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Introduction

The subject of this thesis are three mathematical problems in the theory of automorphic
forms and in number theory. We describe below the three problems.

Graphs of Hecke operators and toroidal automorphic forms

The theory of toroidal automorphic forms begins with the paper [104] in which Zagier pro-
poses an approach to the Riemann hypothesis using automorphic forms on the upper half
plane. In this paper, inspired by classical formulas by Dirichlet and Hecke (cf. (2.1.2) and
(2.1.3), Zagier defines a space & of functions on I'\H which annihilate some linear operators
(cf. |104, Thm. pg. 286|), where H is the upper half plane and I' = PSLy(Z). In § 4 of

|104], Zagier shows that & is the set of K-fixed vectors of a certain G-invariant subspace
V of the space of functions on T\G (where G = PSLy(R), K = PSO(2)) and that if V
is an unitarizable representation of G, then the Riemann hypothesis follows. Using adelic
language, we can translate these concepts to automorphic forms on GLa(Ap) for F'a global
field. As noted by Zagier in [104, pp. 298-300], the analogue of the space V in adelic language
is the space of toroidal automorphic forms (whose definition we recall below). These ideas
were explored by Lachaud (cf. [72] and [73|) who connected them with Connes’ approach to
the Riemann Hypothesis (cf. [38]), by relating the space of toroidal automorphic forms with
the construction of Pélya-Hilbert spaces. When F' is a function field, Lorscheid studies in
his thesis (
operators. The graph of a Hecke operator @ is an oriented graph with weighted edges that
encodes the action of ® on the space of unramified automorphic forms in GL,(Ag). It is a

85|) the space of toroidal forms in GLy(Ap) using the theory of graphs of Hecke

computational device that allows us to make explicit calculations with automorphic forms
and in particular with toroidal automorphic forms.

In this thesis we study toroidal automorphic forms on GL3(Ar) when F'is an elliptic
function field. We do this by using an algorithm developed by Alvarenga in his thesis (cf.
[2]) which allows us to compute the graphs of Hecke operators for elliptic function fields.

Let us start by recalling briefly the Hecke operators. Let F' be a global function field over
the finite field F,. We denote by Ap the adele ring of F'; by Oa,. the ring of adelic integers
and by Aj the group of ideles of F' (cf. Section 1.1). We denote by G the general linear
group GL,, and by Z the center of G. The group G(Ap) of adelic points of G with the adelic
topology is a locally compact unimodular group (cf. Section 1.1). Let K = G(Oy,.) be the
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standard maximal compact open subgroup of G(Ag). We fix the Haar measure on G(Ap)
for which vol(K) = 1.

The complex vector space H of all smooth compactly supported functions @ : G(Ap) — C
together with the convolution product

D x Dy gr— O, (gh™")®y(h)dh
JG(AF)

for &y, &y € H is called the Hecke algebra for G(Ap). Its elements are called Hecke operators.
The zero element of H is the zero function, but there is no multiplicative unit. We define H
to be the subalgebra of all bi- K-invariant elements. This subalgebra has a multiplicative unit,
namely, the characteristic function €x := charg acts as the identity on Hg by convolution.
We call Hg the unramified part of H and its elements are called unramified Hecke operators.

A Hecke operator ® € H acts on the space V := C°(G(F)Z(Ar) \ G(AF)) of continuous
functions f: G(F)Z(Ap) \ G(Ar) — C as follows

®(f)(g) == / ®(h) f(hg)dh.

Jaay)

The above action restricts to an action of Hx on VX the space of right K-invariant functions.
We denote by A the space of automorphic forms on GL,,(Ap) which is a subspace of V stable
by the action of H (cf. section 1.5). We denote by AK the space of unramified automorphic
forms, i.e. automorphic forms which are invariant by the action of K.

The second concept that we need is that of toroidal automorphic forms. We start with
the torus associated with a separable extension E/F of degree n. Choosing a basis of E
over F' gives a non-split maximal torus Tr C G, whose adelic points are described in the
following way. The choice of basis gives an identification of Ap = Ap @ E with AF". Given
g € Aj, the multiplication by g yields a map,

M(g): Ap — Ag, M(g)(h) = gh.

The isomorphism Ap = Ap®@p E' ~ A®" identifies M (g) with a matrix ©Op(g) € G(Af). The
map Op : A}, — G(Ap) is a homomorphism and Tg(Agr) = ImOg. The toroidal integral of
an automorphic form f along Tg is defined by

fr, () = / f(tg) dt,

Ti(F)Z(Ap)\Ti(Ar)

where g € G(Ap) and dt is a Haar measure on Tp(F)Z(Ar) \ Te(Ar). An automorphic
form with vanishing toroidal integral along the torus T for all separable extension E/F of
degree n is called a toroidal automorphic forms. Sections 2.1.1-2.1.4 discuss the arithmetic
meaning of toroidal automorphic forms.



A theorem of Satake and Tamagawa shows that Hg is generated by the Hecke operators
®, . with z a place of F' and 1 <r <n, where @, . is the characteristic function of

- ?Txf-r
K ( I )K

(¢f. (2.2.1)). Therefore, to describe the action of Hx on AX is sufficient to describe the action
of the Hecke operators @, ,. By a theorem due to André Weil, there is a bijection between
G(F)\ G(Ap)/K with the set Bun, X of isomorphism classes of rank-n vector bundles on
X, where X is the smooth curve over F, associated with F. Similarly, there is a bijection
between G(F)Z(Ar)\ G(Ar)/K with the set PBun, X of isomorphism classes of projective
rank-n vector bundles on X (cf. section 2.2). This theorem allows us to see the unramified
automorphic forms as functions on Bun, X and to determine the action of an unramified
Hecke operator @, , in terms of vector bundles, which we explain in the following.

For z a closed point on X, we denote by x(z) the residue field at z and by K" the
skyscraper sheaf on X whose stalk at z is k(z)®". Let £,& € Bun, X, we denote by
mer(E,E") the number of subsheaves £ of £ that are isomorphic to £ and such that the
quotient £/E” is isomorphic to KE". We denote by V.. .(£) the set of (£,&",m,,(€,E')) such
that m, (&, &’) # 0. We define the graphs of Hecke operators G, , as follows.

Definition. Let x be a closed point in X. The graph G, is defined as

Vert G, = Bun, X and Edge0,, = H Ver(€).

EcBun, X
With this definition, the action of ®,, on unramified automorphic forms is as follows.
Theorem. Let @, € Hy and f € AX. For all € € Bun, X, we have

o (fE)= ), mf&).

(E.£"m)EVe ()

Let n = 3 and X be an elliptic curve, we want to study the spaces
A(T, )\1,)\2) = {f = .AK | (bx,é(f) = )\.if, 1= 12} .

The first application of the graphs of Hecke operators will be to parametrize the spaces
A(z; A1, A2). This is done in two steps. The first step is to define the nucleus of the graphs
Grr, 7 = 1,2, This is done using the d-invariant which is defined on decomposable vector
bundles in Buns X as follows:

o If £ = M®L with M € Bunf™ X and £ € Pic X, we define d(€) := 2deg £ — deg M.

o If £ =L & Lyd L3 is a sum of three line bundles with deg £; < deg L5 < deg L3, we
define
dy (&) :=deg(Ly) — deg(L,), do(€) := deg(L3) — deg(L,),
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and

d(&) == maz{2d,(E) + do(E), 2do(€) + dy (€)}.

We see that |d(€)| = 6(€) except for a finite number of vertices £ € P Bung X (cf.
Theorem 2.5.9), where 6 is the invariant defined by Alvarenga in |2|. The nucleus N, is a
finite set of vertex of P Bung X with small d-invariant (cf. Definition 2.5.2) and it satisfy
the following (cf. Theorem 2.5.13).

Theorem. If f,g € A(xz; A, A2) and f

J'V-:z: - g|N:z:} thffn f — g

Using this theorem we can apply the algorithm from |2| to compute the equations satisfied
by elements of A(z; A1, A2) on the nucleus and to obtain a parametrization of this space. We
do this in Section 2.7 for a particular example. This gives us an explicit description of the
eigenforms parametrized by their values at some particular vector bundles. We use this in
Section 2.8 to study the unramifed eigenforms that are toroidal for a particular torus. We
show in Section 2.8.1 how to prove the Riemann hypothesis for the elliptic function field in
question, based on our parametrization of the space of eigenforms. These results are part of
a project in progress with R. Alvarenga and O. Lorscheid.

Orthogonal period of a GL, Eisenstein series

The second problem is motivated by a conjecture of H. Jacquet in |62]. We denote by
GL, (A ) the metaplectic double cover of GL,,(Ag) over a global field F' (cf. |68] for definition
and properties of metaplectic groups). In [62|, H. Jacquet conjectured a comparison between
a relative trace formula on GL, over a global field F' with a relative trace formula on
C:EH(AF) We give a sketch of what is the relative trace formula. We start with a triple
(G, Hy, Hy) consisting of a reductive group G and two suitable subgroups Hy, Hs which are
algebraic groups over the global field F'. Here the two subgroups H, and H, are possible the
same. We associate to a test function f € C2°(G(Ap)) the kernel function

Ki(z,y) = > f '),

TEG(F)

where z,y € G(Ap). We consider the linear functional on C2°(G(Ap)) defined by the double
integral

I(f) = f f K¢ (hy, hy)dhydhs.
Hi(F)\Hi(Ap) J H2(F)\H2(Ap)

For some groups G, we may multiply the kernel on the integrand by some weight factor: for
example, a character of H;(F)\H;(Ar). The relative trace formula attached to the triple
(G, Hi, Hy) is an identity between two different expansions of I(f), known as the “spectral
expansion” and the “geometric expansion” of I(f). The orthogonal period of an automorphic

form ¢ : GL,(F)\GL,(Ar) — C is the integral
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Pu() == [ 6(h)dh,
JHENH @A)

where H is the orthogonal group of some non-degenerate quadratic form in F%". For the
relative trace formula on G L, appearing on Jacquet’s paper, the spectral expansion uses
the decomposition of L*(GL,(F)\GL,(Ar)) obtained from automorphic forms. Orthogonal
periods of automorphic forms appears in this expansion. On the other hand, in the spectral
expansion of the relative trace formula on éin(AF): the Whittaker coefficients of the auto-
morphic forms appear (for the definition of Whittaker coefficients see |18| and [19]). In the
paper 62|, Jacquet proves the case n = 2 of the comparison of the relative trace formulas
and state the conjecture for general n. For a survey on works on the relative trace formula,
cf. [63] and [77].

We can look at this problem from another perspective using the following fact. It is
proven that the Whittaker coefficient of certain Eisenstein series on EL?L(AF) are Weyl
group multiple Dirichlet series of type An—; (cf. [18] and [19]). If we put together this fact
with the conjecture of H. Jacquet for orthogonal periods, we obtain the following conjecture.

Conjecture. Orthogonal periods of Eisenstein series in G Ly, induced from characters on the
Levi subgroup can be expressed in terms of An_1-Weyl group multiple Dirichlet series.

Chinta and Offen proved this conjecture when n = 3 in [33|, thereby providing evidence
in favor of Jacquet’s conjecture. Our objective is to study the conjecture above for a GL,-
Eisenstein series by elementary number theoretic methods, inspired by the papers [34] and
|33]. Let @ be a positive definite rational quadratic form in n variables and H the associated
orthogonal group. The paper |34]| shows how to express the orthogonal period over Hg of
Eisenstein series induced from characters on the Levi subgroup of GL,, as a multiple Dirichlet
series whose coefficients is a certain type of representation number associated with ¢). In
our case, we consider an Eisenstein series in GL, induced from a character on the parabolic
subgroup of type (2,2) and we obtain a Dirichlet series whose coefficients r(n) is given by

r(n) = 2#{L c Z* | L is primitive of rank 2 and disc(Qr) = n},

where we say that a lattice L < Z™ is primative if (Q- L)NZ" = L. If )4 is the quadratic
form Qu(z,y,z,w) = 2> + y? + 22 + w?, then @ denotes the restriction of Q4 to L and
disc(Q)) is the determinant of (Qf in a basis of L.

We show in Proposition 3.5.4 that r(n) is equal to h% times some elementary factor
(when 7(n) # 0), where K is the imaginary quadratic field Q(v/—n) and hg is the number of
classes of ideals of the ring of integers Ok of K. This is the main ingredient which allows us
to express the orthogonal period of our Eisenstein series in GLy in terms of As-Weyl group
multiple Dirichlet series obtaining our main result Theorem 3.6.1. To prove Proposition
3.5.4, we use the Klein map defined in [1] to relate 2-dimensional primitive lattices inside Z*
with two triples of integers. This is done in section 3.5. Section 3.7 explores the connection
between the Klein map and the Gauss map defined in [33]. These results are part of a joint
project with G. Chinta.



Prime numbers in short intervals

Let m(z) be the number of primes less than or equal to z. A classical theorem of Cramér
[42] states that, assuming the Riemann hypothesis (RH), there are constants ¢, « > 0 such
that

m(z + cﬁ\l/(?x) — 7(z) o

for all sufficiently large z. The order of magnitude in this estimate has never been improved,
and the efforts have thus been concentrated in optimizing the values of the implicit constants.
Recently, Carneiro, Milinovich and Soundararajan [26] used Fourier analysis to establish the
best known values. This approach studies some Fourier optimization problems that are of
the kind where one prescribes some constraints for a function and its Fourier transform, and
then wants to optimize a certain quantity.

Let us denote by A™ the set of even and continuous functions F': R — R with F' € L*(R).
For 1 < A < oo, we write

1 o
C*(A):= sup m (F((}) — A/[_l,l]c (F)+(t) dt)}

FeA"
FZ£0
where we use the notation f*(z) = max{f(z),0}, [-1,1]* =R\ [-1, 1], and
F(t) = / F(z)e 2t dg.

Assuming RH, [26, Theorem 1.3] establishes that for a > 0 the estimate

. . . . 7(z+eyzlogz) — m(z) (14 2a)
inf {c = (; lliI_l}lIlf Tz >ap < C—+(36/11)'

The numerical example from [26, Eq (4.12)] given by

F(z) = —4822¢3% 4+ 1522 ™4 4 52022 97 4 1.3 2% 4 (.18 2

shows that

=

2
CT(36/11) > 1.1943... > 2—‘1’

Therefore in (4.1.1) for « = 0 and a = 1, we can choose ¢ = 0.8374 and ¢ = 2.512,
respectively. This improves the previous results established by Dudek [45], who shows that
for « =0 and a = 1, we can choose ¢ = 1 + ¢ and ¢ = 3 + £, respectively, for any £ > 0.
Next we consider prime numbers in arithmetic progressions. Let ¢ > 3 and b > 1 be
coprime integers. Denote by m(z; ¢, b) the number of primes less than or equal to z that are
congruent to b modulo ¢. Assuming the generalized Riemann hypothesis (GRH), Grenié,

i

Molteni and Perelli [56, Theorem 1| state the equivalent of the result by Cramér (4.1.1)
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for primes in arithmetic progressions. They established that there are suitable constants
¢y, > 0 such that

7(z + c1p(q)v/Tlog ;. ¢,b) — 7(x; 4, b)
NG

for all sufficiently large . Our main goal in this paper is to establish good bounds for the

>

constant ¢; > 0.

Theorem. Assume the generalized Riemann hypothesis. Let ¢ > 3 and b > 1 be coprime.
Then we have for all o > 0 that

« log z; ¢,b) — m(z; g,
inf{cl > 0; liminf Tt O POVEIB T g, b) — n(zi9,) a} < 029 8531 (14 20)

where ©(q) is Euler’s totient function.

In particular, for all sufficiently large x, there is a prime p in (z,z + 0.8531 ¢(q)+/z log z|
that is congruent to b modulo ¢q. Furthermore, there are at least /= primes that are congruent
to b modulo ¢ in the interval (z, z+2.5591 ¢(q)+/x log z]. This result improves asymptotically
some results of a recent work by Dudek, Grenié, and Molteni |46, Theorem 1.1-1.3|, which
establish the constants ¢, = 1 and ¢, = 3 for @« = 0 and @ = 1 respectively. Our result
establish the constants ¢; = 0.8531 and ¢; = 2.5591 for @ = 0 and a = 1 respectively.

Theorem. Assume the generalized Riemann hypothesis. Let ¢ > 3 and b > 1 be coprime
and denote by pnqp the n-th prime that is congruent to b modulo q. Then

lim sup Pnvlab — Prab < 0.8531¢p(q).

n—oo 1/ Pn,gb 102; Png.b

The construction of numerical examples via semidefinite programming also gives a slight
improvement on |26, Theorem 1.3 and Corollary 1.4]: we get C*(36/11) > 1.1961. So
assuming the Riemann hypothesis, we have for any o > 0 in (4.1.3) that

inf {c > 0; liminf T@FovTlogz) —m(z)

min 7 > a} < 0.8358 (1 + 20)

and

limsup 2L —Pr 8358
n—oo  y/Pn 108 Pn

where p,, denotes the n-th prime.

The proof of the first inequality in Theorem 4.1.1 follows the ideas developed in |26]. We
need three main ingredients: the Guinand-Weil explicit formula for the Dirichlet characters
modulo ¢, the Brun-Titchmarsh inequality for primes in arithmetic progressions and the
derivation of an extremal problem in Fourier analysis. Since many of the computations to
derive the extremal problem are similar to [26]|, we will highlight the principal differences.
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For the second inequality in Theorem 4.1.1, we write the resulting optimization problem
as a convex optimization problem over nonnegative functions. We then write these nonneg-

2 . . .
™ for some polynomial p, as in the works of Cohn and

ative functions as f(z) = p(z?)e”
Elkies [37| for the sphere packing problem, and use semidefinite programming to optimize
over these nonnegative functions, which is an approach employed recently for problems in-
volving the Riemann zeta-function and other L—functions in [35, 71]. These results are a

joint work with A. Chirre and D. de Laat, it appears in the pre-print [36].

Content description

In what follows we summarize the content of this thesis.

The first chapter is dedicated to review classical results on automorphic forms as needed
for chapter 2. Those who are familiar with the theory of automorphic forms over GL,(Ar),
where F'is a global function field, may skip this chapter and start with chapter 2, coming
back as needed for notations. The first four sections of chapter 1 review adelic topologies,
admissible representations, Satake parameters and the tensor product theorem,respectively.
Section 1.5 introduces automorphic forms over function fields. In section 1.6, we review the
definition and basic properties of Eisenstein series. In section 1.7, we describe the action of
the unramifed Hecke operators on Eisenstein series and we describe a spectral decomposition
of the space of automorphic forms.

In the second chapter, we apply graphs of Hecke operators, as developed in [2], to study
toroidal automorphic forms over an elliptic function field. In section 2.1, we review the
concept of toroidal automorphic forms and discuss the arithmetical meaning of the toroidal
condition for some classes of automorphic forms. In section 2.2, we review the graphs of
Hecke operators and reformulate the study of unramified automorphic forms and Hecke
operators in geometric terms. In sections 2.3 — 2.5, we introduce the concept of nucleus of
the graphs for GLs and show how to reduce the computation of eigenforms to computations
on the nucleus (see Theorem 2.5.13). In section 2.6, we use the algorithm developed in [2]
to compute the graph of Hecke operators on the nucleus on G L3 for an elliptic function field
with only one point of degree 1. This computation is used in section 2.7 to parametrize the
spaces of eigenforms for a particular example. In section 2.8 we apply this parametrization
to the study of toroidal automorphic forms.

The third chapter is dedicated to the study of orthogonal periods and Weyl group multiple
Dirichlet series. In sections 3.1 — 3.3 we review the theory of automorphic forms and express
the orthogonal periods as a finite sum over a genus class. In section 3.4, we express the
orthogonal periods of the Eisenstein series in G L4 induced from the parabolic subgroup
of type (2,2) as a Dirichlet series whose coefficients are a type of representation number
of quadratic forms. In section 3.5, we use the results of [1] to express the representation
number as a square of a class number times a elementary factor. This expression is used in
section 3.6 to prove our main result Theorem 3.6.1. In section 3.7, we explore the connection
between the Klein map and the Gauss map as defined in [33].

In the fourth chapter we study the problem of prime numbers in arithmetic progressions
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in short intervals. The proof of Theorem 4.1.1 essentially follows the ideas from [26]. The
main ingredient are an extended version of the Guinand-Weil explicit formula, which we
establish in section 4.2. We also need a version of the Brun-Titchmarsh inequality for primes
in arithmetic progressions which we review in section 4.2.2. In section 4.4, we describe the
algorithm which we use to compute a good lower bounds for the constant C*(4).
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Chapter 1

Background on Automorphic Forms

In the first chapter, we introduces our basic notation and review relevant notions and facts
from the theory of automorphic forms, Hecke operators and representation theory, which
will be useful throughout this thesis.

1.1 Notation

Let F' be a global function field over Fy, i.e. the function field of a geometrically irreducible
smooth projective curve X over F,. Let g be the genus of X. Let |X| be the set of closed
points of X or, equivalently, the set of places of F. For z € X, we denote by F, the
completion of F' at z, by O, its integers, by m, € O, a uniformizer and by g, the cardinality
of the residue field x(z) := O, /(m,) = F,,. With the choice of m,, we can identify F, with the
field of Laurent series Fy, ((7z)) in 7wz and O, with the ring of formal power series Fy_ [[7,]].
Let |z| be the degree of z. The field F, comes with a valuation v, that satisfies vy (m,) =1

and with an absolute value | - |, := ¢, "=, which satisfies |7,|, = ¢;'. The local field F, is

a locally compact ring, O, is a compact neighborhood of 0 and the topology of F, has the
neighborhood basis {720, }i>o of 0. We denote by |z| the degree of x(z) over F,.

To define the adele ring and the adelic topologies, we recall the definition of a restrict
direct product. Let X be a set, {G, }zex a family of groups and { K, } zexr a family of subgroups
K, c G,, with ¥’ € ¥ and ¥ — X'/ a finite set. Then the restricted direct product of the G,
with respect to the K, is

G= {(ax)x@: e[[¢-

We use almost all when applied to 2 to mean all but finitely many. If the G, are locally

a, € K, for almost all z € E} .

compact topological groups and the groups K, are compact open subgroups, then we may
give GG the structure of a locally compact topological group as follows. We take as a base of
neighborhoods of the identity the products U = [[, U, where each U, is an open relatively
compact neighborhood of the identity in GG, and U, = K, for almost all z. By the Tychonoff
theorem, such a set U is relatively compact.
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The first example of a restricted direct product is the adele ring A of the function field
F. We take | X| as our index set. The adele ring A of F is the restricted direct product of
the F, with respect to the O,. The group of ideles A* is the restricted direct product of
the F with respect to the OF. Observe that A* is the group of invertible elements of A,
but the idele topology is finer than the subspace topology induced from A. The idele norm
is the quasi-character |- | : A* — C* that sends an idele (a;) € A™ to the product [] |az|x
over all local norms. By the product formula, this defines a quasi-character on the idele class
group A*/F>*. We also define for a € A*, deg(a) € Z by

deg() = Y vala) - Jal.
re|X|
Therefore |a| = ¢~ 9@ for all a € A*.

We easily check that the group GL,(A) is the restricted direct product of the groups
G L, (F,) with respect to the groups GL,(O,). So the restricted direct product construction
gives to GL,(A) a natural topology. With this topology GL,(A) is a locally compact and
totally disconnected topological group. If H € GL, is a closed algebraic subgroup, then
H(A) is a closed subgroup of GL,(A) and we give to it the topology induced from GL,(A).
[n general, if V' is a linear algebraic group over F' or an algebraic variety over F| there is a
natural topology on the adelic points V(A) of V', cf. [39] and |84].

By embedding an element a € F' diagonally into A along the canonical inclusions F' — F},
we may regard F' as a subring of A and F* as a subgroup of A*. With these embeddings
F and F* are discrete in the respective spaces. Similarly, GL,(F) is a discrete subgroup
of GL,(A). We denote by Ag the ideles of degree 0. The product formula [,y [al. =1,
a € F*, can be reformulated as F* C Ag. We denote Op = [[,¢ x| Or and OF =[[,¢x Os"-
Since O} consists of the ideles a = (a,) with v,(a,) = 0 for all z € | X/, this yields Oy C A[.

A divisor of F'is an element

D= D,z P L z=A/O]
re|X|

with D, € Z for all z € |X|. The latter isomorphism is obtained by sending the divisor z to
Tz, Where 7, is interpreted as an idele via the inclusion F* < A*, which sends an element
a € F, to the idele (a,) € A* with a; = a and ay, = 1 for y # x. We define the idele
class group as F*\A* and the divisor class group Cl1F as F*\A* /O . Since F'* C A} and
Oy C Af, we can define the degree of a divisor as the degree of a representative in A*. The
class group CI° F = F*\AJ/OF is a finite group (cf. |83, Thm. 7.13|), whose order hp is
called the class number of F.

These groups fit into an exact sequence

0—CI°F —CIFX¥z o,

which splits non-canonically. For the surjectivity of the degree map cf. |83, Prop. 6.2]. In
particular, there are always ideles of degree 1, even when F' has no place of degree 1.
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We now review some facts and establish notations concerning the structure of GL,, as a
reductive group over F,. We denote by G,, the multiplicative group as an algebraic group
over F,. Thus if R is an Fg-algebra, G,,(R) = R*.

Let B be the standard Borel subgroup of GL,, of upper triangular matrices and let 7' C B
be the maximal torus of diagonal matrices. If R is an Fj-algebra, we will write the elements
of T'(R) in the following way:

t = diag(ty, ..., t,).
We have an identification of Z" with X (T') := Homg, (1, G,,) as follows. If A € Z", R is an
[F,-algebra and t = diag(ty, ..., t,) € T(R), then
A4 An
A=

[f (€i)i=1...n is the canonical basis of Z", then the set

RcZ"

of roots of (G, T) is equal to

{ei—¢g; [ 1<4,j <nandi#j},

and the set

A:{(}:'i:ET;—ET;+1|1§’I’-§ﬂ,—1}CR

of simple roots of (G, T, B) is identified with {1,...,n — 1} by i — «;. Thus, by abuse of
notation, we sometimes write A = {1,...,n— 1}.

The Weyl group of (G,T) is W = N(T')(F,)/T(F,), where N(T') is the normalizer of T’
in GL,. The Weyl group W can be identified with the group of permutation matrices in
GL,(F,;). A permutation matrix is a matrix in GL,(F,) such that every column has 1 entry
equal to 1 and the others equal to 0. We identify the group of permutation matrices with
the symmetric group on n letters, sending a permutation matrix M to o, where Me; = £,;).
Thus we obtain an identification

Wf — 6?11

where &,, is the symmetric group on n letters. With this identification,
S={s1,...,8.-1}, where s;=1(i,i+1),

is the set of simple reflections associated to A (s; is associated to ;). The Weyl group W
acts on Z" by

(w: /\) = ()‘w—l(l): R /\w—l(n))'
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Thus

(it = N

for all w € W, A € Z" and t € T(R), where R is an Fg-algebra and w € N(T')(F,) is a
representative of w. We have

’w(&"@) = Ew(i)

fori=1,...,n.
The standard parabolic subgroups are the algebraic subgroups of GL,, which contains B.
They are parametrized by subsets I C A as follows. For each I € A we define the partition

di = (dy,...,dja—1141)

of n, with

A_I:{dlﬂdl+d21"':d1+"'+d|‘3_}'|}.

Let P; € G be the standard parabolic subgroup associated with I. The parabolic subgroup
P has a standard Levi decomposition

Py = M Ny,

with My isomorphic to GLg, x -+ X GLdlf_\—le embedded diagonally in GL,, and N the
unipotent radical of P;. We sometimes say that P; is the standard parabolic subgroup of
GL, of type (di, ..., dja—1j41)-

Let G be a topological group and djg a left invariant Haar measure on G. The modulus
character of G, denoted by dg is characterized by the integration rule

/ F(9)dig = 5 (g0) / F(990)dig
JG JG

for every integrable function f on G and gy € G. The modular character is a continuous
homomorphism 45 : G — R*. The group G is called unimodular in case dg = 1.

If z € |X]|, then GL,(F,) is a unimodular group and we consider from now on the
Haar measure on GL,(F;) such that the maximal compact open subgroup GL,(O,) has
measure 1. Let P = P; and n; be the Lie algebra of N;. Thus M; acts on n; by the adjoint
representation, and the modular character of P(F;) is given by dp(r,)(mn) = | det Ady, (m)|s,
where m € M(F;) and n € Ny(Fy).

1.2 Hecke algebras and Admissible Representations

In this section, we will review some basic results of the theory of smooth representations of
a totally disconnected group G. These results will be useful for the study of automorphic
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forms and of the action of Hecke operators on GL,(Af), where F is a global function field
over F,.

Let G be a topological group. We say that G is totally disconnected if G is Hausdorff
and every neighborhood of the unit element contains a compact open subgroup. The totally
disconnected topological groups that will be important for us are of the form H(A) and
H(F.), where z is a place of the function field F'; H is a linear algebraic group over F' and A
is the adele ring of F'. By a representation of G, we mean a pair (7, V') where V' is a complex
vector space and m a homomorphism from G into the group of invertible linear maps in V.
If H is a subgroup of G, we denote by V¥ the space of vectors v in V such that w(h)v = v
for any hin H.

Definition 1.2.1. A representation (7, V') of G is smooth if the stabilizer of every vector in
V is open, equivalently if V = J, V¥ where K runs over the compact open subgroups of
G. A smooth representation (r, V) is called admissible if VE is finite dimensional for every
compact open subgroup K of G.

Let dz be a fixed (left invariant) Haar measure on G. If K is any compact open subgroup
of G, we denote by H(G, K) the complex vector space consisting of the complex valued
functions f on G which satisfy the following two conditions:

(a) f is bi-invariant under K, that is f(kgk’) = f(g) for g in G and k, k' in K.

(b) f has compact support, or equivalently, f vanishes off a finite union of double cosets

KgK.

The convolution product on ‘H(G, K) is defined by,

(1% f2)(g) = [C (@) oz g)dz.

This integral is well defined because the integrand is locally constant and compactly sup-
ported as a function of z. With respect to this multiplication, H(G, K') becomes an associa-
tive algebra over the complex field C.

Let us choose a set of representatives {g,} for the double coset space K \ G/K. If ) is
a measurable subset of G with vol(£2) > 0, let eq be the characteristic function of {2 divided
by vol(§2). Then the family {exg.x} is a basis of the vector space H(G, K) and ek is the
unit element of this algebra.

When K’ is a compact open subgroup of K, then H(G, K) is a subring of ‘H(G, K')
but with a different unit element if K # K’. Define H(G) = U H(G, K) where K runs
through a neighborhood basis of 1 consisting of compact open subgroups. Then H(G) is
the space of locally constant and compactly supported functions on G. For the convolution
product above, H((G) is an associative algebra. It has no unit unless G is discrete, and it is
commutative if and only if G is commutative. Observe that H(G, K) = exH(G)ek.

Definition 1.2.2. The algebra H(G) is called the Hecke algebra of G and H(G, K) is called
the Hecke algebra of G with respect to K.
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If (m, V) is a smooth representation of G, then the space V' becomes an H(G)-module by
the formula

w(f)o = /G f(@)m(@)vda,

where the right is computed as follows: Take K’ a small compact open subgroup such that
ve VE and f € H(G,K'). Let {g;} be a set of representatives of G/K’, then 7(f)v is the
finite sum Y. vol(K") f(g:)m(g;)v.

If K is a compact open subgroup of G we see that exV = VE and therefore VE is a
H(G, K)-module.

Conversely, we want to know when a ‘H(G)-module comes from a smooth representation
of G. This leads to the notion of an idempotented algebra, which is a pair (A, E) where A is
a C-algebra with a set of idempotents E such that A = J,.pede. For e, f € E, we write
e > fifef = fe=f. Then > is a partial ordering on E. We assume that E is a directed
set with this ordering. Usually we omit E and say only that A is an idempotented algebra.
The Hecke algebra H(G) is an idempotented algebra if we take for E the set of e where K
runs over the compact open subgroups of G.

