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Abstract

Rayleigh-Taylor (RT) instability occurs when a lighter fluid is pushing a heavier
fluid. We study turbulence induced by the RT instability for two-dimensional immisci-
ble two-component flows by using a multicomponent lattice Boltzmann method. First,
we develop and test the numerical method. Then, based on numerical simulations im-
plemented on GPUs (Graphics Processing Units), we analyze the energy budgets for
RT systems. This analysis verifies some important theoretical assumptions about the
immiscible RT turbulence using accurate numerical experiments, like the connection
between the variation of interface energy and the cnergy flux due to the Korteweg
stress tensor. We also analyze the energy dissipation, showing that the interface acts
as a source of vorticity. In the sccond part of our numerical tests, we approach a
phenomenological theory for the immiscible RT turbulence. We extend this theory to
the two-dimensional case using the carlier results by Chertkov, Kolokolov and Lebedev
(2005) for three-dimensional flows. We compare, numerically, the growth of the mix-
ing layer, typical velocity, average density profiles and enstrophy between the cases of
immiscible and miscible two-component fluids. Also, we investigate the evolution of
typical drop size and the dynamics of the interface length in the emulsion-like state,

confirming the power-law theoretical predictions.

Keywords: Rayleigh-Taylor turbulence; immiscible fluids; lattice Boltzmann method.



Resumo

A instabilidade de Rayleigh-Taylor (RT) ocorre quando um fluido mais leve ¢ acel-
crado de encontro a um fluido mais pesado. Nés estudamos a turbuléncia induzida pela
instabilidade de RT para escoamentos bidimensionais imisciveis com duas componentes
usando um método lattice Boltzmann multicomponente. Primeiro, desenvolvemos ¢
testamos o método numdérico. Em seguida, com base em simulacoes numéricas imple-
mentadas em GPUs (Graphics Processing Unit - Unidade de Processamento Grafico),
analisamos os balancos de energia para sistemas RT. Nesta andlise verificamos alguns
pressupostos tedricos importantes sobre a turbulencia de RT imiscivel usando experi-
mentos numéricos precisos, como a relacao entre a variacao da energia da interface ¢
o fluxo de energia devido ao tensor de Korteweg. Analisamos também a dissipacao de
cnergia, mostrando que a interface atua como fonte de vorticidade. Na segunda parte
de nossos testes numéricos, abordamos uma teoria fenomenoldgica para a turbuléncia
imiscivel de RT. Estendemos essa teoria para o caso bidimensional usando os resulta-
dos anteriores de Chertkov, Kolokolov ¢ Lebedev (2005) para fluxos tridimensionais.
Comparamos numericamente o crescimento da camada de mistura, velocidade tipica,
perfis de densidade média ¢ enstrofia entre os casos de fluidos com duas componentes
imisciveis ¢ misciveis. Além disso, investigamos a evolucao do tamanho tipico de pe-
quenas estruturas ¢ a dinamica do comprimento total da interface no estado emulsao

para tempos longos, confirmando previsoes tedricas em forma de leis de poténcia.

Palavras-chave: Turbuléncia de Rayleigh-Taylor; fluidos imisciveis; método lattice

Boltzmann.
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Chapter 1

Introduction

When a heavy fluid is accelerated against a lighter fluid the so-called Rayleigh-
Taylor (RT) instability can develop [76, 92|, which eventually leads to a mixing layer
with a turbulent motion called Rayleigh-Taylor turbulence. In this process the two
fluids seck to reduce the total potential energy of the system [25]. The turbulent
regime is relevant in many different contexts, for example, in the understanding of
the Earth’s climate, in the nuclear fusion process [73, 21] and as a key mechanism for
thermonuclear flames in some types of supernovae [103, 83]. In the context of classical
fluids, the incompressible Rayleigh-Taylor turbulence has important properties [13], one
of the most important of which is the quadratic growth of the mixing layer width. In
some cases, important connections have been found with classical theories of turbulence
for simple fluids [38, 28, 1].

Physical experiments of the RT instability have been challenging due to the diffi-
culty of sustaining an unstable density stratification necessary to set up the appropriate
initial conditions for the instability [25, 75, 31, 46, 97|. Despite this limitation, consid-
crable advances in numerical simulations of the Rayleigh-Taylor instability have been
verified in the last decades, especially in the context of the systems with miscible flu-
ids [28, 10, 26, 13, 8, 101]. Only a few works have been dedicated to the immiscible
viscous case (25, 99, 64, 18, 22, 66|, and most of them are devoted to the carly stages of
the instability with little information about the state of developed turbulence. One of
the reasons for this is the highly complicated pattern formed by the interfaces that ap-

pear in the immiscible case, originating high gradients and singularitics in the solutions,



which is a source of challenging numerical instabilities in many numerical methods for
multicomponent and multiphase flows.

Concerning to the theoretical aspects of the immiscible RT turbulence, it is only
recently that a consistent phenomenological study of the effects of surface tension has
been carried out by Chertkov and collaborators [29]. Tt followed the carlier work [28],
where a phenomenological theory was developed for two and three-dimensional misci-
ble RT turbulence considering Boussinesq approximation. Said work considers a 3D
scenario, in which the direct energy cascade happens in a range of scales limited by the
mixing layer width (integral scale) and the viscous (Kolmogorov) scale, both dependent
on time. In the two dimensional case, the lack of energy and enstrophy cascades leads
to the assumption of Bolgiano-Obukhov theory describing the cascade of temperature
fluctuations in the inertial range [17, 71]. The work [29] described the theory of three-
dimensional immiscible RT turbulence, studying the cffects of the surface tension in
the emulsion-like state and predicting the rate of growth for the typical drop size.

In this thesis, we extend the phenomenological theory of [29] for the two-dimensional
immiscible RT turbulence. This extension includes predictions for the growth of the
total length of the interface and the typical drop size. We also provide predictions for
the evolution of the enstrophy in the miscible and immiscible cases, which have not
been addressed carlier. These predictions are tested using numerical simulations based
on the multicomponent lattice-Boltzmann method with Shan-Chen pscudopotential
model [55, 89]. In the immiscible case, this method is able to accurately overcome
the inherent numerical complexity caused by the complicated structure of the interface
that appears in the fully developed turbulent regime [82; 25, 99|. This method also
admits parallel implementations in many situations, which is very important for sta-
tistical analyses that require a substantial number of simulations, like in our numerical
verification for the phenomenological predictions.

We run several simulations of the RT turbulence in parallel on Graphics Process-
ing Units (GPUs) using the CUDA compute platform [70] with a computational grid
with resolution 10.000 x 5.000. In this step of our rescarch, the optimization of the
lattice-Boltzmann algorithms for GPUs used in this thesis was developed in collabo-
ration with Prof. Luca Biferale and Prof. Mauro Sbragaglia from the University of

Rome-Tor Vergata. The collaboration happened through direct contact in two long-



term visits between the years 2018 and 2019. The first visit received a support from
the ERC-ADG NewTURB project; and the second visit in 2019 was supported by the
project CAPES/NUFFIC, which also included the collaboration with Prof. J. Hans
Bruining from Delft University of Technology.

In 2018, the rescarch was focused in basic verifications of the Shan-Chen multi-
component method for the immiscible Rayleigh-Taylor instability. We validate basic
lattice-Boltzmann codes by testing dispersion relations.  After these validations, we
focused on the optimization of the LBM codes for simulations in CUDA. With the
optimized versions of the codes, in 2019 a few preliminary phenomenological numer-
ical verifications were obtained about the evolution of the mixing layer, total length
of the interface and typical drop size. These results were presented in 32nd Brazilian
Mathematics Colloquium; in the workshop “Waves, Coherent Structures, and Turbu-
lence (WCST2019)” held at the University of East Anglia (Norwich, UK); and in the
conference 7 Universal features of hydrodynamical, optical and wave turbulence” held
at the University of Nice Sophia Antipolis in Nice (France).

At the end of 2019, our rescarch addressed the implementation of a CUDA code of
the Shan-Chen multicomponent method in the computer cluster Tsunamib on IMPA.
Simultancously, the analysis of the energy budget of the Rayleigh-Taylor flows gen-
crated some results. In the beginning of 2020, the final numecrical validations of the
phenomenology for immiscible Rayleigh-Taylor flows were obtained (which we present
in the final chapter of this thesis). These results can be divided into two main parts: one
part dedicated to the verifications of the phenomenological predictions, and a second
part addressed the numerical analysis of the energy budget. Some of these results were
presented in the 29th International Conference on Discrete Simulation of Fluid Dynam-
ics (DSFD 2020), organized by the University of Tuscia in Viterbo (Italy). After this
conference, our work about the numerics of the energy budget received an invitation to
be published in the journal Philosophical Transactions of the Royal Society A [91], as a
contribution to the progress in mesoscale methods for fluid dynamics simulation. The
summary of the numerical verifications of the phenomenological predictions presented
in this thesis can be found in the article [90].

