
On the Arithmetic Behavior of Liouville Numbers
under Rational Maps

Ana Paula Chaves ∗

Instituto de Matemática e Estatística,
Universidade Federal de Goiás, Brazil

Abstract

The beginning of the transcendental number theory happened in 1844, when J. Liou-
ville [7] showed that algebraic numbers are not “well-approximated" by rationals. More
precisely, if α is an n-degree real algebraic number (with n > 1), then there exists a
positive constant C, depending only on α, such that |α− p/q| > Cq−n, for all rational
number p/q. By using this result, Liouville was able to explicit, for the first time, exam-
ples of transcendental numbers (the now called Liouville numbers). Since then, several
classifications of transcendental numbers have been developed. One of them, proposed
by K. Mahler [8], in 1932. He split the set of transcendental numbers into three disjoint
sets: S-, T - and U -numbers (according to their approximation by algebraic numbers).
In particular, U -numbers generalize the concept of Liouville numbers. Moreover, the set
of U−numbers can be splited into Um−numbers, according to its “well approximation"
by algebraic numbers of degree m.

In 1972, Alniaçik [1] proved that a particular type of Liouville number (called strong
Liouville) is mapped into the set of Um-numbers, for any non-constant rational function
with coefficients belonging to an m-degree number field. In this talk, we generalize this
result by providing a larger class of Liouville numbers (which, in particular, contains
the strong Liouville numbers) with this same property (this set is sharp is a certain
sense). The mentioned result, was obtained in collaboration with D. Marques and P.
Trojovský.
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