Definition 1.2.3. Let (A, E) be an idempotented algebra. A smooth module W for (A, E)
is an A-module W such that AW = W. An smooth module is called admissible if eW is

finite dimensional for all e € E.

If W is a smooth A-module and e € E, we write Ale] = eAe and W]e] = eW. Then
Ale] is a ring with unit and W]e] is an Ale]-module. It is clear that if (7,V) is a smooth
representation of G, then V is a smooth H(G)-module. Reciprocally we have the following.

Theorem 1.2.4. Let V' be a smooth module over H(G). Then there exists a smooth repre-
sentation w: G — Endc(V) such that ¢ - x = w(¢)x for ¢ € H(G) and z € V.

Proof. Let x € V and g € GG. Because V is a smooth module, there exists a compact open
subgroup Ky of G (depending on ) such that z € V]eg,]. Then we define 7(g)z = egx, - .
It is easy to see that this definition is independent of the choice of Ky. We choose subgroups
Ky and K stabilizing z and 7w (h)z, respectively, so

m(g)m(h)x = m(egr, )T (enky)T = T(egk, * €nk,)T-

We choose K sufficiently small so that h™'K\h C K,. Then it is easy to verify that
€9k, * €Ky = €ghK,, and so we deduce that m(gh) = m(g)m(h). Thus 7 is a representation.
It is easy to verify that 7 is smooth. Ol

If we denote by Reps(G) and Mods(H(G)) the abelian categories of smooth representa-
tions of G and smooth modules over H(G) respectively, then it follows from the theorem that
the functor, which associates to an admissible representation (V,7) of G the H(G)-module
structure on V, is an equivalence of categories between Rep,(G) and Mod,(H(G)).

Regarding irreducible representations we have the following.
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Theorem 1.2.5. A nontrivial smooth representation V' of G is irreducible if and only if for
every compact open subgroups K of G, VX is 0 or an irreducible H(G, K)-module.

Proof. This follows from the fact that if W is an H (G, K)-submodule of VX, then
(H(G) - W)E =W, O

Theorem 1.2.6. Let (m;, V;) fori=1,2,3, be smooth G-representations, K a compact open
subgroup of G. If Vi — Vo — V5 s an exact sequence of G-morphisms, then the sequence
VE — VE — VI is exact as well.

Proof. Given v € VX whose image in V5 is 0, choose v; € V; with image v € V5. Then
erc(vy) lies in VX and still has image v. O

Let H be a closed subgroup of G such that H\G is compact. If we have a smooth repre-
sentation o of G, restricting the representation to H gives us a smooth representation Res$o
of H. The extension functor from Reps(H) to Reps(G) is given as follows by induction.

Let H be a closed subgroup of G such that H\G is compact and (o, U) a smooth repre-
sentation of H. We call a function f : G — U smooth if for some compact open subgroup
K of G, f(gk) = f(g) for all g € G and k € K. We define the induced representation Ind$o
to be the space of functions f : G — U such that

(i) f(hg) =0o(h)f(g) for all h € H, g € G, and
(ii) f is a smooth function.

The group G acts on Ind%o by the right regular representation: (w(g)f)(h) := f(hg) for all
f € Ind§o and g,h € G.

Theorem 1.2.7. Let H be a closed subgroup of G such that H\G is compact and (o,U) a
smooth representation of H.

1. The representation IndSo is a smooth representation.

NS

. If (0,U) is an admissible representation, then Ind$o is an admissible representation

of G.
3. The functor o — Ind$o is exact.

4. (Frobenius reciprocity) Let A : Ind$;oc — U be the H-morphism f — f(1¢). If (7, V)
is any smooth G-representation, then composition with A induces an isomorphism of
Homg(m, Ind$o) with Homp(Res$Gm, o).

5. If x is a smooth character of G, then
IndSo @ x ~ Ind$ (0 @ x|g)-
Proof. For a proof, cf. [28, Thm. 2.4.1, Prop. 2.4.4]. O
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Let G be a reductive group over F' and P a parabolic subgroup defined over F' with Levi
factor M and N the unipotent radical of P. Let = be a place of F. We fix R equal to F),
or A, and define G = G(R), P = P(R), M = M(R) and N = N(R). We remember that
dp denotes the modulus character of P. If (o,U) is a smooth representation of M| it defines
as well a smooth representation of P, since P/N = M. We define the normalized induction
iGo as Indg(aﬁgg). The reason to add 5}5’2 is to normalize i%0 so that if o is unitary, then
i%0 is unitary, cf. [28, Prop. 3.1.4]. This normalization will also be useful in connection
with the Satake isomorphism.

Consider on the algebraic group GL, over F the standard Levi subgroups M; ¢ M;
corresponding to subsets I C J of the set of simple roots A. Then M; N P is a parabolic
subgroup of M; with Levi subgroup M; and if ¢ is an admissible representation of M;(F},),
we can consider the normalized induction zﬁj’({gga
Theorem 1.2.8. Consider K C J C I subsets of A, z € |X| and 7, an admissible repre-
sentation of Mg (F,). Then we have a canonical isomorphism

Mi(Fz) . Mi(Fz) (:M(Fz)
UM ()™= = Uy (Fr) \ "M (F2) T2

Proof. For a proof, cf. 78, Prop. 7.1.3 (iv)]. O]

If x is any character of G and (m, V') a smooth representation of G, the twisted represen-
tation (m ® x, V') acts on the same space as 7 via the formula

(m®@x)(h) =x(h)m(h) for heG.

1.3 Spherical Hecke algebras and the Satake Isomorphism
for GL(n)

In this section, we study the spherical representations of G = G L, over the local fields F)
for z € |X| and the Satake isomorphism. These results will be useful for the study of the
unramified Hecke operators in this and the next chapter.

Let T' C GL, be the diagonal torus, z € | X| a place and F}, the corresponding local field.
Let B C G be the standard Borel subgroup and U C B the unipotent radical of B. Let
0p(r,) : B(F;) — C* be the modulus character of B(F,). We have

Sp(ry) (b) = [ Ibii/bsile-

i<j
Let x be a character of T'(F,). Using that 7' = B/U we can extend x to B(F,). The
principal series representation is I(x) = aggjx Recall that the normalized induction

I(x) = aggjx consists of all smooth functions f : G(F,) — C such that

f(bg) = 3333, B)X(b) £(9),
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for all b € B(F,) and g € G(F}). The action is given by

(t(x)(9)f)(h) = f(hg),
for all f € I(x) and g, h € G(F}).
Theorem 1.3.1. The representation I(x) is admissible and a G(F,)-module of finite length.
Proof. For a proof cf. [78, Thm. 7.3.3] and |27, Thm. 3.3] O

Let K, = G(O;) be the standard maximal compact subgroup of G(F,). A spherical
representation or unramified representation of G(F;) is a smooth irreducible representation
(V,m) of G(F;) such that

VE= £(0).

We say that a character y : T'(F,) — C* is unramified if x is trivial on 7(0,). To
2 = (21,...,2,) € (C*)" we associate the unramified character x, : T'(F,) — C*, given by
Xz(diag(ty, ..tn)) =TT z;j: where A; = v,(¢;). These are all the unramified characters of
T(F,). If x is an unramified character of T'(F,), then we have

dime (I (x)%=) = 1.

This follows easily from the Iwasawa decomposition

G(F,) = B(F,)K,

and

T(Fr)N K, =T(0,).
Theorem 1.3.2. Let the notations be as above.

(i) Let x be an unramified character of T(F,). If 0=V, c Vi C---C Vg C V. =I(x) is
a Jordan-Hdélder series of the G(F,)-module I(x), there ezists a unique index j such
that 1 < j < r and such that the representation of G(F,) in V;/Vi_y is spherical.
The isomorphism class of this spherical representation is well defined and we denote
by (V(x),m(x)) this spherical subquotient of I(x).

(ii) Any spherical representation (V,7) of G(Fy) is isomorphic to (V(x),m(x)) for some
unramified character x of T'(F'). In particular, we have
dime(VE=) =1

(iii) Let x and X' be unramified characters of G(Fy). Then the spherical representations
(V(x),m(x)) and (V ('), 7(x')) of G(F,) are isomorphic if and only if there erists
w e W such that X' = w(x), where W is the Weyl group of G = GL,,.
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Proof. For a proof c¢f. [78, Thm. 7.3.3 and Thm. 7.5.4| and |27, Sec. IV]|. The proof that j
is unique in (i) follows from Theorem 1.2.6. ]

Remark 1.3.3. Regarding the decomposition of I(x) we have the following.

1. Let 2 =(2,...,2,) € (C*)" and x = x,. We say that x is regular if z; # 2; for i # j.
If x is not regular, we say that it is irregular. If y is regular, then I(y) is irreducible
if and only if z;/2; # ¢! for i # j. For a proof cf. |29, Prop. 3.5 (b)].

2. There are irregular characters y such that I(y) is irreducible. For example, if x is
unitary, then I(x) is irreducible cf. |61].

3. In general, by |28, Cor. 7.2.3| the length of the representation I(x) is less than or equal
to n!, the cardinality of the Weyl group W of GL,,.

4. Let I, C K, be the Iwahori subgroup, that is, the inverse image of B(k,) under the
homomorphism GL,(0,) — GL,(k(x)), where B is the standard Borel subgroup of
GL, and k(x) is the residue field at z. The irreducible admissible representations V'
of G(F,) with V1= #£ 0 are precisely the irreducible admissible representations which
appear in composition series of the unramified principal series; cf. |27, Thm. 3.8|, |29,
Prop. 2.6] and [12].

The spherical representation corresponding to the character y, is (V(x.),7(x.)). The
Satake parameter of this unramified representation is the conjugacy class

“1

Z9

Zn

in GL,(C). The vector space V(x.)¥ has dimension 1 and is composed of eigenvectors for
the action of H(G(F,), K).

Definition 1.3.4. The Hecke algebra H(G(F,), K,) is called the spherical Hecke algebra or
the unramified Hecke algebra. Tts elements are called unramified Hecke operators.

We now describe the structure of H(G(Fy), K;) and its action on V(x,)¥ in terms of the
Satake transform.

Using the Iwasawa decomposition G(F;,) = B(F,)K,, we extend the character 5;”(2pm)xz
of B(F;) to a locally constant function ¢, on G(F;) defined by

6:(9) = 05 X=(0),
if g = bk, with b € B(F},) and k € K,. This defines a function

L G(F,) — Clzy, 27 oz, 22 Y.
(;5 ( 1 ~1 1 1
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Observe that if we specialize z to (zy,...,2,) € (C*)", then ¢, € I(x.) and ¢, generates
I(Xz)Kx-

Definition 1.3.5. The Satake transform of ® € H(G(F,), K,) is defined by
)= [ @)ooy € Claraimm ')
Ja(ry)

Let ®,; € H(G(F;), K;) be ®,; = char(K, diag(m,, ..., 7, 1, ..., 1)K;), 1 <i <n, where
e appears i times. Let A\; = (1,...1,0,...,0), where 1 appears i times and

For
= Aty M), 6 = (81, 6,) € CT,

we define
(6,\) = Z o,

The symmetric group &, acts on the C-algebra Clz;, 2, ', ..., zn, 2, '] by permuting the vari-
ables zy,..., 2, and we denoted by C[zy, 2, %, ..., 2., 2,']%" the subring of elements fixed by
this action.

Theorem 1.3.6. Let the notations be as above.

(i) The Satake transform is an isomorphism of C-algebras

H(G(F,),K,) ~Clzy, 27, . .., 2, z_l]L .

T

(ii) Ifv € V(x.) (resp. v € 1(x.)) generates V(x,)%= (resp. 1(x.)%=) and ® € H(G(F},), K,),
then
(P)v = DY (2, ..., 20)v.

(iii) For ®,; € H(G(F,), K;), 1 <i < n, we have ®],(2) = ¢S (2), where Si(z) is the
i-th symmetric polynomial in zy, ..., z, and q, s the cardinality of the residue field of

the local field F,.

Proof. Part (i) follows from |78, Thm. 4.1.17|. Part (ii) follows from |78, Thm. 7.5.6|. Part
(iii) follows from [79, claim 4.1.18|, where we use that the only possibility for p is p = A.
Applying |78, Cor. 4.1.16], yields

8Y (=) = PV 5i(2),

where S; is the i-th symmetric polynomial in zq,...,2,, O
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1.4 The tensor product theorem

One of the crucial results in the representation theory of GL,(A), is the tensor product
theorem, which says that every irreducible admissible representation of G L, (A) factors into
a restricted tensor product of irreducible representations of GL,(F;), z € | X|. In this section

we review the definition of restricted tensor product and the Tensor product theorem.

Definition 1.4.1. Let {W, | z € £} be a family of vector spaces. Let X, be a finite subset
of 2. For each z € X\ X, let vy be a nonzero vector in W,. For each finite subset S of X
containing Yo, let Wy = ®,csWy; and if S C 97, let
fs:Wsg —= Wg bedefined by Q@w,— Quw, ® uv).
zeS zeS reS"\S

Then W = ®,0W,, the restricted tensor product of the W, with respect to the v3, is defined
by

W = limWs.
s

The space W is spanned by elements written in the form w = ®@w,, where w, = v} for
almost all =z € X.

The ordinary constructions with finite tensor products extend easily to restricted tensor
products.

(1) Given linear maps B, : W, — W, such that Byv) = v for almost all z € 3 then one
can define B =®B, : W = W by B(®w,) = @Byw,.

(2) Given a family of algebras {4, | z € X} and given nonzero idempotents e, € A, for
almost all z, then A = ®,, A, is an algebra in the obvious way.

(3) If W, is an A,-module for each z € ¥ such that e, -v; = v} for almost all z, then ®,.W,
is an A-module. The isomorphism class of W depends on {v3}. However, if {0} is
another collection of nonzero vectors such that v, and v} lie on the same line in W,
for almost all z, then the A-module ®,sW, and &, W, are isomorphic.

Let G = H}(m G, be the restricted product of locally compact totally disconnected groups
G, with respect to compact open subgroups K, C G,. Then G itself is locally compact and
totally disconnected, and H(G) is isomorphic to &, H(G,).

For each € X, let W, be an admissible G,-module. Assume that dim WX+ = 1 for
almost all z. Choosing for almost all z a nonzero vector v2 € WX+ we may form the G-
module W' = @, W, (cf. Theorem 1.2.4). The isomorphism class of W is in fact independent
of the choice of v € W= and will be called the tensor product of the representations
Ws. One sees that W is admissible, and that it is irreducible if and only if each W, is
irreducible (cf. [21, Thm. 3.4.4]). The admissible irreducible representations of G isomorphic
to representations constructed in this way are said to be factorizable.
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Theorem 1.4.2. Suppose that H(G,, K;) is commutative for almost all z. Then every ad-
missible irreducible representation W of G is factorizable, i.e. W ~ @W,. The isomorphism
classes of the factors W, are determined by that of W. For almost all z, dim W= = 1.

Proof. For a proof cf. [49, Thm. 2| and [21, Sec. 3.4]. O

In the following we apply this theorem to admissible representations of GL,(A), where A
is the adele ring of the global function field F'. The group GL,(A) is the restricted product
of the groups GL,(F,) with respect to the subgroups K,, where z € | X|.

Corollary 1.4.3. Let o be an irreducible admissible representation of GLy(A). Then o
has a factorization o ~ Qe x|0, with uniquely determined factors o, which are irreducible
representation of GLn(Fy). For almost every x € | X|, o, is a spherical representation.

Proof. This follows from the theorem and Theorem 1.3.6. O

1.5 Automorphic Forms over Function Fields

We use the notation G for GL, and Z for the centre of G. We will often write G4 instead of
G(A), Zr instead of Z(F), et cetera. We denote by K the subgroup G L,(O4) of Ga, which is
the standard maximal compact subgroup of Ga and K, = G(F;) for z € | X|. The topology
of G has a neighbourhood basis V of the identity matrix that is given by all subgroups

K'=1]] K< ][] K-=K
x| X| ze|X|
such that for all z €
and such that K, differs from K, only for a finite number of places.

Consider the space C°(Gy) of continuous functions f : Gy — C. The group G4 acts
on CY(Gy) through the right reqular representation p : Gy — Aut(C°(Gy)) that is defined
by right translation of the argument: (p(g)f)(h) = f(hg) for g,h € Gy and f € C°(G,).
We call f € C°(Gy) smooth if it is invariant under the right regular representation by a
compact open subgroup of Gx. A function f € C°(Gy) is called K-finite if the complex

X| the subgroup K of K, is open and consequently of finite index

space generated by {p(k)f}rex is finite dimensional. It is easy to prove that f € C°(Ga) is
smooth if and only if it is K-finite.

A function f is called left or right H-invariant for a subgroup H < Gy if for all h € H
and g € Gy, f(hg) = f(g) or f(gh) = f(g), respectively. If f is right and left H-invariant,
it is called bi-H-invariant.

To define moderate growth, we need to define a height function ||g|| on G,. We embed
Ga = A" via g+ (g,det(g)™"). We define a local height ||g||, on G(F,) for each place
v by restricting the height function (z1,...,Zn241) — mazi|z, on F™t. We note that
||gv||s = 1, and that ||gs||v = 1 if and only if g, € G(O,). We define the global height ||g]|
to be the product of the local heights. We say that f is of moderate growth if there exist
constants C' and N such that for all g € Gy,
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|F(9) < Cllgl|".

Definition 1.5.1. An automorphic form on G, (with trivial central character) is a function
f € C°(Gy) that is K-finite, of moderate growth, left GpZs-invariant and such that the
smooth representation p(Ga)f of Ga is admissible. We denote by A the complex vector

space of all automorphic forms on G (with trivial central character).

Definition 1.5.2. An automorphic representation (with trivial central character) is a rep-
resentation of G that is isomorphic to a subquotient of the representation A. That is, there
exists V. C W C A, such that the representation is isomorphic to W/V.

For a subrepresentation V' A and an open compact subgroup K’ of Gy, let VE' be
the subspace of all f € V that are K'-invariant. The functions in AX can be identified
with certain functions on GpZy\G, /K’ that are of moderate growth. By the definition of
automorphic form, we have

v=Jv¥

K'ey

for every subrepresentation V C A.

Definition 1.5.3. The subspace AX of A is called the space of unramified automorphic
forms.

Let f € C°(Gy) and P = P; a standard parabolic subgroup of G with unipotent radical
N = N;. We define the constant term of f along P by

P(z) = f(nx)dn,
) -[WFJ\N(AJ )

where z € G(A). We call f cuspidal if f¥(z) = 0 for every € G(A) and every proper
standard parabolic subgroup P of G.

Definition 1.5.4. A cusp form is an automorphic form which is a cuspidal function. We
denote by Ay the space of cusp forms. The space Ay is a subrepresentation of A.

Theorem 1.5.5. (G. Harder) Let K' be an compact open subgroup of Gu. Then there exists
a compact subset C of Gy such that every element of AX" has support in Zy - Gp - C. In
particular Aé‘" is finite dimensional.

Proof. This follows from [57, Cor. 1.2.3] or [55, Lem. 10.9]. O

Theorem 1.5.6. Let f be a function on GpZy\Gas. Then the following conditions are
equivalent:

1. f is a cusp form.

2. f is cuspidal and right invariant under some compact open subgroup of Gy.
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Proof. For a proof cf. [13, Prop. 5.9]. O

Theorem 1.5.7. (Multiplicity One) The representation Aq is a direct sum of irreducible
admissible G y-modules. The irreducible representations appearing in this decomposition have

multiplicity one.

Proof. By Theorem 1.5.5, the representation Ajg is contained in L?(GrZ,\Gy), the Hilbert
space of square-integrable functions on GpZx\Ga. Thus Ay is a unitarizable representation
and therefore semisimple. The multiplicity one property follows from [95, Thm. 5.5]|. ]

Definition 1.5.8. We call an irreducible subrepresentation of Ag a cuspidal representation.

1.6 Eisenstein Series on GL,(A)

One of the ways to construct automorphic forms on GL,,(A) is by the formation of Eisenstein
series. These series are formed using cusp forms in subgroups of smaller rank, namely the
Levi subgroups of parabolic subgroups of GL,,. Originally Eisenstein series were defined as
modular forms on the upper half plane, by the formula

. 1
EZk(Z) — é Z ms Iﬂl(z) = 0,

c,deZ?
ged(e,d)=1
where k € Z-,. With the generalization of automorphic forms to reductive Lie groups (cf.
[11]), a general definition of Eisenstein series was given in this context. One of the first prob-
lems in the early stage of this theory was the analytic continuation of these Eisenstein series,
which was solved by Langlands in [76]. With the advent of the conjectures of Langlands
(the Langlands program), the concepts of automorphic form and of Eisenstein series were
reformulated in the context of adelic groups, cf. [13|, [87]. With this at hand, we can use the
analogy between number fields and function fields to transfer the concepts of automorphic
forms and Eisenstein series for adelic groups over function fields. In the function field case
the analytic continuation of the Eisenstein series was obtained by Morris, cf. [89], |90], [91],
cf. also [57|. In this section we review the definition and convergence of Eisenstein series and
intertwining operators for GL,(A). The main reference for this section is |79, Appendice G].
Consider on the algebraic group G = GL, over F' the standard Levi subgroup M cor-
responding to a subset [ of the set of simple roots A. We associte with [ a partition
dy = (dy,...,ds) of n as in section 1.1. We define a homomorphism

degy : M(A) — P FZcQ

i=1

by

deg(det deg(det(gs
ngM(m) _ ( ( dl (.';r%‘il))1 .o g( y (g )))
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kernel of deg,,. We have M(F) c M(A)' and M(O,) c M(A)'.

We define the homomorphism Hy : Pi(A) — Q° by Hi(nm) = —deg,, (m), where
n € Ni(A) and m € M;(A). We extend H; to a locally constant function on G(A) by using
the Iwasawa decomposition G(A) = P;(A)K and making Hy right invariant by K.

For each I C A we will denote by Y7 or by Yy, the abelian group of quasi-characters of
the discrete group

for all m = (g1,...,9s) € M(A) = GLg4, (A) x --- x GLq,(A). Let M(A)! ¢ M(A) be the

M (A)\M;(A).

The homomorphism Hp|y,a) = —degy,, induces an isomorphism

Mi(A)"\M;(A) = P FZc Q.

j=1
For each \ € @j‘:]((c/% ;Z) and each H € @;_, %Z we set

O\HY = MH, + -+ \H, € C/ 2T,

logq

This yields an isomorphism of groups

_EBI(C/ peeiL) — Vi
J= .
)\ — (?n — q(Ast {?‘?1)))

We will denote by

X; = Xug, = {A e@(c/Edz)| Y re lﬁggz}
j=1 Jj=1

the subgroup of complex characters of Mj(A)'\ M;(A) which are trivial on Z(A), where Z
is the center of G = GL,. So X is a complex manifold of dimension s — 1 with a finite
number of components.

The decomposition

C*=R.p-{z€C*||2| =1}
induces decompositions
Yi=ReYImY; and X;=Re X;&Im X;

for every I C A, where Re Y7 (resp. Im Y7) denotes the quasi-characters on Y7 with image
contained in R* (resp. {z € C* | |z| = 1}), and similarly for X;. By the above identification,
we have

ReY; =R C g:? (c/izid;z)
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and

Im Y, = @ (iR /Ed; Z) @ (c/i&zid;z).
j=1

j=1
We denote by

pr € X,

the element with coordinates

prj=dj(ds+ - +dj1 —dj1— - —di)/2

forj=1,...,s.

Lemma 1.6.1. The modular character of Pr(A) is given by

1/2
5P/!(A)(nm) = glprHi(m)

where m € Mp(A) and n € Ny(A).

Proof. Let ny be the Lie Algebra of N; and nj(A) be the adelic points of n;, then we have
for n € Ny(A) and m € M;(A).

For 1 < j < k < s, let nj be the space of matrices n € ny with ng, = 0 except if
dy+---+di+1 <1 <d+---+djand dy +---+dpey +1 <m < dy + -+ + dg.
So we have n; = ®j<k nji. We naturally identify n;. with d; x dp matrices. With this

dp;(a)(nm) = | det Ady, (a)(m)

identification, if m = (my,--- ,ms) € My and n € njy, then Ady, (m)n = mjnm;". Therefore
| det Ady, (m)| =

decomposition, we obtain the result. [

det m;j|%| det my|~%. Multiplying the contributions of all spaces njx in the

Let 7 be a cuspidal representation of My(A) with central character x such that xz|z@a) =
1. We call the pair (I, 7) a cuspidal pair. There is a unique element

Re m e Re X

such that

()] = glfe T

for z € Z1(A).

Let x € Y7 be a quasi-character of M;(A). We define 7(x) as the cuspidal representation
with representation space V(m(x)) = {f-x | f € V(m)}. Therefore m(x) ~ 7 x (we defined
twisted representation at the end of section 1.2). We define I(7m) as the set of functions

¢ Nr(A)M;(F)\G(A) — C,

such that
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1. ¢ is right K-finite; this means that there is a compact open subgroup K’ of G(A) such
that ¢(gk) = ¢(g) for every g € G(A) and every k € K'.

2. For every g € G(A), the function m —— ¢(mg), m € M;(A), belongs to the space of

1/2
?T((SP:(A))'

In other words, I(m) is the normalized induction of 7 from M;(A) to G(A). For A € X} we
define I(m,\) = I(w()\)). The map ¢ — ¢y = pg™ 1)) defines a bijection between the
vector spaces I(m) and I(m, A).

For p € I(m) and g € G(A) we define the Eisenstein series

E@e,m)(9)= Y, ¢(9)

YEPI(F)\G(F)
and
E(p, A\ 7)(9) = E(px,7(\)(9) = Y. @(vg)g™109
YEPI(F)\G(F)

whenever these series converges.
Let

C’I:C’M!:{/\EXI )Re(;‘—j—"ﬂ')w, ‘v’j:l}...,s—l}

djt+1

be the open positive cone in Xj.

Theorem 1.6.2. Let 7 be a cuspidal representation of Mp(A) and ¢ € I(m). The Eisenstein

Series

Ep,Am(@) = Y.  @lyg)g™Hoo
1€P FN\G(F)

viewed as series of functions of

(9,)) € G(A) x (p; — Re m+ Cy) € G(A) x X7,

is normally convergent when g stays in a compact subset of G(A) and Re A stays in a compact
subset of py — Re m+ Re Cy. In particular it depends holomorphically on A € py — Re m+C].

Proof. For a proof cf. |79, Cor. G.4.3|. O]

Remark 1.6.3. Given a set S and functions f; : S — C, where i € [ and [ is a enumerable
set, the series

S fila)

iel

is called normally convergent if the series of uniform norms of the terms converges, i.e.
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Z ||f1|| < 00,

iel
where || fil| := sup,es | fi(2)].
Let (I, m) be a cuspidal pair and let w € W be such that w(I) C A. We denote by w a
representative of w in N(T')(FF,), as in section 1.1. We set

(I',7') = (w(I), w(r)).
We consider in Np(A) (resp. Np(A)NwN;(A)w™") the Haar measure such that the volume
of Np(F)\Np(A) (resp. Np(F) N wNi(F)w '\Np(A) N wNi(A)w™?) is equal to 1. We
consider in (Np(A) NwN(A)w=)\Nj(A) the measure dn which is the quotient of the two
Haar measures.
For any ¢ € I(7) and g € G(A) we define
Mw.me)o) = [ (i ng) dn
(N (A)b N7 (Ayi—1)\ N} (A)

whenever this integral is convergent. If this integral converges for every g € G(A) and every
p € I(m), then M(w,m)(p) € I[(w(m)) and the operator
M(w,m): I(r) — I(w(m))

is a morphism of representations. This operator is called an intertwining operator. Regarding
convergence of the intertwining operators we have the following.

Theorem 1.6.4. Let (I, ) be a cuspidal pair and let w € W with w(I) C A. For any
p e I(m) and any A € py — Re ™+ C} the integrals

M (w, (X)) (2)(9)

for g € G(A), are absolutely convergent. Moreover, if g stays in a compact subset of G(A)
the convergence is uniform and

M(w, 7(V) () € Iw(x(V)).
Proof. For a proof cf. |79, G.5.7| 0

The intertwinig operators appears on the constant terms of Eisenstein series as follows.

Theorem 1.6.5. Let I,.J C A with |I| = |J|, P = P; and let ¢ € I[(7)X. If 7 is a cuspidal
representation of My(A) with Re m € py + Re C7, then

EPpm)= 3 M(uw,m)(p).
(D

Proof. For a proof cf. |79, Prop. G.6.4] O
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1.6.1 Analytic Continuation and Functional Equation

In this section, we will describe the analytical continuation of Eisenstein series on GL,, over
a global function field. For proofs of the theorems, see |79, Thm. G.9.1 and Thm. G.9.2|,
|87, Chap. 1V| and [89].

Consider G = G'L,, as an algebraic group over F' and A the set of simple roots of G as
in section 1.1. For I C A, let P(X) be the C-vector space of complex functions f on X;
which are polynomials in the variables

/% and N/ (j=1,...,s).
For a finite dimensional complex vector space V', we set

P(Xp V) =P(X1) @c V.
We can view the elements of P(X; V) as polynomial functions on X; with values in V. If
() is an open subset of X; that meets every component of X; and if
F:Q—V

is a holomorphic function, then we say that F' can be analytically continued as a rational
function to X7y if there exists a D(A) € P(X) that does not vanish on any component of {2
and a P(A) € P(X;,V) such that

DVEF(N) = P(V)

for A € ). In particular F' has a meromorphic continuation to Xj.
Let (I,m) be a cuspidal pair and let d; = (dy, ..., ds) be the partition of n corresponding
to I. We define

Fiz(m)={ e X; | n® A =7}
By considering the central characters, we see that
5
Fis(r) ¢ Y (222 /#5542 .
j=1

For each pair (j,k) with j,k € {1,...,s} and j < k, we denote by nj.(m) the smallest
positive integer n such that

Aj A 21
23 _ Ak et
t (dj dk) < loqu

for every A € Fiiz(m) and we denote by hj(7) the polynomial function on X that is defined
by
A

N
hjr(m)(A) = qnjk(ﬁ)(d" d") — 1.
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A radicial hyperplane for (I, 7) is a codimension 1 subvariety H of X; of the form

H=X+{\€ X; | hj(m)(\) =0}

for some Ay € X; and some pair (7, k) as above. Observe that the function

hir(A) = hye(m)(A = Ao)

defining H is uniquely determined by H.

Theorem 1.6.6. Let us fiz a compact open subgroup K' C K of G(A) and a cuspidal pair
(I,m).

1.

(Analytic continuation). The functions

pr—Rem+C; —  Home(I(7)X',C),
A > (p = Elpa, m(A)(9))
where g € G(A) and

pr —Re 1 +Cr —  Homc(I(m)X', I(w(r))K"),
A — (= (M(w, m(N))(P2)-win)

and w € W with w(I) C A can be analytically continued as rational functions to Xj.

(Singularities). There exists a finite number of radicial hyperplanes Hy, ..., Hy and
positive integers mq, . . ., my. (depending on K' and (I, 7)) with the following property:

For A € X1 we define Uy € Home(I(m)X', I(w(m))K") by

k
Ua(p) = [ [ o V)™ - (M (w, 7(N)) (92)) w5

i=1
then X — Uy is in P (X7; Home(I(m)X' I(w(7))X")) for every w € W with w(I) C A,
Moreover if for X € X1 and g € G(A) fized we define ®\(g) € Home(I(m)X',C) by

k
Dr(9) () = [ har. (V)™ - E(r, (X)) (9),
i=1
then A — ®5(g) is in P (Xr; Home(I(7)X',C)).
(Functional equation for Eisenstein series). Let w € W with w(I) C A. We have

E(M(w, m(A) (), w(m(A))) = E(px, 7(A))

for every o € I(m)K'.
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4. (Functional equation for intertwining operators). Let w,w' € W with w(I) C A and
w'(w(l)) Cc A. We have

M(w', w(m(0))(M(w, 7(0) (93)) = M(w'w, 7(X))(2)
for every ¢ € I(m)X'.
Proof. For a proof cf. |89], |87|, |57] and |79]. O

Let I be a subset of A and P = Pr be a standard parabolic subgroup of GL,, with Levi
subgroup M = M;. Let df = (di,...,ds) be the partition of n associated with I. We put
Ky = M(A)N K, which is a maximal compact subgroup of M(A). We call an irreducible
admissible representation V of Mj(A) unramified if VE¥ £ 0. Let 7 be an irreducible
cuspidal representation of M;(A). We have 7 = m ® --- ® 7, where m; is a cuspidal
representation of GLg,(A). We see that 7 is unramified if and only if 7; is an unramified
cuspidal representation of GLg,(A) for 1 < j < s. In this case, V (m)EMm is of dimension 1 by
Theorem 1.2.5 and Theorem 1.3.6 (i).