This thesis is organized as follows:



e In Chapter 2 we describe the basic equations for the classical Rayleigh-Taylor
system, miscible and immiscible, characterizing the Boussinesq approximation
and studying the surface tension effects. The details of the mechanisms that gen-
crate the Rayleigh-Taylor instability are studied in the analysis of the dispersion

relation.

e In Chapter 3 we describe the multicomponent lattice-Boltzmann method with
Shan-Chen pscudopotential model.  We show how to consider the Boussinesq
approximation for the Rayleigh-Taylor systems with this method, giving details

of the sctup of the simulations used to test the proposed phenomenology.

e In Chapter 4 we provide some verifications and validations of the Shan-Chen
multicomponent method. We first calculate the surface tension coefficient using
the Laplace-Young test in the numerical results of LBM simulations of droplets.
The accuracy of the Shan-Chen method for the initial times of the immiscible
Rayleigh-Taylor instability is tested by verifying classical dispersion relations. At
the end of this chapter, we discuss some limitations in this method for simulations
of immiscible mixtures, verifying the magnitude of the so-called spurious currents

in droplets simulation [89, 55].

e In Chapter 5 we analyse the energy budget in RT flows. In the first part we study
the evolution of the kinetic and potential energies of the systems, comparing
miscible and immiscible systems side by side. In the energy budget comparison
between the miscible and immiscible flows, some differences due to the energy
necessary to form the interfaces are expected to be observed [12, 32, 42, 65, as
well as the possible generation of the vorticity in them [93, 20]. To investigate
such possibility, we calculate numerically the energy of the interface and we
compare with the energy flux due to the Korteweg stress tensor (3, 42]. The
generation of vorticity at the interface is investigated by analyzing the evolution
of the enstrophy and PDFs of the vorticity ficlds. At the end of the chapter we
analyse the existence of critical points in the transition to turbulent regimes in
the immiscible case by studying the evolution of the typical curvature values of

the interface.



e In Chapter 6 we construct phenomenological predictions for mixing layer, typical
velocity and averaged density profile, with the respective numerical verifications,
showing a direct comparison between miscible and immiscible cases. The final
part of this chapter is dedicated the phenomenological properties of the interface,
where we first investigate the evolution of the typical drop size and total length
of the interface in the emulsion-like state, and at the end we study the evolution
of enstrophy. The statistics for the enstrophy are also used to understand the
influence of the interface on small-scale statistics and to verify the validity of the

assumption of the Bolgiano-Obukhov regime in our phenomenology.

e Chapter 7 provides some conclusions and perspectives.



Chapter 2

Immiscible and miscible

Rayleigh-Taylor systems

2.1 Governing equations

An interface between two fluids of different densities becomes unstable when
the heavier fluid is placed above the lighter fluid under gravity [27]. In the classical
formulation of fluid dynamics, the flow is described by the incompressible Navier—Stokes

cquations

p (g—;l +u- Vu) = —Vp+ V- [pn(Vu+ (Vu))] +f, (2.1)

V-u = 0, (2.2)

where u is the fluid velocity depending on spatial coordinates x and time £, as well as
the pressure p. p and p are the fluid density and dynamic viscosity, and the buoyancy
forcing term is

f=pg (2.3)
with the acceleration of gravity g pointing downwards. In this thesis we study two-
dimensional flows with x = (z,y) for two different physical models describing the

immiscible and miscible flows.
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Figure 2.1: Unstable configuration characteristic of the Rayleigh-Taylor instability. In
this configuration the fluid with the bigger density p; is placed above the fluid with
the smaller density pe. In this configuration, any single mode pertubation y = h(z, 1),
with a wave number smaller than some critical value, can generate the instability, as

we see In the next subsection.

The immiscible formulation considers two fluid phases with constant densities
and viscositics: p; and y; for the first phase and p, and p» for the seccond phase. We
assume that p; > po, i.c., the first phase is heavier. The two subdomains occupied by
cach phase are separated by a moving interface T'(t) = {(z,y) € R%y = h(z,t)}, sce
Fig 2.1. Equations of motion for ecach phase arc given by (2.1) with the corresponding
constant values of density and viscosity. At the interface, the boundary conditions take

the form

-

XEF <U‘ﬂ:u[‘ (24)
[—pn + 1 (Vu + (Vu)T) n} p = kL,

“

where || denotes the jump of the quantity across the interface, n and uy- are the inter-
face normal vector and velocity, v is the surface tension and k is the interface curvature.
In our models we consider a constant surface tension, for models with variable surface
tensions, see [87, 3|. The first two conditions in (2.4) describe the continuity of fluid
velocity and mass conservation, while the last condition corresponds to the balance of
momentum. We will mostly focus on configurations with rigid flat boundaries on the
top and the bottom, and periodic boundary conditions in the horizontal directions.

The no-slip condition, u = 0, is assumed at the rigid boundaries.



When density variations compared to their mean values are small, we can use
the Boussinesq approximation for the system [56]. In this approximation the density
fluctuations dp = p — py, where py = (p1 + p2)/2 is the reference density, affect only
the buoyancy term [56, 51]. In the rest of the momentum equation (2.1) the density is
set to the constant reference value pg. If viscosities gy and pe of two components are
close, one can approximately use the mean kinematic viscosity v = (py + p2)/(2p0).
After this approximations, the momentum cquation (2.1) becomes

) )
o (% +u- Vu) = —Vp+ povVu + dpg (2.5)

where the background value of the buoyancy term pyg is included into pressure term.
Introducing the order parameter ¢ as a function equal 1 in the first phase and —1 in
the second phase, it is possible to refine the buoyancy contribution in (2.5) in terms of

p1, p2 and ¢ as [25]

opg = —(p—po)gey (2.6)

= - [,01 (1—;(]5) + p2 (1;¢) —Pn] gey

AP e,

= - pnAff).qu

= _pﬂ.(}(.fﬁey .

where A = (p; — p2)/(p1 + p2) is the so-called Atwood number, g = Ag is the cffective

gravity and e, = (0, 1) is the unit vector in vertical direction.

2.2 Linear stability analysis

In this scction, we consider an idealized situation for the Rayleigh-Taylor insta-
bility with an initial configuration at ¢ = 0 corresponding to a fluid at rest, with zero
initial velocity, with the heavier (first) component occupying the upper half-planc y > 0
and the lighter (second) component occupying the lower half-plane y < 0, see Fig. 2.1.
In this configuration we investigate with more details the conditions that lead to the
development of the Rayleigh-Taylor instability by analyzing the linearized equations of

motion and finding the single modes perturbation growth. In this analysis we suppose



that the amplitude of the perturbations are small in a such way that the conditions
at y = h(x,t) arc approximately valid also for y = 0. First, for the sake of clarity, we
consider a system composed by two ideal fluids. Thercafter we discuss the implication
of the viscosity in the developed calculations.

Consider the Rayleigh-Taylor system represented in Fig. 1.1, with the location of
the interface described by a function y = h(z,t) and with p; = ps = 0. By the Stokes
theorem, there exist potential functions & and & such that the velocity fields uy, for

y > h, and uy, for y < h, are given by

u, = V& for y>h, (2.7)
u, = V& for y<h. (2.8)

with
Ab = A& =0, (2.9)

by the incompressibility condition (2.2). With the potential flow assumption, one can

show that from (2.1) for each component we obtain [40]

%) D
\Y (((‘3% 2+ gy + %:) =0 fori=12. (2.10)
or, cquivalently,
0 .
‘ El >+ gy + L Cy(t) for y > h(z,t) (2.11)
r}f 21
0 .
(,)% * + gy + B2 Cy(t)  for y < h(z,t). (2.12)
P2

where C;(t) are functions of the time only. We can set Ci(t) = 0. In fact, if we define
91' = {i — Di(t)? f()I‘ 1= 1, 2, (213)

where D;(#) is an integral of Cj(t), we have V#; = V& = u; and

20, 1 D1 .
— 4+ =Vl +gy+— = 0 fory>h(xt 2.14
5 +5IVoil +ay o y > h(z,t) (2.14)
0, 1 D2 .
— 4 =|V6,|? = =0 f < h(z,t). 2.15
5 —|—2| 5| —I—gy—i—p2 or y < h(r,t) (2.15)
At cach time, the interface motion can be given by s(z,y,t) = 0, where the
function
s(z,y,t) =y — h(z,1). (2.16)

