
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once we have that

Lf
−1
a,1

(x,y)

(
(b− a)

ab

)
=

(b− a)(x+ y
b
)2 + b

ab(x+ y
b
)2

>
(b− a)

ab

Lf
−1
a,1

(x,y)(∞) = Lf
−1
a,1

(x,y)(−∞) =
1

a
+

1

a(x+ y
b
)2
>

(b− a)

ab

All the same arguments we gave before work here with no problem whatso-
ever. We still have the independence of the base point in the definition of the cone field
and now we have some kind of uniformity depending on a and b.

Now we need to prove the differentiability of the invariant manifolds. To do
that let us proceed just like the Hénon-Devaney map. Let us compute all the differentials

of Lfa,b(x,y)

•
∂Lfa,b(x,y)

∂u
(u) =

aby4

(−aby2u+ by2 + b)2

•
∂Lfa,b(x,y)

∂x
(u) = 0

•
∂Lfa,b(x,y)

∂y
(u) =

2by

(−aby2u+ by2 + b)2

and all the differentials of Lf
−1
a,b

(x,y)

•
∂Lf

−1
a,b

(x,y)

∂u
(u) =

1

ab(u+ 1
b
)2

•
∂Lf

−1
a,b

(x,y)

∂x
(u) =

−2bu− 2

ab(x+ y
b
)3(u+ 1

b
)

•
∂Lf

−1
a,b

(x,y)

∂y
(u) =

−2u− 2
b

ab(x+ y
b
)3(u+ 1

b
)

Proceeding in the same way as before we get the C1-foliation and looking at
the next differential we get the C2. The fact we have the parameters a, b will give an
extra control of the contraction rate, which gives us the C2 differentiability.
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Chapter 2

The Attractor Λa,b

In this chapter we want to find an attracting region in the plane, that is, we want to
determine that, for every a < b ≤ 1, there exists a subset Ra,b ⊂ R2 such that its images
is contained inside itself. Due the symmetry, we will only focus on doing determining
the attracting region for half of the plane and it will determined everywhere.

Our main objective in this chapter is to prove the following statement

Theorem (B). For every a < b ≤ 1, there exists a global attractor

Λa,b :=
⋂
n∈N

fna,b(Ra,b) ⊂ Ra,b

which is not compact. This induces an one dimensional dynamics via the projection
along that stable manifold to {x = 0}:

a < b = 1 : the one dimensional map is “Boole-like”

a < b < 1 : the induced map is a “Boole-like expanding” map.

Let us take a moment just to recall the definitions of Boole-like and Boole-like
expanding.

Definition. We say that g : R \ {0} → R is Boole-like if

(i) g(x) < x for x > 0 and g(x) > x for x < 0. Also, limx→±∞ g(x) = ±∞;

(ii) g is increasing for every x ∈ R \ {0};

(iii) lim|x|→∞ g
′(x) = 1 and lim|x|→0 g

′(x) =∞;

(iv) lim|x|→∞ |g(k)(x)| bounded for every k ∈ N,

The idea behind this definition is trying to establish a notion of maps that
have its graphic similar to the graphic of the Boole, a perturbation of it without creating
fixed points.
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Definition. We say that g : R \ {0} → R is a Boole-like expanding if

(i’) Conditions (i), (ii) and (iv) as before;

(ii’) lim|x|→∞ g
′(x) ≤ a < 1 and lim|x|→0 g

′(x) =∞;

And all of them imply, as we will see in section 2.3, that

(iii’) there exists an interval I that contains the discontinuity such that the return map
gI : I → I is expanding.

For the second definition, as we said before, the objective is to think of some-
thing like the traditional Boole but instead of having the asymptote in the {x = y} this
map has an asymptote line that is below the identity.

2.1 Attracting Region

The first step we need to take is to find where the attractor lies, that consists in deter-
mining a region that is mapped inside itself by fa,b. This region will be the attracting
basin of our attractor.

We will make a few assumptions, splitting the steps into different regions in
the domain of fa,b depending on where the image of that set is mapped to. Recall once
again that, for every a, b we have a symmetry that allow us only to determine the region
only for “half” of the plane, which will eliminate a few of those splits. We will denote
by fa,b(·)x the x-coordinate of fa,b and fa,b(·)y the y-coordinate.

At first, let us consider the points (x, y) such that y > 0, x + y
b
> 0 and

fa,b(x, y)y > 0. We want to find x0 such that if x ≤ x0 then −fa,b(x,y)y
b

< fa,b(x, y)x ≤ x0

It is easy to see that −fa,b(x,y)y
b

< fa,b(x, y)x because it is a direct consequence
of the fact that y > 0. It is enough to determine x0 such the inequalities we said before
is satisfied due the continuity of fa,b in that region and the fact that ax+ 1

y
is increasing

in terms of x for any fixed y.

Observe that

fa,b(x0, y)x ≤ x0 ⇒
1

y
≤ (1− a)x0

We also know that ax0 + 1
y

is decreasing in terms of y, which implies that it
is enough to satisfy the previous condition for y0 such that

by0 −
b

y0
− abx0 = 0

which implies that
1

(1− a)x0
≤ y0
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For the (x, y) such that y > 0, x + y
b
> 0 and fa,b(x, y)y < 0, we want to

find x0 such that the image of fa,b is contained inside the area delimited by y = −bt and
y = −b(t− x0

b
). Asking that the last condition holds is the same as asking that

by − b

y
− abx = fa,b(x, y)y ≤ −b

(
(fa,b(x, y)x)−

x0
b

)
= −b

((
ax+

1

y

)
− x0

b

)
which implies that

by ≤ x0

Now using the fact that by − b
y
− abx0 is increasing in terms of y we get that

it is enough to get condition above for y0, that is

y0 ≤
x0
b

Hence, these two conditions together we get that

1

(1− a)x0
≤ x0

b
⇒ x20 ≥

b

(1− a)

We have two remaining cases: (x, y) such that y < 0, x + y
b
> 0, (x, y) is

contained inside area delimited by y = −bt and y = −b(t − x0
b

) and fa,b(x, y)y < 0, we
want that the image of fa,b is such that fa,b(x, y)x > −x0 and (x, y) such that y < 0,
x + y

b
> 0, (x, y) is contained inside area delimited by y = −bt and y = −b(t + x0

b
) and

fa,b(x, y)y > 0, we want that the image of fa,b is contained inside the area delimited by
y = −bt and y = −b(t + x0

b
). If we proceed in the same way as before, we are going to

get the same condition.

Taking x0 such the condition above hold, it will give us the attracting region
Ra,b once we get that fa,b(Ra,b) ⊂ Ra,b a direct consequence of our choice of x0.

Figure 2.1: The region Ra,b.
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Remark: Here we have an interesting thing to point out. When a→ 1, the
attracting region becomes the whole plane and there is no point on finding the attractor.
We lose this region for the Hénon-Devaney map.

2.2 Topological Consequences of the Attractor

In this section we want to conclude the proof of the Theorem B. We already have all
the tools to conclude the proof. In everything that follows, for obvious reasons, we only
will deal with a < b ≤ 1.

Let us recall that we have the graphic transformation introduced in the last
chapter given by

Lf
−1
a,b

(x,y)(u) =
b(x+ y

b
)2u+ bu+ 1

ab(u+ 1
b
)(x+ y

b
)2

and if (x+ y
b
)2 →∞ we have the inverse of Lfa,b∞ we defined before that is given by

Lf
−1
a,b
∞ (u) =

bu

a(bu+ 1)

that is, if the operator that is defined by the matrix Df−1a,b when we take any curve going
to infinite which is not asymptotic to the discontinuity of the inverse at infinity.

Recall that, as we stated in the introduction of the Chapter 2, the matrix

Df−1a,b have two invariant directions, that is, Lf
−1
a,b
∞ have two fixed points, namely u = 0

and = (b−a)
ab

> 0. Our goal is to use the foliation given by Lf
−1
a,b
∞ , that is, straight lines

with slope (b−a)
ab

to approach the holonomy given by Lf
−1
a,b

(x,y) if (x+ y
b
)2 is big enough.

But this arouses the first problem with this approach. The region Ra,b con-
tains the line {y = −bx}, which could imply that the attractor given by the intersection
of all forward iterates of this region could be “close to {y = −bx} at infinity”. This can
be easily solved just by looking at the second iterate of the region Ra,b.

Observe that the attractor is contained in the region delimited by two pairs
of hyperboles, the image of {(x0, y), y ∈ R} and the image of the {y = −bx} itself: just
look at fa,b(t,−bt) = (at− 1

bt
,−b(b+ a)t+ 1

t
) and fa,b(x0, y).