Let I(m) be the normalized induction of ™ from P(A) to G(A) as defined in section 1.6.
We observe that I(m)% # 0 if and only if V(7)%» £ 0. In fact, if V(7)%* is generated by a
cusp form f, then there is a unique ¢; € I(m)" such that ¢f|aa) = f and we have that ¢;
generates (7). This follows easily from the Iwasawa decomposition G(A) = P;(A)K. We
call the Eisenstein series E(p, A\, 7) with ¢ € I(7)X, unramified Eisenstein series.

For the applications in chapter 2 we need only the Ensenstein series in GL3(A) for
a cuspidal pair (I,7) with 7 an unramified cuspidal representation. Below we make some
remarks on the action of the intertwining operator on I(7(\))% when Py is the Borel subgroup
or a maximal proper parabolic subgroup. We can use these results to obtain more precise
description of the radicial hyperplanes on Theorem 1.6.6 and of the functional equation of
the unramified Eisenstein series on G L3(A).

We consider the case I = () in more detail. Then the Levi subgroup Mj is the maximal
torus of diagonal matrices and will be denoted by T. We put U = Ny. Let 7 be an
unramified cuspidal representation of T'(A). The cuspidal representation 7 is an unramified
character of T'(A), which we will denote by y instead of m. Let E'=T(0O) be the maximal
compact subgroup of T'(A). We denote the group of unramified characters by A(T) =
Hom(T(A)/Z(A)ET(F),C>).

Let T = T/Z be the maximal torus of PGL,. We denote by E the image of E under
the natural map T'(A) — T(A). Observe that Xy = X7 = Hom(T'(A)/Z(A)T(A)',C*) is
a subgroup of A(T) and that we have an isomorphism of groups

A(T)/ X1 =5 Hom(T(A)' /T(F)E,C*).

The group T'(A)!/T(F)E is finite and isomorphic to the product of n — 1 copies of the class
group of F.

Indeed, if we choose an idele £ with deg(§) = 1, then we obtain a (non-canonical) iso-
morphism
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AXJOXF* ~ AXJAX x AYJOXFX,

and using that T' ~ G, we obtain an isomorphism of T(A)!/T(F)E with the product of
n — 1 copies of A /O F*.

Therefore we can give to A(T') the structure of a complex Lie group such that Xt is an
open subgroup of finite index.

For x € A(T'), we define the function

gf)xi GA — Cx
g — x-0Y3(t)°

where g = utk with u € U(A), t € T(A) and k € K. The one dimensional space I(\)¥ is
generated by ¢,. Thus we have

M (w, x)(dy) = c(w, X)Pui)

for some constant ¢(w, A) € C. The value of ¢(w, A) has been computed explicitly in terms
of L-functions of Hecke characters, cf. [57, Equation (1.6.3), pg. 276]. This gives us a more
accurate description of the radicial hyperplanes appearing in Theorem 1.6.6, see |57, Thm.
1.6.6].

Let « € A, I = A—{a} and consider a cuspidal pair (I, 7) with 7 an unramified cuspidal
representation of M;(A), then I(m)X is of dimension 1. This follows easily from the Iwasawa
decomposition G(A) = Pr(A). There exists a unique wy € W such that wy(/) C A and
wo # 1 (cf. |79, Lem. G.5.2|). If ¢ € I(m) generates I(m)X, we can compute explicitly
M (wy, w(X)) (&) in terms of a generator of I(wy(m))X and automorphic L-functions, cf. [82,
Sec. 3.4].

1.7 The Space of Unramified Automorphic Forms

The automorphic forms on GL,,(A) that are invariant by the action of K are called unramified
automorphic forms. We denote by AX the space of unramified automorphic forms. In
this section, we describe the action of the unramified Hecke algebra HX on the unramified
Fisenstein series and we explain the decomposition of the space of eigenforms in terms of
cuspidal data.

Let G = GL,, K = GL,(Oy) and K, = GL,(O,). We use the notation H = H(G(A)),
Hrk = H(G(A), K) and Hg, = H(G(F;), K;). Thus we have a restricted tensor product

decomposition
Hi = Re, Hk,,
which allow us to see H, as a subalgebra of Hp.
Definition 1.7.1. We call a f € A an eigenform with eigencharacter Ay if it is an eigenvector
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for every @ € Hy with eigenvalue As(®). Note that Af : Hx — C is a homomorphism of
C-algebras.

The action of unramified Hecke operators on Eisenstein series induced from unramified
cuspidal representations is as follows.

Theorem 1.7.2. Let P = Py be a standard parabolic subgroup of type dy = (dy, ..., ds) with
standard Levi subgroup M = Mp and m = m @ - - - Q@7 an unramified cuspidal representation
of M(A) with xx|z@a) = 1, where m; is an unramified cuspidal representation of GLg,(A).
Let x € |X| and diag(zd,+. +d, ,+1;- - -, 2dy+..+d,), be the Satake parameters of m; at z. Let
v=(vi,...,vs) € X1. If € Hg, and ¢ € I(m)K, then

(I) : E(gb'.l I}} ?T) - (bv(zi'l =t Z:I)E(Qlﬁﬂ lUI".' ?T)}
Yk

where z;,. =2z q;d’“ ford,+---+dp_y <j<dy+---+dp and " is the Satake transform

of © defined in section 1.3.

Proof. Let m = ®,7m, be the tensor product decomposition of m. By the description of the
induction in terms of tensor products in [27, Thm. 1.4], it follows that
G(Fy
I(m) = @) iy
re|X|

By our hypothesis, 7, is a unramified representation for every x € | X|.

Fix z € |X|. The Satake parameters of 7, are z = diag(zy,...,2,). Therefore 7, is

isomorphic to m(x), the unique spherical subquotient of ?i{'{(?hz

By the exactness of 3M( (}’,} ) and the isomorphism llf(ia;f?m) ( ig%‘;ﬁkz) o~ J“rf(a(f‘? )Xz given by

Theorem 1.2.8, we conclude that zf}‘b(ﬂ}) )Tz 1S & subquotient of the principal series zﬁ’?}) )Xz

It follows from (11111(1,”( (}) )?rx)Km =1, Theorem 1.3.2 (i) and Theorem 1.3.6 (ii) that if v

is such that (3%(};} ):rrav.,)f‘I = (v) and ® € Hg,, then

(D)o = DY (2,. .., 2,)0.
The character y’ corresponding to v is given by

X;('TR) _ q(y,H;{m))

for m € M;(A).
We apply these conclusions to I(m @ x'). We remember that My ~ GLg, % -+ x GLg,,
Hilma) = — degpy,,

ngMI(m) = (%:(gl))’ e 1%};(9@))) J

and
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deg(a) = ) v(a)-|z| (Va€AX).

re|X]|

From what we saw above and theorem 1.2.7, z,ff(;?’g )Tz @ X is a subquotient of

G(F;
;\I(@(Fi)()(z Xo|T(F,)), and we have

n

_ =R (tay ot dg g 41y ot dy)
Xz - Xa(diag(ty, ... tn)) = Hz;;z(tj) ,qu a, v\l k1 y g

j=1 k=1
— Xz'(d?a'g(tl Tt tn))
where

_ Yk

2= (2,...,2 :zj.qxd}.- if di+---Fdpy<j<di+---+dp.

3 -~
S—
an

For ® € Hg,, the action of m(®) in (1‘}‘,(;})% ® x4)%= is given by multiplication by
dV(2],...,2]). The theorem follows because the map

Ir®x) — A
o Elpum)

is a morphism of representations. )

Remark 1.7.3. If n = 2 we obtain another proof of Lemma 3.3.2 in [85].

Let ™ be a Lu‘cplddl representation of Mj(A) and v/ € X;. Given 1y,..., v, € C, put
vs = —vp — -+ — Us—1. Let K’ be a compact open subgroup of G(A) and D(\) € P(X7)
be a po]ynomial in X such that for ¢ € I(m)X", D(v)E(p,v,m)(g) is holomorphic in a
neighborhood of v/ € Xy, for every g € G(A). For a = (ay,...,a 1), =(B1,...,Ps-1) €
N5~ we define |a| =a;+...+a, yand < aif f;<a;fori=1,...,s—1. When <«

we define
(8) N (8) (ﬁ)

lel

o 81;:!_911

and

Bo(p,v/,m)(9) = 5 DO/ +v)E(p, v/ +,7)(9)lo=o.
The automorphic forms Ea(gﬁ, V' m) are called the derivatives of Fisenstein series.

We denote by E(m, /') the space of automorphic forms generated by Ea(fp} V', ), where
a e N7! e I(m)X' and we vary K" and D()\).

We also define &(m(¢”""H10))) = &£(x,1/), which is easily seen to not depend on the
choices of m and /. So we can write £(m) for every cuspidal representation 7 of a proper
Levi subgroup without reference to the auxiliary element of X; that we used in the definition.
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Given a cuspidal pair (I, ) as above, we define the equivalence classes of (I, 7), denoted
by [(Z,7)] as the set of pairs (w([]),w(w)) with w € W such that w(/) € A. We denote by
= the set of equivalence classes [(I,7)] with [ C A.

By the functional equation of Eisenstein series (¢f. Theorem 1.6.6, £(m, V') = E(w(m), w(V'))
for w € W. So it makes sense to define £(m) for an equivalence class [(I,7)].

Theorem 1.7.4. We have a direct sum decomposition of the space of automorphic forms

A=A @ g(m).

[(1,m)]eE

Proof. By the arguments in [50, Thm. 1.4], the above sum is a direct sum, and by |87,
Appendix II], the space of automorphic forms A is generated by the cusp forms and the
derivatives of Eisenstein series. [

Our next aim is to obtain a decomposition of a certain subspace of the space of unram-
ified automorphic forms. We start by analysing when a derivative of Eisenstein series is
unramified. Let E“(ga? V', ) be a derivative of Eisenstein series as above. We observe that if
K" is a compact open subgroup with K” C K, then exn(E%(p, v/, 7)) = E*(exn (), V', ).
From this it follows that for £(m, /)X # 0 we need I(7)% # 0. Therefore the derivatives of
Eisenstein series which are unramified are induced from unramified cuspidal representations.

Let 7 be an unramified cuspidal representation of M;(A) with I C A. Let the Satake
parameters of m at the place z € |X| be 2z = diag(z,...,2,). Given ViseoosVso1 € C,

Yk
put ve = =1y — - — V1. Let V= (v],...,1) € X, we define 2} = 2; - ¢u “* for d, +
_ Wtvk)

o4 dpy < j < di+ -+ +dy as in Theorem 1.7.2. We also define 2] = z-¢= *  for
di+---+dp1<j<di+---+dp. For ® € Hg, we put Aa(m; 21, ...,2,) =DV(2],...,2,)
and

3 (m; 2 2) = o Ag(m; 2 20)|

LA IS KT I 1) 81/?‘---8V?;“]1 DLy 21y 0oy 2 ) |lv=0-

Lemma 1.7.5. If ® € Hg, , 7 is an unramified cuspidal representation of M(A) and
o € (1)K, then

Lo ’ o a— ! AR ’
o-F (W,V,W):Z(B)A@ B2, ... 2 ) EP(p, V) )

B<a
Proof. This follows by multiplying the equation in Theorem 1.7.2 by D(v) and taking deriva-
tives. L]

Definition 1.7.6. Let z € |X| and A = (A4,..., A1) € (C)"'. The space of Hr,-

eigenforms with eigenvalues ), denoted by A(z; )), is the set of f € AX such that ®,;(f) =
ANiffori=1,...,n—1.

We observe that for f € AKX, the invariance by Z(A) on the right implies that ®, ,,(f) = f.
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Theorem 1.7.7. Let m be an unramified cuspidal representation of My(A) and v' € X;. The
space E(m, V') contains nontrivial Hy, -eigenforms and the eigenvalue of an Hy, -eigenform
for the Hecke operator ® € Hy, is ®V(2],...,2,).

-n

Proof. For a € N"~! we define £5%(, /) as the vector space generated by the automorphic
forms Eﬁ(cp, V' m) with B < . This is a finite dimensional vector space, which by Lemma
1.7.5, is stable by the action of Hx. We construct a basis {fi,..., fr} of E5%(m, /) of
the form f; = Eﬁi(c,o, V', ) such that if B; < f3;, then @ < j. On this basis, by Lemma
1.7.5 the action of ® € Hg, is given by an upper triangular matrix with diagonal entries

OV(2],...,21). Therefore every Hg, -eigenform on this space has eigenvalue ®Y(2],...,2})

1n
for the Hecke operator ® € Hg,. For some a, we have E5%(m,v/) # 0 because Eisenstein

series are not equal to 0 everywhere. Thus £5%(w, /) has a nontrivial Hg, -eigenform.  [J

A=\, ..., A1) € (C)" L, thereisa 2 = (21,...,2,) € (C*)" such that z-...-2, = 1
and q;{;e’)\")S@(z) = XN fori =1,...,n — 1, where 6 and A; is as in Theorem 1.3.6. The
conjugacy class of diag(z,...,2,) is well defined in GL,(C) and we denote by II(z;A)
the set of equivalence classes of pairs (I, 7) where I C A and 7 is an unramified cuspidal
representation of M;(A) such that the conjugacy class of its Satake parameter at z in G L, (C)
is diag(z, ..., 2,).

Definition 1.7.8. Let z € | X| and A € (C)"~!. We define the space of H_-cusp eigenforms
with eigenvalues A as follows

Ao(z; ) = Ag N A(z; 1)
For [(I,m)] € II(x; A), we define

E(m,2;2) = E(m) N A3 ).

Theorem 1.7.9. Let z € | X| and A € (C)"1. The space of H, -eigenforms with eigenvalues
A admits the direct sum decomposition

Az ) =A@ N P Emz ).

[(1,m)]ell(z;))
Proof. 1t follows from Theorem 1.7.4 that
‘AK:Aé(GB @ g(w)K.
[(I,m)]eE

Each factor of the direct sum is invariant under the action of Hg,, which yields the desired
direct sum decomposition. ]
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Chapter 2

Toroidal Automorphic forms over
function fields

The space of toroidal automorphic forms was introduced by Zagier in [104|. Let F' be a
global field. An automorphic form on GL, is toroidal if the periods along all embedded
non-split tori are zero. The interest in this space stems from the fact (among others) that
an HEisenstein series of weight s is toroidal if s is a non-trivial zero of the zeta function of
F', and thus a connection with the Riemann hypothesis is stablished. In fact, the paper by
Zagier proposes an approach to the Riemann hypothesis based on this space of automorphic
forms.

In this chapter we study the generalization of this concept to GL,, n > 3 and, for a
global function field F', we study the space of unramified toroidal automorphic forms in GLs
using the theory of graphs of Hecke operators developed by Alvarenga in |2].

2.1 Introduction

We start with the Eisenstein series E(z,s) on the upper half plane H. It is defined for
z=x+1iy € Hand s € C with Re(s) > 1 by

s 1 y® ;
D Im(yz)* = 5 C;EZ P (2.1.1)

e\ e
(c.d)=1

_ 1 n
Tm—{:t([) 1) TI.EZ}.

We put E*(z,5) = mT'(s)((25)E(2,s), where ((s) = > ., n ¢ is the Riemann zeta func-
tion. Let E = Q[v/D] be an imaginary quadratic field of discriminant D < 0. With each
positive binary quadratic form Q(m,n) = am? + bmn + cn? of discriminant b*> — 4ac = D,
we associate the root zg = _bJ”/_ € H. Let {z,..., 2.} be the T-equivalence classes in H of

where I' = PSLy(Z) and
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points of the form 2 for a positive binary quadratic form of discriminant D. The following
formula is a classical theorem of Dirichlet (cf. |104, Example 1, pg. 280-281]):

—_—
[S]
—
8]

—

D E (i) = DI (@m) *T(s)Ca(s)

where w is the number of roots of unity contained in E and (g(s) is the Dedekind zeta
function of E.

For quadratic fields of positive discriminant there is a formula of Hecke, which we will
describe in the following. Let E = Q[v/D] be a quadratic field of discriminant D > 0 and
Q1, - .., Qnp) representatives for the I'-equivalence classes of quadratic forms of discriminant
D. To each Q; we associate, not a point 2o, € I'\H as before, but a closed geodesic Cg, C
MH. We have the following formula of Hecke (cf. [60, p. 201| and [104, p. 281-283| for
details.):

h(D)

;/CQ E*(z,5)|dg,2| = ?T—SDS/ZF(%) Ce(s). (2.1.3)

Since (g(s) = ((s)L(xE,s), where yp is the quadratic Hecke character associated to E by
class field theory, it follows that if p is a zero of ((s) of order n, then it is also a zero of (g(s)
of order at least n. If we take derivatives in s in equations (2.1.2) and (2.1.3) and put s = p
we obtain the equations

~ A E*(z,p) =0 (2.1.4)
— L Ziy P) = Z.1.
— ds(k)

and

h(D) d(kj ) |
Z/c ds(kjE (2, p)|dg,2| =0, (2.1.5)
i=1 Q;

for 0 <k < n.

Inspired by these formulas of Dirichlet and Hecke and other identities, Zagier defines a
space & of functions on I'\H which annihilate certain linear operators (cf. [104, Thm. pg.
286]). In § 4 of [104], Zagier shows that £ is the set of K-fixed vectors of a certain G-invariant
subspace V of the space of functions on I'\G (where G = PSL,(R), K = PSO(2)). If one
can show that ) is unitarizable as a representation of G, i.e. if one can construct a positive
definite G-invariant scalar product on V, then the Riemann hypothesis follows. These ideas
were explored by Lachaud (cf. |[72] and [73]|) who connected them with Connes’ approach to
the Riemann Hypothesis (cf. [38]), by relating the space of toroidal automorphic forms with
the construction of Polya-Hilbert spaces.

In this chapter, we will work with the analog of these concepts for automorphic forms
in GL,(Ap), where F is a global field. As noted by Zagier in [104, pp. 298-300], the

i

analogue of the space V in adelic language is the space of toroidal forms, which we define
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(and generalize) in section 2.1.1. Below we discuss the cases of integrals against tori for
which we know closed formulas. For n > 3 only for a limited class of automorphic forms
such closed formulas are known, which makes the arithmetic meaning of the space of toroidal
forms still an open problem. Lorscheid studies in his thesis (|85]) the space of toroidal forms
in GLy(Ap) when F'is a function field over a finite field. In this case, Weil’s theorem
allows us to describe geometrically automorphic forms as functions on vector bundles, which
enables the use of algebraic geometry. The theory of graphs of Hecke operators, as developed
in Lorscheid’s thesis, is a computational device that allows us to make explicit calculations
with automorphic forms and in particular with toroidal automorphic forms. The graph of a
Hecke operator @ is an oriented graph with weighted edges that encodes the action of ® on
the space of unramified automorphic forms in GL,,(A). Alvarenga developes in his thesis the
theory of graphs of Hecke operators for GL,, and an algorithm to calculate the weights of the
edges of the graph in the case where F'is an elliptic function field (cf. [2]). In the remainder
of this chapter we apply Alvarenga’s results to the study of toroidal forms in GL3(Ap) where
F'is an elliptic function field.

2.1.1 Definitions

Let F' be a global field. We denote by G the algebraic group GL,, over F and by A = Ar the
ring of adeles of F'. If F'is a function field over a finite field, then we write Oy = HrEIXI O,
and K = G(O,) for the standard maximal compact subgroup of G(A). Let Z be the center
of G. We denote by A the space of automorphic forms on G(A) with trivial central character.

Let E/F be a separable field extension of degree n. Choosing a basis of E over F gives
an embedding of £ in G(F') and a non-split maximal torus 7' C G with T'(F') = E* and
T(Ap) = A%, We say that T is associated with E/F. We have A} ~ (A%)' x V, where
(A%)* is the kernel of the idele norm and V is its image; and E*\(A%)" is a compact group.
This implies that TpZy \ Ty is compact.

Definition 2.1.1. Let T be a maximal torus of GL, over F associated with a separable
field extension E/F of degree n. Endow Ty and TrZ, with Haar measures and TpZy \ Ty
with the quotient measure. Let f € A, we call

frlg) = / f(tg) dt

TrZs\Ta

the toroidal integral of f along T (evaluated at g).

Definition 2.1.2. Let T be a maximal torus of GG associated with a separable field extension
E/F of degree n. We define

Air(E) ={f € A| Vg € Gy, fr(g) =0},

the space of E-toroidal automorphic forms, and
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Atm‘ — ﬂ Ator‘(E):

E/F separable
extension, [E:Fl=n

the space of toroidal automorphic forms.

Remark 2.1.3. The spaces Ay-(E) do not depend on the choice of basis of E over F', which
defines the embedding 7' C G. In fact, if v € G(F') corresponds to another choice of basis
of E over F, the correspondent torus is 7, = y~'Ty and we have fr. (9) = fr(yg) for an
appropriate choice of Haar measure on 77, (A).

Proposition 2.1.4. For all T and E as above,

Air(E) ={f € A| VO € H, O(f)r(e) =0},
where H is the Hecke algebra of G(A).

Proof. This follows from the fact that if f € A, then G(A)- f=H - f. O

Let = be the set of equivalence classes [(I,7)] with (I,7) a cuspidal pair and I C A,
as in Section 1.7, where A = {ay, ..., a, 1} is the set of simple roots of GL,. If E/F is a
separable field extension of degree n and [(/,7)] € Z, we define

-A(]._tor(E) = -A{] N AEO?”(E)j -A{)_.tor = -AO M -Ator:
E(M)ior(E) :=E(m) N Asor (E) and E(T)ior := E() N Ator.

Theorem 2.1.5. We have the direct sum decomposition

Ator — -A(]._tor S¥) @ g(ﬂ—)tor-

[(I,m)]e=

If E/F is a separable field extension of degree n, then

Aior(E) = Agior(E) & D E(m)ior(E).

[(I,m)]eE

Proof. By the Strong Multiplicity One theorem (cf. |64, Thm. 4.4|), the G(A)-modules
Ay and E(m) for [(I,m)] € Z don’t have irreducible constituent in common. This implies
that every subrepresentation V of A is the direct sum of the subrepresentations V N Ay and
V n&(n) for [(I,7)] € Z, which proves the theorem. O

Let n = 2. We will consider the adelic analogue of the Eisenstein series E(z,s). Fix
a Haar measure dz on Z(A) and let ¢ be a Schwartz-Bruhat function on A% (a Schwartz-
Bruhat function in A% is a locally constant function with compact support). The Eisenstein
series E(g, ¢, s) is defined by



E(g,¢.5) = D p(Ezg)| det zg|*dz,
Z(F)\Z(4) $EF\0)

for g € G(A) and s € C with sufficiently large real part. Switching the order of summation
and integration in this formula, we obtain a formula for E(g, ¢, s) analogous to E(z, s), given
by

E(g,p,5)= > f(r9,9,9),

YEP(F)\G(F)

where P C G is the subgroup of upper triangular matrices, and

fo,5) = |detgl” [ p((0,a)g)lald"a.

Let E/F be a separable quadratic extension. Choose a basis of E over F, which we use
to identify F?\{0} with E* and to construct the maximal torus 7" C G. Observe that the
F-idele norm of dett, for t € T'(A), equals the E-idele norm of ¢ under the identification of
T(A) with Aj. We find

E(tg,p,5)dt = |detgl’ [ gleq)lelpd’e, (2.16)
J A%

T(F)Z(A)\T(A) “

(cf. [104, p. 299|), where ¢, : e+ p(eg) is a Schwartz-Bruhat function on Ag. If ® is a
Schwartz-Bruhat function on Ag, the Tate integral of @ is defined as

((D,s) = /A O(t)|t|*dt.

By Tate’s thesis, ((®,s) equals an elementary holomorphic function of s times (g(s), (cf.
|97] and |101, Chap. VII|). In particular, if p is a non-trivial zero of (g(s) of multiplicity
>i+1 and

d@'
flg)=15E(g. %, 5)|s=p;

then f is E-toroidal.

Equation (2.1.6) is the analogue of the formulas (2.1.2) and (2.1.3) of Dirichlet and Hecke.
In fact we can deduce (2.1.2) and (2.1.3) from (2.1.6), cf. [102, Chap. VI].

Observe that the definition of A, is formally similar to the condition

f(ng) =0
N(F)\N(A)
that defines cusp forms, where N is the unipotent radical of a parabolic subgroup of G. In

this sense, the space A, can be thought of as an analogue of the space Ay of cusp forms,
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which is a unitarizable representation of G(A) (cf. proof of Theorem 1.5.7). But if the zeta
function (r has a multiple zero, then A, contain the derivative of an Eisenstein series and
Aior 18 not a semisimple G(A)-module. In fact Ay, is unitarizable if and only if the zeros
of (p are simple (cf. |104, pp. 21-22|). But we can state a conjecture which implies the
Riemann hypothesis (when n = 2), even if (z has multiple zeroes as follows (cf. also [85,
Sec. 6.5-6.7]).

Conjecture 1. Let V = ®,V, be an automorphic representation, which is a subquotient of
Aior. Then Vy is a tempered representation for every x € | X|.

Remark 2.1.6. For the definition and basic properties of tempered representations see |93,
Sec. VII.2|, |[14] and [96]. We observe that a spherical representations (V' (x.),7(xz)) with
2= (21,...,2n) € (C*)" is tempered if and only if |z| = ... = |z = L

We observe that if 7 = ®,m, is a cuspidal representation of G(A), the fact that each m,
is a tempered representation is a deep theorem, proved by Drinfel’d for n = 2 in [44] and by
Lafforgue for general n in [74]. When F is a function field over a finite field, the structure
of the zeroes of (p(s) is simpler and the Riemann hypothesis was proven by Hasse and Weil
(cf. 159], [100]). In this case we make a second conjecture.

Conjecture 2. If F is a function field over a finite field, then A is an admissible repre-
sentation.

For n = 2 this conjecture is proved in [86, Theorem 10.2].

2.1.2 Waldspurger’s theorem

Let F' be a global field of characteristic different from 2 and (7, V') a cuspidal representation
of GLy(Ap) with trivial central character. The representation V' has a restricted tensor
product decomposition V = ®,V, an we take e = (®e,) € V to be a pure vector of L?>-norm
equal to 1. Let T" be a maximal torus in GL, over F' associated with a separable quadratic
extension E of F'. We denote by II the change of base of 7 to GLy(Ag) and xg the quadratic
character associated to E by class field theory. Consider g = (g,) € GL3(Ap) with g, =1
for every archimedean place v (if char F = 0). We denote by Sg the set of places of F'.
Waldspurger’s fundamental formula |99, proposition 7, p. 222| and [31, theorem C.1] is

2
/ e(tg)dt| = C(m)L(II, %) H a(ey, gy, 1)
Z(A)T(F)\T(A) veSE
where
ales, go, Ty) = L(xr,,1)La(mv, 1) (o (tgv)ev, To(go)en) dt,

C’U(Q)L(l_[fgﬂ %) Zo\Ty (ev, €v)

and the term C(7) is a non-zero constant depending only on (7, V') and the Haar measure on
T'(A). In these formulas, ¢, denotes the local (-function of the field F,, the functions L(xr,, ),
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Ly(my, ) and L(II,, -) are the local factors in v of the corresponding automorphic L-function.
The function Ls(m, -) denotes the L-function of the lift of m to PG L3 (|54]). For every place
v € Sp, we fix an m-invariant inner product ( , ) on V,; as the inner product is unique up
to multiplication by scalar, the local integral defining a(ey, gy, 13,) does not depend on the
choice of (, ). Waldspurger shows in [99] that all these integrals converge, that for almost
all v € Sp, aley, gv, Ty) = 1 and that for every v, there is an e, € V,, with a(ey, g», 1) # 0.
Therefore e is E-toroidal if and only if L(II, 1) = 0. We have L(IL, §) = L(m, 3) L(r @ x&. 3),
and there is a separable quadratic extension E/F such that L(m ® xg, 3) # 0 (cf. [41, Thm.
6.1]). Thus e is a toroidal automorphic form if and only if L(m, 1) = 0.

By the spectral decomposition of the space of automorphic forms and multiplicity one, we
see that Waldspurger’s and Zagier’s theorems are sufficient to describe the space of toroidal
forms in terms of zeroes of automorphic L-functions on GLy(Ap) (cf. |41, Remark 2.6]). In
the next sections we describe what is known for n > 3. We will see that only in a few cases
we know how to compute closed formulas for toroidal periods and relate them with central
values of automorphic L-functions.

2.1.3 Wielonsky’s theorem

Wielonsky obtained a generalization of Zagier’s theorem for G = GL,, that we describe in
this section. Let ¢ be a matrix in G(A), V the affine space of dimension n, ¢ a Bruhat-
Schwartz function on V(A), e = (0,...,0,1) € V(F) and w a quasi-character of F*\A*. We
denote by o the real number such that

lw(t)| = [t|” for t e A*.

We fix dt a Haar measure on A* and define

Npg.w) = [ pletgulderto)dt,
AX

which converges if ¢ > 1/n. We define the Eisenstein series E(p, g,w) by

E(p,g,w)= Y N(p,yg,w)
YEP(FNG(F)
where P is the standard parabolic subgroup of G of type (n — 1,1). This series converges
if o > 1. Let T C G be a maximal torus of G associated with a separable extension E/F
of F. The choice of basis that we used to define the embedding T" C G also gives us an
identification of E' with V(F') and of V(Ar) with Ag, which we use implicitly below. Let
((p,w) be the Tate integral

o) = [ ettt

E
and @, (t) = @(tg) for g € G(A), t € V(A). Wielonsky’s generalization of Zagier’s theorem
is the formula
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/ E(p,tg,w)dt = w(det g)((pq4,w o Ng/r). (2.1.7)
T(F)Z(A\T(A)

Using this toroidal integral, Wielonsky also obtains a generalization of Hecke’s formula, cf.
[102, Chap. VI|.

2.1.4 The Bump-Goldfeld Theorem and its generalizations

An important application of Dirichlet and Hecke’s formulas lies in the proof of the Kronecker
limit formula for quadratic fields, which evaluates the constant term in the Laurent expansion
of the zeta function of a quadratic field in s = 1. Bump and Goldfeld obtain in [22] a
Kronecker limit formula for real cubic fields. This formula is obtained from an equality
between a toroidal integral in GL3 and a renormalization of a product of Eisenstein series,
as defined by Zagier in [105]. Note that in this case, the identity does not provide a closed
formula in terms of a central value of a L-function. Kudla exhibits in [70] the identity of
Bump-Goldfeld as a particular case of the theory of see-saw dual reductive pairs [70, Example
7, p. 264|. These ideas were developed in more detail in the thesis of James Wodson [103,
Theorem 3.2.1, p. 24| who generalizes the formula of Bump-Goldfeld to any totally real field,
which we enunciate below.

Let K be a totally real field of degree n and let aq, ..., a, be a Z basis for the ring o of
integers of K. We denote the Galois conjugates of & € K by a¥, 1 <i < n. Let A be the
matrix

agl) agz) &gn)
(1 (2 (n)

o o e

A— 2 2 2
a o ol

For the definition of the G'L,-Eisenstein series Gy, ,,)(G) and the Hilbert Eisenstein series
Ej:(z,v,X) of the theorem below, cf. [103].