9



If a particle of the fluid occupies a position r(f) in the fluid domain, then the velocity of
this particle is given by ir(” = u(r(t), 1), where u is the velocity field satistying (2.7) in
the component 1 and (2.8) in the component 2. At the interface we have s(r(t),f) =0
for any time ¢ > 0, which implics that

s
E +u-Vs=0. (2.17)

For a particle in the component 1 immediately above the interface y = hy(z,t), we
have

lim u(z,y,t) =uy(z,hy,t) =V (z, h, t), (2.18)

y—rh,y>=h

and for a particle immediately below the interface y = h_(x,%) in the component 2

lim u(z,y,t) =uy(z,h ,t)=Vby(x, h_,t), (2.19)

y—rh,y<h

where ¢, and 6 arc given by (2.13). Then, from (2.17) and (2.16) we have

Ds _on e oh 06 ‘

ot + Vb, -Vs = "ot or or + a =0 at y=~h, (2.20)
and

Os _Oh o,0n 00, ‘

§ +V92 Vs = _E - %%4—@ =0 at I = h_. (221)

The pressures p; and py can be related with the curvature s of the interface by
the Laplace-Young equation [86, 55]

B
D — Dy =YK =y— 2.22
PP = R = Y (2.22)
In the lincar analysis of the equations (2.14), (2.15), (2.20) and (2.21) we neglect
all the quadratic terms, which also implies that p; — p; >~ vh,,. Thus, we obtain the

following system of lincar equations for the inviscid immiscible Rayleigh-Taylor system

Ab, =0, for y > 0,
Aby =0, for y < 0,
VOh 06, Oh 06, (2.23)
— = —_ = for y = 0,
ot Oy ot Oy
8 1 o 892 _
( BT + qh) + vYhy, = ( T qh) for y =0,

with the boundary conditions far from the interface satisfying

00;
dy

for |y| — o0, i=1,2. (2.24)

10



We now seck solutions for three different functions h, #; and 6, fulfilling the

system (2.23). To do this we employ an cigenmode analysis

0, = A(y)cexp(ikz + ot) for y > h, (2.25)

02 = DB(y)exp(ikz + ot) for y < h, (2.26)

where k is the wave number, ¢ is the angular frequency and A(y) and B(y) arc functions
that correspond to usual analyzes by plane wave ansatz [40]. The forms (2.25) and
(2.26) are compatible with the characteristic form of the general solutions of the system
(2.23) obtained by method of the separation of the variables [36]. We also assume that

the shape of the disturbed interface is given by a normal-mode expression
h = hexp(ikz + ot). (2.27)

where A is the mode amplitude. The potentials #; and #, satisfy the Laplace equation,

which leads to
0A(y) IB(y)

Jdy dy
The conditions far from the interface (2.24) imply that A(y) o exp(—ky) and B(y) o

=k’ A(y), = k’B(y). (2.28)

exp(ky). Thus, from (2.25) and (2.26), we have the following cquations for a single

Fourier mode

6, = 6 cxp(—ky)exp(ikz + at) for y > 0, (2.29)

0y = Bycxp(ky)exp(iks + ot) for y < 0, (2.30)

where #; and #, arc the corresponding mode amplitudes. Inserting the modes in the

system (2.23) we obtain the following algebraic system

o —k 0 h 0
o 0 k 6, = |0 (2.31)
[9(p1 — p2) — Vk?| pro —pa| |6 0

Analyzing the determinant of the coefficient matrix of the system (2.31), we can

see that nontrivial unstable solutions with h # 0 exist for

pL— P2 k.‘i k!] ‘
o(k) = k — = ([ Agk — . 2.32
(k) \/(Pl + ,02) g 7,01 + p2 \/ g 72,0(1 (2:32)
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This analysis implics that if A > 0 and k& < /2pgAg/7, then the initial perturbation

of the interface grows exponentially,
h ~ he? W), (2.33)

with (k) given by (2.32).

In the presence of viscosity, it is possible to use the previous procedure to estimate
the dispersion relation in the case of fluids with small viscosity. In this case, the flow
in the initial stages of the RT instability can be considered almost irrotational, and a
direct estimation of the dispersion relation can be obtained using the viscous potential
flow analysis (VPF) [48, 39, 88, 15|. In this analysis, the term xV?u in the Navier-
Stokes equation (2.1) is considered negligible, with the viscous stresses affecting only
in the normal stress balance in (2.4) [88], i.c.,

2

0 020 0?h

(
- + 20 —— .
P1 IlayQ 092 922

As a conscquence, the last equation in the system (2.31) is changed to
(pro + Z;lez)gl — (p20 + Z;Lgkz)ég = 7,%2 = (2.35)

which leads to the following dispersion relation

k.‘i
o(k) = —vk* + \/Agk — fyﬂ + v2EA. (2.36)

The formula (2.36) is actually known as an upper bound for the growth rate of
the perturbation of the interface for fluids with arbitrary viscosity [27]. In the case of
fluids with small viscosity, this upper-bound is also a good approximation of the actual
value of the dispersion relation [15, 88|.

In Fig. 2.2, we analyze the cffects of the surface tension and viscosity in the
dispersion relation (2.36). It is possible to sce that without surface tension and viscosity
(red dashed line), any perturbation can generate the instability for A > 0. With the
addition of the surface tension (blue dashed line) the instability is generated only for
k < \/2poAg/vy. The viscosity (black solid line) only reduces the growth rate without
changing the critical wave number k. = /2pgAg/y. In Chapter 4, we provide a

series of tests verifying the dispersion relation (2.36) for the immiscible RT instability,
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comparing with some results generated by the lattice Boltzmann method, a numerical

technique to be described in Chapter 3.

%1072 %1072

a(k) = —vk? + \/Agk - *r% + ikt

10 [l g (k) = \/ Agh — v ==

————— a(k) = —vk? 4+ \/ Agk + 12k* -
8 ll- - —o(k) = vAGE

dispersion relation
dispersion relation

0 0.2 0.4 06 08 1
Ag %107

(a) (b)

Figure 2.2: (a) Theoretical dispersion relations for the immiscible RT system for differ-
ent values of the effective gravity § = Ag with a fixed wave number k = 27/256, and (b)
for different values of the wave numbers and fixed cffective gravity g = Ag = 0.0006.
For both pictures the kinematic viscosity is v = 0.1667 and the surface tension coeffi-

clent o = 0.061.

2.2.1 Miscible flow

In the miscible flow, the fluid is modeled by a single phase with a variable density.
Analogously to the immiscible case, we write this density as p = py (1 + A¢) from the
relation (2.6), which in the miscible case is a consequence of the law of additive volumes
for mixtures of fluids with close densities [50, 49).

The order paramcter ¢(x,t) describing density variations satisfies the convec-
tion—diffusion equation

O

— tu-Vo=V-(DVg), (2.37)

where D is the diffusion coefficient. In general, both viscous and diffusion coefficients
arc functions of density. Analogous formulation arises when the density is considered
to be a function of temperature 7', in which case ¢ = —f(T —Tp) with the coefficient of

thermal expansion (3 [58]. The equations of motion for the Boussinesq approximation
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in the miscible case are

ou
Po ((ﬁ_t +u- Vu) = —Vp+ pwV’u— PogPey, (2.38)

V-ou = 0. (2.39)

The initial condition for the miscible Rayleigh-Taylor instability is considered in the
same form as for the immiscible configuration like in Fig. 2.1. If the interface is straight,
h = 0 then a uniform diffusion layer is developed at the interfacial region with limits
that satisfy a diffusion equation derived from (2.37) [49].

When a small perturbation of the interface is introduced, the calculation of the
dispersion relation for the miscible Rayleigh-Taylor instability is also analogous to the
immiscible case, with the exception that in the miscible case we disregard the surface

tension. This yields

o(k) = —vk® + \/ Agk + v2k1. (2.40)

In Fig. 2.2(a) and Fig. 2.2(b) we have a representation of (2.40) by the dashed green
lines. In these cases, if A > 0 then perturbations with arbitrary wave numbers can

generate the instability.

2.3 Turbulent mixing

We can sce that the system configuration outlined in Fig 2.1 is an unstable station-
ary solution: small perturbations of the interface with wavenumbers k < /2pyAg/~y
grow exponentially with the dispersion relation given by (2.36). After an initial lincar
growth such perturbations develop into nonlincar mushroom-like structures evolving
further to the fully developed turbulent mixing layer as shown in Fig. 2.3.