Let us elaborate this a little better, just observe that

5fa,b(t,−bt) =

(
a+

1

bt2
,−b(b+ a)− 1

t2

)
which implies that

[5fa,b(t,−bt)] =

(
a+ 1

bt2

−b(b+ a)− 1
t2

, 1

)
and this tells us that when |t| → ∞ g, the image of {y = −bx} is asymptotic to the
direction ( a

−b(b+a) , 1) and to (1,−b) when |t| → 0.
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One could ask about what happens to the fa,b(t,−bt) when |x| → 0 once we
get that it is asymptotic to the line {y = −bx}, but it can be reduce to the previous case
just by iterating once and it will enter the region that is away from the discontinuity of
f−1a,b .

Figure 2.2: The new attracting region.

Next, we want to achieve the C2-convergence of the operators Lf
−1
a,b

(x,y) → L
f−1
a,b
∞

when (x+ y
b
)2 →∞ and θ(x,y) → (b−a)

ab
, where θ(x,y) is the fixed point of Lf

−1
a,b

(x,y) related to
the stable direction.

Once we know that all points in the new attracting region lies above the
limiting line {( a

b(a+b)
t, t}, follows that

x ≥ − a

b(a+ b)
y ⇒

(
x+

y

b

)2
≥
(

1

b
− a

b(a+ b)

)2

y2

and also

x ≤ x0 ⇒
(
x+

y

b

)2
≤
(
x0 +

y

b

)2
which tells us about the order of (x+ y

b
)2.

Take orbit f−na,b (x, y) such that θn := θf−na,b (x,y)
and which f−na,b (x, y)y → ∞.

This is the orbit which will give the convergence of the stable direction. Observe that,
using the uniformity of the contraction rate of the differential, we get

|Lf
−1
a,b

f−na,b (x,y)
◦ · · · ◦ Lf

−1
a,b

(x,y)(I)| ≤ 1

b

(a
b

)n n→∞−→ 0

where I =
[
(b−a)
ab

,∞
]
, implying that the limit Θ of the stable direction θn exists and is

greater or equal than (b−a)
ab

.
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However we also have that Lf
−1
a,b

(x,y)

C0

−→ Lf
−1
a,b
∞ once we know that

Lf
−1
a,b

(x,y)(u)− Lf
−1
a,b
∞ (u) =

1

a(x+ y
b
)2
−→ 0 ∀u ∈ R

when y →∞. Given ε > 0, there is n0 such that for n ≥ n0,

|Lf
−1
a,b

f−na,b (x,y)
(u)− Lf

−1
a,b
∞ (u)| < ε

This implies that∣∣∣∣Θ− (b− a)

ab

∣∣∣∣ ≤ ∣∣∣∣Lf−1
a,b

f−na,b (x,y)
◦ · · · ◦ Lf

−1
a,b

(x,y)(θn)−Θ

∣∣∣∣
+

∣∣∣∣Lf−1
a,b

f−na,b (x,y)
◦ · · · ◦ Lf

−1
a,b

(x,y)(θn)− Lf
−1
a,b
∞ ◦ · · · ◦ Lf

−1
a,b

(x,y)(θn)

∣∣∣∣
+

∣∣∣∣Lf−1
a,b
∞ ◦ Lf

−1
a,b

f
−(n−1)
a,b (x,y)

◦ · · · ◦ Lf
−1
a,b

(x,y)(θn)− (b− a)

ab

∣∣∣∣
Which tells us that∣∣∣∣Θ− (b− a)

ab

∣∣∣∣ ≤ 2ε+

∣∣∣∣Lf−1
a,b
∞ ◦ · · · ◦ Lf

−1
a,b

(x,y)(θn)− (b− a)

ab

∣∣∣∣
But we have that∣∣∣∣Lf−1

a,b
∞ ◦ · · · ◦ Lf

−1
a,b

(x,y)(θn)− (b− a)

ab

∣∣∣∣ =

∣∣∣∣Lf−1
a,b
∞ ◦ · · · ◦ Lf

−1
a,b

(x,y)(θn)− Lf
−1
a,b
∞

(
(b− a)

ab

)∣∣∣∣
≤ a

b

∣∣∣∣Lf−1
a,b

f
−(n−1)
a,b (x,y)

◦ · · · ◦ Lf
−1
a,b

(x,y)(θn)− (b− a)

ab

∣∣∣∣
Again, the last one is less or equal than

∣∣∣∣∣∣L
f
−1
a,b

f
−(n−1)
a,b

(x,y)
◦ · · · ◦ L

f
−1
a,b

(x,y)
(θn)− L

f
−1
a,b

f
−(n−1)
a,b

(x,y)
◦ · · · ◦ L

f
−1
a,b

(x,y)
(θn−1)

∣∣∣∣∣∣ +
∣∣∣∣∣∣L

f
−1
a,b

f
−(n−1)
a,b

(x,y)
◦ · · · ◦ L

f
−1
a,b

(x,y)
(θn−1)−

(b− a)
ab

∣∣∣∣∣∣

For the first term we have∣∣∣∣Lf−1
a,b

f
−(n−1)
a,b (x,y)

◦ · · · ◦ Lf
−1
a,b

(x,y)(θn)− Lf
−1
a,b

f
−(n−1)
a,b (x,y)

◦ · · · ◦ Lf
−1
a,b

(x,y)(θn−1)

∣∣∣∣ ≤ (ab)n−1 |θn − θn−1|
and for the second∣∣∣∣Lf−1

a,b

f
−(n−1)
a,b (x,y)

◦ · · · ◦ Lf
−1
a,b

(x,y)(θn−1)−
(b− a)

ab

∣∣∣∣ ≤ ∣∣∣∣Lf−1
a,b

f
−(n−1)
a,b (x,y)

◦ · · · ◦ Lf
−1
a,b

(x,y)(θn−1)−Θ

∣∣∣∣
+

∣∣∣∣Θ− (b− a)

ab

∣∣∣∣
≤ ε+

∣∣∣∣Θ− (b− a)

ab

∣∣∣∣
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Putting this all together we have that∣∣∣∣Θ− (b− a)

ab

∣∣∣∣ ≤ 2ε+
a

b

((a
b

)n−1
|θn − θn−1|+ ε+

∣∣∣∣Θ− (b− a)

ab

∣∣∣∣)
= C1ε+

(a
b

)n
|θn − θn−1|+

a

b

∣∣∣∣Θ− (b− a)

ab

∣∣∣∣
which will give us (

1− a

b

) ∣∣∣∣Θ− (b− a)

ab

∣∣∣∣ ≤ C2ε

and finally ∣∣∣∣Θ− (b− a)

ab

∣∣∣∣ ≤ C3ε

that is lim θn = Θ = (b−a)
ab

.

Using the estimative we did before and determining all the differentials of

Lf
−1
a,b

(x,y) and the fact that the order of convergence is o(y2), it is easy to see that the C2

convergence follows in a very natural way because we have that

Lf
−1
a,b

(x,y)(u) = Lf
−1
a,b
∞ (u) +

1

a(x+ y
b
)2

The Lf
−1
a,b
∞ induces an constant holonomy, hence once we know that Lf

−1
a,b
x,y is

C2-close to it, the holonomies for points close enough to the infinity can be looked as
straight lines with slope (b−a)

ab
. Therefore, define let πs(x,y),Ws((x,y))∩{x=0} be the stable

holonomy for the attractor Λa,b that takes the point (x, y) and maps it to its projection
along the stable manifold to the set {x = 0}. Just as an abuse of notation we will refer
to this holonomy as simply πs and will omit the starting point and the finishing point
of the map.

With this definition in hand, the first thing we want to see is that the C2-

convergence of the operators Lf
−1
a,b

(x,y) → L
f−1
a,b
∞ , will give some control for the differential of

the holonomy πs. All we need to observe that

∣∣∣∣∂πs∂x

∣∣∣∣ is bounded for (x + y
b
) → ∞ and

∂πs

∂y
→ 1 when y →∞.

For both cases, we need to be away from the discontinuity because when
we are close to {y = −bx}, but once we are at the refined Ra,b this is automatically
established. Even more, we have a control of “how far” we are from {y = −bx}, because
we know that the asymptote for Ra,b is the direction ( a

−b(b+a) , 1).

Hence, if (x+ y
b
) is big enough this will follow immediately that the holonomy

πs is close to the πs∞, the holonomy induced by Lf
−1
a,b
∞ . Once the foliation are straight

lines with slope (b−a)
ab

, follows that the induced holonomy πs∞ that maps a line given by
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{( −a
b(b+a)

t, t)} into the {x = 0} is a translation. This implies that

∣∣∣∣∂πs∂x

∣∣∣∣ is bounded and

that
∂πs

∂y
→ 1.

At last, we are in a good to define the induced map for the attractor

πs ◦ fa,b ◦ inc : R → R
y 7→ πsfa,b(x,y),Ws(fa,b(x,y))∩{x=0} ◦ fa,b(0, y)

where inc denotes the natural inclusion

inc : R → R2

y 7→ (0, y)

Observe that

fa,b ◦ inc(y) = fa,b(0, y) =

(
1

y
, by − b

y

)
and also that, computing the differential

d(πs ◦ fa,b ◦ inc)

d y
(y) = 5πs(fa,b ◦ inc) · (Dfa,b(0, y) · (0, 1)

=

(
∂πs

∂x
,
∂πs

∂y

)
·
(
− 1

y2
, b+

b

y2

)
= − 1

y2
· ∂π

s

∂x
+ b

(
1 +

1

y2

)
· ∂π

s

∂y

which implies
d(πs ◦ fa,b ◦ inc)

d y
(y)→ b

when |y| → ∞ because ∂πs

∂x
is limited near infinity and ∂πs

∂y
→ 1.