Theorem 2.1.7. Let s = (nvy+nn+2—n)/2 andv = (v, —ve+1)/2. For (t,...,thn_1) €
R™ 1 et t, = (ty...th—1)" ", and let T be the diagonal matriz with diagonal entriesty, ... ty.
Let A be the matriz defined above. Then we have

— dt dt,,_
/ G(Vl _.sz(AT)"!’(tla e :tﬂ-)t—l T tLl
(RX)n=1 /0% ity [t

= lDV?f’?—mfi’)\@s)R.N.// Ey(z,v,X)E(z,s) dady
n T\H

- (2.1.8)

where N(s) = m*/*T'(£)((s), D is the discriminant of K and £ € 0* acts on the components
of (11, ..,mn—1) € (RX)" by taking r; — |&5|r;.
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Beineke and Bump study an analogue of the formula of Bump-Goldfeld in [22] for the
diagonal torus. In this case the toroidal period in GL3 is defined by a process of renor-
malization, cf. [20], [8]. The formula in Theorem 2.1.7 for the toroidal integral of the
G L,-Eisenstein series Gy, ,,)(G) is not related with the central value of some L-function.
However, the theorem implies, on the right-hand side, additional functional equations be-
vond those arising from the functional equations of E}-(2,v,%) and E(z, s); because on the
left-hand side, the G L,-Eisenstein series satisfies the functional equations of Langlands. For
the applications of identities like (2.1.8) to “additional functional equations” see [22], [20]
and [80].

2.2 Graphs of Hecke operators

The results from section 2.1 illustrate the arithmetic meaning of the space of toroidal forms.
In the following we will study toroidal forms over a global field F' of positive characteristic
p. Our goal is to apply the theory of graphs of Hecke operators, as developed in 2], to
generalize the results in [85] from G L, to GLs. In this section, we review the definition of
the graph of a Hecke operator and its geometric translation in terms of exact sequences of
vector bundles. The definition of the graph of a Hecke operator is based on the following
proposition.

Proposition 2.2.1 (|2, Prop. 1.3.5]). Let K' € GL,(A) be an open compact subgroup. Fix
& € Hyor. Forall[g) € GL,(F)\GL,(A)/K', there is a unique set of pairwise distinct classes
1], ..., [9r] € GL,(F)\GL,(A)/K" and numbers my, ... ,m,. € C* such that

B(f)(g) = Zm@f(g@
for all f € AKX

For [g], [g1],- .-, [gr] € GL,(F)\GLyp(A)/K' and my, ..., m, € C* as in the above propo-
sition, we denote Vs i ([g]) :== {([g], [gs], ) }i=1,...r-

Definition 2.2.2. We define the graph of ® relative to K’ as the graph Gs i whose vertices
are

VertGo.xr = GLn(F)\GLn(A)/K’

and whose oriented weighted edges are

EdgeGoxo = |J  Vax(l9))-

[gleVertGq g

The classes [g;] are called the ®-neighbours of [g] (relative to K').
We are interested in the unramified Hecke algebra, i.e. the case K' = K = GL,(O,).
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For a place z of F, let ®,, be the characteristic function of

- ?Txf'.-"
K ( L, )K

where [ is the (k x k)-identity matrix. We note that @, , is invertible and its inverse is
given by the characteristic function of K(m,I,)"'K. We note that the above definition of
®, , coincides with that from section 1.3 by means of the inclusion Hg, C Hg. The Satake
isomorphism (cf. Theorem 1.3.6) and the restricted tensor product decomposition

Hi = ®3Kx%Km

describes the algebraic structure of Hy as follows,

Hi = C[Py1,. .., Pon, O pleix)- (2.2.1)
In particular, Hx is commutative.

Remark 2.2.3. By Proposition 2.1.3 in [2], it is enough to determine the graphs for the
generators @, 1,..., D, ,, ;1 of Hy, where 2 € |X|, in order to understand the graph of
any unramified Hecke operator. We use the shorthand notation G, , for the graph Gg, , i

and V, »([g]) for the ®, ,-neighborhood Vs, , k([g]) of [g], where z € | X| and r=1,... n.

Let x(z) be the residual field of the place z € |X|. Using the Schubert Cell decomposi-
tion of the Grassmanian Gr(k,n)(k(z)) of k-dimensional spaces of x(z)", we obtain a more
explicit description of the neighbours of a vertex in G, ,. In the following, we identify a
uniformizer 7, € F, with an idele by sending 7, to the idele a = (a,),ex| with a, = 7, and
ay, =1fory #x If b € k(z), we send b to the adele a = (a,),ecx| with a, = b and a, =0
for y # =, where we consider x(z) as a subfield of F,. We start with two lemmas describing
a decomposition of the support of ®,,.

Lemma 2.2.4 (|2, Lem. 2.2.3|). There is a bijection, denoted by w — &, of Gr(k,n)(k(z))
with the set

€ b - bin € € {1, 7},
: #{ile; =1} =k and b; € k(x)
€n1 boin with bi; = 0 if either
€n € =Ty o1 € =1

Lemma 2.2.5 (|2, Lem. 2.2.6|). There is a decomposition of sets

e
Ix( =i )K = 11 oK.
T+ weGr(n—rmn)(k(z))

This provides us with a description of the neighbours of [¢g] € VertG,.,.
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Theorem 2.2.6 (|2, Thm. 2.2.7|). The ®, ,-neighbours of [g] are the classes [g&,,|, where &,
is as in the previous lemma, and the multiplicity of an edge from [g] to [¢'] equals the number
of we Gr(n —r,n)(k(x)) such that [g&w] = [¢']. The multiplicities of the edges originating
in [g] sum up to #Gr(n —r,n)(k(z)).

If FF' = F,(T) is a rational function field, it is easy to calculate explicitly the graphs
of the Hecke operators G, using this theorem, cf. |2, Sec. 2.5]. When the genus of F'is
positive, matrix calculations become more difficult and it is more convenient to translate
these concepts into the language of algebraic geometry where other tools are at our disposal.
Let F be a function field over a finite field with constant field F;. Let X be the geometrically
irreducible smooth projective curve over F;, whose function field is £. A well-known theorem
by Weil states that G(F)\G(A)/K stays in bijection with the set Bun, X of isomorphism
classes of rank n vector bundles on X. This allows us to give an interpretation of G, , in
geometric terms. We begin by reviewing Weil's theorem.

The bijection

FX\AX/O; =CIF +% PicX= Bun X,
[a] — c,
where £, = Lp if D is the divisor determined by a, generalises to all vector bundles as
follows; also cf.
|52, Lem. 3.1]. A rank n-bundle £ can be described by choosing bases

£y = O%, = F*and & = O% , = (O, N F)"

for all stalks, where 7 is the generic point of X, and the inclusion maps &, — &, for all
z € | X|. After tensoring with F, we obtain for every z € | X|

Fy =0; ®o, Fr 2 & Royx, Or R0, Fr =& Royx, F @r Fr =& @r F 2 F)

which yields an element g of G(A) (where “=" stands for a canonical isomorphism and “=”
stands for an isomorphism that depends on our choice of basis).

A change of bases for &, and &, corresponds to multiplying g from the left by an element
of G(F') and from the right by an element of K, respectively.

Since the inclusion F' C F, is dense for every place x, and G(Oy) is open in G(A), every
class in G(F)\G(A)/K is represented by a g € G(A) such that g, € G(F) for all places
. This means that the above construction can be reversed. Weil’s theorem asserts the
following.

Theorem 2.2.7 (|52, Lem. 3.1|). For every n > 1, the above construction yields a bijection

G(F)\G(A)/K LN Bun,, X.
9] — o
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There 1s a natural action

Bun, X x Pic X — DBun, X.

(&, L) — E®L
Let P Bun, X be the orbit set Bun,, X/ Pic X, which is nothing else but the set of isomor-
phism classes of P"~!-bundles over X (|58, Ex. I1.7.10]). Accordingly we will call elements

of P Bun,, X projective space bundles. If two vector bundles & and &, are in the same orbit
of the action of Pic X, we write

&~ &,

and say that & and & are projectively equivalent. By [€] € P Bun, X we mean the class
that is represented by the rank n-bundle £. Let £ € Bun, X and £ € PicX. Since
(E® L)Y ~ &Y ® LY, it makes sense to define [E]Y = [EV].

It is easy to see in the proof of Weil’s theorem that £, ® £, = &, for a € A*. Thus we
get the following result.

Theorem 2.2.8. We have a bijection

G(F)Z(A)\G(A)/K <2 P Bun, X.

By Weil’s theorem, the vertices of G, are identified with the geometric objects Bun,, X.
The next task is to describe the edges of G,, in geometric terms. We say that two exact
sequences of sheaves

0—FH —F —F,—0 and 0 —F — F — F,—0

are isomorphic with fized JF if there are isomorphisms F; — F| and F5 — FJ such that

0 Fi F Fy 0

1 F

0—=F—=F—=F,—=0

commutes. Let K, be the torsion sheaf that is supported at z and has stalk x(z) at z. Fix
€ € Bun, X. For r € {1,...,n}, and & € Bun, X we define m,,(€,&’) as the number of
isomorphism classes of exact sequences

0—&—E&—KIm—0
with fixed £ and with £" = &'

Definition 2.2.9. Let 2 € | X|. For a vector bundle £ € Bun,, X, we define

Ver(€) ={(E,E,m)lm =m,.(E,E) #0}.
We call £ a @, ,-neighbour of € if m,,(€,E") # 0 and we call m, ,.(€,&’) its multiplicity.
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The following theorem gives a geometric description of G, .

Theorem 2.2.10 (|2, Lem. 2.3.3]). For every z € | X|, the map

Var([9]) — Var([E])
([g]a [g’]?ﬂl) — (891 89'1 m)

is a well-defined bijection.
We summarize Theorems 2.2.7 and 2.2.10 in the following theorem.

Theorem 2.2.11. Let z € | X|. The graph Gy, of Oy, is described in geometric terms as

Vert G,, = Bun, X and FEdge G, = [I  Var(E).
EeBun, X

2.3 Geometric classification of the vertices

In this section, our aim is to show how to classify geometrically the vector bundles on the
curve X. In particular we will review the classification of vector bundles on an elliptic curve
by Atiyah. This will be important for the explicit calculations of eigenforms in the upcoming
sections.

For two vector bundles £ and & over X, the Fy-vector space of sheaf morphisms

Hom(&,,&) ~T(X, &) ® &)

is finite dimensional.

Let € be a locally free sheaf and & a locally free subsheaf. Note that the quotient /&’
is not necessarily locally free. We will call £ a subbundle if the quotient £/E" is still a vector
bundle i.e. a locally free sheaf.

For every d > 1 we define Xy := X ® Fjq4, which is the curve over F« obtained from X
by extension of scalars.

We call a vector bundle indecomposable if for every decomposition

E=&B&E

into two subbundles &£ and &, one factor is trivial and the other is isomorphic to £. The
Krull-Schmidt theorem holds for the category of vector bundles over X, i.e. every vector
bundle £ on X has, up to permutation of factors, a unique decomposition into a direct sum
of indecomposable subbundles, see [6].

Let p: Xg = X ®Fpue — X be the canonical projection. The inverse image or the
constant extension of vector bundles from X to Xy is defined as

p*: Bun, X — Bun, X;.
£ P pE
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The isomorphism classes of the rank n-bundles whose extension to Fja is isomorphic to p*&
are classified by H'(Gal(F/F;), Aut(€ @ Fa)), cf. |5, Sec. 1|. The algebraic group

Aut(€ ® Fya) is an open subvariety of the irreducible affine variety End(& @ Fya), and thus
a connected algebraic group. By Lang’s theorem |75, Cor. to Thm. 1|, we have
H'(Gal(F,a/F,), Aut(€ ®Fa)) = 0, which implies that p* is injective. In particular, one can
consider the constant field extension to the geometric curve X = X ® Fq over an algebraic
closure F, of F,. It follows that two vector bundles are isomorphic if and only if they are
geometrically isomorphic, i.e. if their constant field extensions to X are isomorphic.

On the other hand, p: X; — X defines the direct image or the trace of vector bundles

p. . Bun, X; — Bun,gX |
£ — j

and we have

ppE =~ gl

for £ € Bun, X. An element o € Gal(F,«/F;) induces a morphism X @ F .« — X @ F 4. For
a bundle € on X ®F 4, we shall denote by £7 the pullback of £ to X ®[F 4 by this morphism.
This pullback is called a conjugate of £. This gives an action of Gal(F/F,) on Bun, Xj.
For £ € Bun,, X4, we have

pp.E ~ @ &’.

o€Gal(F 4 /Fq)

This is a decomposition of p*(p.£) over X;. It is defined over X only if the factors are
defined over X, ie. & = &7 for all o € Gal(F,«/F,). If £ is not defined over X, p,€ can
be indecomposable. This shows that indecomposable vector bundle might decompose in a
constant field extension. We call a vector bundle geometrically indecomposable if its extension
to X is indecomposable. In |5, Thm. 1.8], it is shown that every indecomposable vector
bundle over X is the trace of a geometrically indecomposable bundle over some extension
Xgof X.

There are certain compatibilities of constant extensions and traces with the action of
Pic X on Bun, X. Namely, for a vector bundle £ and a line bundle £ over X, we have

P (ERL)~p ERp'L,

and for a vector bundle & over Xy,

by the projection formula (cf. [58, Exercise IT 5.1(d)|. Using that (7)Y ~ (&))7 for o €
Gal(F,/F,), we obtain
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Pe&) = D @D D @) =@,
7E€Gal(F 4 /Fy) 7€Gal(F 4 /Fy)
which implies that (p.€1)Y ~ p.(E)) by the injectivity of p*.

In the following, let X be an elliptic curve. Atiyah classifies in [7]| all indecomposable
vector bundles over X. Let Coh(X) be the category of coherent sheaves on X. We denote
by deg(F) and rk(F) the degree and the rank, respectively, of the coherent sheaf F.

LetF € Coh(X). We observe that if rk(F) = 0 and F # 0, then deg(F) > 0. The slope
of F is defined as

deg(F)

= U ;
where p(F) = oo if tk(F) = 0 and F # 0, and p(0) = 0. A sheaf F is called semistable
if 1(G) < p(F) for all nonzero subsheaves G C F. It is called stable if p(G) < p(F) for
all proper nonzero subsheaves G C F. The full subcategory C, of Coh(X) consisting of

all semistable sheaves of a fixed slope p € Q U {oo} is abelian and closed under extension.
Moreover if F,G are semistable with p(F) < p(G), then Hom(G, F) = Ext(F,G) = 0. Any
sheal F possesses a unique filtration (the Harder-Narasinham filtration, or HN-filtration)

0O=FTNcFc---cF'=F

for which F*/F*! is semistable of slope p; and p; < -+ < p,. Moreover, recall that C,, is
the category of torsion sheaves and hence equivalent to the product category [ [, Tor, where
x runs through the set of closed points of X and Tor, denotes the category of torsion sheaves
supported at z.

Theorem 2.3.1 (|7, Thm. 7|). Let X be an elliptic curve. We have the following.

(i) The HN-filtration of any coherent sheaf splits (noncanonically). In particular, any inde-
composable coherent sheaf is semistable.

(ii) The set of stable sheaves of slope p is the class of simple objects of C,,.

(iii) The choice of any rational point xo € X (Fy), induces an ezact equivalence of abelian
categories €, : C, — C,, for any p,v € QU {oo}.

Notation. Let [ > 0 and z € |X|. We denote by K the torsion sheaf with support at z
and stalk at = equal to (’)X’x/mi,,, where m, is the maximal ideal of Ox,. The torsion sheaves
K& are the indecomposable objects of the category C. Let £ be an indecomposable vector
bundle on X. By Theorem 2.3.1 (i), £ is semistable. Let u be its slope and choose zg € X (F,).
It follows that e ,(€) is an indecomposable torsion sheaf of the form K. Jonversely, Ko
corresponds to an indecomposable vector bundle £ such that e, (&) = ¥, We conclude
that an indecomposable vector bundle & is completely determined by

(i) (k(€), deg(€)) = (n,d);
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(ii) the closed point z € | X| that is the support of ey, ,(€);
(iii) and the weight [ that determines the irreducible torsion sheaf €., ,(€) as kY.

(n.d)

(@) - By Atiyah’s theorem, ged(n,d) = deg}CgJ = |z| - [. Moreover we

We denote € by &£
have:

e if |z| =1, then 5((;}? is geometrically indecomposable;

o if |z| =i>1, then 5((;’5” is a trace of a vector bundle on Xj.

2.4 Multiplicities on the cusps

[n this section, we fix n = 3 and an elliptic curve X over F; with a distinguished rational
point 5. We describe the simplest cases where we can compute the multiplicities of edges
on the graphs G, . This is the case for £ = M & L with £ € Pic X and M € Buny X, where
deg L is big or small in relation to deg M. These are intuitively the vertices at the “cusps”
of G, ;. Lorscheid defines in [85, Defn. 5.4.5| the concepts of a nucleus and cusps for graphs
of Hecke operators in PGL,. For GLy, we only define the nucleus in section 2.5 and omit a
rigorous definition of cusps. Intuitively, the nucleus carries the most important arithmetic
information about the automorphic forms and the cusps are vertices away from the nucleus,
as we will see from section 2.5 onwards. The results of this section is part of a joint project
with Roberto Alvarenga and Oliver Lorscheid.

Lemma 2.4.1. Let z € | X|, M € Bun, X, £ € Pic X and M' € Buny, X with
Mg (M, M') # 0.

(i) If either M is indecomposable with 2 deg L—deg M > 0 or M = LB Ly is decomposable
with L; € Pic X and deg £ > deg L;, i = 1,2, then Ext(M, L) =0 and Ext((M', L) =
0.

(ii) If either M is indecomposable with 2 deg £ — deg M > 2|z| or M = L, & Ly is decom-
posable with L£; € Pic X and deg £ > deg L; + |z|, i = 1,2, then Ext(M, L) = 0 and
Ext(M, L(—z)) =0.

(iii) If either M is indecomposable with 2deg L — deg M < =2|z| or M = L, & Ly is
decomposable with £; € Pic X and deg £ < deg L; — |z|, i = 1,2, then Ext(L, M) =0
and Ext(L, M') = 0.

(iv) If either M is indecomposable with 2deg L — degM < 0 or M = Ly & Ly is de-
composable with L£; € Pic X and degL < degL;, i = 1,2, then Ext(L, M) = 0 and
Ext(L(—z), M) = 0.
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Proof. (i) If M is indecomposable, then M is semistable and p(M) = deg M /2 < deg £ =
p(L), which implies using Serre duality that Ext(M, £) = Hom(£L, M) = 0. If M is
decomposable, then Ext(M, £) = Hom(£L,M) = HY (X, M ® L") = 0.

If M’ is indecomposable, then p(M') = (degM — |z])/2 < degL = pu(L), which
implies Ext(M’, £) = 0.

If M"is decomposable and M is indecomposable, then we write M" = L] & L), with
deg L, — deg £ = 6(M') = 0 (cf. [85, Prop. 5.3.7]). We have §(M’) < |z| because
d(M) <0 (cf. |85, Lemma 5.4.2]), and deg £ + deg £} = deg M — |z|. Thus

deg M — |z| + 6(M)
2

which implies that Ext(M', £) = H*(X, M’ ® LY) = 0.

If M’ is decomposable and M is decomposable, then we can write M’ = L & L), with

deg £! < deg L;. Therefore, Ext(M’, L) = H'(X, M’ ® L) = 0.

deg £ < deg L5, = < deg L,

(ii) If M is indecomposable, then pu(M) = deg M/2 < deg L — |z| = p(L(—=x)) < p(L),
which implies Ext(M, £) = 0 and Ext(M, L(—z)) = 0.

If M is decomposable, then Ext(M, £) = H*(X, M®LY) = 0, and similarly Ext(M, L(—z)) =
0.

(iii) If M is indecomposable, then M is semistable and pu(M) = degM /2 > degL =
(L), which implies Ext(£, M) = Hom(M, L) = 0. If M is decomposable, then
Ext(£, M) = Hom(M, £) = H*(X, L @ M") = 0.

If M’ is indecomposable, then p(M') = (degM — |z])/2 > degL = pu(L), which
implies Ext(£, M") = 0.

If M"is decomposable and M is indecomposable, then we write M’ = L] & L}, with
deg L}, —deg L] = 6(M’) > 0. We have §(M’) < |z| because 6(M) < 0, and deg L), +
deg £ = deg M — |z|. Thus

deg M — |z| — 6(M')

deg £, > deg L = 5

> deg L,

which implies Ext(£, M’) = 0.

If M’ is decomposable and M is decomposable, then we can write M’ = L & L), with
deg £ < deg L; and deg M" = deg M — |z|. Therefore, deg L] > deg L; — |z| > deg L,
which implies Ext(£, M") = HY (X, M"Y @ L) = 0.

(iv) If M is indecomposable, then deg £ — |z| = p(L(—z)) < (L) < p(M) = deg M /2,
which implies Ext(£, M) = 0 and Ext(£(—z), M) = 0.

If M is decomposable, then Ext(£, M) = H°(X, MV®L) = 0, and similarly Ext(£(—z), M) =
0
O
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In the proof of the next theorem, we will use the Hall algebra Hx of the elliptic curve X
(cf.|2| Section 3.3 and Lemma 4.2.1). Let Y be a smooth projective curve over I, of genus
g. Let Coh(Y) be the category of classes of isomorphism of coherent sheaves on Y. The
Hall algebra Hy of coherent sheaves on Y, as introduced by Kapranov in |66, encodes the
extensions of coherent sheaves on Y. Let v be a square root of ¢~'. The Hall algebra of Y’
is defined to be the C-vector space

Hy:= (P CF

FeCoh(Y)

with the product
F-G=v59N niH
H

where (F,G) := dimg, Ext’(F, G) — dimy, Ext'(F,G) and

o 0= —H—F—0)
FG = |Aut(F)| [Aut(G)|

The Riemann-Roch theorem yields

(F,G) = (1 — g)rk(F)rk(G) + rk(F) deg(G) — rk(G) deg(F).

We link the theory of Hall algebras with graphs of Hecke operators as follows. From
|2, Lemma 2.1] the quantities m,,.(£,&’) and hi;,s* are equals, thus we can recover the
multiplicities my, (€, E’) from the product K™ - £ in the Hall algebra of Y. Therefore, for a
fixed n, the graphs of Hecke operators can be described by calculating explicitly the products
KZ7E" where £ runs through the set of vector bundles of rank n on Y.

Theorem 2.4.2. Letz € | X|, M € Bun, X, £ € Pic X and M’ € Buny, X with m, (M, M) =
m # 0. In (i)-(iv) below, we consider the corresponding hypotheses from lemma 2.4.1. We
have:

(i) mea(M® LM L) >m,
(i) me (M & LM S L(—2)) > g3,
(iii) ma (M @ LM @ L) > m- g,
(iv) ma (M @& LM & L(—z)) > 1.

Proof. Let K, be the skyscraper sheaf at z. If My = M,... M, € Coh(X) are the
extensions of M’ by K., m; = hﬁ‘;M;, then m = m; and

Ky M =02 (m M, + - +m,M,),

Ky £ =o(L(z) + Lo K,),
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and

Ky L(—z) =v(L + L(—z) ® K,)
We denote by 7¥¢“(—) the vector bundle part in the product (cf. |2, Sec. 3.3]). We have for
£ € Bun, X

i

(K, - €) = (Ko, €]

(cf. |2, Lem. 4.2.5]), where the commutator is taken in the Hall algebra Hy.

(i) In Hx we have M’ & £ = p?deefdee MHzI A" £ gince Ext(M’, L) = 0. Thus,

}Cx . (Mr @ f,) — U2clcg,‘i',—degﬂ/[—f—|x| . (}C:.e . Mr) L
_ U2clcg,‘i',—dcgJ\/l-|—|x|vz|:.."|(.],;.11')\/[1 4+t mrM-r) L

r
_ mv2dcg£—dch+3|.r|M L U2dcg£—dch+3|.r|( E :TTHMZ') L
=2

= m

r
+U2dcg£—degM+3|:c|( § miMz') L

i=2
= mPFIMae L+ U2d°g£_d°gM+3|x|(m2M1 +---+mM,) - L.

U2dcg£—dch+.5|.r|U—(2deg C—degM)M DL

Therefore, m, (M & LM & L) > v 38 mydlel = m.

(ii) Since Ext(M,L(—z)) =0, M & L(—z) = vHdeeLlzh=dee MAL . £(—z) in Hx. Thus,

Ke - (M@ L(—z)) = o2deetrlehdeeMp M. L(—2z)
pRUdeebofel—dee MAL L |C, + Ky, M]) - L(—2)
= pPUeglolel—des M AL L L(—z) + [Ky, M] - L(—2))
— t,z(dcgﬁ—lrl)—dch(M LM U"’“l(}Cx ® L(—z))
1Ky - M) - L))
= v FIM @ L4 p2dealmlzhdee MAL 12 (K, & £(—2))
+77(Ky - M) - L(—1)).

Therefore, my (M & LM @ L(—x)) > v3lely el = g2l = g2,

(iii) Since Ext(£, M’) =0, we have M’ @ £ = pdeeM'=2degLr . A/ thus
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Ko (M@ L) = pleM 20 L)0 . £ A
= IEM =208 (L[ M+ K, £] - M)

_ Udch—lrl—2dcg£(£ . 2=l ( ZﬂléMé) + ﬂ_ver:()lcx . E) . Mr)
i=1
_ m’ulxlﬁ D M + Udch—|x|—2deg£(£ . U2|x|(z miMa') + ?TvchCx . 1:) . M;)
i=2

Therefore, my (M & LM & L) > p3lElylzly, — mgx.

(iv) Since Ext(L(—z), M) = 0, we have L(—z) & M = ydeeM-2deeLole) (7). M, and
thus in Hy,

Ko (L(—z) M) = plesM20deslolale . r(_z). M
,Uclch—z(degL',—|x|)v|x|U—(degM—zdcgﬁ)E DM+

todeeM=2deg Lozl lel ()0 &y £(—z)) - M

Therefore, my (L & M, L(—z) & M) > v 313 = 1.

2.5 The space of eigenforms

Let A(x; A1, Ay) be the space of unramified automorphic forms in GL3(A) with trivial central
character and that are eigenfunctions of ®,; and ®,,, with respective eigenvalues A; and
A2. By Weil’s theorem, we can view the automorphic forms in A(x; Ay, A2) as functions in
P Bung X. In this section, we prove that an Hg_-eigenform in P Bung X is determined by
its values on a finite set of vertices, called the nucleus of the graphs G, ;, i = 1,2. We recall
that G, ; is a shorthand notation for the graph Gs, . x (cf. Remark 2.2.3).

Definition 2.5.1. We define the invariant d on decomposable vector bundles in Buns X as

follows:
o If & = M@ L with M € Bun? X and £ € Pic X, we define d(€) := 2deg £ — deg M.

o If &£ =L, & Ly D L4 1s a sum of three line bundles with deg £; < deg £y < deg L4, we
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define

d. (&) :=2deg L3 —deg(Ly & Ls),
d_(€):=2deg Ly —deg(Ly b L),
4, (€) 1= deg(Ly) — deg(Ly),
da(E) 1= deg(Ls) — deg(Ly),

and d(&) .= maz{d,(£),—d_(E)}.
Observe that d(&), d+(€), d— (&), di(€) and da(&) are well defined as functions of P Buns X.

Definition 2.5.2. Let z € |X|. We define the nucleus N, of G, ; for i = 1,2, as the set of
vertices £ such that

e & is indecomposable or,

e E=M@L MecBm™X, L ePicX, §(M) <0 and
M) +1-2z| <d(€) < —=6(M) —1+2|z| or,

e E=MOL MecBm™X, L cPicX, §(M)=0and —2|z| < d(€) < 2|z| or,

e & is a sum of 3 line bundles and d,(£),dy(E) < |z| or (|z| < di(€) < 2|z| and
di(€) — |z| < da(E) < di(E)) or (|z] < da(€) < 2|z| and da(E) — |z| < dyi(E) < da(E)).

Observe that N} is invariant under the involution & — &Y.

Theorem 2.4.2 allows us to describe the neighborhoods of vertices that are not in the
nucleus.

Theorem 2.5.3. Let £ € Buns X.

1. If € = M@ L with M € Buny X and £ € Pic X such that either M € Buni™ X
and d(&) > 2|z| or M = L, & Ly for L; € Pic X with deg Ly < deg Ly < deg L and
dy(€) > |z|, then

Ve (&) ={(E M L(=2),q;)} U{(E, M & L,m) | (M, M',m) € Vaa(M)}.
2. If € = M@ L with M € Buny X and £ € Pic X such that either M € Buny X and

d(&) < =2|z| or M = L, ® Ly for L; € PicX with degL < deg Ly < deg Ly and
di(€) > |z|, then

Ver(&) ={(EM B L(—2), 1)} U{(E M & L,ymg,) | ( M, M';m) € V,1(M)}.
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To describe the neighborhoods of a vertex outside of the nucleus of the graph G, . we
need a duality theorem.

Theorem 2.5.4. Let £, & € Bun, X, then:

(i) mer(E,E") #0 <= m,.(EV,EY) #0,

(ii) My, (E,€) #0 = my (£, E(—x)) # 0,

(iii) my (€, &) = mypr(EY,EY(—x)).

Proof. We begin with the proof of part (i). Consider an exact sequence
0—¢& —E&—K,—0.

Using the long exact sequence in cohomology, we obtain

0 — Hom(KL, Ox) — ¥ — £V — Ext' (KL, Ox) — ---

We have Hom(KZ,Ox) =0, Ext' (KL, Ox) = K., and Ext'(€,Ox) = 0, thus the connecting
homomorphism is surjective. So we have constructed an exact sequence

0—&Y —&Y — KL —0,

F (A \
and therefore m, (€™, EY) # 0.
Next we prove part (ii). Consider an exact sequence

0—¢& —E&—K,—0.

We denote by ¢ the map from &' to £ and by Z, the ideal sheaf of the point z € X, i.e.
1, = Ker(Ox — K,). We see that 7,€ C Im(yp), and if we denote by ¢* : Z,& — &’ the
inverse of o, then Coker(p*) ~ K277, Indeed, let U be an affine neighborhood of z such that
A =0Ox(U) is a principal ideal domain. The point z corresponds to a prime element 7, € A
and Z,, corresponds to the ideal (7). The exact sequence restricted to U corresponds to an
exact sequence of modules

0— M — M — (A7) — 0,

with M ~ A" By the structure of modules over a principal domain, we see that there exists
a basis {m,...,myp} of M such that {mymy,... Tem,, myi1...,my} is a basis of M’. Tt
follows that (m;)M C M’ and that the map ¢* corresponds to the inclusion of (7,)M in M’
Therefore M'/(7,)M ~ (A/m,)"" ", which proves that Coker(p*) ~ K",

We also have Ox(—z) =7, and Z,€ = £(—x). Thus we obtain an exact sequence
0 —&(—z) =& — K" —0,
which proves that my (€', E(—z)) # 0.
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We denote the functor from part (i) by (—)" and the functor from part (ii) by (—)*.
Composition yields a functor ((—)Y)*, which is well defined on isomorphism classes of short
exact sequences with fixed middle term. This gives us a bijection

isomorphism classes B isomorphism classes
0 & —E—KL—0 p e 0—3E" —E — KT — 0
with fixed £ and &" ~ &’ with fixed £ and £" ~ & (—x)
This proves that m, (£,&) = my,—r(EY,EY(—2)). O

Using the theorem, we obtain
My o(E,E) =my 1 (EY,EY (—x)), (2.5.1)
and using the calculation of the multiplicities of G, ; in Theorem 2.5.3, we obtain the following
Theorem 2.5.5. Let £ € Buny X,

1. If € = M® L with M € Buny X and £ € Pic X such that either M € Buni X
with d(€) > 2|z| or M = Ly & Ly with L£; € Pic X, deg Ly < deg Ly < deg L and
d2(€) > |z|, then

Voo(€) = {(€, M(=2)L, 1)} (€, MYDL)(—2),mge) | (MY, M',m) € Vot (M)}

2. If E = M® L with M € Buny X and £ € Pic X such that either M € Bung”'dX
with d(€) < =2|z| or M = L, ® Ly with L; € Pic X, deg L < deg Ly < deg Ly and
di(€) > |z|, then

Via(€) = {(€, M(—2)& L, gz) }U{(E, MY BL)(—),m) | (MY, M',m) € Vi s (MY)}.