The miscible Rayleigh-Taylor instability corresponds to the same initial condi-
tions as the immiscible one. It follows a similar scenario, where small perturbations of
the interface are amplified first lincarly and then nonlinearly, growing into the devel-
oped turbulent mixing layer, as shown in Fig. 2.4. The important difference between
the immiscible and miscible cases can be seen at small scales. The immiscible Rayleigh-
Taylor turbulence leads to the formation of emulsion-like state with a multitude of small
bubbles. On the contrary, the miscible Rayleigh-Taylor turbulence develops sharp gra-

dients leading the enhanced diffusion at small scales.
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t =17.000 t = 23.000

Figure 2.3: Mixing layer of the immiscible Rayleigh-Taylor turbulence, where the brown
color corresponds to a lighter phase and the yellow color represents a heavier phase.
The pictures show the phases in the same region for three different times: the ini-
tial lincar growth, formation of nonlincar mushroom-like structures at intermediate
times, and fully developed turbulent mixing at larger times. The images shown arc
clippings with size 2.000 x 1400 from simulations performed on grids 10.000 x 5.000 in
lattice-Boltzmann units (Ibu). This set of units is directly connected with the lattice
Boltzmann method described in Chapter 3. A full picture of this simulations is shown

in Chapters 3 and 5



t =9.000 t = 15.000

t = 83.000

Figure 2.4: Mixing layer of the miscible Rayleigh-Taylor turbulence, where colors de-
scribe the fluid density; lighter colors representing the heavier fluid. The pictures show
the densitics in the same region for three different times: the initial lincar growth,
formation of nonlincar mushroom-like structures at intermediate times, and fully de-
veloped turbulent mixing at larger times. The images shown are clippings with size
2.000 x 1.400 from simulations performed on grids 10.000 x 5.000 in lattice-Boltzmann
units (Ibu). This set of units is directly connected with the lattice Boltzmann method

described in Chapter 3. A full picture of this simulations is shown in Chapters 3 and 5
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Chapter 3

The lattice-Boltzmann model

In this section, we approach numerical solutions for a class of multicomponent,
flows using some methods derived from statistical mechanics. Specifically, following
mostly [55] and [98], we approach the basics of the Shan-Chen multicomponent method,
which is one of the so-called lattice Boltzmann methods. The main objective is to show
how to use these kind of methods to simulate the Rayleigh-Taylor systems described
in the Chapter 2.

A basic lattice Boltzmann method (LBM) can be interpreted as a method that
simulates fluid dynamics through the interactions of a set of fictitious particles located
at the nodes of a uniform mesh in the fluid domain. These fictive particles interact
through successive streaming and collision processes. Fluid properties, such as den-
sity and velocity, for example, emerge from interactions as moments of the distribution
function in cach node. In our study, we do a basic analysis of the Shan-Chen multicom-
ponent method with the generalized Bhatnagar-Gross-Krook (BGK) collision operator
model. The physical motivation involves the link between the multi-species Boltzmann
equation and the Cahn-Hilliard-Navier-Stokes (CHNS) system.

In the first part of this chapter, we consider the case of simple fluids, describing
the relationships between the classical Boltzmann equation and hydrodynamic equa-
tions. Therecafter, we introduce a particular numerical scheme for the Boltzmann equa-
tion, describing the so-called Lattice Boltzmann equation (LBE); and we show how to
approach numerical solutions for the Navier-Stokes equations using this scheme. The

same type of analysis is applied for the case of binary fluid systems, where we approach
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the Boltzmann equation for a multi-species mixture, the Shan-Chen multicomponent
method and its relation with the CHNS system. A parallelization scheme using CUDA
C for the Shan-Chen method is also briefly discussed. At the end of the chapter, we
show how to simulate the Boussinesq approximation for the Rayleigh-Taylor systems
described in Chapter 2, giving details of the configuration required in the Shan-Chen

method to simulate these systems.

3.1 From the Boltzmann equation to hydrodynamic
models

This section is dedicated to the connection between the Boltzmann equation and
the classical hydrodynamic equations in the context of simple fluids. This connection
happens when the mean free path [, 5, of the system is small in comparison to the to
the macroscopic length scale L. Under such conditions is possible to employ the so-
called Chapman-Enskog expansion, to be described later. These ideas are also the basis
for some numerical methods in fluid dynamics using the Boltzmann equation, some of
these methods are discussed in the subsequent sections. All the equation described in
this chapter are in a nondimensional form.

Consider a thermodynamic system out of equilibrium. Changes of some physical
quantities of the system, such as and momentum and heat exchange, can be calculated
using the Boltzmann equation, which gives on a macroscopic scale the macroscopic
behaviour of a fluid. The Boltzmann equation is an integro-differential equation for
the probability density function f(x, v, #) in six-dimensional space of a particle position

x € R? and momentum v € R? given by

where Q(f, f) is collision integral, F is the body force, p is macroscopic mass density
of the system, and V. and V,, are gradients with respect to the position x and velocity
v coordinates, respectively.

It can be shown that the collision integral Q(f, f) has at least five invariants (98],
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i.c., a set of functions &, k= 1,2, 3,4,5, satisfying

f &(V)Q, f)dv =0, (3.2)

which are & = 1, (&,&5,&4) = v and & = |v|?, with the integration being performed in
R2. A gencral collision invariant can be written as lincar combinations of the functions

&k. The invariants are associated to some important macroscopic quantitics in the

system
mass density: /fdv =p, (3.3)
mean momentum: / fvdv = pu, (3.4)
. L [,
total encrgy density: 3 flv|?dv = pE. (3.5)

A sct of conservation laws for cach of this quantities can be obtained multiplying
the Boltzmann equation (3.1) by a collision invariant and subsequently integrating with

respect to the velocity. For example, for & = 1, we have

%(/MQ+Vf(/ﬁm)+%(fVJW):/Qmﬁﬁzﬂ:>@m

= Op+V-(pu)=0, (3.7)

obtaining to the continuity equation. Similarly, if we take first moment of the Boltz-

mann cquation we find

d(pu)
ot

where II is the momentum flux tensor given by

+V-TI=F, (3.8)

1= /fv ®vdv. (3.9)
By splitting the particle velocity v = u+w, where w is the relative velocity, we obtain
II=pu®u+ /fw@wdv. (3.10)

Thus, the equation (3.8) becomes the Cauchy momentum equation

d(pu)
ot

+V-(pu®u)=V-P+F. (3.11)
However, in this equation we do not know explicitly the stress tensor
P=- f(w QW) fdv. (3.12)
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We can approximate this stress tensor using an explicit approximation for the distri-
bution function f. This can be done analysing the approach to equilibrium of the
system.

Boltzmann showed in 1872 (98] that the entropy,

H(t) = /f(x,v?t) In(f(x,v,t))dxdv, (3.13)

where f is any function satisfying the Boltzmann equation (3.1), fulfills the equation
dH

— <0. 3.14

g (3.14)

The cquality in (3.14) holds for a distribution f(? given by

3/2
f(‘“’)(p? wv,T)=p (27&%’?) e—lv—ul‘i/{zm'}? (3.15)
where T is the temperature and R is the ideal gas constant. This is the so-called the
local equilibrium distribution of the system. A direct calculation using (3.1) also shows
that Q(f9), flea)) = 0.

Due to the complicated form of the collision integral in real physical systems,
some alternative simpler expressions have been proposed to approximate such integral

[98]. The collision operators commonly used in numerical methods for the Boltzmann

equation are based on the Bhatnagar-Gross-Krook (BGK) collision operator:

0f, f) = ——(f = £9), (316)

where 7 is known as the relazation time, which determines the speed of the convergence
to the equilibrium state of the system. The relaxation time is an approximation of the
typical collision time, i.c., the average time lapse between two subsequent collisions.
This parameter can be assumed to be contant for incompressible fluids with contant
viscosity [55]. The BGK formula reflects the tendency of f(x,v,t) towards the local
equilibrium distribution ¢ due to the particle collisions in the system.