2.3 Ergodic Consequences for fa,b

Here we want to explore the ergodicity of the two-parameter family. We want to use the
attractor we got in the previous section and the induced map to obtain some ergodic
information.

Theorem (C). For a < b ≤ 1, there exists a SRB measure µa,b supported in an attractor
Λa,b such that it can be disintegrated over the unstable manifold Wu(Λa,b) of the attractor
inside Ra,b and we also have that µua,b is absolute continuous with respect to the one-
dimensional Lebesgue measure. Also

a < b < 1 : The measure µa,b is finite and the attractor Λa,b lies inside a non-compact region;
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a < b = 1 : The measure µa,b is infinite and the attractor Λa,b lies in a non-compact region.

The proof consists into just understanding the induced map and using clas-
sical arguments to define the measure for each one of the maps. Both are based in the
same idea, looking at the one-dimensional map we introduced in the proof of theorem B
and its compactification. However, the reason why this works for each one of the cases
differs deeply.

First we consider both cases together and will look only to the induced map.
From now on we will refer to the induced map by hb and will explain briefly how to get
the invariant measure for Boole-like and Boole-like expanding using first a general idea
and the conclusion for the ergodicity differs, as we already said. This first part of the
argument follows the ideas established on [AW].

The first step is to see that the induced map has a return set, namely an
interval consisting of the first two pre-images of 0 by the positive and the negative
branch of hb, I0 := [x−1 , x

+
1 ]. We will also use the following notation A+ := [0, x+1 ] and

A− := [x−1 1, 0].

Figure 2.3: The return interval I0.

Just like Boole, each one of the pre-images of each one of the x1’s have a
pre-image of the same sign that is bigger than x+1 and smaller than x−1 , and a pre-image
of the opposite sign that lies inside I0. This actually happen to every point in the real
line, depending on the sign of it.

We can define now all the other sets which will make clear the return time
for each one the sets in the real line. Define

x+i = h−1b (x+i−1) > 0
x−i = h−1b (x−i−1) < 0

i > 1

and

u−i = h−1b (x+i−1) < 0
u+i = h−1b (x−i−1) > 0

i > 1
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where u+1 = x+1 and u−1 = x+1 .

Once each one of the branches is increasing, the sequence of (x+i )i∈N and
(u−i )i∈N form two increasing sequences and the opposite for (x−i )i∈N and (u+i )i∈N. The
picture bellow will help elucidate how the pre-images organize in along the real line

Figure 2.4: How the xi’s and ui’s are placed.

Just observe that x+i →∞ when i→∞. Suppose the contrary, that is, there
exists L = supi∈N x

+
i and we have that h−1b (L)+ > L because hb lies bellow the diagonal

and is increasing. And taking ε = h−1b (L)+ − L would have a contraction with the fact
that L = supi∈N x

+
i . Analogously x−i → −∞ and, once we know that u±i+1 is a solution

of x∓i = hb(u
±
i ), we have that ui → 0.

Using the correspondent notation used in [AW], let us considerB+
i = [x+i , x

+
i+1]

and A+
i = [u+i+1, u

+
i ], the analogous for B−i and A−i . Follows from our definitions that

hb(B
+
i+1) = B+

i and hb(B
−
i+1) = B−i . Also hb(B

+
1 ) = A+, hb(B

−
1 ) = A−, hb(A

−
1 ) = A+

and hb(A
+
1 ) = A−.

We can say a bit more about the image of the Ai’s, because due the choice of
them we have that hb(A

+
i ) = B−i and hb(A

−
i ) = B+

i .

With this information, every point in the real line enters I0 in finite time,
which allows us to define the the induced transformation

hρb : I0 → I0
x 7→ h

ρ(x)
b (x)

where ρ(x) = min{k ∈ N;hkb (x) ∈ I0}, that is, the first return time of x.
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Figure 2.5: The return map.

Once h′b(x)→ b when x→∞, there exists m0 > 0, c < 1 such that

0 < c ≤ inf{h′b(x)} ≤ sup{h′b(x)} ≤ b′ ≤ 1

for all |x| ≥ xm0 and there exists n0 such that for n > n0, we have that

h′b(x) ≥ 1

cm0+n0
∀x ∈ An

because we have the the differential explodes near 0. So we can’t control the differential
in the intervals given by [un0 , u1] ∪ [u1, xm0 ]. The continuity of the differential and
compactness of the set where we cannot control the differential, tells us that even though
we cannot control the differential every where, we have a lower bound for it that we will
still refer as the previous c and an upper bound b′.

With this, we can conclude the item (iii′), that is

Lemma 2.1. The return map is expanding for fa,b.

Once we know that the return map is expanding we have that, for every b ≤ 1
there exists µa,b that is ergodic and is absolute continuous with respect to the Lebesgue
measure (check [V], chapters 1 and 11).

To conclude if the measure µa,b is either finite or not, here we have to split
the cases and look at the return map ρ. The measure µa,b is obtained by “spreading”
the measure restricted to the interval [x−1 , x

+
1 ] to all the real line using the return time

and the measure is finite if, and only if, the return map is integrable with respect to the
measure µa,b (once again, check [V] for this).

If b < 1, then the b′ we found in the previous step still less than 1. In that
case, for n0 large enough we have that∫

R
ρ dLeb =

∫
[x−n0 ,x

+
n0

]

ρ dLeb +

∫
[x+n0 ,∞)

ρ dLeb +

∫
(−∞,x−n0 ]

ρ dLeb
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and will deal with
∫
[x+n0 ,∞)

ρ dLeb because the other case is completely analogous.∫
[x+n0 ,∞)

ρ dLeb =
∑
j∈N

∫
[xn0+j ,xn0+j+1]

ρ dLeb

=
∑
j∈N

∫
[xn0+j ,xn0+j+1]

n0 + j dLeb

=
∑
j∈N

(n0 + j)(xn0+j+1 − xn0+j)

≤
∑
j∈N

b′j(n0 + j)(xn0+1 − xn0)

and the last series converges by the ratio test. If b = 1, by the same arguments we have
that this integral diverges. Once we know that the measure µa,b behaves, we get that
µa,b is finite for b < 1 and µa,1 is infinite.

To conclude the proof, just look at the pullback of µa,b via the projection that
we defined before, that is, just look at the

(πs ◦ fa,b ◦ inc)∗µa,b = µa,b ◦ πs ◦ fa,b ◦ inc

It defines a measure supported in the attractor Λa,b and that gives full measure for the
set fa,b(Ra,b).
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Chapter 3

Coding the Hénon Map

Here we introduce a system of coordinates that is induced using the pre-images and
images of the discontinuities of the Hénon-Devaney map. The coordinates will help us
to describe the dynamics in a symbolic way, which will help us to understand exactly
the itineraries of each point relative to the position within the curves.

We want to find a conjugacy between the Hénon-Devaney map and a symbolic
model that tells us where exactly we are in the plane at each moment. We want to give
a description of how the orbits visit a determined region in the plane via the conjugacy
of the map and a product of two two-sided subshifts of finite type. In other words

Theorem (D). There exists Σi,Σj ⊂ Σ := {−2,−1, 0, 1, 2}Z and h : R2 → Σi × Σj an
homeomorphism such that the following diagram commutes

R2 f //

h
��

R2

h
��

Σi × Σj σ
// Σi × Σj

where
σ : Σi × Σj → Σi × Σj

((sn), (sm)) 7→ (σi(sn), σj(sm))

and σi, σj are the usual shift maps restricted to each one of its respective spaces.

3.1 The Discontinuities

Let us investigate the images and pre-images of the discontinuities of f and f−1, namely
the exceptional curves.

3.1.1 Pre-images of {y = 0}

Let’s take the first step in that direction

f−1({y = 0}) =
{
f−1(t, 0); t ∈ R

}
=

{(
t− 1

t
, t

)
; t ∈ R

}
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which is the Boole’s graph with inverted axis.

Figure 3.1: f−1({y = 0}).

Before analysing the other cases, let us first understand a few general as-
pects of f−n{y = 0} which do not depend on the values of x. Denoting f−2(x, y) =
(f−2x (x, y), f−ky (x, y)), we have that each coordinate in f−2(t, 0) is an increasing function
of the parameter t

(f−2x )′ = (f−1x )′ +
(f−1x )′ + (f−1y )′

(f−1x + f−1y )2

= 1 +
1

t2
+

(
2 +

1

t2

)
(f−1x + f−1y )2

> 0

and it holds for all t ∈ R∗ \ {t; f−1y (t, 0) = −f−1x (t, 0)} and, analogously, we have the
same for f−2y (t, 0).