In what follows, k-(sub)bundle means a (sub)bundle of rank k. We review the definition
of the d invariant given by Alvarenga in |2|. For a subbundle M of a n-bundle £, we define

O(M,E) :=rk(E)deg(M) — rk(M) deg(&)
and fork=1,....,.n—1,

(&) = Jaups O(M.,E).
k—subﬁfnd]e

The é-invariant is defined by

(&) == max{d,(E),...,0,1(E)}.
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By Proposition 2.4.4 in [2|,

—ng < (&) < oo,

for every n-bundle £, where g is the genus of the curve X. Let M be a k-subbundle of &,
we say that M is mazimal if 6x(E) = (M, E).

We can use (2.5.1) to improve [2, Thm. 2.4.15] as follows.
Theorem 2.5.6. Let £ be a neighbor of € in Gy, then:
o 51(&) e{n(&)—2|z|,...,0(E) +|z|} and 061(E) —6:(E) = |x| (mod 3),
o 55(&) e{0(E) —|z|,...,02(E) +2|z|}, and 05(E') — 62(E) = 2|z| (mod 3).
Let £ be a neighbor of € in G, 5, then:
o 5;(&) e {0(&)—|z|,...,0:1(E) +2|z|}, and 6,(E) —6,(E) =2|z| (mod 3),
o 55(&) € {0a(E) —2|z|,...,00(E) + |z|}, and 062(E') — 62(E) = |z| (mod 3).

Proof. Let M be a 2-subbundle of £ and put £ = £/M. Then L is a line bundle and, by
duality, £Y is a line subbundle of £ with quotient MY. We see that to maximize deg M is
equivalent with maximizing deg £Y. Let M as above such that deg £ attains the maximum,
then deg LY = (deg Y + 6,(£Y))/3 and deg M = deg € + deg LY, which implies

05(€) =3deg M —2deg & = 6,(EY).
If £ is a neighbor of € in G, 5, then [2, Thm. 2.4.15| and (2.5.1) implies that

02(E") = 01(8) = 01(E" (—x)) € {02(E) — 2|, ..., 02(&) + |=[}-
Analogously we prove that §5(E") € {02(€) — |z|,...,02(E) + 2|z|} if £ is a neighbor of £ in
Gr1. This together with [2, Thm. 2.4.15| finishes the proof. O

Next we want to compare the invariant d for decomposable vector bundles with the
d-invariant.

Convention: Until the end of this section, if £ is a sum of line bundles and we write a
decomposition as a sum of line bundles, &€ = L, & - - - & Ly, we assume that

deg £ < --- < degLy.

Let &€ = L1 @& Lo @ L3 be a sum of three line bundles. If £ is a line subbundle of &,
then there is a factor £; of € such that £ — & — L; is not zero. Thus we get an immersion
L — L;, which implies deg £ < deg L£;. Therefore

01(€) =3deg L3 —deg& =2deg L3 — deg(Ly & Ly) = d,(E).
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If M is a 2-subbundle of € and £ = £/ M, then we obtain an immersion £Y — £V, which
implies deg LY < deg L) for some 7. Therefore deg M will be maximal if and only if deg £V
is maximal. We conclude that M = L, & L5 is maximal and thus

02(€) = 3deg(Lo @ L3) —2deg & =deg(Lo® L3) —2deg Ly = —d_(E).

Therefore 6(£) = d(E).
For M € Buny X we define,

deg M + (M)
5 .
which is the degree of a maximal line bundle of M.
Let £ = M@ L with M € Bun* X, £ € Pic X and deg £ > deg M —m(M). It follows
from 6(M) < 0 that m(M) +6(M) < m(M) < degM —m(M). So deg £ > m(M), which

implies

m(M) =

01(€) =3deg L —deg& =2deg L —deg M =d(E).

Remark 2.5.7. If deg £ > m(M), then there is a unique maximal line bundle £ < &£, namely
L' =L

Observe that m(MY) = m(M) — deg M. 1t follows from deg £ > deg M — m(M) that
deg LY < m(MV), and we conclude that if £’ is a maximal line subbundle of MY, then L' is
a maximal line subbundle of £Y. By duality, we conclude that £ has a maximal 2-subbundle
of the form M = L" & L with £"” a maximal line bundle in M. Therefore

02(€) = 3deg M — 2deg & = deg £ + 3m(M) — 2deg M.

We have

01(E) — 05(€) = deg £ + deg M — 3m(M) = 2(deg M —2m(M)) = =26(M) = 0.
Therefore 6(£) = 6,(€) = d(E).

Let £ = M®L with M € Buni™ X, £ € Pic(X) and deg £ < m(M). As deg £ < m(M),
we obtain

01(€) =3m(M) —deg & =3m(M) — deg M — deg L.

Also deg £ < deg M — m(M), which implies deg £Y > m(MY). Thus LY is a maximal line
subbundle of £Y. By duality, we conclude that M is a maximal 2-subbundle in £, which
implies

05(€) =3deg M — 2deg & = deg M — 2deg L = |d(E)).

We have

02(E) — 01(€) = 2degM — deg £ — 3m(M) > 2(degM — 2m(M)) = =26(M) > 0.
Therefore 6(€) = §,(€) = |d(E)].
Remark 2.5.8. If deg L < deg M — m(M), then there is a unique maximal 2-subbundle of
£, which is M.
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So we have proved the following.

Theorem 2.5.9. Let X be a curve corresponding to the global function field F' and £ be a
decomposable vector bundle.

1. We have d(€) =06(E) if € is a sum of three line bundles.
2. We have §(E) > |d(E)].

3. Let X be an elliptic curve and € = M @ L with M € Bun X and £ € Pic X. If
d(&) <o(M) or d(E) = —06(M), then §(E) = |d(E)].

Corollary 2.5.10. Let k € Z and X be an elliptic curve. There is only a finite number of
&€ € PBung X with 0(€) < k.

Proof. From the inequality |d(€)| < 6(€) for £ decomposable, we conclude that it is sufficient
to prove that the action of Pic X in Bun;nd X has a finite number of orbits for n < 3. And in
fact, by Atiyah’s theorem, every orbit has a representative of the form 5((;’3) with0<d <n
and |z| < n (for every n > 1). As the number of these representatives is finite, it follows

that the number of orbits is finite. [l

Remarks 2.5.7 and 2.5.8 describe cases of 3-bundles £ that have a unique maximal line
bundle or 2-subbundle. In the following we relate this property with the neighbours of &,
which will be useful for the proof of the main theorem of this section.

Let £ € Bun,, X be a fixed vector bundle. We write £ := £/Z,&, which is a torsion sheaf
with support on x and stalk isomorphic to £(z)". For F C & a subbundle or neighbour of £
in G, ;, we denote by F the image of F in €. If F is a k-subbundle, then F ~ r(z)*. If &
is a neighbour of € in G, ;, then T,E C &', & ~ k(z)" " and if p: £ — & is the projection,
then & = p~1(&). Therefore if F is a (n — i)-subbundle of £, then F is a subsheaf of & if
and only if F =&

Remark 2.5.11. Consider either £ to be a sum of 3 line bundles with d,(€) > 0 and d,(&) >
dy(E) or € = M@ L with M € Bun X, £ € PicX, degl < m(M) and degL <
deg M — m(M). By the above discussion and Remark 2.5.8, §(€) = 02(€) and there is a
unique neighbour &£ of € in G, 1 with d5(E") = 4(E") = 6(€) + 2|z|. For the other neighbours
E", we have §(&") < 0(&"). € = L1 ® Ly D Ly, then & = Ly(—x) B Ly B L3; and if
E=M® L with M € Bun? X and £ € Pic X, then & = M @& L(—=z).

Remark 2.5.12. Consider either £ to be a sum of 3 line bundles with d3(€) > 0 and dy(&) >
di(E) or £ = M@ L with M € Bun? X, £ € PicX, deglL > degM — m(M) and
deg £L > m(M). By the above discussion and Remark 2.5.7, 6(€) = 6,(€) and there is a
unique neighbour &' of € in G, 5 with §;(&’) = 0(£') = 0(£) + 2|z|. For the other neighbours
E" of € we have §(E") < d(E"). H E =L B Ly DB Ly, then &' = Ly(—x) & Lo(—x) B Ls; and
if € = M@ L with M € Bun X and £ € Pic X, then & = M(—z) & L.

We are prepared to prove the main theorem of this section.

Theorem 2.5.13. If f, g € A(z; A\, X2) and f|n, = gln,, then [ = g.
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Proof. We describe 6 relations between values of f on vertices £ € P Buny X away from the
nucleus, i.e. |d(€)| large, that allows us to express f(€) as a linear combination of f(&’) on
vertices £’ closest to the nucleus.

Relation (i): If £ = M @ £ with M € Bun? X, £ € Pic X, d(€) < §(M) — 2|z| and
d(&) < —6(M) — 2|z|, then we apply G, to the vertex M & L(x), which implies

MM L(z) =mif(Me L)+ ) m'f(£)
g!
where (M®L(z),E',m') € Vo 1(MBL(z)) and E # MBL. By Remark 2.5.11, 6(E') < §(E).
This allows us to express f(&£) as a linear combination of f(&’) with §(&’) < 4(E).
Relation (ii): If £ = M @ £ with M € Bun?” X, £ € Pic X, d(€) > —6(M) + 2|z|
and d(&) > §(M) + 2|z|, then we apply G, > to the vertex M(z) & L, which implies

MafM(@) @ L) =mif(Me L)+ m'f(E)
g!
where (M(z)®DL,E'\m') € Vyo(M(z)BL) and & # MBL. By Remark 2.5.12, 6(E") < 4(E).
This allows us to express f(€) as a linear combination of f(&£) with 0(&") < 4(&).
Relation (iii): If £ = LB Ly® L3 with £; € Pic X, di(€) > |z| and d,(E) —|z| > da(E),
we apply G, to the vertex £y(z) & Ly & L3, which implies

MF(Ly(z)B Ly L) =myf(Ly S Ly B Ls) + Zm’f(g')
&
where (L1(z) ® Ly @ L3, E' m") € Ver(Li(z) B L2® L3) and E' # L1 P Lo L3. By Remark
2.5.11, 0(&") < 6(€). This allows us to express f(€) as a linear combination of f(&’) with
0(&") < d(€).
Relation (iv): If £ = LB Ly Ly with £; € Pic X, dy(€) > |z| and dy(E) —|z| = d,(E),
then we apply G, 5 to the vertex £,(z) @& Ly(z) & L3, which implies

Mo f(L1(z) @ Lo(z) © L3) = maf(Lr @ L2 ® L3) + Y m/f(E)
=

where (£(z) ® Lo(z) © L3, E',m') € Voo Li(z) ® Lo(x) ® Lg) and E" # Ly B Ly B Lg. By
Remark 2.5.12, 6(£’) < 6(€). This allows us to express f(€) as a linear combination of f(&’)
with 6(&") < o(E).

Relation (v): If £ = L, @& Ly & L3 with £; € Pic X, d2(€) > 2|z| and do(€) = di(E),
then we apply G2 to the vertex M & L(—z), where M = L, & Ly and L = L3. We have
dy(M & L(—z)) > |z| and d(€) = d(€). By Theorem 2.5.5, we obtain

Maf(Ly® Ly ® Ly(—x)) = f(L1© Ly ® L3) + Y mga f(M"Y ® Ly(—z))
M!
where (MY, M',m) € V,2(M"). We have d(M & L(—z)) < d(€) by the definition of the
invariant d. Let M’ be a neighbor of MY in G,. If M’ € Bun" X, then d(M" @ L) =
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d(&) — |z|. If M’ is a sum of two line bundles, then the situation is more complex. In
this case, we can write M"Y = L] & L}, with deg L] > degL; for i = 1,2 and we have
deg M"Y =deg M + |z|. For & = L} & L& L(—x), we have d,(E') +dao(E') < dy(E) +do(E)
and dy(&') < dy(€), which implies d(£') < d(€). We differentiate two cases:

o If degL(—z) > degL!, i = 1,2, then di(&') + da(E') < di(E) + da(E) — |z| and
di (&) < di(€) + |z|, which implies

—d_(€') = 24(€) + da(€") < d(£).

o If deg L(—z) lies between deg £ and deg L), then di(E") + da2(E') < di(€) + |z| and
di(E') < di(€) + d2(E) — |z|, which implies

—d_(€') = 24(€) + da(€") < d(£).

This allows us to express f(£) as a linear combination of f on the vertices £ with |d(E)| <
d(&). It |[d(&")| = d(€), then & is a sum of 3 line bundles and d, (&) +d5(E’) < di(E)+da(E).

Relation (vi): If £ = L, ® Ly & Ly with £; € Pic X, d,(€) > 2|z| and d,(€) > dy(E),
then we apply G1 to the vertex M & L(z), where M = Ly & L3, L = L. We have
di(M @ L(z)) > |z| and d(€) = —d_(£). By Theorem 2.5.3, we obtain

MF(L1(2) © Lo ® L) = f(L1D Ly ® L3) + > mapf(M @ L(z))
v

where (M, M, m) € V,1(M). We have dM & L(z)) < d(€) by the definition of the
invariant d. Let M’ be a neighbor of MY in G,. If M’ € Bunl"* X, then d(M’' ® L(z)) =
—d(€) + |z|. If M’ is a sum of two line bundles, then the situation is more complex. In
this case we can write M’ = L) & L with deg L < degL;, i = 2,3. The proof that we
have —d_(&') < d(€) and d.(&') < d(€) for & = L(x) & L), @ L] is analogous to the case
(v). This allows us to express f(€) as a linear combination of values of f in vertices &’
that satisfy |d(E")| < d(&) and if |[d(E')| = d(£), then £ is a sum of 3 line bundles and
() + do(€) < dy(€) + do(£).

We can apply these relations successively to a vertex £ outside the nucleus to express
f(€) as a linear combination of values of f in vertices of the nucleus. O

2.6 Multiplicities for the nucleus

By the results of the last section, the unramified eigenforms are completely described by
the restriction to the nucleus, which is a finite set of P Buny X. We will use this property
to compute A(z; A1, A2) in an explicit example in the next section. In the theorems of
this section, we describe the neighborhoods of some vertices that will be relevant for these
computations. These theorems for a general elliptic curve is part of a joint project with
Oliver Lorscheid and Roberto Alvarenga in which we study the questions of this thesis for
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an arbitrary elliptic curve (cf. 3] for a complete proof of the theorems of this section). For
simplicity, we state the theorem only in the case of an elliptic curve with a unique rational
point, which suffices for our applications.

The proof of the following theorem is based on an algorithm developed by Roberto
Alvarenga in |2|, which determines the neighbors of a given vertex in G, ;. Simplifying
matters, this algorithm is based on Hy the elliptic Hall algebra of X and can be described
as follows: the goal is to calculate in Hy the product of the skyscraper sheaf at z by a vector
bundle. The first step consists in a coordinate change from the basis Coh(X) given by the
isomorphism classes of coherent sheaves to the twisted spherical Hall basis of H x, considered
by Burban-Schiffmann [23] and Fratila [51]. Next one can use the explicit description of the
twisted spherical Hall subalgebras in |51, Thm. 5.2] to reorder the elements that appear
in the above product in increasing order of slopes. Another base change yields the desired
result.

For an accurate description of the algorithm see |2, Section 4.4]. For examples of the
algorithm see |2, Thm. 4.5.1, Thm. 4.5.2, Thm. 4.6.3]|.

Let X be an elliptic curve over Fy, with only one point of degree 1. The zeta function of
X is defined by the formal power series

Zx (T) = exp (Z #XSFQ“) Tn)

n=1
Hasse and Weil proved that this series is actually a rational function and satisfy a functional
equation (cf. [83, Chap. VIII, Thm. 6.1 and Thm. 7.1|). From this it follows that
(I-—wT)(1-wT) 1—aT+qT?
(1-T)(1—qT) (1=T)(1—qT)
where a; = ¢+ 1 — #X(F,) = ¢. Using this formula, we obtain #X(F;2) = 2¢ + 1 and

#X(F,2) =3¢° +1 (cf. [83, Chap. VIII, 5.8]). Therefore X has ¢ points of degree 2 and ¢*
points of degree 3. We denote by yi,...,y, the points of X degree 2 and by zi,..., 22 the

Zx(T) =

points of degree 3. We adopt the following notation for the vertices of P Buns X:
Notation:

« =16y Si=[EGl S=Eg, Ti=[EC)
o Tilk] = [8?”3)@0(%)1 Solk] = [E29) & Okx)],  S,[k] = [E) @ O(kz)],
e O(j: k) =[0® O(jz) ® O(kz)].
As X has only 1 point of degree 1, we have the dualities
Sy =8, 8§'=8, & =8, S&SlkY=38[-k and S.k]Y=S8.[-k+1].
For 0 < 7 < k, we have
OG : k)Y = Ok —j : k),
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and for the vertices that involve traces of line bundles, we have
T.Y =T, for some j; Ti[k]Y = T;[—k| for some j.

For the calculations in the next section, we do not need to explicitly determine j in terms
of 7.

Theorem 2.6.1. Let X be an elliptic curve over a finite field with only one rational point
x. Then we have the following multiplicities for the graph Gy for PGLs:

(i) For & =T, we have

Ver(To) = {(T:, 82,4 + g+ 1)}
i1) For a geometrically indecomposible bundle & = 5D with 1 = gedl(3,a), we have:
i) F jcally ind ble bundle € = E(y) with | = ged(3,d), we h

o Ifd=0, then

Va1 (So) = {(S0, 82, 4%), (So, Sa[1], 4), (So, So[—1], 1)}
e Jfd=1, then

V-'»"-.l(sl) = {(81180: 1) (31:7;1 1)1 (811 7;[0] 1) | |y.?| = 2: |Z3'| = 3}'
e I[fd=2, then

Voi(82) = {(85,81,6° + ), (S, S:[0], 1)}

(iii) For €& = S,[0], we have
Ve (S:[0]) = {(S:[0], So[0], 1), (S2[0], Til0), ) | [ya| = 2}
U {(S:[0], So, g — 1), (S:[0], Sz[—1],1)}.
(iv) For & = S;[1], we have
Vr,l(sm[ll) = {(Sx[l]asx [{)]:Q)v (S.r[l]: 81, qz - Q)}'
U {(Se[1], Sol1], 1), (Se[1], Ta[1], 1) | |yl = 2}
(v) For O(0:0), we have

Ve (0(0:0)) = {(O0:0),0(1:1),¢*+q+1)}.

69



(vi) For & = &[0], we have

Ve1(So[0]) = {(So[0], Sz[1], ¢%), (So[0], So[—1]. q). (So[0], O(1 : 1),1)}.

(vii) For € = T;[0], we have

Ve i (Til0]) = {(T:[0], S, ¢* — 1), (Ti[0], Te[1], 1), (Ti[0], Su[1], ¢ + 1)}

(viii) For €& = T;[—1], we have

Voo (Ti[=1]) = {(Ti[-1], 80, ¢* + @), (T[], Ti[-2], D}

(ix) For & = Sy|—1], we have

Vor(Sol=1]) = {(So[~1],8:[0], %), (So[~1], So[1], ¢ — 1)}
U {(So[=1], So[=2], 1), (So[~1], O(0 : 1), 1)}.
(x) For & =0(1:1), we have
Ver(O(1:1)) = {(O(1:1),0(2:2),1),(0(1:1),0(0:1),q+1)}
U {(O(1:1),8[1],¢* = 1)}
(xi) For & = T[1], we have

Vo (Ti1]) = {(T:1], Til0], ¢°), (Tal1], Se[2], ¢ + 1)}

(xii) For & = S,[—1], we have
Vei(Se[—1]) = {(Se[1],S0[-1], 9), (Sz[-1], Sz[-2], 1)}
U {(S[-1], Til=1], 9) | |l = 2}
(xiii) For & = Sy[l], we have

Ver(Soll]) = {(So[1], 80,4 — q), (So[1], Se[2], 9)}
U {(So[1], So[0], ), (So[1], O(1 : 2), 1)}
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(xiv) For € =0(0:1), we have

Ve (O0: 1)) = {(0(0:1),8]0],¢*~1), (00 : 1),0(1 :2),q+1),(O(0:1),0(0: 0),1)}.

(xv) For & =0O(1:3), we have

Ver(O(1:3)) = {(O(1:3),8][3],¢—1),(0(1:3),0(2:4),1)}
U {(O(1:3),0(0:3),1),(0(1:3),0(1:2),¢)}.

We will also use graphs of Hecke operators for places of degree 2 of X. We summarize
the necessary results in the two theorems below. The proof is also based on Alvarenga’s
algorithm and omitted.

Theorem 2.6.2. Let X be the elliptic curve over Fy with Weierstrass equation y*> + vy =
2 +z+ 1. Lety and y' be the two places of degree 2 of X. We consider the graph G, of
the Hecke operator ®,, in PGLy. We define M, = [8&3] for |2| =2, § = [5((33))] and
Cr := [Ox & Ox(kz)]. We have in Gy:

Vy(Co) = {(Co,C2,3), (Co, My, 2)},
Vy(My) = {(My: M“y'a 1)1 (MU:M“Q': 3) (M%C(h 1)}

Theorem 2.6.3. Let X be an elliptic curve over a finite field F, with only 1 rational point
and y; a place of degree 2, then for the graph Gy, 1 in PGL3s on the vertex £ = O(0 : 0), we
have

V,1(0(0:0)) ={(0(0:0),0(2:2),¢*+q+1),(0(0:0), T;[1],¢* — q)}

2.7 An Explicit Example

We apply the results from the previous sections to calculate the spaces A(z; Ay, A2) and to
determine the toroidal automorphic forms in a specific example.

Let X be the elliptic curve over Fy with Weierstrass equation y? +y = z* + x + 1. This
elliptic curve has has only 1 point of degree 1, which we denote by z. Let y; and y be the
two points of X of degree 2 and 2y, 25, 23, 23 the 4 points of degree 3. In this section, we
obtain a parametrization of the space A(z;Ai, A2) of unramified automorphic forms f with
trivial central character, such that ®,,;(f) = A f for i = 1,2, Let f € A(z; A\, A2). We
consider f as a function in P Bung X.

The nucleus of G, 1 and G, 5 is composed of the following vertices:

. SD: Sl: 82; 7;: f()r 1= 114;
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o Tilk], So[k], for i =1,2 and k= —1,0,1; S,[k], for £ =0,1;
e O0:0),0(0:1),0(1:1), O(1:2) and O(2:4).

Fix f € A(z; A1, A2). To ease the notation we use the following conventions.

Notation:

o 5y = f(S()): Sy = f(31)= Sy = f(Sz); T; = f('?;);
o tir = f(Tilk]), sox = f(Solk]), szx= f(S:[k]),

e D= (O : k).

By Theorems 2.6.1 and (2.5.1), f must satisfies the followig equations.
Eigenvalue equations on the nucleus:

(T:) MTi=175
AT =175,
(S1) AMS1 = Zﬂ‘Fth’,O‘i‘So
X251 = 652 + 521
(S3) A5y =65 + 529
A2 Sy = ZTz + th’,o + 50
(So)  MSo =455 + 25,1 + 50,1
A2Sp = 4S) + 25,0 + 501
(T:[0])  Aqtip =352+ 3s,1+ti1
Aotio = 351 + 3520 + tia
(T:[1])  Mtig = 4tip+ 3520
Aoty = 6551 +tio
(Ti[—1])  Mti—1 = 6550+t o
Aoti 1 =4t + 35,1
(Se[0)  Aisgo=2 th’,o + 5o+ Sz.—1 + S0
Aoz =259 4+ 25,1 + Zti,—l + S0,-1
(Sell])  Aiseq =251+ 25,0+ Ztu + S0,1
AoSz1 =2 th’,o + S0+ 522+ So0
(Se[—1])  Aisp—1 = 22&,—1 + 2501 + Sz.—2

Azsx,_l =7?



(Se[2])  AiSza="7
AgSz 0 =2 Z tin + 2501 + 523
(So[0])  Aisop = 4sz1 + 2s0,—1+ D1
Aasgg = 45,0+ 2501 + Dig
(So[l])  A1so1 =250+ 25,9+ 2500+ Doy
AaSo1 = 4sz1 + S0,—1 + 502 + Dia
(So[—1])  AiSo—1 =48z0+ 01+ S0—2+ D1
AaSg,—1 = 250 + 2585 1 + 2500 + Dy
(O0:0)) MDoo=T7D,
A2 Do =TD,
(O1:0)) AMDyg=3spp+3Ds1+ Dyp
XDy ="
(O1:1)) MDy1=3Dyg+3s91+ Doy
AoDy 1 = 3500+ 3Ds1 + Dy
(O(1:3)) MDis=s03+Dss+ Dos+4D; 2

The equations with “?” will not be necessary to parameterize A(z; A, Aa).
We split the parameterization of A(x; Ay, A2) into the following two cases.
First case: A\| = A\, = 0.
Successive use of the eigenvalue equations leads to the following identities where we indicate
on the left hand side which equation we apply for each deduction.

7;) :>81:08.Hd82:0

81) = Sz1 = 0

(

(

(S2) = 5,0=0
(So) = so—1=0and s, =0
(T:0]) = ti1 =0 and tig =0
(Ti[1]) = tia =0

(Ti[-1]) = ti2=0

(Se[-1]) = 522=0

(S2[2])) = 523 =0

(So0]) = Dy, =0 and Dy =0
(Sol1]) —> 505 =0

73



(So[—1]) = s02=0

(O(1:1)) = Dy2=0

(S:[0]) and (s71) = So2 = 521
(Ti[1]) = tio =t2p

(Till]) = s22=—3tio

(Sz[0]) = So — 2521+ 800 =0

(Soll]) = 2S¢+ 2822+ 2500+ Doy =0
(O(1:0)) = 3s00+3D21+Dyp=0

(Sl) S Eﬂ‘kZEJ]‘FS@ =0

To prove that Ds4 can be expressed as a linear combination of the previously calculated
values, see the argument at the end of the second case below. Therefore f is determined by
the values s, 5, Sy, 11,15, T3, and we have

dim A(z;0,0) < 5.

[n the next section, we prove that the space of unramified cusp forms is a subspace of
dimension 3 of A(z;0,0).

Second case: (A, A2) # (0,0).

The equations (7;) implies that 7; = T; for every 7 and j. We use below the notation 7' = T3,
t = % and t; = t; 0.

(7;) = 51 = Aot
82 — )\lt

(S]) — S(] - )\181 - 4T - (tl + tg) - ()\1)\2 - 28)t - (tl =+ tg)
Sl = )\281 — GSQ = ()\% — 6/\1)]6
(82) — S0 = )\ISZ - 631 == ()\% — 6)\2)t
(S{)) = S5p9,—1 = )\130 — 482 — QSx,l
= (/\f/\g — 2)\% — 20)\1)t — )\1(t1 + tz)
S0,1 = AgSy — 4S5 — 23;-:,0
— (MA2 — 2)2 — 200\)t — Aoty + 1)
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(7;[0]) — ti,—l — )\lti - 382 - 38&,1 — (—3)\3 =+ 15)\1)]6 + )\lti
ti1 — Aot; — 351 — 38_;9__0 = (—3)\% + 15)\2)f + Aot

(7;[—1]) — Sz,-1 = %()\th',_l — 4&') = (—)\g + 5/\1/\2)t -+ %()\1)\2 — 4)?1
This implies that Ay Ao =4 or t; = t5.

(Sz[0]) = s0.0 = A18z0 — 2(t1 + t2) — So — Sz.—1
= (AT —6A A0 — M A + 28 + A3 — A \)E + %(—6 — M +4)(t, + 1)
= ()\'f —+ )\g — 12\ + 28)t —+ %(—)\1/\2 — 2)(t1 —+ tg)

(So[0])) = D11 = Aisoo — 4821 — 250,—1
= (AT H A3 — 12020, + 280 — 4X2 + 240 — 203X, + 402 + 40\t
+ (=M — 2 + 120 (¢ + t2)
= (A} + M3 — 1AM, + 920,)t + 2 (—A2A0 + 10X,) (t1 + t2)

(50[0]) = D1 = Aaso0 — 4520 — 2501
= (A3 4+ DAT — 12002 + 280y — 42 + 240y — 20\ A2 + 402 + 40t
+2(=AAZ = 2X0 + 120:) (81 + )
= (A3 4 XA — 1AM A+ 92X0)t + £ (=M A3 + 10A) (t1 + t2)

(So[—1]) = Dy = Aaso_1 — 255 — 2541 — 200
= (A2A2 — 2X3 — 207\, Ay — 2M Ao + 56 + 203 — 10A Ny — 203 — 213
+24M Xy — 56)t + 2(=3A Ao 4+ 6 — M A + 4+ Mo +2)(t +ta)

= (N2A2 —2X7 — 2A3 — 8\ o)t + (A Ny +4)(t, + o)

(0(1 . 0)) — DO,D = /\1D1,[) — 38[),(] — 3D2,1
= (ALAS + AT — 140202 + 920 )0 — 307 — 303 + 361\
—84 — 3NIA3 4 6A3 + 6AT + 24\ \y)t
—|—%(—)\%)\% 4+ 10M A0 F 300 -6+ 18\ s — 72)(t1 + tg)
= (AAS + A AT — TTAIAS + 3AF + 303 + 1520\ Ay — 84)¢
+E(=NIAZ+ 31N Ny — 66) () + )
(7;[1]) — ti,Z = )\Zti,l — 68$‘._1 = (—3)\2/\? -+ 9)\% -+ 36/\1)1& -+ )\%ta
(7;[—1]) — ti,—Z - )\lti,—l - 68:‘9,0 == (—3)\1)\% + 9)\% + 36)\2)t + /\%t@
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(Se[—1]) = sp2=AiSp1 — 2> ti_1 — 250
— (=AM BAZAg + 12X2 — 60y — 2X\2\g + 42 + 40\, )t
+2(APho — 4N — 12X + 12X (t; + t2)
= (—AA3 + 3A2Ng + 1622 — 20A )t + S (A2Ny — 4N (8 + o)

(Sx[2]) = Sp3 = AaSz0 — 2> ti1 — 250
= (=M + BANZ + 1207 — 60Xy — 20 A2 + 4N +40),)t
+2(A2—4Xs — 12X + 12X) (4 + 1)
(O(0:0)) = Doy =T(A\+ A3 — 14\ Xy + 92)t + g(—/\l)\z +10)(ty +t2),
where we used that Ay # 0 or Ay # 0.
(0(1 : 1)) — Dz,g = A]Dl,l — 3D(]__1 — 380,1
= (AT + NA3 — 14Xy + 92207 — 3A3 — 30T + 420 \2
—276A5 — 3A A2 + 6% + 60\t
= (AT + A2 — 17A3Ag — 3A3 + 300, A2 + 98\Z — 216A,)t
2 (=M A0 + BAAZ + 10AT — 12X,) (¢ + to)
[t remains to show that we can express D, 4 as a linear combination of £, t; and t,. We are
not giving an explicit expression, but just justifying why it happens. We start by proving
this for Do,g, Dl__g, Do,g and Dgrg.