If we approximate f ~ f(@ the equation (3.11) becomes the Euler momentum
equation

d(pu)

T—I—V- (plu®u))=Vp+F, (3.17)

where p is the pressure given by
1
P=3 /|w|2f{“‘”(x?v?t)dv. (3.18)
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The fact that the Euler equation is obtained considering a particle distribution f
at equilibrium indicates that the cffects of the viscous dissipation and heat diffusivity
arc associated with the non-equilibrium part of the distribution, iec., f — f [55].
A more general approximation for f, which accounts the non-equilibrium effects, is
obtained using the Chapman-Enskog analysis. It consists in the expansion of f as a
perturbation around f given by

oo
f=r+) e W, (3.19)

k=1
where € labels cach term’s order and is often stated in the literature as proportional
to the Knudsen number Kn = /4,,;,/L of the system [55], defined as the ratio between
the mean free path 7,5, and the representative physical length scale L. For Kn — 0
the system is dominated by collisions and the particle distribution is approximately

equilibrium [59], characterizing the behavior described by the Euler equation (3.17).

Analogously, the operators 9, and V, have to be defined such that they arce

consistent with the conservation laws (3.11) and (3.7), which leads to the expansions
9, => o, ve=> cvh (3.20)
k=1 k=1

To the first order approximation f ~ f + ¢f(1), we obtain the Nawier-Stokes

model with the following stress tensor
P f—;(vu + vu?) (3.21)

from the equation (3.12), where 7 is the dynamic viscosity. Thus, from a solution of the
Boltzmann equation for a given system we can derive a solution for the Navier-Stokes
cquations for the same case.

The collision invariant &(v) = |v|? is related to the conservation law for the total
energy density of the system (3.5) [55, 59|, but in this thesis we will not discuss this
cquation, since we are considering only isothermal and incompressible systems without

chemical reactions.

Shifted hydrodynamics

It is possible to include the forcing term in (3.1) into the collision operator (3.16)

defining a generalized BGK collision term, obtained by moving the force term in (3.1)
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to the right-hand side as follows

o(f) = Q(ﬁf‘)—%-vvf (3.22)

12

1 F
(= flea)y _ . 3.9:
S == Vg (3.23)
Consider the following approximation
s el g 1 (eq) F “(eq) ¢
C(P) = O = = (= ) == - T, (3:24)

where we evaluate the forcing term as acting on the local equilibrium. This approxi-
mation has no significant impact on the mass and momentum transfer to the fluid by

the force field [89]. In fact, consider the following identity [89)

f (t,x,v 4 T%) = [(zxp (T% -V\,)] ft,x,v) (3.25)

where the operator in the right hand side is defined, up to second order, as follows

F, 2 F, :
[(zxp (T—“f)vu)] flea = (l + T—(?Lu + 5—“(3% bam,) 9+ O(Fr?) (3.26)
P P

where F,, and F), arc component of the force F and we have defined the local Froude

number as [55]

F i *(eq)
Py _aj(f . (3.27)
p [&l¥
Conscquently, we can write
: (eq) E’- : (eq) b : (eq) ‘
(1+7F,0,,)f'Y ~ |exp T?(},,u f ?—(‘3 Y (3.28)

Thus, the shifted collision operator (3.24) can be written as

() = (f(’u ) — flo (u +T%)) +£F73Lu 20, fD + O(Fr?)  (3.29)

where, for simplicity, we omit the dependency of (£, x) in the distributions . In practice,

what is actually used is the following relation

Cs(h) =+ (f(V) ~ fe (v ¥ r%)) , (3:30)

C5(f) ~ (f)—fﬁa% 20,1, (3.31)

1.c.
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This shifted equilibrium include the effects of diffusion in velocity space to the second
order in the Froude number. It can be check by direct integration that the diffusion
term in (3.29) has no impact on the mass and conservation momentum [89).

The generalized collision operator (3.30) gives an important simplification in the
treatment of the forcing term in some numerical algorithms for the Boltzmann equation,
as we show in the next sections of this chapter.

We refer the interested readers to [55, 89, 98, 7] for more details on the derivation

of fluid dynamic equations using Chapman-Enskog analysis.

3.1.1 The lattice-Boltzmann method for simple fluids

The connection between Boltzmann and Navier-Stokes equations is the essence of
the so-called lattice-Boltzmann method (LBM). In this method the basic quantity is the
discrete-velocity distribution function f;(x,t), often called the particle populations, it
represents the density of particles with velocity ¢; at position x and time . Analogously,
the mass density and momentum density pu at (z,%) can be found through weighted

sums known as moments of f; as
plz.t) = Y filx1), (3.32)

pulx,t) = > ecifi(x,1). (3.33)

[

Figure 3.1: Lattice velocities for D2Q9 scheme.

The main difference bewteen f; and the continuous distribution function f is that

all of the argument variables of f; are discrete, with the subscript 7 refering to a finite
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discrete set of velocities ¢;. The points x at which f; is defined are positioned as a
square lattice in space, with lattice spacing Az and f; is definded only in a discrete
set of times separated by a time step Af. The time step At and lattice spacing Az
respectively represent a time resolution and a space resolution in any set of units. A
most common choice in the LB literature is the lattice-Boltzmann units (LBU), a simple
artificial set of units scaled such that At = 1 and Az = 1. The conversion between
LBU and physical units can be done similarly as converting between two general sets
of physical units.

By discretizing the Boltzmann equation in velocity space, physical space, and

time, we obtain the discrete Boltzmann equation
filx + c;At t + At) = fi(x,t) + Qi(x,1). (3.34)

This equation expresses that a particle f;(x,#) moves with velocity ¢; to the nearcest
ncighbors after a time step At. One of the most used velocity sets is the so-called D2Q9
scheme, where cach particle is allowed to have nine velocities cg, . . ., cg. These velocities
arc given by the vectors (0,0), (¢, 0), (0, +¢) and (£e, £¢) with ¢ = Az /At, such that
a particle stays at the same or moves to a neighboring lattice point at a single time
step. In the next developments and in all simulations presented we assume the lattice
Boltzmann units. This choice of units offers a rcasonable numerical stability in the
numerical simulations and also simplify the implementation of the lattice Boltzmann
algorithms, as we will sce later.

The discrete version of the BGK-collision operator (3.16) is given by €2; defined

as
SZ i f; . fz.{(jq)
ifif)=—""

The equilibrium distribution is calculated by maximizing the entropy [98]

(o) == Y F(p)n (22

T

(3.35)

) , (3.36)

for given constraints, which for case under consideration arc the mass and momentum

densities given by (3.32) and (3.33), i.c.,

D L= fi=p (3.37)

(]

Z cifl-(“q) = Z ¢, fi = pu. (3.38)

i
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The weighting 1/w; in the entropy formula will lead to equilibrium distributions of the

form fi("'”) = w;ePe) implying S = 0 for f}(“‘”J = w;. The functional
S =S8+ A(p,u)p+ B(p,u) - u, (3.39)

incorporates the constraints by the coupling with the Lagrange multipliers A and B.
Expanding A and B up to sccond order in u and using the symmetry of the D2Q9, we

obtain as a minimum of S the following distribution:

< - ;o 2 "
3c;i-u 9(c;-u) ou u)? (3.40)

-(eq) o
f‘i (p?u) = pw; (]‘ + (_2 + 2(:4_ - 2(}2

where the weights w; are associated to the velocity set D2Q9. Note that the equilibrium
distribution is a function of the density p and velocity u only. The weights are connected

to the velocity components ¢; = (¢}, ¢?) by the conditions

a b 2¢ cabed  Arge ¢ C 'y 9 o«
§ wic; c; = Csbr;f;; § W;C; C;C;C; = Cy (bm‘)bmf + 5{1d(5bc + bacbbd) for a, b? & d= J-? 2:
i i

(3.41)
where d,, is the Kronecker delta. The simplified equilibrium distribution (3.40) and
the discrete velocity space D2Q9 are sufficient to obtain the correct macroscopic con-

servation laws in two-dimensions for several applications [55].
The connection between LBM and the Navier-Stokes equation is given by the
Chapman-Enskog expansion (3.19) and (3.20). Using this expansion, the kinematic

shear viscosity is associated to the relaxation time by the equation

v=c (T— E) , (3.42)
where ¢, = ¢/4/3 is the speed of sound in LBU. The bulk viscosity will be given by
vp = 2v/3. In addition, the momentum flux tensor P is approximated from f; as

P~ (1 - %) Y (ci@e)f: (3.43)

[

analogously to the formula (3.12) in the continuum case. The viscous contribution o

to the momentum flux tensor is approximated as

o~ (1 - ?:) Z(c@ ®c)(fi — 1 = pr(Vu + vu’). (3.44)



Using the BGK approximation in the equation (3.34), we obtain the lattice BGK
cquation:

fibctent+1) = fitt) =~ (fibs 1) = 9 (p,w) (3.45)

This equation can be decomposed into two parts that are performed in different time

steps:
e The first part is the collision (or relaxation), where we compute
fret) = fibt) — = (FGt) = £, w) (3.16)
where f* represents the distribution after collisions.