Also it is easy to see that f−2({y = 0}) ∩ f−1({y = 0}) = ∅ because if there
exists x1 ∈ R∗ and x2 ∈ R∗ \ f−1({y = −x}) such that

t1 −
1

t1
= t2 −

1

t2
− 1

2t2 −
1

t2

t1 = 2t2 −
1

t2

that implies that t2 = 0, which is absurd.

Lemma 3.1. Using the notation f−n(t, 0) = (f−nx (t, 0), f−ny (t, 0))

(a) Each coordinate of the pre-image f−n(t, 0) is an increasing function of the param-
eter t in each connected component of R \

(
∪n−1j=0 f

−j({y = −x} ∩ {y = 0})
)
;

(b) f−(n−1)(t, 0) ∩ f−n(t, 0) = ∅.
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Proof. Both proofs are made by induction. We already did the induction step before
stating the lemma and the proofs resemble the previous cases.

(a) Assume that it holds for n, that is, (f−nx )′(t, 0) and (f−ny )′(t, 0) are positive. Then

(f−(n+1)
y )′(t, 0) = (f−nx (t, 0) + f−ny (t, 0))′ = (f−nx )′(t, 0) + (f−ny )′(t, 0) > 0

and

(f−(n+1)
x )′(t, 0) = (f−nx )′(t, 0) +

((f−nx )′(t, 0) + (f−ny )′(t, 0))

(f−nx (t, 0) + f−ny (t, 0))2
> 0

(b) If there is t1 and t2 such that f−nx (t1, 0) = f
−(n+1)
x (t2, 0) = f−nx (t2, 0)− 1

f−nx (t2, 0) + f−ny (t2, 0)

f−ny (t1, 0) = f
−(n+1)
y (t2, 0) = f−nx (t2, 0) + f−ny (t2, 0)

replacing
f−nx (t2, 0) = f−ny (t1, 0)− f−ny (t2, 0)

from the second equation in the first one, we get

f−nx (t2, 0) = f−nx (t1, 0) +
1

f−ny (t1, 0)

= f−(n−1)x (t1, 0)− 1

f−ny (t1, 0)
+

1

f−ny (t1, 0)
= f−(n−1)x (t1, 0)

Back to the second equation

f−(n−1)x (t1, 0) + f−(n−1)y (t1, 0) =: f−ny (t1, 0) = f−(n−1)x (t1, 0) + f−ny (t2, 0)

and putting the information together follows that exists x1 and x2 such that{
f
−(n−1)
x (t1, 0) = f−nx (t2, 0)

f
−(n−1)
y (t1, 0) = f−ny (t2, 0)

that is f−(n−1)(t, 0) ∩ f−n(t, 0) 6= ∅, a contradiction.

Remark 3.1. Once we know that

f−n(t, 0) =

(
f−(n−1)x (t, 0)− 1

f
−(n−1)
x (t, 0) + f

−(n−1)
y (t, 0)

, f−(n−1)x (t, 0) + f−(n−1)y (t, 0)

)

it is easy to see that
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(i) limt→∞ f
−n
x (t, 0) =∞;

(ii) limt→∞ f
−n
y (t, 0) =∞.

In the next step, f−2({y = 0}) will have 4 curves, because of the discontinu-
ities of f−1, that is, the pre-images below

(i) f−1
({(

t− 1

t
, t

)
; t > 0 and t > −

(
t− 1

t

)})

(ii) f−1
({(

t− 1

t
, t

)
; t > 0 and t < −

(
t− 1

t

)})
and the other two cases follow from the previous two because we have that −f−1(x, y) =
f−1(−x,−y).

In (i), we get that

f−2({y = 0}) =

{(
t− 1

t
− 1

2t− 1
t

, 2t− 1

t

)
; t > 0 and t > −

(
t− 1

t

)}
Let t1 > 0 and t2 ∈ {t ∈ R∗; t > 0 and f−1y (t, 0) > −f−1x (t, 0)} such that

f−1x (t1, 0) = 0 = f−2x (t2, 0) then

f−2(t1, 0) =

(
f−1x (t1, 0)− 1

f−1x (t1, 0) + f−1y (t1, 0)
, f−1x (t1, 0) + f−1y (t1, 0)

)
and recalling the choice of t1 we have that

f−2(t1, 0) =

(
− 1

f−1y (t1, 0)
, f−1y (t1, 0)

)
Once f−1y (t1, 0) > 0 = f−1x (t1, 0) and t1 and t2 are in the same connected

component due the choice of t2, we conclude from the previous lemma that t1 < t2 and
also that

f−1y (t1, 0) < f−1y (t2, 0) + f−1x (t2, 0) = f−2y (t2, 0)

because f−2y (t2, 0) > 0. This means, using (b) from the previous lemma, that the pre-
image of the curve above the discontinuity of the inverse is another curve that is above
f−1({y = 0}) with f−1y (t, 0) > −f−1x (t, 0).

For (ii) we will prove something similar but now the curve is below 0 and
above f−1({y = 0}) with t < 0. Indeed, first note that for every t ∈ {t ∈ R∗; t >
0 and f−1y (t, 0) < −f−1x (t, 0)}

f−2y (t, 0) = f−1y (t, 0) + f−1x (t, 0) < 0

Here we need to see that this is also above the first pre-image. The easiest
way to check directly, take two parameters that have the same x coordinate and see
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where the curves are. The induction step is very different from the general proof we will
see a bit later.

Let us find t0 one of the parameters of (ii) such that f−2x (t0, 0) = 0 and
examine what happens in the y coordinate. All we have to do is to find the right
solution to

t− 1

t
− 1

2t− 1

t

= 0

or equivalently
2t4 − 4t2 + 1 = 0

where we get that t0 =

√
1−
√

2

2
. Hence

0 > f−2y (t0, 0) = 2t0 −
1

t0
=

√
4−
√

2−
√

2 +
√

2 > −1

that is, this curve is between {y = 0} and its negative pre-image.

Figure 3.2: The cases (i) and (ii).

Using the same ideas we introduced before, we will prove that the f−(n+1)({y =
0; f−jy (t, 0) > −f−jx (t, 0), 0 ≤ j ≤ n}) is a family of curves that “covers” the upper part
of R2 in the sense that, for each point in this region, there is a curve of the mentioned
family above and bellow it. The previous idea will be the induction step and the strat-
egy is the same. Indeed, let us proceed in the same way, let tn+1 ∈ {t ∈ R; f−jy (t, 0) >
−f−jx (t, 0), 0 ≤ j ≤ n} such that

f−(n+1)
x (tn+1, 0) = 0

We want to see that each curve containing f−n(tn, 0) is an increasing sequence
of curves, to do that we use the induction step. Let us assume that it holds for n, that
is

f−ny (tn, 0) > f−(n−1)y (tn−1, 0) > 0 = f−(n−1)x (tn−1, 0)

and then tn ∈ {t ∈ R; f−jy (t, 0) > −f−jx (t, 0), 0 ≤ j ≤ n}. Therefore we can compare tn
and tn+1 because they are in the same connected component of fn+1. Hence

f−(n+1)(tn, 0) = f−1(f−n(tn, 0)) =

(
− 1

f−ny (tn, 0)
, f−ny (tn, 0)

)
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and once

f−(n+1)
x (tn, 0) = − 1

f−ny (tn, 0)
< 0 = f−(n+1)

x (tn+1, 0)

we get, by lemma 3.1, that tn < tn+1 which implies

f−(n+1)
y (tn+1, 0) > f−ny (tn, 0)

The conclusion here is the same as described previously in (i), that is to say
the (n+ 1)-th curve is above the n-th curve and also that (f−ny (tn, 0))n∈N is increasing.

Figure 3.3: The curves moving up.

Remark 3.2. Notice that the area between two subsequent pre-images of {y = 0} and in
the same side of the anti-diagonal is mapped inside the pre-images of those said curves.

Figure 3.4: How the areas between curves are mapped.

But we cannot conclude yet what we stated before because we do not know
if the curves “diverge”, we need to understand how the sequence we found behaves:

Lemma 3.2. The sequence (f−ny (tn, 0))n∈N diverges.
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Proof. Suppose that there exists

lim
n
f−ny (tn, 0) = sup

n
f−ny (tn, 0) = L > 0

and because t1 = 1 we know that L > 1. Observe now that

f(0, L) =

(
1

L
,L− 1

L

)

with L− 1

L
> 0. Also, there exists n0 ∈ N such that

f−ny (tn, 0) ≥ L− 1

L
∀n ≥ n0

For all n ≥ n0, let tLn be the parameter in which

f−nx (tLn , 0) =
1

L
> 0

in the same connected component of tn. Thus

f−ny (tLn , 0) > f−ny (tn, 0) ≥ L− 1

L

This tells us that f(0, L) is in the first quadrant, also it cannot be one of the
discontinuities of f−n and it is bellow the curves containing f−n(tn, 0) for all n ≥ n0.