For Dy, applying the relation (iv) of Theorem 2.5.13, we can express Dyo as a linear
combination of the values f(£) with 6(£) < 4, which have already been expressed in terms
of t, t1 and t5. For Dy 3, Ds3 and Dy 3, we apply analogous argument. For Ds 4, we have by
Theorem 2.6.1 the equation

MDy 3 =503+ Dyg+ Dys+ 4D, o,

which we use to express Ds 4 as a function of ¢, t; and t5 using the previous expressions.
Matching the two expressions for Dy, we obtain

PO, Xt + QA1 No) (1 + t2) = 0, (2.7.1)

where

P, Xe) = (Mda — 4)(A + A3 — 17X\, + 182),
1
QA1 A) = =2 (Aka = 4) (s — 34).
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This yields the dimension formulas:
3 if A =4,
dim A(z; A, A2) < ¢ 2 if AMAy # 4 and (P(A, A2), Q(Ar, A2)) = (0,0),
1 if Adg # 4 and (P(A, A2), Q(A1, A)) # (0,0).

2.7.1 The space of Cusp forms

Let Ag(z; Ar, A2) be the space of cusp forms in A(z; Ay, A3). In this section, we prove that
Ao(z; A1, A2) = 0if (A, A2) # (0,0) and that Ag(z;0,0) = 3. We begin with the expression
of the constant terms along the parabolic subgroups for an unramified automorphic form.

We denote by P, 5 and P, the standard parabolic subgroups of GLj of type (1,2) and
(2,1) respectively, where we see GL3 as an algebraic group over F. We denote by U the
unipotent radical of the standard Borel subgroup, and by U} 5 and Uy ; the unipotent radicals
of the parabolic subgroups P, and Py, respectively.

Theorem 2.7.1. Let X be an elliptic curve over the finite field Fy with only one rational
point and f : GLy(F)Z(A)\ GL3(A)/K — C a function, then we have

f(u)du = e (F(O(0: 0)) + (24 + 1)(g — DF(Sl0]) +alg — D21 (S0)),
JUFN\U(A)

f()du = &3 (F(O(0:0)) +2(q = DA(S[0]) + (g = 1*£(S)),

JUL2(F)\U,2(A)
[ Fu)du = s (00 0)) + (& = DFS[0]))
JU2 1 (F)\Uz,1(4)

for nonzero constants cy,cq, cg that depend on the choice of Haar measure on U, U5 and

Us,, respectively.

Proof. Let x € |X| be the place of degree 1. By the strong approximation for unipotent
groups, if N is one of U, U, 5 and U, 4, then N(F)N(F;) — N(A) has dense image. Thus
we find for every n € N(A) a v € N(F') and a k € N(O,) such that ynk € N(F;) C N(A).
In other words, the natural map

PN\N(Fe)/ K, — N(F)\N(A)/K’

is surjective, where K’ = N(O,), K, = N(O,), T'n = N(Ox(X —{z})) = N(F) N N(O3)
and OF = H#x O,. It is also easy to prove that the map is injective.

Next we consider the unipotent radical of the Borel subgroup N = U. We will obtain
explicit representatives for Iy\N(F,)/K.. Let m be a uniformizer at z. We define

1 a b
N(a,b,c) = 1 e
1
Claim: Every double coset in T'y\N(F},)/K. has a unique representative of one of the forms
n(a,c) == N(a,0,¢), n(b) := N(0,b,0),
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where

a=a_m ', b=b_m !, c=c_ 7!,

with a_y,b_y,c_y € Fj and (a_y,c_y) # (0,0).

The decomposition F + 7 'Oy = A implies that Ox (X — {z}) + 7 'O, = F,. Let
N(a,b,c) € N(F). If we multiply N(a,b,c) from the left by an appropriate element of T'y,
we can assume that a,b,c € 7 'O,. Multiplying N(a,b,c) from the right by an element of
K, yields a representative of the forms n(a,c) or n(b). From Ox (X — {z}) N7 'O, =F,,
we obtain the uniqueness of the representative.

For S € N(A), we denote by S the image of S in N(F)\N(A). By the above claim,

NENN@A) = || nle,oK u| |nb)K,
(@.0)#(0,0) b

where a, b and c are as in the claim. Next we compute vol(n(a,c)K’) and vol(n(b)K’). Since

n(b) is in the center of N(A),

vol(n(b)K') = vol(K'n(b)) = vol(K").

For n(a, ¢), we put K1 = n(a,c)K'n(a,c) 'NK'. We see that K is the kernel of the surjective
homomorphism

K’ — 7 1'0,/0,,
N(l,m,n) — cl, —an,

thus [K’ : K] = q. The restriction of the above map to N(F)NK’ remains surjective, whence
K, - (N(F)NnK') = K', which implies N(F)K, = N(F)K'. Therefore vol(K,) = vol(K").
We have [n(a,c)K'n(a,¢)™" : Ki] = g, thus we can write n(a,c)K'n(a,c)™" = [, Kin,.
As N(F)n(n(a,c)K'n(a,c)™') c K, it follows that N(F)K,n; is disjoint from N(F)Kn; if
i # j. Thus n(a,c)K'n(a,c)~! = | |°_, Kin;, which implies vol(n(a, b)K') = vol(n(a,c)K'n(a,c)~!) =
q - vol(K,) = q-vol(K’). We conclude that

fn)dn=vol(K') | ¢ Y  f(n(a,c)+>_ f(n(b))

N(F)\N(A) (a,c)#(0,0) b

We can adopt the same strategy to find representatives for N(F)\N(A)/K’ when N = U, 4
or N =U,,. For N = U, ,, we get representatives of the form

I(a,b) == N(a,b,0),

where
a=a_m ', b=b_ 1!,

with a_;,b_; € Fy; and for U, of the form



m(b,c) == N(0,b,¢),

where
b=b_m ', c=c_ 7!,

with b_y,c_; € ;. Observe that U, 5 and U, are commutative, which implies

f(n)dn = vol(K) | Y _ f(l(a,b))

Ui 2(F)\U1,2(A) (a,b)

f(n)dn = vol(K) | ) f(m(a,b))
Uz,1 (F)\Uz,1(A) (a.b)
We denote by © the bijection from Z(A)G(F)\G(A)/K to PBunsX. We consider a, b and
c as in the description of the representatives. To compute the images of the representatives
by ©, we use the following facts:

1. The 3-bundle 8((2 g)) ¢ Ox is the unique nontrivial extension of Ox by Ox ® Ox.

8(2 .0)

2. The 3-bundle €Y is the unique nontrivial extension of Ox by (z.2)°

(2.3)

[t follows that

O(N(0,0,0)) = O(0 : 0).

O(N(a,0,0)) = S|0], ifa#0, b=c=0.
O(N(0,0,¢)) = SD[(}], ifc#0, a=b=0.
O(N(a,0,¢)) = it b=0, ac#0.
O(N(0,b,0)) = S.;,[(}] ifb#0, a=c=0.
O(N(a,b,0)) = Sy, ifc=0, ab#0.
O(N(0,b,¢)) = S,[0], if a =0, be #0.
Using this in the integrals above, the theorem is proven. |

Theorem 2.7.2. Let X be the elliptic curve over Fy with Weierstrass equation y*> + vy =
22+ 2+ 1. If z is the unique place of degree 1, then the cusp eigenforms on PGLs(A)
satisfy Ap1 = Ao = 0. We have dim Ay(z;0,0) = 3, and if f € Ag(z;0,0), then Supp(f) C
(T2, o, Ta, Ta} and

Ef(%) =0.

Proof. Fix f € Ag(x; A1, A2). As the constant terms of f over the unipotent radicals of the
parabolic subgroups are 0, by Theorem 2.7.1 we obtain:
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Doo+5s90+25 = 0
DO,D —+ 28(),(] —+ SO = 0.
Do + 3500 = 0

The only solution of this system of equations is Do = sg9 = Sp = 0. Suppose that the
eigenvalues of the cusp eigenform f are not both zero. Using the expressions of Dg o, sp0 and
So obtained above, we obtain,

. 1
(A3 A3 — 120\ + 28)t + g(—)\l/\g —2)(t; +t2) =0, (2.7.3)
(A 4+ A3 — 14X\ N\ +92)t + é(—,\l/\g +10)(t; +t2) = 0. (2.7.4)

Subtracting equation (2.7.4) from equation (2.7.3) yields (=Aj Ay +32)t + (¢, +t3) = 0.
Adding equation (2.7.2) we obtain ¢ = 0, which implies t; +t2 = 0. Since f is not zero, we
must have to = —t; # 0.

Claim:

tin = Abt; for n > 0 and t; _, = ATt; for n > 0.

We have

/\Qti,n — 63.7:,?1 + ti,n—f—la n=>1

— 7

Mti—n =05; pny1 +tin1, n>1 (2.7.5)

We have already proved that for every vertex £ in the nucleus that is not of the form
Tiln], f(€) is a linear combination of ¢ and t; + to. If £ is not in the nucleus, then by
Theorem 2.4.2, using the multiplicities of the graph G, in GLs (cf. [85, Example 7.3.1]),
mak(E, Ti[n]) = me (€, T2[n]). Applying the relations of Theorem 2.5.13 to £, we express
f(&) as a linear combination of t and ¢, +¢3. Thus f(£) = 0.
Using the equations (2.7.5), we conclude that t;,, = ASt;, t;_, = Alt;, » > 1. But this
contradicts the fact that f has compact support in GL3(F)Z(A)\ GL3(A). So we must have
A=A =0.

Let f € Ay(x;0,0). By the cuspidal conditions, we have Sy = Dyy = soo = 0. We
use this on the equations of the parametrization of eigenforms with A\; = Ay = 0, obtaining
successively,

Dyy =0, s,5=0, s,1=0, tig=0 and Y T;=0.

This proves that f(£) = 0if &€ € NL\{T1, T2, T3, Ta}. Let £ € PBung X be a vertex such
that 7; is a neighbour of £ in the graph G, ;. As 6(7;) = —3, by Theorem 2.5.6, we conclude
that (&) < 0, ie. € =385 or &€ =S, Therefore f(£) = 0. We conclude by induction as
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in Theorem 2.5.13 that f(£) = 0 for every vertex £ that is not a trace. We also have by
Theorem 1.5.6 that a cuspidal function in P Bung X generates an admissible G L3(A )-module.
This finishes the proof of the theorem. ]

2.7.2 Eisenstein series induced from the Borel subgroup

In this section, we will study the eigenforms coming from unramified Eisenstein series from
the Borel subgroup. For this we will use the parametrization of A(z; A1, A2) obtained above.
We start with the description of the eigenvalues of the Eisenstein series by means of the
Satake parameters.

Let x be an unramified character of T'(A). Because hp = 1, we see that, in the notation of
chapter 1, A(T') = X7. Thus there exists s = (s1, 52, 53) € @f:.l (C/ lig'éZ) with s1+52+53 =
0in C/ QEEZ and such that

lo

x(diag(ty,te,13)) = g~ Y1 deg(t:)

for every t = diag(t,,to,t3) € T'(A). We put
o AL =Apy =2(27 H 27 429TR), Ay = Agp = 2(2777 427 4+ 29),
o N\yu =447 H 4T 4nTR) = A2 — 4, for |y| =2,
o N\yo =447 445 +42) = A2, — 4N, for |y =2

By Theorem 1.7.7, every eigenform E in £(y) satisfy ©,1(E) = ME, ©z2(FE) = MFE
Oy 1(E) = A1 E and @y 5(E) = Ay 2FE for |y| = 2.

For general v (outside a finite union of radicial hyperplanes), the Eisenstein series E(¢y, v, x)
is defined and its eigenvalue Ay and A, for the action of @, ; and @, 5 respectively, are not both
0 (cf. sections 1.6.1 and 1.7 for notation). Therefore, by the parametrization of the spaces
A(z; A, A2), E(dy, v, x)(Ti) = E(oy, v, x)(7;), which implies, by analytic continuation, that
E“(g{)x, v, x)(Ti) = E“(qﬁx} v,x)(7T;) for every v € X;. The same argument also proves that
E“(d)x, v, x)(T:[0]) = E“((j}x, v, X)(7;[0]). Therefore we can use in our calculations below the
notation used in the parametrization of A(z; A1, Ay) even if Ay = Ay = 0.

Let E' € E(x,x; A1, A2) be an eigenform. By Theorem 2.6.3, E satisfies the eigenvalue
equations

)\yi,lDD,U — 7D2,2 + 141?3',1, 1= 1} 2 (276)

[t follows from Ay 1 = Ay that ¢, = t5,. Using the formula for ¢, this implies that
ty =ty if Az 2 # 0. And in our parameterizations of A(z; A1, A2), we see that this is also true
when Az 2 = 0. Let Ay = Az1 and A2 = Az 2. From the eigenvalue equation (2.7.6), we obtain
D,y = %Do,o — > tia
= Dy (A3 4+ X3 — 140 4 92) + 602 — 30]t + [221 (=M Ay + 10) — Ao (£ + 1),
and using the expression for A, i,
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Do = [(A2 — 4Xg) (AT + A3 — 14X Ay + 92) 4+ 677 — 30\,]t
FRER (AN 4 10) — Mol (fy + )
= (AT + AIA3 — 18AF Ay — 4A] + 561 A2 + 98M\% — 398)\,)¢
+é(—)\.‘f’)\2 + 10A? + 4N A2 — 46)2) (1 + t2).
Subtracting this expression from the expression of Ds 5 from before, we obtain

. 1
Ao[(AF + A5 — 17N Ay + 182)¢ + 6(_)‘1)‘2 +34)(t; + t2)] = 0.

If (A1, Ag) # (0,0), then equation (2.7.1) implies that E satisfies

(AT + A2 — 17A Az +182)t + é(—/\p\g +34)(t, +t5) = 0.
This proves the following theorem.

Theorem 2.7.3. Let X be the elliptic curve over Fy with Weierstrass equation y* + y =
2% + 2+ 1, which has a unique place of degree 1 denoted by x. Let x € Xr such that
[(0,x)] € TI(z; A1, A2) (cf. section 1.7 for notation). If E € E(x,x; A1, A2) is an eigenform,
then in the parametrization of A(x; A\i, As), E satisfies the relations:

E(T;) = E(T;) fori,j € {1,2,3,4} and E(T1]0]) = E(T:[0]).
If (A1, A2) # (0,0), then E satisfies

(AT + A5 — 17A Ny + 182)t + é(—/\l)\g +34)(t; 4+ t5) = 0.

2.7.3 Cuspidal Eisenstein series

In this section, we will study the unramified cuspidal Eisenstein series induced from the
parabolic subgroup Pr = P, contained in A(z; A, Ay). We start by describing the cuspidal
representations of the Levi subgroup.

Let 7 = m ® x be an unramified cuspidal representation of Mj;(A) where m is an
unramified cuspidal representation of GL2(A) and y is an unramified idele class character.
From hr = 1, it follows that the central character of 7 belongs to X, and twisting by its
inverse, we can assume that m; has trivial central character, i.e. is a cuspidal representation
of PGLy(A), and y = Yo is the trivial idele class character. Thus it is sufficient to study the
space of unramified cusp forms of PG Ly(A). From |85, Theorem 8.2.1], the dimension of the
space of unramified cusp forms in PGLy(A) is 2 and ®,;(f) = 0 for every unramified cusp
form f in PGLs(A). We decompose this space of dimension 2 using the Hecke operators
®, 4 for y € | X| with |y| = 2.

Let g be a cusp eigenform in PGLy(A). We use the notation for elements of PBun, X
introduced in Theorem 2.6.2. The correspondence with the notation in [85, Example 7.3.1]
is as follows (cf. [2, Section 4.6]):

e M,, corresponds to t;,
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e SZ corresponds to sg,
e C;. corresponds to ¢g.
From [85, Thm. 8.2.1 and Example 7.3.1], we have
9(Co) = —g(82) = g(M,) + g(My) and Supp(g) C {SZ,Co, My, My }.
From Theorem 2.6.2, we get the eigenvalue equations
e Ayg(Co) = 39(C2) +29(M,)
o \yg(My) =g(Co) + g(My) +39(M,),

which implies
(Ay —2)g(My) + Ayg(My) = 0 and 2g(My) = (A, —4)g9(M,)

If g(M,) = 0, then g(M,) = 0 and thus g(Cy) = g(SZ) = 0, so we conclude that g is
identically 0, which is a contradiction. Thus g(M,) # 0. Using the eigenvalue equations at
the place y, we obtain [2(A, — 2) + A, (A, — 4)]g(M,) = 0. Therefore A\, = 1 £ /5.

From |85, Theorem 8.2.1|, the dimension of the space of unramified cusp forms in
PGLy(A) is 2. So there are 2 cuspidal eigenforms g; and g» whose respective eigenvalues for
®,, and &y, are

gt AW =1+V5, 0 =1-5,
g0 Ay =1—VE A =145,

Each g; generates a cuspidal representation m; and we denote by m; = m; ® X the corre-
sponding cuspidal representation of My(A). Let (a«?), ﬁ}t)) be the Satake parameters associ-

ated with 7} at the place y;, then

2D =2(al” + ) and 7B =1.

Next we study the unramified Eisenstein series induced by m;. Let s € X; and write

s = (s1,89) € (C/ZLZ) & (C/ZELZ) with s; + 85 = 0 in C/ZZ5Z. Let E € E(my,s) be an

log2 log2 log 2
eigenform. The Satake parameters associated with m;(s) are:

o diag(i-2751/2, —i.2751/2 2%) at z,
o diag(a;i)al_slf’z?ﬁf)4_31/2, 4%2) at y;.

Thus the eigenvalues of E for the action of the Hecke operators ®,; and ®,; with |y| = 2
and 7 = 1,2 are:

o Ay =2(i-27/2 . 2ms/2 g 9my bk )\, = 9l
. )‘yj,l _ 4(&5_@) + ﬁj(_iJ)4—31/2 gl — )\é?)\m._z + A2

r,1:
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o Ay o=4(al) +pI)4/2 4t = AN, 4+ 02,

In particular, A\;1A\;2 = 4. In our calculations below, we use our parametrization of
A(z; A1, A2).

According to the eigenvalue equations from Theorem 2.6.3, we have
/\'y_-;,l-DD,[) = T-DZ_.Z —|— 14tj,1

We define Ay = Ay 1, Ao = Ao, A=Ay, A" = Ay,. Using the formulas for Dy, D22 and t; 1,
we obtain

(AN + AD[(NF + X3 +36)t + (£, + t2)] = (A) — 305 + 2403 — 140)t + A () + ta) + 2oty
and
Mo N + AP [N + A3 +36)t + (t + t2)] = (A] — 3A5 + 240T — 140t + N3 (ty + t2) + 2oty

Adding the two equations and using A\ A2 = 4, we obtain

(2XS + 1103 + 32X, + 128)t = 0.

Thus ¢ = 0. Subtracting the second equation from the first and using that A — A" =
(—1)"7124/5, we obtain

Ao(A = N')(ty +1s) = 2Nty — ts) => t; — by = (—1)"V5B(t, + 1)

which implies to = Y534, if i = 1 and ¢, = Y33, if i = 2.
This proves the following theorem.

Theorem 2.7.4. Let X be the elliptic curve over Fy with Weierstrass equation y> + vy =
23 4+ 2+ 1. Denote by = the unique point of degree 1 of X. Let m, m be the unramified
cuspidal representations of Mi(A) as above. Let Ay, Ay be complex numbers with A\ Ay = 4.
Let i € {1,2} and s € Xy such that [(I,m;(s))] € IL(z; A1, As) (cf. section 1.7 for notation,).
The space E(x,m;(s), A1, A2) is of dimension 1. If E; is a generator of E(x, mi(s), A1, Aa), then
using the parametrization of A(z; A, A2), we obtain that E; satisfies the relations:

o Ei:  t=0and t, = Y53,

e Fy: t=0andt, = ‘/52_3?52.

These relations determine E; up to multiplication by a constant.
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2.8 The space of Toroidal automorphic forms

Let 7" be the 3-dimensional torus associated with the constant field extension £' = Fs F of F,
with respect to a basis of E over F that is contained in F 3. We denote by Op : Af — Ga,.
the corresponding morphism. In this section, we will study the unramified E-toroidal forms.

Theorem 2.8.1. If 1" is the torus above and cpr = vol(TZy \ T} )/#(Pic X;3/p*(Pic X)),
then for f: G(F)\G(Ar)/K — C,

./T;.‘ZA\TA fe)di=er- > f([p<L]).

[£]€Pic X3 /p* (Pic X)

Proof. We introduce the following notation. For an z € | X| that is inert in E/F, we define
Ogrz := Opy, where y is the unique place that lies over z. For an z € |X| that is split in
E/F, we define Op, = Opy, @ Opy, ® Opy,, where y, y» and y; are the 3 places that lie
over . Note that there is no place that ramifies. Let Op, denote the completion of Op .
Then Op, is a free module of rank 3 over Op, = O, for every z € | X|.

The basis of £ over F' that defines 7" is contained in Fgs. It is thus a basis of Og, over
O, for every z € | X/, and therefore ©£(O} ) C K. This gives us a commutative diagram

EX\A}/Of *—Pic X;

Gp\Ga, /K = Bung X

where the horizontal arrows are the bijections from Weil’s theorem.

The action of Az on EX\AL/OF and Gp\Gy, /K by scalar multiplication is compatible
with the action of Pic X on Pic X3 and Bung X by tensoring in the sense that all maps in the
above diagram become equivariant if we identify Pic X with F*\ AZ/Oy . Taking orbits
under these compatible actions yields the commutative diagram

EXAF\AY/OF —*=Pic X;/p* Pic X

leg lp*

GrZy,\Gap/ K ——=P Buny X

Since f is right K-invariant, this commutative diagram yields the assertion of the theo-
rem, whose constant ¢ equal to the volume of the projection of Oy in E*AF\AZ. Evaluation
at a constant function f yields ¢ = ¢pv. ]

For our fixed elliptic curve X over Fy, we next determine the 7"-toroidal automorphic
forms in A(z; A1, A2). The toroidal condition for the 3-dimensional torus 7" reads

Doo+3) T;=0. (2.8.1)
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In particular, we see that the cusp eigenforms are toroidal for this torus. In the case
(A1, A2) # (0,0), we see that equation (2.8.1) is equivalent to

Doo=—3) T, =—12T = —84t.

Using the expression of Dy g, we obtain

(N3 4 A — 1A A + 104)1 + 16(—)@2 +10)(ty + ) = 0 (2.8.2)

Let A;, Ay and x as in Theorem 2.7.3 and E € £(z, x; A1, A2) an eigenform. Suppose that
(A1, A2) # (0,0). Next we analyze when E is T'-toroidal. By Theorem 2.7.3, E satisfies

(A + A5 — 17TA Ay + 182)t + 16(—)\1)\2 +34)(t; +t5) =0 (2.8.3)

Suppose that E is T'-toroidal. Subtracting Equation (2.8.3) from Equation (2.8.2), we obtain

3

In particular we must have t # 0, because E # 0. Replacing Equation (2.8.4) in Equation
(2.8.2) yields
143

N | 19
A+ A3 — g(A1A2)2‘ — 7)\1)«2 +—5 =0

Let Ay, Ay € Cwith AyAy = 4. Let m;, s be asin Theorem 2.7.4 and let E; € E(z, m;(s), A1, Aa)
be a generator of this space. We prove that E; is not a T"-toroidal automorphic form. In

fact, the toroidal condition Dyo + 3> 7; = 0 is equivalent to

(AT + A5 — 1AM Ay + 104)t + é(—/\l/\g +10)(t; +t) = 0.

If E; is a T"-toroidal automorphic form, then ¢; + 5 = 0, because by Theorem 2.7.4 we have
t =0 and A\ Ay = 4. But by Theorem 2.7.4, this implies that ¢; = ¢, = 0, which contradicts
E; #0.

This proves the following theorem.

Theorem 2.8.2. Let X be the elliptic curve over Fy with Weierstrass equation y> + vy =
2+ 2+1. Let T' € GL3 be the maximal torus corresponding to the constant field extension
FsF/F. Regarding the T'-toroidal automorphic forms we have:

1. Unramified cusp forms are T'-toroidal automorphic forms.

2. Let A\, s € C with \MA2 = 4. Let My be the standard Levi subgroup of the standard
parabolic subgroup Pr of type (2,1). Let m, mo be the unramified cuspidal representa-
tions of Mr(A) as in section 2.7.2, and s € Xy such that [(I,m;(s))] € I(z; Ay, Ag).
The automorphic forms in E(x,m(s), A, A2)\{0} are not T'-toroidal.

3. Let (A1, Aa) # (0,0) and x be an unramified character of T(A) such that [(0,x)] €
[I(z; Ay, Ag). If E € E(x,x; A1, A2) is a T'-toroidal eigenform, then
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. | 19 143
AT+ A3 — g(/\l)\z)z - ?/\1/\2 + 5 = 0.

2.8.1 An application to the Riemann hypothesis over finite fields

Let F be the function field of the elliptic curve over Fy with Weierstrass equation y? +y =
2>+ 2+1 and E = FsF the constant field extension to Fs. We denote by z the unique place
of F' of degree 1. In this section, we show how to prove the Riemann hypothesis for the zeta
function of E using the parametrization of the spaces A(x; Ay, Ag) of section 2.7.

We put G = GL3 and denote by T' C GL3 the torus associated with the extension E/F,
where the embedding is obtained by chosing a basis of Fg over Fy as a basis of E over F.
Let V be the affine space of dimension 3. We remember that, as in section 2.1.3, the chosen
basis to construct the embedding T' C G also gives us an identification of E with V(F') and
of V(Ar) with Ag, which we use implicitly below.

We recall some facts about L-functions. If y is a quasi-character of F*\A* and S =
{z e |X||3a, € OF, x(az) # 1}, The L-function of x is defined by

1
Lp(x.s) = H Y

re|X|—S
The zeta function of F'is defined by (p(s) := Lp(1,s). For the analytic properties of the
L-function of the quasi-character y, see [85, Thm. 2.2.2|. We have the following factorization
of the zeta function of E,

Ce(s) = 1T Lp(@,s),

weHom(Gal(E/F),C*)

where w corresponds to w under the reciprocity homomorphism from class field theory (cf.
185, Sec. 2.2.9, Lem. 2.2.10]). If ¢ is a Schwartz-Bruhat function on Ap, w is a quasi-
character of E*\A*, the Tuate integral is defined by

o) = [ ottty

E
The Tate integral ¢(p,w|-|?) is a holomorphic multiple of Lg(w,s) (cf. [85, Thm. 2.2.7]).
We denote by 1y the Schwartz-Bruhat function

Yo = hp(qg— 1) (volOy,,)~* charg, .
If w is unramified, then (¢, w| - |*) = Lp(w, s) (cf. [85, Thm. 2.2.7|).

Next we recall Wielonsky’s formula (2.1.7) from section 2.1.3:

/ E(p,tg,w)dt = w(det g)((pqg,w o Ng/r)
T(F)Z(A\T(A)

where ¢ is a Schwartz-Bruhat function on V(A), w is a quasi-character of F*\A* and
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E(p, g,w) is the Eisenstein series from section 2.1.3.

To apply the theory from section 2.7 we need to compute the action of the Hecke operators
&, and ®,5 on E(p, g,w) when this Eisenstein series is an unramified automorphic form.
First we identify this Eisenstein series as an Eisenstein series induced from a parabolic
subgroup.

For I = {ay} € A we have d; = (2,1). Consider a quasi-character w of F*\A*. With w
we associate the quasi-character of M;(A) defined by

ou(m) = w(det my)w(my) 2,
where m = (my,ma) € Mp(A) ~ GLy(A) x GLi(A). Since Mi(A) = Pr(A)/Ni(A), we can
extend o, to Pr(A). Let ¢ be a Schwartz-Bruhat function on V(Ap), e = (0,0,1) € V(F)
and o € R such that |w(t)| = |t| for t € Aj;. We define

Npg.w) = [ pletgulderto)dt,
AX

which converges if o > 1/n. We define the Eisenstein series E(¢, g,w) by

E(p,gw)= Y. N(p,7g.w).
YEPH(F)\G(F)
This series converges if o > 1. The group of quasi-characters of F*\AJ has a structure of
complex Lie Group of dimension 1 with connected components of the form {w|-|* | s € C},
and the map s — w|-|® is an open map. The Eisenstein series E(p, g,w) has a meromorphic
continuation to the group of quasi-characters of F*\AJy (cf. |[102, Prop. 9]). In particular,
as hrp =1, we see that in [102, Prop. 9| the unramified characters that appears as poles of

By a change of variables, we check that N (¢, pg,w) = 0,(p)N(p, g,w) for every p € Pi(A)
and every g € G(A). Therefore

G(A
N(p,g,w) € Indpf(i)ow.

From this it follows that the Eisenstein series E(p, g,w) is an unramified automorphic form
when w is unramified and ¢ is a multiple of 1y, where we use the identification of V(Ap)
with Ap to see ¥y as a Schwartz-Bruhat function of V(Ap).

Theorem 2.8.3. Let F' be the function field of the elliptic curve X over Fy with Weierstrass
equation y> +y = 2> + 2+ 1. Let y € |X| be a place of F. Let w be an unramified quasi-
character of F, 1y the Schwartz-Bruhat function defined above and E (g, g,w) the Eisenstein
series defined by Wielonsky for GL3(A). The action of the Hecke operator ® € Hg, on
E(1g, g,w) is given by

(I:' . E(T)D(hgaw) - (I)V(Zla 29, zS)E(quD:gﬂw)a

where
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21 = w(my)qy, z=w(my), z3= w(ﬁy)_zqy_lﬁ

and ®Y is the Satake transform of ® as defined in section 1.3.

Proof. By Lemma 1.6.1, the square root of the modular character of P;(A) is given by
1/2 _ 1/2 1 _
5PI(A)(nm) = | det m[/“|me|™" = 0 1/2(nm)

where n € Ni(A) and m = (my, ma) € Mi(A). Therefore

G(A) _G(A)
Indp,(mo—w = zM,(A)JwI'I_'”'

For y € | X|, we denote by w, the restriction of w to F,;* € A*. It follows from the description
of the induction in terms of tensor products in |27, Thm. 1.4, that

S8 o= @) S5 o
Mp(A)Y w712 — My (Fe)® we ||z /2
re|X|

If y is the quasi-character of My(F.) given by

x(diag(ty, ta, t3)) = w(trts) [t ~'w(ts) ~*|ts],

then o 1,2 is isomorphic to the unique spherical subquotient of zﬁﬁgﬁx

wz ||«
By the exactness of ifﬁ’(ﬁ’l) and the isomorphism if;ﬁ?m) (zﬁé%iﬁ ) ~ ’éf}ﬁ,}z)x given

by Theorem 1.2.8, we conclude that ’éf}f’;?x)aw Y2 is a subquotient of the principal series

G(F2) :
UMy (Fr) X

It follows from dil'n(-iif(ﬁ”gx)owzl_l—1/2)KI = 1, Theorem 1.3.2 (i) and Theorem 1.3.6 (ii) that

if v is such that ('iﬁf(i?z)ng|-|‘1/2)Kz = (v) and ® € Hg,, then

D v =DY(zy, 29, 23)0.
It N e fndgf‘éi)aw; we denote by E(N, g,w) the Eisenstein series

E(N,g,w):= Y N(yg),
YEP (F)\G(F)

which converges if ¢ > 1 (The proof of convergence of the Eisenstein series in Theorem 1.6.2
also works for the Eisenstein series F/(N, g,w)). The theorem follows because the map

I ndgf‘;g)ow —_— A
M — E(M,g,w)

is a morphism of representations. O

The function field F' has class number 1, therefore the unramified quasi-characters of
F>*\A> are of the form |- |*, and we have
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/ E(so,t,| - I*)dt = Cp(s).
T(F)Z(A\T(A)

Suppose that E(ty,g,| - |?) is a T-toroidal automorphic form. If Y = 2%, then by Theorem
2.8.3 and Theorem 1.3.6 (iii), we conclude that the Hecke operators ®,; and &, acts on
the unramified Eisenstein series E(1y, g,w) with respective eigenvalues

3 Y? 2 3Y

If for i = 1,2 g; € G(A) maps to T;[0] € P Buns X by the bijection of Weil’s theorem,
then we conclude as in section 2.7.2 that

E({Pagl:l . |3) - E(“pﬂg2| : |9)
and that A\; and Ay satisfy

‘ | 19 143
Using that A\; = 2(5 + Y{) and Ay = 2(5% + 2X), we see that this equation is equivalent to

Y2 +64=0.