e The sccond part is the propagation (or streaming), where we compute

filx et + 1) = fr(x,1) (3.47)

The simplest way to initialize the populations at the initial time £ = 0 is to sct
filx,t =0) = fP(p(x,t = 0),u(x,t = 0)). (3.48)

The LBM algorithm consists of a cyclic sequence of substeps, with cach cycle
corresponding to one time step [55].  Specifically, the following substeps shows the

necessary information to set up an LBM computer code:

For given initial values of density p(x,?) and velocity u(x, ) calculate the equi-

librium distribution f}“q) from the formula (3.40) and set f; = f}“qJ.
e Perform collision according to (3.46).
e Perform propagation according to (3.47).

e Calculate from the propagation process new values of p(x,t) and u(x,#) using

the definitions (3.32) and (3.33).

e The next time step starts from the calculations of the new equilibrium distribu-
tions. The subsequent evolution of the system is done by repeating the operations

of this algorithm until the last time step or convergence has been reached.
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The external forces in the discrete Boltzmann equation are generally taken into

account introducing a discrete force Fj;, which is a generalization of the forcing term

% -V, fin (3.1). Thus:
fi(x+ci,t + 1) = fi(x,t) + Qi(x,t) + Fi(x, 1) (3.49)

In particular, we demand that the discrete force should conserve the moments of the

term % -Vf, 1 e,
Z F, = | / F?a fdv =0 (3.50)
ZFic.‘j = /m%ﬁ%fdv = F, (3.51)
Z Fic;‘ci’ = /vaﬂb%a,,cfdv = F,uy + u,F), (3.52)

where the index a, b, ¢ = 1, 2 are indications of the Cartesian components of the vectors.
Using the shifted hydrodynamics approach, the forcing term can be inserted in the
expression of the equilibrium distribution (3.40) using the generalized BGK operator

(3.30) as follows

fxctent+) = o) =+ 50— 17 (pur T sy

this is the so-called Shan-Chen forcing scheme [89]. This is the forcing scheme we adopt
in the next sections.

To treat the boundaries, we assume that the whole computational domain is
divided into many uniform voxels, which arc occupied by cither solid or fluid, with the
variables defined at the voxel centers. In the applications of this theses we use the
bounce-back boundary for the non-slip boundary condition. In this method we allow
the distribution f;(Xfyiq, t), which belongs to the fluid grid at x4 and moves toward
the solid grid at xg.q in the ¢; direction, to bounce back at the same time step to
update [62]

fir(Xpruids t) = fir(Xsotidr 1) = [i(Xsotiast) = fi(Xfruids 1), (3.54)

where 7’ is the index of ¢; opposite to ¢;. In this thesis, we consider only bounce-back

and periodic boundary conditions.
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3.2 From the multi-species Boltzmann equation to

the Cahn-Hilliard-Navier-Stokes system

This section is dedicated to extending the theory described in the previous sec-
tions to the context of incompressible multicomponent fluids without phase changes.

For a binary mixture, a natural generalization of the lattice Boltzmann method
comes from the analysis of the multi-species Boltzmann equation [47, 7|. In the two
dimensional case, this equation describes the evolution of a vector distribution f =
(fA, f2) where cach entry f*(x,v,t) represents the distribution of the specie s = A, B
at time ¢ in a point (x,v) on the phase space. The Boltzmann equation for the multi-
species system is given by [7]

O f' +v - Vift+ p—: Vofa = Qaalf*, )+ Qs(f4, P), (3.55)

Oif” +v - VP + % Vofs = Qea(f 7)+ Qea(f¥, 1) (3.56)
where Qo (f%, f¥) represents the effects of the collision between the species s and
s" and F4 and Fp are forces acting on the components A and B respectively. The
terms Q4(f2, f) and Qpp(fZ, f?) accounts for the tendencies to the local equilib-
rium states and phasc transitions in cach component. The terms Q5(f%4, f¥) and
Qpa(fB, f4) are associated to the interactions between different components; that can
result in attraction, repulsion or no interaction. In this section we consider a binary
system without phase changes.

Analogously to the previous section, we define some important macroscopic quan-

tities for system:

bare mass density ps = [ fidv, (3.57)

bare momentum density pu, = [ fivdv (3.58)
bare momentum flux tensor S, = [ vV @V fdv (3.59)
total mass density p = patps, (3.60)

total momentum density  pu = paua + ppug, (3.61)
order parameter & = pa— P (3.62)

total momentum flux tensor S = S,+Sp (3.63)
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In a mixture model, for cach specie, there are a conservation laws for the mass
densities and total momentum [47]. They are obtained by multiplying the collision
term with £ = (l,v,% |v|2) and integrating with respect to v. In a system with
incompressible components with no chemical reaction with a constant temperature,

some of the most import conservation laws are given by

Dps +V-(psu) = V-I¥ s=A B,
0p+V-(pu) = V-J9,

d(pu) +V-(pu®@u) = V-S+F,

where F = F4 + Fp and the diffusive currents verify J©@) = —2J5) = 2JA) = 2, (u—
u,) by the Gibbs-Duhem equation [58]. An important difference in the context of
multicomponent systems is in the equilibrium distributions for the components of the

system. It can be show that if

Qaalf Y = Qap(f4, f8) =0, (3.64)
Qp(fP, f7) = Qua(F, f4) =0, (3.65)

then f4 and f? arc Maxwellians with common velocity u and temperature T [7], i.c.,

» 1 \%2 L
£ (pe,u, v, T) = py (m) e IVTulY/@RD) o s = A, B. (3.66)
TR

We can also apply the Chapman-Enskog expansion for binary mixtures expanding

f% as a perturbation around (3.66) as
fs _ fs((:q) + Z Ekfs(k) (367)
k=1

where € labels cach term’s order in the Knudsen number Kn of the component s,
which we assume to be the same for both components, for the sake of simplicity. The
multiscale expansion is also applied the operators 0, and Vy, analogously to (3.20).
In the limit Kn — 0, the collision terms vanishes leading to the Euler limit of
the system [47, 7). In this limit J) = J®¥) = 0 and V-S — —Vp, where p is the
hydrostatic pressure given by p = ¢?p with ¢ being the speed of sound. In this regime

the mixture behaves like a mixture of ideal gases without interactions.
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To model the non-cquilibrium effects, we consider f* ~ f5(¢9) ¢ (1) Analogously

to the cases of the simple fluids, we have
S >~ —pl +7(Vu + (Vu)"). (3.68)

where 7 i1s the dynamic viscosity of the system. The effects of the self interactions of
the components, represented by the terms Q44(f4, f4) and Qpp(f%, f?), are approx-

imated using the BGK collision operator given by

V) = 2 (f* — ) (3.69)

where 7 is the relaxation time. For effects of the interactions between components,
represented by Q4 5(f4, f2) and Qp A(f7, f4), we can use the approximations given
by the so-called Shan-Chen (SC) intermolecular force F¢| which assumes the following

hypothesis between the points in the fluid domain [55]:

e The intermolecular forces act between pairs of molecules and are additive.

e The magnitude of intermolecular forces between fluid clements at x and X is

proportional to the product of the densities in cach point, i.c.; p.(x)ps(X).
e Interaction is a strong function of the distance between the elements of the fluid.

e A kernel function Gg(x,X) carries the dependence of the spatial dependence of

the force.