Figure 3.5: The point (0, L) goes under the curves.

Now we know that f(0, L) is in the area delimited by the coordinates axis and
bounded above by the the curve containing f−n0(tn0 , 0). Recalling the previous remark,

we see that (0, L) = f−1
(

1

L
,L− 1

L

)
is in the region limited above by f−1(f−n0(tn0 , 0))

although it is also above it, a contradiction.
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Now we want to understand of the generalization of (ii), that is, the points
that in the n-th pre-image changes sign with respect the anti-diagonal:

Dn := {t ∈ R; f−jy (t, 0) > −f−jx (t, 0), 0 ≤ j < n and the opposite for n}

Here the induction hypothesis is that for n is under the curve {y = 0} and
above the pre-image of Dn−1. Our objective here is to see that the (n+ 1)-th pre-image
is trapped between f−1(Dn) and {y = 0}. The idea here is purely geometric: consider
a straight line l that comes from the y-axis and that touches Dn+1 as illustrated below.
All it is left is to see what happens to the pre-image of this line.

Figure 3.6: The pre-images.

When we look at the pre-image of this line and use the induction hypothesis,
also remember that that Dj are sets that are moving up according to the previous case,
we observe that the pre-image of l touches each one of the curves only once. This implies
that f−1(Dn+1) is either between Dn and D1, under D1 or it is above Dn as we wanted.

If the first one occurs, then there would be a line joining f−1(Dn+1) and
f−1(D1) that does not touch f−1(Dn) although its would intersect Dn which is a con-
tradiction.

If the second one holds, something similar to the previous case would happen:
the line connecting f−1(Dn+1) and f−1(D1) would go trough f−1(D1) twice, implying
that the image of the curves crosses D1 also twice, which is absurd. Therefore, the third
case holds as we wanted.

Corollary 3.1. The curves given by f−1(Dn) converges pointwise to 0.

Proof. To establish this just observe that, in case it does not, each limit would be a
limiting point to the direct image of it, that is, a limit for the curves we already proved
that diverge in Lemma 3.2.

Remark 3.3. It is interesting to see that these points that are in the curves defined by
f−1(Dn) will be mapped “away” from the {y = 0}, more precisely, as a consequence of
Lemma 3.2 the curves that contain each Dn covers the lower part of the plane. We will
explore a bit more of this in the Section 3.
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3.1.2 Images of {y = −x}

We want to make the same study for the images of the inverse map’s discontinuity

f({x = −y}) = {f(t,−t); t ∈ R} =

{(
t− 1

t
,−2t+

1

t

)
; t ∈ R

}
Observe that, using the previous notation, one can write

f(t,−t) = (f−1x (t, 0),−f−2y (t, 0))

and that is in fact a little more general as describe in the next remark.

Remark 3.4. We have the following identification

fn(t,−t) = (f−nx (t, 0),−f−(n+1)
y (t, 0))

Proof. All we need to do is to check it by induction. Assume it holds for n, then

fn+1(t,−t) = f(fn(t,−t)) = f(f−nx (t, 0),−f−(n+1)
y (t, 0))

which implies that

fn+1(t,−t) =

(
f−nx (t, 0)− 1

f
−(n+1)
y (t, 0)

,−f−(n+1)
y (t, 0) +

1

f
−(n+1)
y (t, 0)

− f−nx (t, 0)

)

Recalling the definitions of f−nx (t, 0) and f−ny (t, 0),

f−(n+1)
x (t, 0) = f−nx (t, 0)− 1

f−nx (t, 0) + f−ny (t, 0)
= f−nx (t, 0)− 1

f
−(n+1)
y (t, 0)

and it is straightforward to see that

fn+1(t,−t) =
(
f−(n+1)
x (t, 0),−f−(n+2)

y (t, 0)
)

To understand the behaviour of fn(t,−t) we need to make a refinement of
the remark 3.1. We started this analysis looking only at the “infinity”, but we need to
take it a bit further.

Remark 3.5 (Maybe there is more information here than we need but just in case...).
Recalling that the pre-images of {y = 0} are given by

f−n(t, 0) =

(
f−(n−1)x (t, 0)− 1

f
−(n−1)
x (t, 0) + f

−(n−1)
y (t, 0)

, f−(n−1)x (t, 0) + f−(n−1)y (t, 0)

)

we can understand the full behaviour of f−n(t, 0) near the discontinuities as described
bellow
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(i) limt→t−d
f−nx (t, 0) =∞, where td ∈

(
∪n−1j=0 f

−j({y = −x} ∩ {y = 0})
)
∪ {∞};

(ii) limt→t+d
f−nx (t, 0) = −∞, where td ∈

(
∪n−1j=0 f

−j({y = −x}) ∩ {y = 0}
)
∪ {−∞};

(iii) limt→t−d
f−ny (t, 0) =∞, where td ∈ f−(n−1)({y = −x} ∩ {y = 0}) ∪ {∞};

(iv) limt→t+d
f−ny (t, 0) = 0, where td ∈ f−(n−1)({y = −x} ∩ {y = 0});

(v) limt→t−d
f−ny (t, 0) = 0, where td ∈

(
∪n−2j=0 f

−j({y = −x} ∩ {y = 0})
)
;

(vi) limt→t+d
f−ny (t, 0) = −∞, where td ∈

(
∪n−2j=0 f

−j({y = −x} ∩ {y = 0})
)
∪ {−∞};

Proof. Using the recurrence formula we already know, one can deduce by induction that

f−n(t, 0) =

(
t−

n∑
j=1

1

f−jy (t, 0)
, f−(n−1)x (t, 0) + f−(n−1)y (t, 0)

)

To get items (i) and (ii), all we need to do is understand what the first
coordinate of the previous relation is telling us. Just notice that for each td only one
of the f

−(j+1)
y (td, 0) = f−jx (td, 0) + f−jy (td, 0) vanishes per time and the sign comes from

which side it approaches 0.

The items (iii) and (iv) come directly from the formula and observing that the

second coordinate vanishes. For the last two just replace f
−(n−1)
x (x, 0) by the induction

formula we first stated here, that is,

f−ny (t, 0) = f−(n−1)x (t, 0) + f−(n−1)y (t, 0) = f−(n−1)y (t, 0) + x−
n∑
j=1

1

f−jy (t, 0)

and repeat the analysis we did in (i).

It is an interesting observation that for f(t,−t) = (f−nx (t, 0),−f−(n+1)
y (t, 0)),

the discontinuities of f−nx (t, 0) and −f−(n+1)
y (t, 0) are the same, that is, −f−(n+1)

y (t, 0)) is
an continuous function in each connected component of

(
∪n−1j=0 f

−j({y = −x} ∩ {y = 0})
)

that is onto R.

Putting this all together, we can see that what is happening in this case is
something very similar to the case of f−1(t, 0). It is actually pretty much the same idea
but the exceptional curve here that we have to avoid is {y = 0}, that is, when the n-th
image touchs this curve its (n+ 1)-th image will split into two different curves just like
happened before.
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Figure 3.7: How the images reorganize.

The relation of the discontinuities tells us exactly which are the points that
nullify fny (t,−t): the discontinuities of f

−(n+1)
x (t, 0). Hence it is expected to have some-

thing similar to lemma 3.1 and the other results that follow from it.

Lemma 3.3. With the notation fn(t,−t) = (fnx (t,−t), fny (t,−t))

(a) fnx (t,−t) is increasing and fny (t,−t) is decreasing with respect the parameter t in

each connected component of R \
(
∪n−1j=0 f

−j({y = −x} ∩ {y = 0})
)
;

(b) f (n−1)(t,−t) ∩ fn(t,−t) = ∅.

Proof. The proof becomes very easy when we use the remark 3.4. The first item follows
directly from 3.1. The proof of the second one follows the same idea, all we have to see
is that we can reduce this to the case (b) of the original lemma.

Suppose there exists t1 and t2 such that{
f
(n−1)
x (t1,−t1) = fnx (t2,−t2)
f
(n−1)
y (t1,−t1) = fny (t2,−t2)

implying that {
f
−(n−1)
x (t1, 0) = f−nx (t2, 0)

f−ny (t1, 0) = f
−(n+1)
y (t2, 0)

Just using the first equation in the second we get

f−(n−1)y (t1, 0) = f−ny (t2, 0)

in other words
f−(n−1)(t, 0) ∩ f−n(t, 0) 6= ∅

which is a contradiction

We have to check again the reorganizing pattern of the curves under the action
of f . The good news is that, disconsidering the change of sign, it is like the previous case:
the curves that are the n-th images of {t ∈ R; f−jy (t, 0) > −f−jx (t, 0), 0 ≤ j ≤ n} covers
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the whole part under the anti-diagonal and the images of the other positive parameters
go inside the area delimited by f({y = −x}), just like happened in the last picture. But
that is just to look at what we already did in the last cases and it will follow directly
from the relation between that image and the pre-image.