Since Y = 2%, we have Re(s) = Zl) which proves the Riemann hypothesis for the zeta function
(. We have proven the following.

Theorem 2.8.4. The Riemann hypothesis holds for (g(s), where E = FgF and F is the
function field of the elliptic curve over Fy with Weierstrass equation y> +y = 2> + 2 + 1.

Remark 2.8.5. Observe that the representation oy, is not a cuspidal representation of M;(A),
but a residual representation. In the decomposition of the space A of automorphic forms
in Theorem 1.7.4, the Eisenstein series of Wielonsky belongs to the spaces £(x), x a quasi-
character of My(A). To prove this we use the theory of residual Eisenstein series (cf. |34,
Equation 3.3| for the analogue over number fields and also [90], |87, Chap. V and VI| and
|76, Chap. VII and App. II|).
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Chapter 3

Orthogonal period of a GGL, Eisenstein
series

3.1 Introduction

Jacquet conjectured that the orthogonal period of a GL,, Eisenstein series is related to the
Whittaker coefficient of some metaplectic Eisenstein series in the double cover of GL,, (cf.
[62]). In the papers [34], [33|, Chinta and Offen solved the case n = 3 for the Borel subgroup
and reformulate the problem in terms of a kind of representation numbers. In this chapter
we study the case n = 4 for the parabolic subgroup of type (2,2). This chapter is part of a

joint project with Gautam Chinta. (2,2).

3.2 An orthogonal period as a finite sum over a genus

class

Let S = {oo}U{p | pis a prime number} be the set of places of Q and S; = .S —{oo} the set
of finite places. We denote by @, = R the completion of Q with respect to the archimedean
norm of @, and for p a prime number, the field of p-adic numbers @, is the completion of
Q with respect to the p-adic norm. The ring of p-adic integers Z, is the maximal compact
subring of Q@,. For v € S, we write v < oo if v is a prime number. We denote by A the ring
of adeles of @, i.e. the restricted direct product of Q,, v € S, with respect to Z,, p € Sy.
For an algebraic variety G defined over @ and a place v of Q we denote G, = G(Q,) and
Gy = G(A). We consider G = GL4 as an algebraic group over Q. We denote by K the
standard maximal compact subgroup of G, i.e.

K =0 [[CLu(Z,),
P
where K, = O(4) is the orthogonal group in GL4(R). Let Y = [[,Y, be the restricted
product of sets Y, with respect to subsets Z, C Y, (v € §). We define Y; = I1..Y, =

V=00
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[1,Y, Let

X={geG:'g=g}

be the space of symmetric matrices in G. There is an action of G on X given by g.z = gz'g.
For z € X, we let

H*={9eG:gz=1z}

be the orthogonal group associated with z. For z € Xg, we define the class of z to be

[z] = GLy(Z).x

and denote z ~ y if y € [z]. The genus class of z is defined as

[#]] = Xo N [(GooK).7],

and we denote by [[z]]/ ~ the set of classes in the genus class of z. Let X1 be the set of
positive definite orthogonal matrices in Xo. It is well known that if z € Xg N X} then
[[z]]/ ~ is a finite set (cf. [10, Prop. 2.3 and Thm. 5.1]). Let z € Xo N X and let § € G
be such that

fe=ux.

We define
Stabgzy(z) ={g9 € G(Z) | g.x =z} and e(z) = #Stabgz)(z).

By |10, Prop. 2.2|, we have Gy = GgG Ky, from which follows that the embedding of G
in G defines a bijection
Go\Ga/K ~ Gz\Gx/Ks = GLyA(Z)\GL4(R)/O(4).

The symmetric space GL4(R)/O(4) is identified with XT via g — g.e. Thus a function ¢
on Gg\Ga/K can be regarded as a function ¢* on Gz\XZ by setting ¢7(g.€) = ¢(g) for
g€ Gy.

Lemma 3.2.1. Let ¢ be a complex valued function on Go\Ga/K then for all z € XoN X7,

we have

/ o(h8)dh = vol(HE, NKPHL) 3 ey) 6" ().
Ho\HY lellz])/~

Proof. For a proof cf. [34, Lem. 2.1]. O
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3.3 Classical and adelic Eisenstein series

In this chapter, we consider only Eisenstein series in G L4 induced by characters on the
standard parabolic subgroup of type (2,2). We write P = MV, where V' is the unipotent
radical and M is the standard Levi subgroup of P. For p = (uy,pus) € C? such that
w1 + o = 0, we associate the character of My = Py /Vy

1
|

diag(my, my) — | det my || det maly?,

which we denote also by p. We denote by I§(p) = Indgf (p- 5}5;2) the normalized induction
of p from My to Gu. For ¢ € I§(p), we consider the Eisenstein series

Ep(g,0,0)= Y ¢(19)
1€F\Go
Let @, (vmk) = |detm |k det mo|i2 ", where m = diag(mi,ms) € My, v € Vi and
k € K, be the K-invariant element of I§(u), normalized such that ¢,(e) = 1. We define
Ep(g:p) = Ep(g, o4, ) and Ef(g - e;pn) = Ep(g; p) the associated function on Gz\XZ.
Next we find an expression of E}(z; p) in terms of z € X7
For z € X1, we denote by dy(x) the determinant of the lower right 2 x 2 block of
x. Observe that dy(x) > 0 because z is positive definite. If ¢ € G, by the Iwasawa
decomposition we can write g = vmk with v € V,, m € My, and k € K. From this it
follows that

det(g.e) = | det my|*| det my? and dy(g.€) = | det my?,

which implies

det(g.e) 1 TV/2 . dy(g.e)~ 1 7H2T2/2 — | det my |1 | det mo |27t = @, (g)-

Using this and the natural bijection Pz\Gz ~ Py\Gg, we express Ef(x, 1) as a function in
Gz\XZ, in the following way,

Ef(z,p) = det 2N dy(5 . )Tt/ (3.3.1)
5€P35\Gg

3.4 Eisenstein series and representation numbers

For z € Xg, we let @, denote the quadratic form associated with the matrix z, i.e. Q.(§) =
izl for £ € RY Welet z € XoNXT be integral, i.e. Q,(£) € Z for all £ € Z*. We show that
for such z, the Eisenstein series Ef(x; i) is a Dirichlet series in p; — po. We interpret the
coefficients in terms of a type of representation number, which counts certain points on the
(partial) flag variety Pg\Gg. To define the representation numbers we will use the Pliicker
coordinates of the flag variety. To any g € Gg, we associate vy(g) € Q°, the vector of all
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2 x 2 minors in the botton rows of g. For a vector v € Q°, we denote by [v] the associated
point in the projective space ]P%}. The map

Pog = [v2(g)]

is an embedding

PQ\GQ — IP%,

and if (@ :b:ec:d:e: f)are the projective coordinates in ]P’%: the image is the set of
(a:b:c:d:e: f)ePysuch that af —be +ed = 0 (cf. 94, Example 1.24]). It will
be more convenient for us to use the identification Pz\Gz ~ Py\Gg and work with integral
coordinates. The map

g [va(g)]
also defines an embedding

P\Gy — Z8/{=%1}. (3.4.1)

We define

I(P) ={v € Z° | 3g € Gz, v:(g) = v}.
Therefore v = (a, b, ¢,d, e, f) € Z(P) if and only if af —be+cd = 0 and ged(a, b, c,d e, f) = 1.

We identify /'\2 Z* ~ 7Z° by mapping the basis {€; A €j}1<i-j<4 in lexicographic order to
the basis {€;}1<i<s. Let Qa2 be the quadratic form corresponding to the operator A%z in
A>Z*. The operator A%z in \*Z* is given on the basis {€; A €;}1<i-j<4 by the matrix of
2 x 2 minors of z. Therefore if we consider Qa2, as a quadratic form in Z° through the
isomorphism /\2 Z* ~ 7°, the matrix of Q2, on the canonical basis of Z° is given by the
matrix of 2 x 2 minors of z. The representation numbers that are important to us are

rp(z; k) = #{v € I(P) : Qn2(v) =k}
where k is a positive integer.

We define the Dirichlet series

Zp(e;s) = 3 2GR,

ks
k=1

the genus representation numbers

rp(gen(z);k) = > e(y) 're(y; k)
yel[z]]/~

and the associated Dirichlet series
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Zp(gen(x);s) = Z W

E>1

By [34, Lem 3.2| we have the identity

dy(0.2) = Qp2:(v2(9)).
This together with Equation (3.3.1) implies the following.

Proposition 3.4.1. Consider x € Xo N XL and Q, integral. Then
1
Ef(z;p) = 5 det 22 7025 (g — pg +2)/2).

If 0 € G is such that 0.e = x, then

/ Ep(hO; p)dh = %voi((Hﬁf N K;)HZ) det 22 Zp (gen(x); (uy — po +2)/2).
JHg\HE

Therefore the problem of comparing the orthogonal period of Ep(g; 1) with Weyl group
multiple Dirichlet series is reduced to the study of the representation numbers rp(gen(z); k),
which we do in the next section for z = 1.

3.5 Explicit formula for the representation numbers

In this section we solve the representation number problem of the previous section when
x = Iy. In this case the genus [[I4]] has only one class, cf. [30, Chap. 9 Sec. 4 Cor. 2.
Inspired by [33| we compute the numbers r(d) := rp(I4;d) in terms of class numbers of
imaginary quadratic fields.

Using the identification /\2 Z* ~ 75 of the previous section, we obtain Q a2y, (v) = v} +
v3 + v + vi 4 v2 + v for v = (vy, vy, U3, vy, vs,06) € Z°. Therefore r(n) is the number of
6-tuples (vy, va, v3, vy, vs,v6) € Z° such that

® V1V — VoUs + U3y = 0,
o vf +v5 +v3 + 0] +vf +v§ =n, and
o ged(vy, vz, 3, vy, 05, v6) = 1.

We say that a lattice L < Z™ is primitive if (Q- L) NZ" = L, i.e. if L is generated by some
vectors of a basis of Z". Let Gry4(Z) denote the set of 2-dimensional primitive lattices of
Z*. We have a natural embedding

U: Gro(Z) — NTZ4/{£1},
(v,w) +— vAw
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which corresponds to the embedding (3.4.1). Using the identification /\2 Z* ~ 78, we denote
by (a:b:c:d:e: f) € Z5/{£1} the equivalence class of (a:b:c:d:e: f)e Z\{0}.

We denote by B(Q) the Q-algebra of Hamilton quaternions, by Z the conjugate of any
element z € B(Q) and by Tr(z) =  + 7 the (reduced) trace. The (reduced) norm on B(Q)
is given by

- 2, .2, .2 2
Nr(z) = 27 = Tx = x5 + =] + =5 + 23,

where z = xo+ i+ 25j + 23k € B(Q). We identify Q* with B(Q) via the map (a, b, ¢,d) —
a + bi + c¢j +dk. We denote by B(Z) the subring of B(Q) of quaternions with integral
coefficients. Let Bo(Q) denote the subset of trace zero quaternions and By(Z) the trace
zero quaternions with integral coefficients. The identification of Q* with B(Q) gives an
identification of Q* with Bo(Q) and of Z* with Bo(Z). For L € Graa(Z), we denote by Qy,
the restriction of the quadratic form

Qu(z,y, z,w) = 2* + y* + 2> + w? = Nr(z + yi + 2j + wk)
to L, and by disc(Qr) the determinant of the matrix of @), with respect to some basis of L.
Lemma 3.5.1. If L € Grys(Z) with L = (v, w), then

disc(Qr) = Quar, (v Aw).

Proof. If v = (a,b,¢,d) and w = (a’, V', ,d"), we have

vAw=(ab' —a'ble; A ez + (ac —d'c)er N es + (ad —ad'd)e; N ey
+ (b —Ve)eg Nes+ (bd —bd)ey Neg+ (ed — d'd)es A ey

Qr(z,y) = (az +a'y)’ + (bz + by)* + (cz + y)* + (dz + d'y)?
= (a®* + b* + & + d%)2® + 2(ad’ + bb' + cc’ + dd)zy + (a’* + b? + % + d?)y>.

From these expressions the identity follows easily. O
Proposition 3.5.2. If L € Gras(Z) and V(L) =(a:b:c:d:e: f), then
U(IH) =(f:—e:d:c:—b:a).

Proof. We begin by noting that the primitive 6-tuple (f : —e : d : ¢: —b: a) are coordinates
of a pure tensor in A\”Z* because fa — (—e)(—b) 4+ dc = 0. Therefore there is a primitive
2-dimensional lattice L' in Z* with W(L') = (f : —e : d : ¢ : —b : a). We have to show that
L' = L*. For this we can change the language from 2-dimensional lattices to 2-dimensional
planes in Q* and work in the Grassmaniann variety Gry 4. The functions
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(a:b:ec:d:e: f)y—=(f:—e:d:c:—=b:a) and L Lt

define morphisms of the algebraic variety Gr(2,4). To prove that they are equal, it is
enough to show that they coincide in an Zariski open set. Consider the open set where
F #£ 0. Multiplying by a scalar, we can assume that f = 1. Let v; = (2y,y, 21, w;) and
vy = (29, Ya, 22, ws) be two generators of the plane L and L' be the 2-dimensional plane
with W(L') = (f : —e : d : ¢ : =b : a). In the article [69], we have a way to construct
wy and wy vectors generating L', given by wy = (f,0,—¢,b) and wy = (0, f, —e,d). From
U(L)=(a:b:c:d:e: f)it follows that

a =T1Y2 — T2,
b =T122 — T2z,
€ =TI Wy — TaWy,
d =y, 25 — Y21,
€ =l1w2 — Ya2wm,

f =Wy — ZoUN.
Next we compute the inner products of the v;’s with the w;’s

(Uh’wl) :$1(21’w2 - ~2’w1) - Z1 (3?1’11»‘2 - $2’w1) + wy ($122 - 3?221) =0,
(’U2=’w1> :$2(21’w2 - ~2’w1) - 22(3?1’11»‘2 - $2’w1) + w2($1z2 - 3?221) =0,
(Ul;w2> :y1(21w2 - Zz’wl) — 21 (yl’wz - yzw1) + wn (39'122 - yzzl) = 0;

(v9, wa) =Ya(21wa — 20wy) — 22(Y1wa — Yowy) + Wa(Y122 — Ya21) = 0.
which proves that L' = L+, ]

In order to express 7(d) in terms of squares of class numbers we need another parametriza-
tion of Gry4(Z) as described in [1]. We define

K(Z) = {(a1,as) | a1,a2 € Bo(Z)\{0} and Nr(ay) = Nr(as)}/ ~

where (ay, as) ~ (@), ab) if there is A € {1} with (ay, as) = (Aa}, Aa}). We denote by [ay, as]
the equivalence class of (a;,ay) in K(Z). If L € Gryy(Z) with L = (vy,v5), we put

1

a1(L) == vivz — éTr(vlv_g)}
1

as(L) = Tv, — iTr(v_gvl)}

and define the Klein map

o: Grou(Z) —  K(2).
L — [ai(L), as(L)]
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We say that a pair of vectors (wy, wy) € Z* x Z* is pair-primitive if %wl ¢ 7> or %w;, ¢ 7?
for all odd primes p and if 3 (w; + ws) & Z* or $(wy —ws) ¢ Z*. The following result is
proven in |1|. For convenience, we include a proof of this result.

Proposition 3.5.3 ([1, Lem. 2.3 and Prop. 2.5|). The Klein map ® is a well-defined
bijection between Gry4(Z) and the set of ai, as] € K(Z) such that (a1, as) is pair-primitive
and a; = ay (mod 2). Moreover, we have

1. dise(QL) = Nr(ai(L)) = Nr(as(L)).
2. ®(L*) = [ay(L), —ay(L)).

Proof. We write L = (vy,v2) and define a,(L) and as(L) as before using v, v2. We have

Nr(ai(L)) = ay(L)ai(L) = (vivz — 1Tr(vi03))(vovr — 2T (v173))
= Nr(v))Nr(vg) + {T7(0173)* — 5T7(0173) (0577 + 0173)
= Nr(vy)Nr(vqy) — %TT(U]_’U_Q)z

and analogously

Nr(az(L)) = Nr(vy)Nr(vy) — %Tr(v_lvg)z = Q(a,(L)).
This proves that disc(Qr) = Nr(a;(L)) = Nr(az(L)). We observe that the maps

(u,v) —uv — 1Tr(uv),

(u,v) —vu — 3Tr(vu)

are bilinear and antisymmetric. From this it follows that [a;(L), as(L)] does not depend on
the choice of the basis vy, vy of L.

We identify /\2 Z* with Z° via the standard basis 1 A1, 1Aj, 1Ak, iAj, iAk jAk A
direct calculation of wedge product shows that

AR %(—(m + a2)1, —(a1 + az)2, —(a1 + a2)s, (a2 — a1)s, (a1 — az)2, (a2 — a1)1) (3.5.1)

where a; = a;(L) for i = 1,2 and for v € Z* = By(Z) we denote the coordinates of v by vy, vy
and v3. Formula (3.5.1) shows that the Plucker embedding W factor through the Klein map.
[t follows that a; = ay (mod 2) because v; A vy has integral coordinates and we see that
the pair-primitive condition on (aq,as) is equivalent with the vector above being primitive
in Z°. Observe that for every pair-primitive pair (a1, az) the coordinates of Equation (3.5.1)
satisfies the identity af — be + ed = 0, which describes pure tensors in /\ti Z*. Therefore
® is a well defined bijection with image the set of [a;,a;] € K(Z) such that (ay,as) is
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pair-primitive and a; = ay (mod 2). Equation (3.5.1) and Proposition 3.5.2 implies that

O(L+) = [ay(L), —az(L)]- m

By Lemma 3.5.1 we have r(d) = 2|R4|, where Ry is the set of L € Gry4(Z) such that
disc(Qr) = d. Therefore r(d) is the number of pair primitive pairs (a;,as) with a; = as
(mod 2) and Nr(a;) = Nr(az) = d. We can compute r(d) using ideas from |1], in particular,
their Lemma 2.2 and the arguments of Corollary 2.6 and Corollary 2.7. We define

D:={DeN|D#0,7,12,15 (mod 16)}.

Proposition 3.5.4. Let d be a positive integer. We have r(d) > 0 if and only if d € D. Let
d € D and write d = dyd® f? with dy squarefree, f odd and e € {0,1}. Then we have:

r(d) = cars(do)2f? &:J 1 (1 o (_Tdo))ep(f,’c) | 55

elf plf
where

1 if d =3 (mod 4),
ca=14 1/3 ifd=1,2 (mod 4),
2/3 if d=0 (mod 4),

e (n)— 1 2 ¥pin,
(") {1 if ptn,

1

ple =+

—di . , _
(TO) is the Legendre symbol and w(c) =

Proof. 1f d is a positive integer, we denote by 74(d) the number of triples (a,b, ¢) € Z? such
that a®> +b* + ¢ = d and ged(a,b,¢) = 1. We recall Legendre’s theorem, which says that
r4(d) > 0 if and only if d # 0,4,7 (mod 8). Therefore r(d) =0 if d =7 (mod 8).

Let d =3 (mod 4). As in the proof of Corollary 2.6 in [1], we see that r(d) is the number
of pair-primitive tuples (v, v’) such that Nr(v) = Nr(v') = d, the condition v = v’ (mod 2)
being automatically satisfied. The pair primitive tuples (v,v") are precisely of the form
(cw, dw') with Nr(w) = Edg? Nr(w') = C—t,ig , w and w' primitive vectors and ged(e, ) = 1. So
writing d = dy f? with d squarefree, we obtain

rd= ) 1 (c—dz) s (%) - (853)

cc|f
ged(e,c')=1

Let d = 1,2 (mod 4). As in the previous case, r(d) is the number of pair-primitive tuples
(v,v") such that Nr(v) = Nr(v') =d, and v =" (mod 2). The pair-primitive tuples (v, ')

are of the form (cw,cw’) with Nr(w) = %, Nr(w') = % , w and @’ primitive vectors,
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ged(e,d) =1 and w = w' (mod 2). This reduces the choices of w’ to a third of the options.
So writing d = dy f? with dy squarefree, we obtain

1 (AN, [ d
cc|f
ged(e,c')=1

Let d = 0 (mod 4). In this case the pair-primitives tuples (w,w') with Nr(w) =
Nr(w') = d and w = w' (mod 2) are of the form (2v,2v') with (v,v") pair-primitive,
Nr(v) = Nr(v/) = % and v # o' (mod 2). Therefore 7(d) is the number of such pair-
primitive tuples (v,v’). In particular we have r(d) = 0if $ = 0,3 (mod 4). Next we suppose
that ¢ = 1,2 (mod 4). The pair-primitive tuples (v,v') are of the form (cw,cw’) with
Nr(w) = 1%, Nr(w') = 1%, w and w’ primitive vectors, ged(e, ) = 1 and w Z w' (mod 2).
This reduces the choices of w’ to two thirds of the options. So writing % = dyf? with d,
squarefree and f odd, we obtain

=2 Y 7 (%) . (%) (3.5.5)

cc'|f
ged(e,c)=1

Let n be a positive integer and write n = nym? with ng the squarefree part of n. We
suppose that m is odd. We have the following formula for r5(n) (cf. |40|):

I ()

plm
Thus p J e J .
! ! -1 — o
4(8)5 () Gl (- (54)
plf
where
2 if p| L,
— Iy — Piza
€p = €Ep (?) o { 1 lfpf}
Using this expression in (3.5.3), (3.5.4) and (3.5.5) we obtain (3.5.2). O

If dy > 3, we can also write Equation (3.5.2) in terms of class numbers using the formulas

24hi  when dy =3 (mod 8),
2(dpy) = ' 9.
ra(do) { 12hg when dy =1,2 (mod 4), (3.5.6)
where K = Q(/—dy) and hg is the class number of K (see |47, Prop. 2.3|).
Proposition 3.5.4 also allows us to obtain expressions for the Dirichlet series
_ : ~ r(d)
Zp(w) = Zp(I;w dg o (3.5.7)
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As these formulas depend on d mod 4 we split our sum into distinct congruence classes mod
4. For simplicity, we focus on the case d =3 (mod 4). The other case are handled similarly.

Let
- r(d) H(dof?) |
Zg)(u:) = Z — = Z Z 02 ). (3.5.8)
d=3(mod 4) d d=3(mod 4) f>1,0dd (dﬂf )
[k ree -

In fact, since 7(d) =0 for d =7 (mod 8), the above sum is only over d =3 (mod 8).

Theorem 3.5.5. For re(w) sufficiently large,

) o (d V2P (w
d=3 (mod 4) 0
Cl-free

where Py, is given by the FEuler product
Pa(w) =[P (" (52))
P

and

1+ (2 —2e+p—2ep)y* + epy?
(1—py*)(1 —p*?) '

Proof. By (3.5.7) and Proposition 3.5.4, we have

P(y,e) = (3.5.10)

: r5(dp)? oo w(e) [ —do ep(f/)
= ¥ P S e T (10 ()

d=3(mod4) © f=1,0dd clf plf
[-free

The inner sum over f is an Euler product, and settingy =p %, A=1—p! (_Td“)j its p-part
1s - i
2 : 241 —ptF 2
P(y,e) =1+ p*y*A (A + —) + ZAp%ka {A + _—p_l + —k]
r) = pl-p P

fore = (_Td“)‘ Summing the geometric series above and combining, we arrive at (3.5.10). O

3.6 Weyl group multiple Dirichlet series

[n this section, we show that the Dirichlet series constructed from the coefficients counting
planes in Z* coincides with a specialization of a multiple Dirichlet series arising in the Fourier
expansion of the minimal parabolic Eisenstein series on a metaplectic double cover of SL(4).
In a more general context Brubaker, Bump and Friedberg [18| have expressed the Fourier
coefficients of the Eisenstein series on the n-fold cover of SL(r) in terms of crystal bases.
We will instead use formulas of Chinta and Gunnells which Brubaker, Bump, Friedberg and
Hoffstein [19] have shown to be equal to the ones in [18]. Actually [18] works over a number
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field containing a 4™ root of unity; the formulas over Q require a modification at the prime
2, which fortunately plays no role in the present work. We refer the reader to Karasiewicz
|67] for the analogous formulas on the double cover of SL(3) over Q.

We now define the multiple Dirichlet series to which we must compare Zp(w). This is
the A; quadratic Weyl group multiple Dirichlet series and arises in the Fourier expansion of
the Borel Eisenstein series on a metaplectic double cover of SL(4). There are various ways
to define this series, but we follow the presentation of Chinta-Gunnells [32]. Let )y, 12, 13
be three primitive, quadratic Dirichlet characters unramified away from 2. Thus each of the
;18 either trivial or one of y_4, xs. X_g. Define

Xa (111) Xa (M2)
ﬂ?' n§2 dw

ZA3 (31; Sg, W3 Wy, Yo, 1.3’3) = E

d,ni,n2>0
odd

a(ny, ng, d)ih1(n1)ve(n2)ds(d),  (3.6.1)

where

o d = (—1)@Y2d and y4 is the Kronecker symbol associated to the squarefree part of
df

e 71 is the part of n relatively prime to the squarefree part of d

e the coefficients a(ny,ne, d) are weakly multiplicative in all entries and are defined on
prime powers by

H(zy,22,y) = Y a(p",p', p™)akaby™ (3.6.2)
klm

1 — 2y — 2oy + 2120y + pri20y° — priady’ — priryy® — prirsy’
(1 —21)(1 —22)(1 —y)(1 — paiy?)(1 — p3y?)(1 — p?xix3y?)

(3.6.3)
As shown in 32|, we can write this as
Zay (51, 52, w31, 2, 3) =
Ly(s1, Xa, 1) La(82, Xar, ¥2)s(do) . 96
Z : v - Qo (51, 52, w; Y1, 1), (3.6.4)
do>0 0
odd,[- free
say, where (g, is the Euler product
Qo (51,52, w3 Y1, v0) = [ ] Quopl€15p™ €257, p7") (3.6.5)
p odd
with €1, = Xa (P)V1(P), €2 = Xa; (P)¥2(p) and
Ou(oraay) = 4 g1 —a)(1—zy) ifpfdo, o
dp,p\L1, L2, H(ml,xg,y)—zH(ml,xg,—y) o p|d0 0.
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To go further it is convenient to divide the sum over d into congruence classes mod 8. As
in the computation of Zon) (s) above, we will concentrate on the case d =3 (mod 8). Define
Z8 (51,82, w) = L [Zag(s1, 82,w;1,1,1) — Zay (51,82, w; 1,1, x-a)
— Zay(s1, 82, w5 1,1, xs) + Zas(51, 52, w; 1,1, X _g)]

. Z LQ(SI'JX—dO)L2(S2:X—d{})Qd (81 8o w1 1)
= 0 392, Wy 4y, L)

dv
- 0
0<dp=3 (mod 8)
[lree

If sy = s5 =1, then we have

: Lo(1,x—q,)?
2901w = Y %Q@(l,l,w;l?l) (36.7)
0<dp=3 (mod 8)
[-free
9 L(1,x_a,)*
1 2. %Qdu(l;hw;l,l) (3.6.8)
0<do=3 (mod 8)
O-free
9 2 ra(do)? N
- Z ) (%) Z dw+] QdO(]‘? 1'Jw; 1} 1) (d.f).g)
0<dp=3 (mod 8)
[O-free

where we have used that for squarefree dy =3 (mod 8). We have

X—du(Q) 3 ap
1—-=—"=— 3.6.10
2 2’ ( )

and by [15, Chap. 5, 1.1 Thm. 2| and (3.5.6), it follows that

?T?"g(d())
L(1,x—q,) = . 3.6.11
Let us write Qqg,(w) for Qg,(1,1,w;1,1).
Theorem 3.6.1. We have
2

™ , .

55 Ca(2w)Ga(2w — 1)Z3) (w) = Z(1,1,w - 1).
Proof. Comparing (3.5.9) with the last line of (3.6.7) we see that we need to prove

G2w)G(2w — 1) Py (w) = Qgy(w — 1) (3.6.12)

As both sides are Euler products it suffices to show that the p-parts match, for all odd primes
p. Let € = xq,(p). From (3.5.10) of Theorem 3.5.5 the p-part of the lefthand side of (3.6.12)
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18 )
1

ife=1.
P g T
Y, € +olp+ L)y +py e P
= ife=—1, 3.6.13
A=) (l—p) ~ ) A=D1 — )0 — 7% (36.13)
L+py” ife=0
(1 —y2)(1 —py?)2(1 — p*y?) o

On the other hand, the p-part of the righthand side is given in (3.6.5), (3.6.6) to be

i

11 11
H(_s_r )+H(_s_~_ ) ] .
pf’m’l’z Mlm’lu—é)z if e =1,
P H(—=,—=, H(-=,—=,— 901
Qdo,p(éa éjpy} e ( D’ pp“y)-f-z ( r p p‘y)(l + %)2 ]i € — 1? (361—1)
11 11

Using the definition of H in (3.6.2) we readily verify that p-parts of (3.6.13) and (3.6.14)
match up in each of the 3 cases. O

3.7 Relation between Q)7 and Q;.

[n this section we study more closely the sets Ry, when d is squarefree. We use the results
from |47| to obtain a natural (Clk)? torsor structure in a certain quotient related with Ry,
where Cly is the ideal class group of K = Q(yv/—d). Theorems 3.7.4 and 3.7.5 below exhibits
relations between the Klein map and the Gauss map defined in [33]. We recall that a torsor
for a group G is a set X with an action of G, which is transitive and with trivial stabilizers.

Let d € D be a squarefree integer and put K = @(m) We define for n a positive
integer,

Ra(n) = {(2,9,2) € Z° | 2* +y* + 2> = n and ged(x,y, 2) = 1},

and for d € D be a squarefree integer

Ra(d) = { SO3(Z) \ Rs(d)  if do=3 (mod 8),

SO5(Z)* \ Rs(d) if dy=1,2 (mod 4),

where SO3(Z)7 is the index-2 subgroup of SO3(Z) that consists of the matrices that act on

———

the coordinate lines via even permutations. By [47, Prop. 3.5, the quotient R3(d) has a

——

natural Clg-torsor structure. This induces a (Clg)?-torsor structure on Rs(d) x Rs(d).
We define

Ko(d) = {(ay,as) € Z*x7Z* | Nr(ay) = Nr(as) = d, (a1, as) pair-primitive, a; = a; mod 2}.

By the Klein map we have a 2 : l-map Kq(d) = R4 We define G as the trivial group if
d = 3 (mod 4) and as the group As of even permutations if d = 1,2 (mod 4). The group
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G acts on R3(d) by permutation of coordinates. We define Rji(d) = G \ R3(d). By the
argument of the proof of Proposition 3.5.4, it follows that the map Ky(d) — Rs(d) x R3(d)
is a bijection. So using the bijection Ko(d) — Rg(d) X Ri"(d) and the natural projection
Rs(d) x R5(d) — Rs(d) x Rs (d), we can consider Rd(d) X ’Rs(d) as a quotient of Ky(d). This

gives us the desired quotient related with R4 and with a natural (Clg)*-torsor structure.

We express this by the following diagram.

Ko(d) Rs(d) x Rs(d)
Rs(d) x Rs(d)*

Observe that the map Ko(d) — Rs(d) x Rs(d) don’t factorize through Ko(d) = Ra.

Let d € D be a squarefree integer and L € R4, It follows from Lemma 3.5.1 and
Proposition 3.5.2 that disc(Qr) = disc(Qp1). Consider the pairs (L, Q) and (L*,Qp1). As
(L*, Q1) is determined by (L,Qp), we want to find an intrinsic relation between the two
pairs. We prove below that (L, Q1) determines the genus class of the quadratic form Q..
For this we need the concepts of Legendre composition introduced in |98|.

Definition 3.7.1. A quadratic lattice is a pair (L,Q)r) where L is a lattice and @Qp, is a
integer valued quadratic form on L. We say that two quadratic lattices are isomorphic if
there is a linear isomorphism between them which preserves the quadratic forms. If rkL = 2
we call (L, Q) a binary quadratic lattice.