A continuous function that fulfills the mentioned requirements is given by

PG = / (% — %) Gas (%, %) pu (%) (R X, (3.70)

with s = B for s = A and vice versa. In the next subsetion, we introduce a discrete
models for (3.70). For large valucs of p, is common to use an cffective density or
pseudopotential 1s instead of the densitics py in the expression (3.70). A common form

for the pscudopotential 7, is given by [55)

Q/}s(p&') = ps(][]- o Cxp(ps/psﬂ)] for s = A? B? (371)

where py is a reference density. The reason for 1), is rather than p, is the possibil-
ity of numerical instabilities for large values of p, [89], which is not the case for the

applications in this thesis.
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In the Shan-Chen method, the effect of the interaction between components is ac-
counted by the introduction of extra forcing terms F5¢(x) and F2¢(x) in the equations
(3.55) and (3.56). By this way, we obtain [82, 5]

J) = PAPB [r/ (VpA — VpB) —T (ﬂ — E)] =-JB), (3.72)
P PA PB PA I

and the global momentum equation will be given by

d(pu) + V- (pu®u)=—-Vp+ V- (pv(Vu+ (Vu)")) +F, (3.73)

where F includes the Shan-Chen force F9¢) = F5¢ + F3¢ and other external forces.
The Shan-Chen force can also be incorporated into some suitable stress tensor P veri-
fying the relation

V-P=Vp-FO9, (3.74)

3.2.1 Lattice-Boltzmann method for binary mixtures without

phase changes

The lattice Boltzmann equation for cach component is written as

Mo+ ent+1) = [z, t) + QM + QY (3.75)

Bt ent+1) = fBa,t) + QBB 1 QB4 (3.76)

where the terms Q44 and Q2 accounts for the sclf-interactions of the system; and the

S i -.' [ -' C - 3 B T V) J J' JJ{/J' b A J - ‘.IJ T & - .
terms Q7 and QP4 arc related to the interaction between the different components

The densities of cach component (bare densitics) and common velocity of the fluid are

defined as
ps(x,t) = > fuslx,1), (3.77)

_ is,iff(x?t)ci/n
u(x,t) = E,,-P,,-(X?t)/q-s (3.78)

For the self-interaction term we can employ the BGK approximation

0 (x,8) =~ (f05,1) = £ (pu, ), (3.79)

=1+ . ey - . . - e
describing the relaxation towards the local equilibrinm distribution f; “4) for cach com-

ponent defined, analogously to the single component case, as

(e 3c;i-u 9(c;-u)* 3u-u

s(eq) i i

: Lu) = psw; | 1+ + — .
i (ps 1) = pow ( 2 2! 2c2

(3.80)
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Note that the velocity in the equilibrium distribution is the same for all components
of the system, analogous to the formula (3.66) for the continuous case.
The external forces F# acting on the component s are taken into account by using

the Shan-Chen forcing scheme

et ) = 0 == [0 = £ (pur ZE) L )

s
The forcing term F, contain three parts: the fluid-fluid interaction F¥¢, the fluid-
boundary interaction F/® and the external forces F&, ic., F, = F5¢ + F/b  Fert,

In this thesis, the interaction between components F:’( is calculated by the Shan-
Chen force (3.70). If we assume that the interaction force is short-ranged, then a
suitable expression for the kernel Gs(x,X) in the discrete case is given by

w;G e, for X =x+ ¢,

G(x,X) = (3.82)

0, otherwise

and (3.70) becomes

F(x) = —py(x)G Z w;ps(x + ¢;)e;. (3.83)

(]

The interaction between fluid and boundary in the Shan-Chen model is given by
F/* = —Gap,(x,t) Z w;S(x + ¢;)ey, (3.84)

where S(x) is the indicator equal to unity at boundary nodes and vanishing otherwise.
The parameters G 4y, and G g, control interactions between fluid components and solid
boundary; they are related to contact angles of fluids in the mixture. For a wetting
fluid, the interaction should be attractive and therefore Gy, < 0; and non-wetting fluids
should have G > 0 [55]. In the Boussinesq approximation, the contact angles 64 and
f, mecasured in the fluids A and B respectively, can be approximated by the following

relations [44]
2(Gy, — Gap)

2(Gap — Gps)
G asApo .

cosfy ~
G apApo

cosf, ~

(3.85)

bl

For an external force F“! acting in both components, c.g, gravity, we distribute

the force to the components according to their concentration [55]
ert Ps ext _
p 5
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The general algorithm for the Shan-Chen multicomponent model is very similar to
lattice BGK algorithm described in the previous section for simple fluids. Analogously,

at the initial time ¢ = 0, we sct
£ = £ p(x,t = 0),u(x,t = 0)), (3.87)
and then:
e Find the fluid densitics p, and total velocity u according to (3.77) and (3.78).

e Calculate the Shan-Chen force for cach component FS¢ according to the for-
mula (3.83). Fluid site interacting with a solid wall is calculated with (3.84). If

additional forces act on the fluid, such gravity, sum up all force contributions.

e Compute the cquilibrium distribution (¢4 using (3.80) with a shifted velocity
ul@ given by
7. F

uld =g 2 (3.88)
Ps

where F, is the sum of all the forces acting on the component s.

e Collide and stream according to (3.81). The boundary conditions, such bounce-

back, are included in the same way as in the case of simple fluids.

e The next time step starts from the calculations of the new equilibrium distri-
butions, and the subscquent evolution of the system is done by repeting the
operations of this algorithm until the last time step or convergence has been

reached.

Every cycle of the substeps mentioned above corresponds to one time step in the

simulations.

3.2.2 Parallel Computing in CUDA

In the lattice Boltzmann method, the collision step occurs locally at cach lat-
tice site and the propagation step has only impacts in the closest lattice sites. More

specifically, defining y = x + ¢; we can rewrite the main evolution equation (3.45) as

fily, t+1) = fily —ci,1) — %(f;-(y —ci, 1) — f“O(p,n)). (3.89)
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This shows that for cach point y in the discrete grid the algorithm is divided in two
steps: i) takes from from the neighboring sites the values of the fields f; corresponding
to populations that are sent to y and then ii) performs the mathematical processing
needed to compute the quantities appearing in (3.89). One important aspect is that
both steps are completely uncorrelated for different points of the grid, which implies
that they can be parallelized according to any convenient schedule if the step i) is
performed before step ii) [9].

A sccond important aspect is the computational domain where the simulation
is performed can be partitioned into a sequence of subdomains, where cach subdo-
main is treated by a processor in a CPU. In the LBM algorithm, only the information
along the boundary of the subdomain treated by cach processor is be transferred to
the corresponding neighboring processors. These aspects makes the LBM well suited
for computational parallelization, specially on GPUs [78]. A generic pscudocode for
the Shan-Chen multicomponent method for CPUs is shown in the Algorithm 1 de-
scribed below, where the results are plotted for every tPlot time steps, i.c., we plot the
numerical solutions when the time parameter is a multiple of the parameter tPlot.

More specifically, GPUs are specialized for compute-intensive and highly parallel
computation due to big number of Arithmetic Logic Units (ALU) in comparison to the
CPUs. They serves as a coprocessor for CPUs [70]; sce Fig. 3.2. The ALUs from the
NVIDIA GPUs (those are the type of GPUs we use in the simulations of this thesis)
arc fully programmable using the platform so-called CUDA (Compute Unified Device
Architecture), a parallel computing platform which is an extension of C released in

2007 [2]. This platform enable to employ the massive parallel computing capacity of

Control

CPU GPU

Figure 3.2: GPU programming interface. Image from [70| by Nvidia Corporation.
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Algorithm 1 LBM algorithm-CPU version

-Allocate memory for f7, ff(“"’), p and u;
-Load initial data for p, and u;
-Initialize ff(w) and set f; = ff{“q);
for (time = 0; time <= duration; time + +) do
-Perform collision and propagation of f7;
if (tPlot divides time) then
-Calculate from the propagation process new values of p,(x,t), u(x,?) and
£
-Print results for p,(x,t) and u(x,7);
end if

end for

-Free memory;

NVIDIA GPUs in order to perform general purpose computation.

The bases for the CUDA programming model is the idea of kernel. The kernel
is a function exccuted in an array of threads in a GPU. A thread on the GPU is a
basic abstraction of the data to be processed [70]. In the NVIDIA CUDA architecture,
several threads running on multiple processing cores executes the same program on
scparate data.

Each CUDA function is exccuted by an array of threads. Each thread had an
identification ID that is used to track the memory access. A block is defined as a sct
of threads running simultancously and communicating with cach other through some
shared resources. An scheme of the NVIDIA CUDA thread architecture is shown in
Fig. 3.3.

A generic program in CUDA consists in one or more stages exccuted in a CPU
(called host) and in the GPU (called device). A typical GPU implementation consists

in the following main stages [52|:

e Allocate memory in the CPU (host) for inputs and outputs and execute the

necessary initialization,

e Allocate data on the GPU (device) for inputs and outputs,



e Transfer data for host to the device,

e Exccute the kernels and store results in the device memory,
e Transfer the processed data for device to the host,

e Plot results and execute the necessary finalizations.

The parallelization happens in fact when the kernel functions are executed. The
specification of the configuration of a kernel function is given by an expression of the
form

Kernel <<< n_threads, n_blocks >>> (inputs), (3.90)

where n_blocks is the number of blocks and n_threads the number of threads per
block. The symbols <<< and >>> arc part of the syntax for the kernel functions.
The quantity n_blocks x n_threads indicates the number of threads that should be
created in the GPUs to execute the respective kernel function. According to [70], the
maximum number of threads comported by a block is generally 1024; this value can
change depending on the GPU.