Just obverse that we already know that, in this set

f−ny (t, 0) < f−(n+1)
y (t, 0) ∀n ∈ N

or in other words
f (n−1)
y (t,−t) > fny (t,−t)

the curves given by these sets are moving down in each step. Using the same analysis
one can see that Dn is a curve that is between the curves given by f(t,−t), just like
what happens to the pre-images.

3.2 New Coordinates

This construction just uses all the information we got so far: how the images and pre-
images cover the whole plane. We will use the symmetries of the map to make easier the
understanding of the proof. At this first instance we will only consider the upper part
of the plane and, once f(−x,−y) = −f(x, y), everything can be mirrored to the lower
part of R2.

Let {Ri}i≥0 and {Lj}j≥0 be the families of curves given respectively by the
lamination of the the highest i-pre-image of {y = 0} and the highest j-image of {y = −x}
with respect to the anti-diagonal, as described in the figure bellow. Denote the mirrored
curves by {Ri}i<0 and {Lj}j<0

The key here is to use the only information we have: the boundaries of each
intersection are curves that we know exactly how it moves. Denote by the pair (i, j) the
region delimited by (Ri, Ri−1, Lj, Lj−1). Observe now that once the curves that delimit
each (i, j) are related by the image and the pre-image of f , that is, Ri+1 is the pre-image
of one part of Ri and the same holds for Lj+1, because it is the image of a part of f .

We need the additional information that the Corollary 3.1 gives us: we have
to add the curves inside each (i, j). The curves determined in 3.1 are curves inside R1

that are induced by the pre-images of the {Ri}i<0, that is, it is a family of curves R1⊕i1
contained in R1 such that

f(R1⊕i1) ⊂ Ri1 i1 ∈ Z−

where R1⊕i1 = f−1(Di1). Using the analogous definition, we can define {L1⊕j1}j1∈Z− .

However, this is not restricted to R1 and L1: it is a consequence of the choice
of the pre-images and how they distribute above the plane that we can “extend” the
curves inside of R1 and L1 to any Ri and Lj, for i, j > 0.
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In order to do so, the study of how the pre-images of f−n({y = 0}) distribute
over the plane proved that

f(i, j) =

{
(i− 1, j + 1) i > 1 and j > 0;
(i− 1, 1⊕ j) i > 1 and j < 0

which takes the the subdivisions of R1 and L1 to all the previously mentioned sets.
Therefore we can define the sets {Ri0⊕i1} and {Lj0⊕j1}, for integers of alternating signs
and Ri0⊕0 := Ri0 and Lj0⊕0 := Lj0 .

Figure 3.8: The dynamics of the part above R1.

Once more, the pair (i0 ⊕ i1, j0 ⊕ j1) will denote the region delimited by the
curves (Ri0⊕i1 , Ri0⊕i1−1, Lj0⊕j1 , Lj0⊕j1−1).

Again, we know that f(R1⊕i1) ⊂ Ri1 . This shows us that we can also induce
an lamination within the region between R1⊕i1 and R1⊕i1−1 that comes from what we de-
fined in the previous step, i.e., the one we already have inside Ri1 , namely {Ri1⊕i2}i2∈Z+ .
With this in hand, we can define the curves {R1⊕i1⊕i2} and then extend it to the curves

{Ri0⊕i1⊕i2 ; where i0, i1, i2 ∈ Z of alternating signs}

that lay inside the region delimited by Ri0⊕i1 and Ri0⊕i1−1. Using the same argument
we can define the curves inside each region delimited by Lj0⊕j1 and Lj0⊕j1−1: the set of
curves {Lj0⊕j1⊕j2}.

Using the same argument as before, it is possible to subdivide the region
delimited by each R1⊕i1⊕i2 and R1⊕i1⊕i2−1 once we know that f 2(R1⊕i1⊕i2) ⊂ Ri2 , we
can continue to subdivide each region we got in the previous step. Proceeding in the
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same way we stated before we got, by construction, two dense sets of curves that are
transversal:

{Ri0⊕n∈Nin ; where in ∈ Z of alternating signs}
and the correspondent in the other direction

{Lj0⊕m∈Njm ; where jm ∈ Z of alternating signs}

Due the density of the curves, if a point does not lie over any of these curves, it
may be represented by the new coordinates gives regarding these curves: the intersection
of all regions that we introduced, that is, we may identify each point by the coordinates
(i0 ⊕n∈N in, j0 ⊕m∈N jm). If a point lies over a R or a L curve, then it means that it
has a finite representation in that coordinate, e.g., if we have a point that lies over the
Ri0⊕i1···⊕ik , it will have a finite i-coordinate: (i0⊕ i1⊕ · · · ⊕ ik, j0⊕m∈N jm). The density
playing along the transversality give the unique representation of each point in the plane.

Although the coordinates look a bit terrifying, it is a very useful way to
describe de dynamics because of the way we constructed them

f (i0 ⊕n∈N in, j0 ⊕m∈N jm) =


(i0 − 1⊕n∈N in, j0 + 1⊕m∈N jm) i0 > 1 and j0 > 0;

(i1 ⊕n≥2 in, j0 + 1⊕m∈N jm) i0 = 1 and j0 > 0;
(i0 − 1⊕n∈N in, 1⊕ j0 ⊕m∈N jm) i0 > 1 and j0 < 0;

(i1 ⊕n≥2 in, 1⊕ j0 ⊕m∈N jm) i0 = 1 and j0 < 0;

and using the mirroring property that the Hénon-Devaney has, one can see what happens
with the signs changed. With this in hand, we will proceed to give an complete symbolic
description of the map.

3.3 The Subshift

In this section we will explain how to encrypt the Hénon-Devaney map into a subshift
of finite type. Let A = {−2,−1, 0, 1, 2} be the alphabet of symbols we will use but,
however, it will not be a complete shift. We want to find a conjugacy between the
original map and a product of two subshifts, one for each coordinate we introduced
before.

At first we will consider points which have the complete description on terms
of the (i, j) coordinates. We will consider them first not only because they will give us
the idea behind the coding but also because they form the set in R2 that the dynamics is
defined for all iterations backwards and forwards. Also, in terms of the Lebesgue measure
in the plane, the complement, that is, the point which have finite orbit backward or
forward, have zero measure. This comes from the fact that these points lay all on the
set given by (⋃

n∈N

f−n({y = 0})

)
∪

(⋃
n∈N

fn({y = −x})

)
that has zero Lebesgue measure.
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We will have a region of interest for each coordinate, and it is defined by when
|i0| = 1 for the i-coordinate and |j0| = 1 for the j-coordinate. This particular region has
to be highlighted because it is exactly where the dynamics change. The symbol that will
be attributed to the point in each instant and for each coordinate is:

i0 ⊕n∈N in
si7→


2 i0 > 1
1 i0 = 1
−1 i0 = −1
−2 i0 < −2

and the same for the j-coordinate. Given any point p with full orbit defined, the sequence
we will associate is linked to the itinerary of the point:

(. . . si−2︸︷︷︸
f−2(p)

si−1︸︷︷︸
f−1(p)

; si0︸︷︷︸
p

si1︸︷︷︸
f(p)

si2︸︷︷︸
f2(p)

. . . , . . . sj−2︸︷︷︸
f−2(p)

sj−1︸︷︷︸
f−1(p)

; sj0︸︷︷︸
p

sj1︸︷︷︸
f(p)

sj2︸︷︷︸
f2(p)

. . . )

where sin represents the symbol that has to be associated to the i-coordinate at the
instant f in(p) and sjm represents the symbol that has to be associated to the j-coordinate
at the instant f jm(p).

Example 3.1. Let us take a moment to understand how the coding will take place with
some examples.

Initial Point p f(p) f 2(p)

coordinates (3⊕−2, 1⊕−4) (2⊕−2, 2⊕−4) (1⊕−2, 3⊕−4)
coding (2 , 1) (22 , 12) (221 , 122)

coordinates (−1⊕ 3⊕−1,−1) (3⊕−1,−2) (2⊕−1, 1⊕−2)
coding (−1 , −1) (−12 , −1− 2) (-122 , -1-21)

coordinates (−1⊕ 1⊕−1,−1) (1⊕−1,−2) (−1, 1⊕−2)
coding (−1 , −1) (-11 , -1-2) (-11-1 , -1-21)

coordinates (3⊕−2, 3⊕−4) (2⊕−2, 4⊕−4) (1⊕−2, 5⊕−4)
coding (2 , 2) (22 , 22) (221 , 222)

coordinates (3⊕−2,−1⊕ 4) (2⊕−2, 1⊕−1⊕−4) (1⊕−2, 2⊕−1⊕−4)
coding (2 , -1) (22 , -11) (221 , -112)

To completely understand how the orbits behave under the iteration of f , keep
in mind the description we introduced before using the coordinates. It makes easier to
see how f acts in the coordinates and just compute which R and L-stripe you are.