Definition 3.7.2 ([98, Defn. 2.1]). We say that the binary quadratic lattice (M, Q) is
a Legendre composition of the binary quadratic lattices (L, Q) and (L', Q) if there is a
linear and surjective homomorphism g : L ®@ L' — M such that

Qr(u)Qr (v) = Qu(p(u ® v)).

Next we review some results about binary quadratic over forms Z and a theorem of Gauss.
and [16]. We denote
the quadratic form q(z,y) = az? + bzy + cy® with a,b,c € Z by [a, b, ¢|. The discriminant of

For proofs of the results of this and the next paragra

q is the number b* — 4ac. Observe that this discriminant is equal to —4d’, where d’ is the
determinant of a matrix that represents the quadratic form gq. We call two binary quadratic
forms q and ¢’ over Z properly equivalent or S Ly(Z)-equivalent if there is a g € SL2(Z) such
that

7 (z,y) = q((z,y)g).

We say that g and ¢’ are in the same genus if for every prime number p there isa g, € GLy(Z,)
such that
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¢ (z,y) = a((z,y)gp)
and there is g, € GLy(R) such that

7' (z,y) = q((z,9)g0)-

Let D be a negative discriminant. Write D = df? where d is a fundamental discriminant
(i.e. either d =1 (mod 4) and squarefree or d = 4d’ with d' 1 (mod 4) and d’ squarefree).
We will assume f is odd. Let CI(D) be the group of SLy(Z)-equivalence classes of primitive
integral binary quadratic forms of discriminant D (for the description of the group structure
on Cl(D) cf. |16] and [30, Chap. 14]). We call e a prime discriminant if ¢ = —4,8, —8 or
p = (=1)»=Y/2p for an odd prime p. Note that e is a fundamental discriminant. Write
D = D,D, where D; is an even fundamental discriminant and D, is an odd discriminant.
Let Dy be D, times the product of the prime discriminants dividing Ds.
For each odd prime p dividing D we define a character x®) on CI(D) by

@) ([q.b.d) = 4 (@ if gedp,a) =1,
a0, {pr(c) if ged(p,c) = 1.

The primitivity of [a,b, ¢] ensures that at least one of these two conditions occur. These
characters generate a group X'(D), called the group of genus class characters of Cl(D). The
order of X (D) is 2¢P)=! where w(D) is the number of distinct prime divisors of D. For
each squarefree odd number e; dividing DD we define the genus class character

Xer,ea — H X(p):

pley
where eje; = Dy. Then as e; ranges over the squarefree positive odd divisors of D, xe, ¢,
range over the genus characters exactly once (if D is even) or twice (if D is odd). Two forms
are in the same genus if and only if x(q1) = x(g2) for all x € X(D).
We define the Gauss map as follows. Let n be a positive integer which is not divisible by
4. Let

D— —4n if n=1or2 (mod4),
|l-n if n=3 (mod 4).

Consider @* equipped with the quadratic form Q(z,y,z) = 2% + y? + 22. We have a
map from R3(n) to equivalence classes of primitive binary quadratic forms of discriminant
D defined as follows. Let v € R3(n). Let W be the orthogonal complement of v in Q. We
take M(v) = Z* "W if n = 1,2 (mod 4) and M(v) = 3Z* "W if n = 3 (mod 4). The
quadratic form Q|as(v) is primitive of discriminant D. We call a basis (u,u’) of M (v) oriented
if (u,u,v) is an oriented basis of Q*. We define the SLy(Z)-class of the quadratic form Q|
using an oriented basis of M (v). We have Q|yw) € CU(D), and the map ® : Rs(n) — CI(D)
defined by ®(v) = Q| (v) is called the Gauss map.

106



Theorem 3.7.3. (Gauss) Let n be a positive integer which is not divisible by 4, D as in
(3.7.1). A quadratic form q € ClU(D) is in the image of the Gauss map © if and only if for
any genus character Xe, e, of Cl(D) with e; odd, we have.

x=s(le1]) if n=3 (mod 4),
Xel,eg((ﬁ = . _ .
X_a(lerl]) if n=10r2 (mod4).

If n =1,2 (mod 4), we call G, the genus class of quadratic forms which satisfy Equations
(3.7.2). If n = 3 (mod 4), we call G, the genus class of the quadratic forms 2¢ with ¢
satisfying Equations (3.7.2).

After this digression we come back to the 2-dimensional lattices L € Z*. Let L € Ry
with Lt the orthogonal to L inside Z*. We consider the maps

Hi - L@Ll — ]3(](21)1
vRwWw  — vw

and
Ha - L ® LJ' — B(](Z)
vRwWw  — Tw

Theorem 3.7.4. Let L € Ry with d € D squarefree, and for i = 1,2, we define M; =
(a;(L))*, where we take the orthogonal space inside Z3. We consider in M; the quadratic
form Qg which is the restriction of the quadratic form Nr on Z* = Bo(Z). Then the 2-
dimensional lattice M; is the image of p; and (M;, Q) is a Legendre composition of (L, Qr)

and (L, Qp1).

Proof. We write L = (vy,v5). We denote by M| the image of p;. Observe that the map
w +— p1(vy @ w) from Lt to By(Z) is injective, therefore tkM] is equal to 2 or 3. On the
other hand, if w € L, then

1
(ay (L), vow) = —§Tr(vlv_2v2@ - iTr(vlv_;,)UgE)

_ —% N7 (v9)Tr(v170) + }LTT(U@)TT(W) =0

Using that —ay(L) = vov; — 377 (v103) we obtain (a;(L),viw) = 0. Therefore M{ C M, and
rkM| =2. If v € L and w € L+, then

Qu(v)Qr: (w) = Nr(vw) = Nr(p (v ® w)),

Therefore M| is a Legendre composition of (L,Qr) and (L*, Q). By Gauss’s theorem
3.7.3, disc(Qnr,) is equal to d if d # 3 (mod 4) and to 4d if d = 3 (mod 4). By First
Conclusion in art. 235 of [53], disc(Quy) divide d if d # 3 (mod 4) and divide 4d if d = 3
(mod 4). From this and the inclusion M| C M, it follows that M; = M|. Analogously we
prove that the image of o is M,. |
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In [98] it is proven that for binary quadratic forms over Z, the Gaussian composition is
well defined for properly equivalent forms, but Legendre composition is not. Furthermore
it is shown that two GLs(Z)-classes of binary quadratic forms with the same discriminant,
have at most 2 Legendre compositions; cf. |98, pp. 43-44|. If we adapt these results to
binary quadratic forms over Z, and use the fact that every binary quadratic form over Z,
has an automorphism of determinant —1, then we can conclude that over Z, there is a single
Legendre composition of two classes of binary quadratic forms of the same discriminant.
This implies the following:

e Let (M,Qy) be a Legendre composition of the binary quadratic lattices (L, Q)1) and
(L',Qpr). Choose a basis (v,w) of M and identify )y, with a binary quadratic form
qv- Then the genus class of gy is independent of the chosen Legendre composition
(M, Qpr). We call it the genus class of Legendre compositions of (L,Qp) and (L', Q).

Let L € Ry. By Theorems 3.7.3 and 3.7.4 the genus class of Legendre compositions of
(L,Qr) and (L', Q1) is Gg. This proves that the genus class of (L', Q1) is determined by
the genus class of (L, Q). Conversely, if we use the formula proved in [4], and the fact that
the genus [[I4]] has only one class, we conclude that if (L', Q') is in the genus of (L,Qr)
and (L"”,Q") is in the genus of (L', Qp1), then there is M C Z* 2-dimensional lattice such
that (M, Q) is in the same class of (L', Q') and (L, Q1) is in the same class of (L”, Q").
We can prove by the local-global principle that for D € D squarefree every integral positive
binary quadratic lattice of discriminant D can be represented by z2 + y? + 22 + w?. So we

have proven the following.

Theorem 3.7.5. Let d € D be a squarefree integer. Consider (M, Q) and (M',Qpp) two
positive binary quadratic lattices of discriminant d. Then there exists L € Rq with (L,Qp)
isomorphic with (M, Qyr) and (L, Q1) isomorphic with (M, Qyp) if and only if the genus
class of Legendre compositions of (M, Qur) and (M, Q) is the genus class Gy, defined after
Theorem 3.7.3.
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Chapter 4

Primes in arithmetic progressions and
semidefinite programming

Assuming the generalized Riemann hypothesis, we give asymptotic bounds on the size of
intervals that contain primes from a given arithmetic progression using the approach devel-
oped by Carneiro, Milinovich and Soundararajan, cf. [26]. For this we extend the Guinand-
Weil explicit formula over all Dirichlet characters modulo ¢ > 3, and we reduce the associ-
ated extremal problems to convex optimization problems that can be solved numerically via
semidefinite programming. The content of this chapter appear in the pre-print [36].

4.1 Introduction

4.1.1 Prime numbers

Denote by 7(x) the number of primes less than or equal to z. A classical theorem of Cramér
[42] states that, assuming the Riemann hypothesis (RH), there are constants ¢, « > 0 such
that
m(z +cy/xlogz) — w(z
(v +cyaloga) —m(a)

Jz

for all sufficiently large z. The order of magnitude in this estimate has never been improved,

(4.1.1)

and the efforts have thus been concentrated in optimizing the values of the implicit constants.
Recently, Carneiro, Milinovich and Soundararajan [26] used Fourier analysis to establish the
best known values. This approach studies some Fourier optimization problems that are of
the kind where one prescribes some constraints for a function and its Fourier transform, and
then wants to optimize a certain quantity.

Let us denote by A™ the set of even and continuous functions F': R — R with F' € L*(R).
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For 1 < A < oo, we write

1 2\
Ct(A):= sup ——(F(0)—A F dt 1.1.
W= pr(Fo-af (o) (112

where we use the notation f¥(z) = max{f(z),0}, [-1,1]°=R\ [-1,1], and
F(t) = / F(z)e 2t dg.

Assuming RH, [26, Theorem 1.3] establishes that for o > 0,

. . . . m(x+cy/rlogz) — m(x) (14 2a)
inf {C > 0; lim inf Jz ~ =R/ (4.1.3)

The numerical example from |26, Eq (4.12)] given by
F(z) = 4822 >% 4+ 1522 ™ 4+ 52022 ¢ ™ + 1.3 2% 4+ 0.18 ¢ >

shows that -

2
CT(36/11) > 1.1943... > 2—‘1’

Therefore in (4.1.1) for @« = 0 and @ = 1, we can choose ¢ = 0.8374 and ¢ = 2.512,
respectively. This improves the previous results established by Dudek |45, who shows that
for a =0 and @ = 1, we can choose ¢ =1+ ¢ and ¢ = 3 + ¢, respectively, for any £ > 0.

4.1.2 Prime numbers in arithmetic progressions

Let ¢ > 3 and b > 1 be coprime integers. Denote by m(z;q,b) the number of primes less
than or equal to x that are congruent to b modulo ¢g. Assuming the generalized Riemann
hypothesis (GRH), Grenié, Molteni and Perelli [56, Theorem 1] state the equivalent of the

result by Cramér (4.1.1) for primes in arithmetic progressions. They established that there
are suitable constants ¢, @ > 0 such that

m(z +eplg)Vrlogeigb) —m(zig.b)

7z ,

for all sufficiently large . Our main goal in this paper is to establish good bounds for the
constant ¢; > 0.

Theorem 4.1.1. Assume the generalized Riemann hypothesis. Let ¢ > 3 and b > 1 be
coprime. Then, for any o = 0, we have

: w4 e p(g)y/aloga; q,b) — m(x;9,b) (1+2a)
. . . § . <
inf {01 > 0; higg}f NG >ap < Cr )

< 0.8531 (1 + 2a).
(4.1.4)
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where p(q) is Euler’s totient function.

In particular, for all sufficiently large z there is a prime p that is congruent to b modulo
q in the interval (z,z + 0.8531 ¢(q)y/zlogz|. Furthermore, there are at least /z primes
that are congruent to b modulo ¢ in the interval (z,z + 2.5591 ¢(q)+/zlogz]. This result
improves asymptotically some results of a recent work by Dudek, Grenié, and Molteni [46,
Theorem 1.1-1.3|, which establish the constants ¢, = 1 and ¢ = 3 for @« = 0 and a = 1
respectively. Our result establish the constants ¢; = 0.8531 and ¢; = 2.5591 for a = 0 and
a = 1 respectively.

Corollary 4.1.2. Assume the generalized Riemann hypothesis. Let ¢ > 3 and b > 1 be
coprime and denote by ppqp the n-th prime that is congruent to b modulo q. Then

- pn-l—lqb_pnqb
lim sup < 0.8531p(q).
n—00 \/pn q,b log 2 Pn.g,b (1‘9( )

4.1.3 Optimized bounds

The construction of numerical examples via semidefinite programming also gives a slight
improvement on [26, Theorem 1.3 and Corollary 1.4]: we get CT(36/11) > 1.1961. So
assuming the Riemann hypothesis, we have for any o > 0 in (4.1.3) that

inf {c > 0; liminf m(e +c \/E\l/o_g z) — m(z) > o:} < 0.8358 (1 + 2a) (4.1.5)
T—00 T

and
. Pn+1 — Pn
lim sup

< (0.8358
n—oo  \/Pn log Pn

where p, denotes the n-th prime.

4.1.4 Strategy outline

The proof of the first inequality in Theorem 4.1.1 follows the ideas developed in [26]. We
need three main ingredients: the Guinand-Weil explicit formula for the Dirichlet characters
modulo g, the Brun-Titchmarsh inequality for primes in arithmetic progressions and the
derivation of an extremal problem in Fourier analysis. We start establishing an extended
version of the classical Guinand-Weil explicit formula, that contains certain sums that run
over all Dirichlet characters modulo g. In particular, one of these sums allows us to count
primes in an arithmetic progression, and we can bound many of these primes using the Brun-
Titchmarsh inequality for primes in arithmetic progressions. Since many of the computations
to derive the extremal problem are similar to [26], we will highlight the principal differences.

For the second inequality in Theorem 4.1.1, we write the resulting optimization problem
as a convex optimization problem over nonnegative functions. We then write these non-
negative functions as f(z) = p(z?)e —m2% for some polynomial p, as in the works of Cohn
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and Elkies [37]| for the sphere packing problem, and use semidefinite programming to opti-
mize over these nonnegative functions, which is an approach employed recently for problems
involving the Riemann zeta-function and other L—functions in |35, 71].

4.2 Guinand-Weil explicit formula and Brun-Titchmarsh

inequality

4.2.1 Guinand-Weil explicit formula

The classical Guinand-Weil explicit formula |25, Lemma 5| establishes the relation between
the zeros of a primitive Dirichlet character modulo g and the primes that are coprime to
q. The following lemma states a version of this explicit formula that contains the sum over
primitive and imprimitive Dirichlet characters modulo g.

Lemma 4.2.1. Let g > 3 and b > 1 be coprime. Let h(s) be analytic in the strip Im s| < 4=
for some £ > 0, and assume that |h(s)| < (1 + [s])70) as |Res| — oo, for some § > 0.

Then
1 py  tw
- +—=+—=|d
(4+ > " 2) “

SO () (2) () 2

©(q) A(n) ~ (logn 1 o= An) —\~/—logn -~
_VQ_W > Wh( o )—gz 7 (szx(bn))h( 5 )+O(||h||w),

n=b(modq) n=2

1—\!
r

where x runs over the Dirichlet characters modulo q, py are the non-trivial zeros of the
Dirichlet L-function L(s, x), I'/T is the logarithmic derivative of the Gamma function, p, €
{0,1} and A(n) is the Von-Mangoldt function that is given by A(n) = logp for prime powers

n =p", m > 1 and zero otherwise. The error term in the above expression depends on q
and b.

Proof. Let x be a primitive Dirichlet character modulo g. The Guinand-Weil explicit formula
for x (see |25, Lemma 5]|) states that

1 oo ’ ;
S () {50 ) L [ a1
i h( ; )—{ o h(0) o h([))}—l— o | h(u) Re v 4—|— 5 + 5 du

where the sum runs over all non-trivial zeros p, of L(s,x), ty, =01if x(=1) =1 and p,, =1

(4.2.1)

"'We use the notation f = O(g) (f < g) to mean that there is a constant C' > 0 such that |f(t)| < C g(t).
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if x(—1) = —1. Note that

log ™

log g~
o h(0) — h({))' < ||h||c,0

We want to establish a similar formula as (4.2.1) for an imprimitive Dirichlet character
modulo g. We know that each imprimitive character y modulo ¢ is induced by a unique
primitive character x* modulo f, with f|g and f < ¢. This implies that x(n) = xo(n)x*(n)
for all n € Z, where yo(n) is the principal character modulo ¢, and

L(s,x) = L(s,x )H( X (p)) (4.2.2)
plg

If we write YXo(n) = 1 — xo(n), then x*(n) = x(n) + x*(n)Xo(n). Let x be a non-principal
imprimitive character modulo ¢g. Therefore, using the Guinand-Weil explicit formula for y*,
we get that

p—3 _ [log f ~ log m ~ 1 [ Il pye | iu
Zh(—)—{ 3 MO0~ 5, }+%_/_mh(“)R"F(Z+T+E)d“
A(n) ——~ [ —logn
—%RM{ (ﬂ)h( ﬂ)ﬂ(ﬂ)h( )

n=2 (4.2.3)

Note that Yp(n) = 0 when n and g are coprime. Therefore the last sum can be bounded in
the following form

o Z A —7= X (M)Xo(n) h (log’:)

<y pk,z 2 1Blloo < 1Bl (4.2.4)

plg.k=1

On the other hand, we have that L(s, x) and L(s, x*) have the same set of non-trivial zeros
by (4.2.2). Therefore we conclude in (4.2.3) that for each imprimitive character y modulo g,

1 o0 ! .
P=a)_ 1 Dl h
3 )_%/_wh(u)f{er(4+ 5+ 5 du+ O(||h|s)

L5 i () (42}

where p, € {0,1}. Finally, in the case of a principal character xo(n), we use the Guinand-

we have

2
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Weil explicit formula for the Riemann zeta function (see [24, Lemma 8|), which states that
Zh ( ) h (2?) +h (—%) - lzg?'rﬁA + Q—IW/_ h(u)Rc—;(}l + %) du
L (o () o (422)
A et () v (52).

(4.2.6)

where the sum runs over all non-trivial zeros p of ((s). Note that the last sum in (4.2.6)
can be bounded as (4.2.4). Therefore, multiplying (4.2.1), (4.2.5) and (4.2.6) by x(b) (note
that in the last case X(]—(b) = 1) and summing these results to obtain the final sum over all
character modulo g, we get (inserting the respective error terms)

Zx(b)zh( ) h( )+h( _)+2—22W./;Zh(u)Rc%(i+%+%‘)du
=23 20 Lo (B2 +xonm (e )}

x n=2

+O(|[ho)

where the sums run over all Dirichlet characters modulo ¢, and p,, = 0. Using Fubini’s
theorem and the fact that

o(g) ifn=>b (mod q),
Z x(b)x(n) = { if nZb (mod q),

we obtain the desired result. ]

4.2.2 Brun-Titchmarsh inequality

We will use the following version of the Brun-Titchmarsh inequality due to Montgomery and
Vaughan [88, Theorem 2|:

2y

m(z +y;q,b) —m(z;¢,b) < o(q)log(y/q)

for all z > 1 and y > ¢q. In our case we use this inequality in the following form: for every

sufficiently small £ > 0 and = > ¢'/¢, we have

4 VT

(2 + Va;9,b) — m(w;4,b) < (1 —2¢)p(g) logz

(4.2.7)
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4.3 Proof of Theorem 4.1.1: First part

We follow the idea developed in |26, Section 5|. We start by fixing coprime integers ¢ > 3
and b > 1 and assuming GRH. Also, we fix an even and bandlimited Schwartz function
F : R — R such that F(0) > 0 and supp(F) C [=N,N] for some parameter N > 1.
Therefore, F' extends to an entire function, and using the Phragmén-Lindelof principle, the
hypotheses of Lemma 4.2.1 are satisfied. Throughout this proof, the error terms can depend
on q, b, and F. Let 0 < A <1 and 1 < a be free parameters (to be chosen later) such that

2rAN < loga. (4.3.1)

We need to have in mind that @ — oo and A — 0. Considering the function f(2) = AF(Az),
we have supp(f) C [-AN,AN]. Applying Lemma 4.2.1 to the function h(z) = f(2)a**, we
obtain

S ) = {n(5) +1( )}+—Zx<b)/ pwRer (3+5+5)
() L5 ()

n=b(mod q)

+O(|[Al|),
(4.3.2)

where 7, is the imaginary parts of a non-trivial zero p, of L(s,x). We start by estimating
some terms on the right-hand side of (4.3.2). Using the estimate from |26, Pag. 553|, we get

h(;)m( ) AF(0)(va+Vat) +0(A%a). (4.3.3)

Using Stirling’s formula and the estimate from |26, Pag. 554|, we have

o ' (1 py  iu
h(u)Re— [ =+ 22+ — ) du=O(1).
/_mz(u) CF(4—|—2+2) U (1)

Therefore,

1 — [~ | A T 171
3 230 [ R (4545 ) du=oq. (1.3,
b% of —O0

By (4.3.1), we have




for n > 2. This implies that

%iﬁ(” (Z (zm)) ( log ”) ) (4.3.5)

[nserting (4.3.3), (4.3.4) and (4.3.5) in (4.3.2) yields

S XO) S k() = AF(0)(Va + vVaT) + O(A%/a) _ ¢ Y Al g (10 ”)+0(1).

27 n

n=b(mod q)

Therefore

AF(0) \/_<ZZ|h(qx )|+ 52 @(Q) 3 ﬁ;’i)( )t (log”) +0(A2/a) + O(1).

n=>b(modgq)

(4.3.6)

Next we estimate the terms on the right-hand side of (4.3.6). We recall that for each primitive
Dirichlet character modulo ¢, we have the formula [43, Chapter 16|

T T T
N(T,x) = —log (;?r) - + O(log T + log q),

where N (7', x) denotes the number of zeros of L(s,x) in the rectangle 0 < o < 1 and
lv| < T. Using integration by parts as in [26, Eq. (5.4)], we obtain for each primitive
Dirichlet character modulo g that

RN | =802 ), + (1), (1.37)

Note that the main term in the above expression is independent of ¢. By (4.2.2), Equation
(4.3.7) holds for each non-principal imprimitive character modulo ¢. In the case of the
principal character xg, we use the estimate for the zeros of the Riemann zeta-function from
[26, Eq. (5.4)]. Therefore, considering that the number of Dirichlet characters modulo q is
»(q), we conclude that

3 S k)] = ola) O iy, o), (1.3.8)

X Tx

Next we bound the second sum on the right-hand side of (4.3.6). Using the relation between
the functions h and F', this sum equate

> Ay (o) e

n=>b(mod q)
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Fix a = 0 and assume that ¢; > 0 1s a fixed constant such that

' log ; ¢,a) — (3 q,
— m(z + c1 p(q)V/zlogz; q,a) — 7(x; q, a) o

r—o0 \/E

This implies that for £ > 0, there exists a sequence of z — oo such that

m(z + 1 ¢(q)y/xlogx; q,a) — w(z; ¢, a)

/z

For each z in the sequence, we choose a and A such that

<+ E.

[3:, T+ ¢, p(q)v/zlog x] = [ge_gﬂ'A} GCQTTA] _

This implies that

. 2
A — ey 9‘9((})1(:5; +O(10i :B)

(see |26, Eq. (5.7)-(5.8)]), and
a=xz+O0(/zlogz).

Since supp(F) C [-N, N], the sum in (4.3.9) runs over ae 2™V < n < ae?™N with n =
b(modq). Thus the contribution of the prime powers n = p* with n = b (mod ¢) in that
interval is O(1). The contribution of the (at most) (« + £)/z primes in the interval (z,z +
c1p(q)v/zlog z] = (ae?™, ae®™] to the sum (4.3.9) is bounded above by

log log =
IFl Y BP P (e + e)vT 22 = |F|li(a+€)logz

pe(ae—‘}ﬁ&,anﬂ&] ‘\/ﬁ \/E

(using that (F)*(t) < ||F||1). Finally, to estimate the contribution of the primes in the inter-
vals [ae 2™ ae=2™2] and [ae?™, ae™ V], we use the Brun-Titchmarsh inequality (4.2.7).

We also need the following estimate: for g € C*([a, b]), we have

b
0<5(g"P) = [ g (0)dt < 6b—a) sup |¢(o) (43.10)

re(a,b]

where P is a partition of [a,b] of norm at most § and S(g*, P) is the upper Riemann sum
of the function gt and the partition P. We apply (4.3.10) to the function

- F(50)
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and the pdr‘rition P = {z, < ... < x;} that covers the interval [ae*™, ae?™*N] C U/Z} [z, zj44],
with 7y = ae’" A; Tjy1 = 7 + /7;. If we define M; = sup{g™(z) : = € [z; :BJ_H]} then
S(g*,P) = Ej M;. /z;. Therefore, it follows from (4.2.7) and (4.3.10) that

y <F‘>+('°§$£“))
LSRN
p=b(modgq)

S J—1
% - 4\/&“_3; : i 154/
- ; ( Vi MJ) =29 p(@)logz; — (1-29) 9(@) (ﬁ Z:;MJ\/_J)

R EErr) _;) @ (% 5 ( )*(logff)) dt + W(S( T P)— E%ﬁ*(%) dt))

# T + E,27r&t _ Bzﬂ&

=029 909 (\/_(2 A)/ (F)"(t) dt+0(2 R )))
M -+

= (1—2¢) ¢(q) [ (F)*(t)dt + O(1), (4.3.11)

where we use that 0 < e —1 < 2z for 0 < z < 1. We treat the other interval in a similar
way, obtaining

> bﬂ(p)Jr(log@/@)) _ 4va(@ma)

. -
7 Y 550 (F) (t)dt+O0(1).  (4.3.12)

logp/a
—N=Sra =1
p=b(modgq)

Combining (4.3.11) and (4.3.12), we obtain

5 bﬂ(ﬁ)+(log(p/a)) o 4Va(2mA) (F)*(t) dt +O(1).

1{|10g2(péﬂ)|£N ﬁ 2?TA a (1 - 28)5'9((}) [—1_.1]("
p=>b(modq)

Therefore, joining the previous estimates, we conclude that

> 2@ () <P @ loga+ L [ (B o)

n=b(modq) \/ﬁ (1 _25)(10(9‘) [-1,1]¢
(4.3.13)
Inserting the estimates (4.3.8) and (4.3.13) in (4.3.6) yields that
log(1/27A
aVa(FO) - [ By wyde) <AL ), o+ o) o + o0 BT 17y, 4 0.
(1 — 25) [—1.1]¢ 2
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Sending z — oo along the sequence vields that
IF1ly

¢ < (142a+2¢) — ,
F(0) ~ g Jiow () (0) dt

and with £ — 0, we get

1E[l,
F(0) =4 [, (F)*(t)dt

e < (14 2a)

Finally we recall that in |26, Subsection 4.1] it is shown that when searching for the sharp
constants CT(A) in (4.1.2), we can restrict to the subset of A" such that F' € C2°(R) without
loss of generality. We conclude that

- _ m(z+erp(g)Valog; q,b) — w(x;q,b) (1+2a)
: _ TN |-
inf {cl = (; 11;1_1}‘1£f z >ap < 7(&(4) )

4.4 Numerically optimizing the bounds

We first reformulate (4.1.2) as a convex optimization problem.

Lemma 4.4.1. Let F be the set of tuples (fi,...,f1) of even, nonnegative, continuous

functions fi,..., fr € L'(R) such that ﬁ({)) —l—}/";({)) =land fi—fy= J,”; — f;. Then we have

Cr(A)=  sup (fl(t})—fg(o)—A /

fa(t) dt)
(f1.f2.fa.f1)EF [-1.1]e
for A>1.
Proof. For (fi, fa. fs, f1) € F we set F:= fi — fo = fs — fa. Then
IFll = [1fi = folls < [fulli+ 1 folls = £1(0) + F2(0) = 1.
Further F(0) = f,(0) — f2(0) and (F)*(z) = (fs — fo)*(z) < fa(z). This shows that
CHA) > sup (h 0~ £O) -4 [

(f1.f2.f3,f1)eF J[-1,1]¢

£(t) dt) .

On the other hand, for F € A" with F # 0, we define f, .= F*, fo .= F~, f3 == (F)",
and fy = (F)~7, where f; (z) = min{ f;(z),0}. Then |[F||; = fi(0) + £2(0), F(0) = f1(0) —
f2(0), and (F)™ = f3, which shows the other inequality. O

71'2?2

To find good functions, we restrict to functions f; of the form f;(z) = p;(z*)e™™ where

p; is a polynomial. We then use the sum-of-squares characterization

pi(u) = vd(u)Tind(u) + UUd—l(U)TRivd—l(U)a
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where ); and R; are positive semidefinite matrices, and vg(u) is a vector whose entries form
a basis for the polynomials of degree at most k. This enforces that p; is nonnegative on
[0,00), and each polynomial that is nonnegative on [0, 00) is of this form. For the numerical
conditioning, a good choice for the basis is

112 —1 2
oe(w) = (Lo (ww), ... L (),
where L;lf? is the Laguerre polynomial of degree i with parameter —1/2.
The conditions fi({)) + };((}) =1land fi — fo = J,”; — f; are linear in the entries of
the matrices Q3 and R;. A numerically stable way of enforcing these constraints is to first
compute fs— fi by ubmg that the Fourier transform of |z|2e~7I= ig k!/m*L, 1f2(?r|:1:| )emlel?

and then express f; — (fs f4) in the Laguerre basis and equating all coefficients to
zero. The linear ()bj{:(:tivu

ORYAORYY B 0L

can be expressed explicitly as a linear functional in the entries of (); and R;, for i = 1,2, 3,

using the identity
a2 1 m+1 5
./':Bme s _2ﬂm;2+1/2F ( 2 " ) 1

where I is the upper incomplete gamma function. This reduces the optimization problem to

a semidefinite program that can be optimized with a numerical semidefinite programming
solver.

The main issue at this point is to get a rigorous bound from the numerical output, for
which we adapt the approach from [81]. Instead of optimizing over Q; and R;, we fix £ = 1072
and set Q); = @i +eI and R; = R; + =I. We then optimize over the positive semidefinite
matrices éé and Ei. In this way the matrices (); and R; will be positive semidefinite even if
the matrices éi and Ei computed by the solver have slightly negative eigenvalues. Next we
use ball arithmetic (using the Arb library |65]) to verify rigorously that all matrices ); and
R; are indeed positive semidefinite, and compute a rigorous lower bound b on the smallest
eigenvalue of Q)4. We also compute a rigorous upper bound B on the largest (in absolute
value) coefficient of (fi —f;) — (fs— fa) in the basis given by the diagonal and upper diagonal
of the matrix va(z)va(z)". Let Q) be the symmetric tridiagonal matrix such that

(Fr = o) = (fs = f1) = va(2) Q) va(2).
Since Amin(Q4 + Q) = Amin(Q4) + Amin (@) and Amin(Q)) > —2B by the Gershgorin circle
theorem, the matrix Q4+ @)} is positive semidefinite if b > 2B. We verify this inequality and

replace Q4 by Q4 + Q. Then the identity (ﬁ - };) — (fs — f1) =0, and thus the identity
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fi—fo= (}/C; — ﬁ): holds exactly. Since

1
—_— = 1 0 —_ 9 0 _A
fl (0) + fZ(U) (f ( ) f ( ) /[l]J]r.

does not depend on @4, an upper bound on (4.4.1), again computed using ball arithmetic,
gives a rigorous upper bound on C*(A). The arXiv version of this paper (cf. |36]) contains the
matrices Q; and R; (computed with degree d = 90) and a simple script using Julia/Nemo/Arb

f3(t) dt) (4.4.1)

19, 48, 65| to perform this verification procedure (as well as a script to setup and solve the
semidefinite programs using sdpa-gmp [92]).
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