We will deal with each one of the coordinates separately, first defining the
coding in the i-coordinate and then proving some lemmas about it. The j-coordinate
will be dealt latter on but the the idea is pretty much the same. Even tough they “see”
different things, they have an intrinsic relation that will become very clear once we clarify
the coding.
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3.3.1 Coding the i-coordinate

To code the i-coordinate, let us define for p = (i0 ⊕n∈N in, j0 ⊕m∈N jm), the definition of
hi(p) is split depending on the sign of i0 and j0:

. . .±2 · · · ± 2± 1︸ ︷︷ ︸
|j2|

∓2 · · · ∓ 2∓ 1︸ ︷︷ ︸
|j1|

±2 · · · ± 2︸ ︷︷ ︸
|j0|

;±2 · · · ± 2︸ ︷︷ ︸
|i0|−1

±1∓ 2 · · · ∓ 2︸ ︷︷ ︸
|i1|

∓1± 2 · · · ± 2︸ ︷︷ ︸
|i2|

. . .

if sign(i0) = sign(j0) and

. . .±2 · · · ± 2± 1︸ ︷︷ ︸
|j2|

∓2 · · · ∓ 2∓ 1︸ ︷︷ ︸
|j1|

±2 · · · ± 1︸ ︷︷ ︸
|j0|

;∓2 · · · ∓ 2︸ ︷︷ ︸
|i0|−1

∓1± 2 · · · ± 2︸ ︷︷ ︸
|i1|

±1∓ 2 · · · ∓ 2︸ ︷︷ ︸
|i2|

. . .

if sign(i0) 6= sign(j0), where the sign of each block is the same of the sign of in and jm.
If any jm or in has module 1, then the block associated to it will only be the respective
1, and if it has higher module you start “adding” 2’s. To clarify the idea, let us check
some examples

Example 3.2. Here we are going to code some examples just to help understand exactly
how hi codes the i-coordinate.

(i) (3⊕−2⊕ . . . , 1⊕−4⊕ . . . ): The sign of i0 and j0 are equal then

hi(3⊕−2⊕ . . . , 1⊕−4⊕ . . . ) = . . . -2-2-2-1︸ ︷︷ ︸
|−4|

2︸︷︷︸
|1|

; 22︸︷︷︸
|3|−1

1-2︸︷︷︸
|−2|

. . .

(ii) (−1⊕ 3⊕−1 . . . ,−1⊕ 2⊕ . . . ): Once again they have the same sign

hi(−1⊕ 3⊕−1 . . . ,−1⊕ 2⊕ . . . ) = . . . 21︸︷︷︸
|2|

-2︸︷︷︸
|−1|

; ︸︷︷︸
|−1|−1

-122︸︷︷︸
|3|

1︸︷︷︸
|−1|

. . .

(iii) (3⊕−2⊕ . . . ,−1⊕ 4⊕ . . . ): Now i0 and j0 have different signs

hi(3⊕−2⊕ . . . ,−1⊕ 4⊕ . . . ) = . . . 2221︸︷︷︸
|4|

-1︸︷︷︸
|−1|

; 22︸︷︷︸
|3|−1

1-2︸︷︷︸
|−2|

. . .

Let σi : Σ → Σ be the shift map on the space of the sequences over the
alphabet A. Then

Lemma 3.4. σi ◦ hi = hi ◦ f

Proof. We will do the proof only looking at the upper plane of R2 due the symmetry of
f . Hence

• i0 > 0 j0 > 0:

Let p = (i0 ⊕n∈N in, j0 ⊕m∈N jm), then we know that

f(p) =

{
(i0 − 1⊕n∈N in, j0 + 1⊕m∈N jm) i0 > 1;

(i1 ⊕n≥2 in, j0 + 1⊕m∈N jm) i0 = 1;
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which implies that

hi ◦ f(p) =


. . . -2 · · · -2-1︸ ︷︷ ︸

|j1|

2 . . . 2︸ ︷︷ ︸
|j0+1|

; 2 . . . 2︸ ︷︷ ︸
|i0−1|−1

1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . -2 · · · -2-1︸ ︷︷ ︸
|j1|

2 . . . 21︸ ︷︷ ︸
|j0+1|

; -2 · · · -2︸ ︷︷ ︸
|i1|−1

-12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

once we have alternating signs for i0 and i1. Also, we know that

hi(p) =


. . . -2 · · · -2-1︸ ︷︷ ︸

|j1|

2 . . . 2︸ ︷︷ ︸
|j0|

; 2 . . . 2︸ ︷︷ ︸
|i0|−1

1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . -2 · · · -2-1︸ ︷︷ ︸
|j1|

2 . . . 2︸ ︷︷ ︸
|j0|

; 1-2 · · · -2︸ ︷︷ ︸
|i1|

-12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

Now applying the shift we get

σi ◦ hi(p) =


. . . -2 · · · -2-1︸ ︷︷ ︸

|j1|

2 . . . 2︸ ︷︷ ︸
|j0|+1

; 2 . . . 2︸ ︷︷ ︸
|i0|−2

1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . -2 · · · -2-1︸ ︷︷ ︸
|j1|

2 . . . 21︸ ︷︷ ︸
|j0|+1

; -2 · · · -2︸ ︷︷ ︸
|i1|−1

-12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

and proves the statement in these cases.

• i0 > 0 j0 < 0:

The proof here is basically the same, we only chance how we apply f

f (p) =

{
(i0 − 1⊕n∈N in, 1⊕ j0 ⊕m∈N jm) i0 > 1

(i1 ⊕n≥2 in, 1⊕ j0 ⊕m∈N jm) i0 = 1;

and then

hi ◦ f(p) =


. . . 2 . . . 21︸ ︷︷ ︸

|j1|

-2 · · · -2-1︸ ︷︷ ︸
|j0|

2︸︷︷︸
1

; 2 . . . 2︸ ︷︷ ︸
|i0−1|−1

1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . 2 . . . 21︸ ︷︷ ︸
|j1|

-2 · · · -2-1︸ ︷︷ ︸
|j0|

1︸︷︷︸
1

; -2 · · · -2︸ ︷︷ ︸
|i1|−1

-12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

Also we have that

hi(p) =


. . . 2 . . . 21︸ ︷︷ ︸

|j1|

-2 · · · -2-1︸ ︷︷ ︸
|j0|

; 2 . . . 2︸ ︷︷ ︸
|i0|−1

1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . 2 . . . 21︸ ︷︷ ︸
|j1|

-2 · · · -2-1︸ ︷︷ ︸
|j0|

; 1-2 · · · -2︸ ︷︷ ︸
|i1|

-12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

and applying the shift

σi ◦ hi(p) =


. . . 2 . . . 21︸ ︷︷ ︸

|j1|

-2 · · · -2-1︸ ︷︷ ︸
|j0|

2︸︷︷︸
1

; 2 . . . 2︸ ︷︷ ︸
|i0|−2

1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . 2 . . . 21︸ ︷︷ ︸
|j1|

-2 · · · -2-1︸ ︷︷ ︸
|j0|

1︸︷︷︸
1

; -2 · · · -2︸ ︷︷ ︸
|i1|−1

-12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;
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Therefore putting together both items above, we conclude the Lemma’s proof.

The last thing regarding the i-coordinate coding that is needed to be discussed
is how to code the point that have finite orbit foreword or backward. As we discussed
before, this happens if you are on a pre-image of {y = 0} or on an image of the {y = −x},
which implies that you have a finite i of j-coordinate. In this case, you just use the hi
defined and when you reach the “final” number you just put 0 in the next step and cease
to code. These point will have a finite coding backward or forward.

Example 3.3. Each one of the examples below has different type of finite orbit. To fully
understand what is happening here, try to visualise the geometric interpretation of the
finite orbit.

(i) (3, 1⊕−4⊕ . . . ): This point lies over the f−3({y = 0}) but it is not over any image
of {y = −x}

hi(3, 1⊕−4⊕ . . . ) = . . . -2-2-2-1︸ ︷︷ ︸
|−4|

2︸︷︷︸
|1|

; 22︸︷︷︸
|3|−1

0

(ii) (3⊕−2⊕ . . . , 1⊕−4): The point here is over f 4({y = −x}) but it is not over any
pre-images of {y = 0}

hi(3⊕−2⊕ . . . , 1⊕−4) = 0 -2-2-2-1︸ ︷︷ ︸
|−4|

2︸︷︷︸
|1|

; 22︸︷︷︸
|3|−1

1-2︸︷︷︸
|−2|

. . .

(iii) (3, 1⊕−4): This one lies over one of the intersections between f−3({y = 0}) and
f 4({y = −x})

hi(3, 1⊕−4) = 0 -2-2-2-1︸ ︷︷ ︸
|−4|

2︸︷︷︸
|1|

; 22︸︷︷︸
|3|−1

0

3.3.2 Coding the j-coordinate

The j-coordinate will have the same kind of coding and, in fact, it is possible to see a
direct relation between both coordinates. They have an strict relation and it will become
very clear once we define the other map.

To code the j-coordinate, let p = (i0⊕n∈N in, j0⊕m∈N jm) be a point with full
orbit, the definition of hj(p) is once again split depending on the sign of i0 and j0:

. . .±1± 2 · · · ± 2︸ ︷︷ ︸
|j2|

∓1∓ 2 · · · ∓ 2︸ ︷︷ ︸
|j1|

±1± 2 . . . ;± 2︸ ︷︷ ︸
|j0|

±2 · · · ± 2︸ ︷︷ ︸
|i0|

∓1∓ 2 · · · ∓ 2︸ ︷︷ ︸
|i1|

±1± 2 · · · ± 2︸ ︷︷ ︸
|i2|

. . .

if sign(i0) = sign(j0) and

. . .±1± 2 · · · ± 2︸ ︷︷ ︸
|j2|

∓1∓ 2 · · · ∓ 2︸ ︷︷ ︸
|j1|

±1± 2 . . . ;± 2︸ ︷︷ ︸
|j0|

±1± 2 · · · ± 2︸ ︷︷ ︸
|i0|

∓1∓ 2 · · · ∓ 2︸ ︷︷ ︸
|i1|

±1± 2 · · · ± 2︸ ︷︷ ︸
|i2|

. . .
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if sign(i0) 6= sign(j0), where the sign of each block is the same of the sign of in and jm.Keep
in mind that if any jm or in has module 1, then the block associated to it will only be the
respective 1. Lets look once more to the examples we presented before, but now under the
j-perspective:

Example 3.4. Here we are going to code some examples just to help understand exactly how
hj codes the j-coordinate.

(i) (3⊕−2⊕ . . . , 1⊕−4⊕ . . . ): The sign of i0 and j0 are equal then

hj(3⊕−2⊕ . . . , 1⊕−4⊕ . . . ) = . . . -1-2-2-2︸ ︷︷ ︸
|−4|

; 1︸︷︷︸
|1|

222︸︷︷︸
|3|

-1-2︸︷︷︸
|−2|

. . .

(ii) (−1⊕ 3⊕−1 . . . ,−1⊕ 2⊕ . . . ): Once again they have the same sign

hj(−1⊕ 3⊕−1 . . . ,−1⊕ 2⊕ . . . ) = . . . 12︸︷︷︸
|2|

; -1︸︷︷︸
|−1|

−2︸︷︷︸
|−1|

122︸︷︷︸
|3|

-1︸︷︷︸
|−1|

. . .

(iii) (3⊕−2⊕ . . . ,−1⊕ 4⊕ . . . ): Now i0 and j0 have different signs

hj(3⊕−2⊕ . . . ,−1⊕ 4⊕ . . . ) = . . . 1222︸︷︷︸
|4|

; -1︸︷︷︸
|−1|

122︸︷︷︸
|3|−1

-1-2︸︷︷︸
|−2|

. . .

Let σj : Σ → Σ be the shift map on the space of the sequences over the alphabet
A. Then

Lemma 3.5. σj ◦ hj = hj ◦ f

Proof. We will do the proof only looking at the upper plane of R2 due the symmetry of f .
Hence

• i0 > 0 j0 > 0:

Let p = (i0 ⊕n∈N in, j0 ⊕m∈N jm), then we know that

f(p) =

{
(i0 − 1⊕n∈N in, j0 + 1⊕m∈N jm) i0 > 1;

(i1 ⊕n≥2 in, j0 + 1⊕m∈N jm) i0 = 1;

which implies that

hj ◦ f(p) =


. . . -1-2 · · · -2︸ ︷︷ ︸

|j1|

12 . . . ;2︸ ︷︷ ︸
|j0+1|

2 . . . 2︸ ︷︷ ︸
|i0−1|

-1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . -1-2 · · · -2︸ ︷︷ ︸
|j1|

12 . . . 2︸ ︷︷ ︸
|j0+1|

; -1-2 · · · -2︸ ︷︷ ︸
|i1|

12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

once we have alternating signs for i0 and i1. Also, we know that

hj(p) =


. . . -1-2 · · · -2︸ ︷︷ ︸

|j1|

12 . . . ;2︸ ︷︷ ︸
|j0|

2 . . . 2︸ ︷︷ ︸
|i0|

-1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . -1-2 · · · -2︸ ︷︷ ︸
|j1|

12 . . . ;2︸ ︷︷ ︸
|j0|

2︸︷︷︸
|i0|

-1-2 · · · -2︸ ︷︷ ︸
|i1|

12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;
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Now applying the shift we get

σj ◦ hj(p) =


. . . -1-2 · · · -2︸ ︷︷ ︸

|j1|

12 . . . ;2︸ ︷︷ ︸
|j0|+1

2 . . . 2︸ ︷︷ ︸
|i0|−1

-1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . -1-2 · · · -2︸ ︷︷ ︸
|j1|

12 . . . ;2︸ ︷︷ ︸
|j0|+1

-1-2 · · · -2︸ ︷︷ ︸
|i1|−1

12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

and proves the statement in these cases.

• i0 > 0 j0 < 0:

The proof here is basically the same, we only chance how we apply f

f (p) =

{
(i0 − 1⊕n∈N in, 1⊕ j0 ⊕m∈N jm) i0 > 1

(i1 ⊕n≥2 in, 1⊕ j0 ⊕m∈N jm) i0 = 1;

and then

hj ◦ f(p) =


. . . 12 . . . 2︸ ︷︷ ︸

|j1|

-1-2 · · · -2︸ ︷︷ ︸
|j0|

; 1︸︷︷︸
1

2 . . . 2︸ ︷︷ ︸
|i0−1|

-1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . 12 . . . 2︸ ︷︷ ︸
|j1|

-1-2 · · · -2︸ ︷︷ ︸
|j0|

; 1︸︷︷︸
1

-1-2 · · · -2︸ ︷︷ ︸
|i1|

12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

Also we have that

hj(p) =


. . . 12 . . . 2︸ ︷︷ ︸

|j1|

-1-2 . . . ;-2︸ ︷︷ ︸
|j0|

12 . . . 2︸ ︷︷ ︸
|i0|

-1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . 12 . . . 2︸ ︷︷ ︸
|j1|

-1-2 . . . ;-2︸ ︷︷ ︸
|j0|

1︸︷︷︸
|i0|

-1-2 · · · -2︸ ︷︷ ︸
|i1|

112 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

and applying the shift

σj ◦ hj(p) =


. . . 12 . . . 2︸ ︷︷ ︸

|j1|

-1-2 · · · -2︸ ︷︷ ︸
|j0|

; 1︸︷︷︸
1

2 . . . 2︸ ︷︷ ︸
|i0|−1

-1-2 · · · -2︸ ︷︷ ︸
|i1|

. . . i0 > 1;

. . . 12 . . . 2︸ ︷︷ ︸
|j1|

-1-2 · · · -2︸ ︷︷ ︸
|j0|

; 1︸︷︷︸
1

-1-2 · · · -2︸ ︷︷ ︸
|i1|

12 . . . 2︸ ︷︷ ︸
|i2|

. . . i0 = 1;

therefore putting together both items above, we conclude the Lemma’s proof.

As before, we define here the image of the point with finite orbit in the exact same
way as before: just add zero after using all the available in’s and jm’s.

3.4 Conjugacy and its consequences

Each one of the coordinates identifies every time the point enters the zone of interest and
how long it takes to get there. The length of each block between each ±1 is how long it will
take to return the region delimited by R1 and R−1 in the i-coordinate and L1 and L−1 in the
j-coordinate.

We can restate the theorem by being a bit more precise about each one of the
subshifts we mentioned and also the precise map
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Theorem (D’). Let Σi and Σj be the image of hi(R2) and hi(R2), respectively. Define the
map

h : R2 → Σi × Σj

p 7→ (hi(p), hj(p))

We know that this map is an homeomorphism between these spaces, due the con-
struction of each hi. Therefore we have the following commuting diagram

R2 f //

h
��

R2

h
��

Σi × Σj σ
// Σi × Σj

where
σ : Σi × Σj → Σi × Σj

((sn), (sm)) 7→ (σi(sn), σj(sm))

Which gives this immediate consequence.

Corollary. The Hénon-Devaney map has a density of hyperbolic periodic points.

Our initial goal with this coding were trying to get some tools walking towards the
recurrence of the Hénon-Devaney map, however we managed to get something a bit weaker
than that. With this coding we can only get “density of recurrence” in the sense that, given an
open set R in the plane we can find a dense of orbits that enters R in finite time, even more,
we can determine in which time we want the point enters the region. As a consequence of this
fact, we also get that there exists a orbit which is dense in the plane.

We wanted to prove the conjecture

Conjecture 3.1. The Hénon-Devaney map is ergodic.

If we were able to prove that f is recurrent then we should be able to achieve the
ergodicity, using the classical Hopf’s argument for the first return map in a neighborhood of
the origin in the plane. However... while the recurrence remains unproven, this is just pure
philosophy...
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