In the GPUs we can highlight two types of memories: the shared memory and the
global memory. The information in the shared memory is visible to all threads within
that block and have the same duration of the block. This type of memory allows for
threads to communicate and share data between them. The information in the global
memory is visible to all threads within the application (also to the host), and has the
same duration of the host allocation. The global memory is also known to process data
more slowly than the shared memory [52]. For some other types of memory residing in
GPUs, sce [70].

A generic pseudocode for the Shan-Chen multicomponent method is shown in
the Algorithm 2 below, where the results are plot for every tPlot time steps. All steps
arc synchronized by the use of the function cudaDeviceSynchronize after cach kernel
launch (some other ways to synchronize threads are available, see [52]). Each point of
the grid is processed by several computational steps in the loops over time, for cach
loop we keep two copies of the grid, with cach step reading the data from one copy and

writing the results to the other [9].
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Host Device

Block Block Block
Block Block
(0,1), 1)

Block (1,1)

Figure 3.3: A schematic example of a GPU programming interface. The same function

defined by the kernel is executed in all threads of the GPU. Image from [41].

The function Kernel 1 in the Algorithm 2 for GPUs executes essentially the algo-
rithm described in the Algorithm 1 for CPUs, with the exception that the propagation
of the distributions f7 between blocks is executed by another kernel function, which
we call Kernel 2. Depending on the complexity of the LBM code, in terms of complex
computational domains and memory usage, more claborate kernels are used. For more

details, see [9, 11].

37



Algorithm 2 GPU version/Shan-Chen multicomponent method

Main program in CPU

-Alocate global memory on device;
-Upload initial data for p,, u, f:(e{ﬂ? 17 and FU on device;
for (time = 0; time <= duration; time + +) do
-Exccute Kernel 1<<< n_threads, n_blocks >>>(p,u, ff‘(”q)? fz, FU);
-cudaDeviceSynchronize();
if (tPlot divides time) then
-Download updated data (py(x, 1), u(x,?),...) from global memory on device;
-Print results;
end if
-Exccute Kernel 2<<< n_threads, n_blocks >>>(f7);
-cudaDeviceSynchronize();
end for

-Free global memory on device;

Algorithm 3 Kernel 1

-Load f? from global memory on device;

-Alocate shared memory for f7;
=d L
-Calculate u, p, and ji( ’);
-Apply the collision process on f7;
-Stream f; inside the shared memory of the same block;
-Propagates f7 in global memory;

-Some distributions f; are propagated within global memory bewteen thread block

using the Kernel 2 function;
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3.3 Continuum limit equations and the Boussinesq
system

The traditional Navier-Stokes and Cahn-Hilliard equations (CHNS system) can
be approximately recovered from the Shan-Chen LBM algorithm if the total density
p = pa+pa of the fluid mixture is almost constant [63, 5|, which is the case for mixtures
with similar densities. The order parameter ¢ = p4 — pp and velocity field u satisfies,

in the incompressible limit |u| < ¢/v/3, the following CHNS system:

V-u = 0, (3.91)

0o .
s +V-(pu) = V-[MVy (3.92)

ot
p (;}—]: + (u- V)u) = —V-P""4 V. [pv(Vu+ V)] +F, (3.93)
2 _ 42
M= 22" 05, (3.94)
p

2 p+o ArGap | cArGap -
po= 5o (ﬂ) T3 05  Ar—o5)"? 39

(3.96)

where M is the mobility, g is the chemical potential, F = F 4+ F 3 is the total force act-
ing on the system and PY9T) is the momentum-flur tensor, which can be decomposed

as the sum of a kinetic component P plus an interaction term P i.c.,

P('I'()T) _ Pkin + Pint1 (397)
where
PE" = fici ®ci, (3.98)

and P is defined by the condition

VP = =) F (3.99)

When the distribution functions fA, 2 are close to the local equilibrinm, the

(]

kinetic part of the pressure tensor takes the form [80)

Pk'm — C%p]: + K(T)? (310“)
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where
K = 24P (7‘ - 1)2 (m - %) ® (@ = @) | (3.101)
op 2 pa PB pa B
This extra spurious 7-dependent contribution K™ is small for 7 close to 1/2 and for
small variations of the total densities of the system. The study of the influence of
such spurious contributions in the context of the Rayleigh-Taylor systems is given in
Chapter 5.

An explicit form for the interaction a pressure tensor P™ verifying (3.99) can be
constructed interactively, by guessing an initial form and applying the gradient operator
to it, identifying the extrancous terms that do not satisfy (3.99), and modifying the
P guess by inspection of the extra terms. For the sake of clarity, let us expand cach

density ps(x + ¢;) about x

1 1 )
ps(x+c;) = p,,.(x;,t)—i—cf&;p,,.(x?t)—i—icfcfaﬂbps(x, t)—I—Ec:?"ci’c‘fflﬁ;ﬁcp,j(x?t)—l—--- (3.102)

Substituting the expansions into the Shan-Chen force (3.83) for cach component, we

have:
Fﬁc(x? t) = —Gappa(x,t) Z wic; (pp(x,t) + Fupa(x,t)+
1 a b
+ ici Ciauabpb‘(x, t) + .- -)?
Fic(x? t) = _(.;BAJOB(X, ?() Z w;C; (,OA(X? t) + C;LGGPA(X, t)_|_

i

1
+ QCELC?(‘}uOpr(Xa f) + - - ‘)?

Duc to the symmetry of the velocity sets, the terms ) w;c; and ). w;c;cic? van-
ishes [55]. Including expansion terms from (3.102) up to third order, the continuum

form of the total Shan-Chen force F5¢ = F5¢ + F3¢ is given by

F%(x,t) = —2GapV(paps) — C‘E(;AB pa(z, )V App(z,t)— Ci(;AB pp(z, t)VApa(z,t).

(3.103)
It is possible to verify by inspection that a continuum form of the interaction pressure
tensor P satisfying (3.99) is given by

Gap
2

(palpp + pplpa— (Vpa-Vpp) — c2GapVps @ Vpp.
(3.104)

iril 2 1
P™ = cGappapp + ¢
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A similar procedure without using the assumption of the continnum limit [79]

leads to the following expression

(Ab‘

a z‘;

Pp'(x) = wipa(x + ¢;)ctc?. (3.105)

T

wipp(x + ¢;)c

2

If we neglect the gradients of the total density p in P™ and the contribution of

K™ in P¥" we have

pUon = 2 [p 4 Gas =20 =) - (”“‘ oG — 228 |W?|] Itc @w @ Vo,
(3.106)
This is the classical form the stress tensor with Korteweg stresses characteristic of
diffuse interface methods [3]. We give a short description of general diffuse interface
formulations for multicomponent flows in Appendix A.

The total stress tensor (3.106) can also be split into two parts
PYOD — p,1 4 PK, (3.107)

where p, denotes the pressure in the bulk regions, which leads to the following equation

of state

G apc?

p=cpt
In Chapter 3 we use the relation (3.108) to obtain parameters like the surface tension

using the Laplace-Young test [55]. The effects of the interfaces are taken into account

by the contribution
( AB

Pk _ [ (IABqBAgb— (mslvézl I (3.109)

corresponding to the Korteweg stress tensor [57, 100, 3|. This tensor is responsible for
the effects of surface tension in mixtures of immiscible fluids. A more detailed analysis
of such effects is described in Chapter 5.

If we considering a system with external forces in cach component given by
FU' = —page,, Fi'=ppge,, (3.110)

where g is the buoyancy intensity, we obtain from (3.94) the following momentum

cquation

((?;: +(u-V)u ) — V. .plon | y. [pf/(Vu + VUT)} — ¢ge,. (3.111)
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which corresponds to the diffuse interface formulation [3] of the Boussinesq approxi-
mation (2.2), (2.5) and (2.6) introduced in the Chapter 2. This approximation holds
for the equations of the Rayleigh-Taylor systems at scales much larger than the width

of the diffuse interface.

3.3.1 Diffusion equation for the order parameter for miscible

mixtures

In this subsection, we clarify the connection between the Cahn-Hilliard equation
(3.92), obtained by the SC multicomponent method, and the advection—diffusion equa-
tion (2.37) for the order parameter for miscible mixtures of incompressible fluids with
close densities.

Assuming small variations of the total density, the classical diffusion equation for
the order parameter for miscible mixtures case can be recovered through the Chan-
Hilliard (3.92). In this context, the order paramecter in the bulk region is almost
constant and in the region where the components interact the typical value of this
parameter is small in comparison with the value of the total density, ¢ < p, leading to
the approximation

M(p, b, 7) ~ M(p,7) = p(T—0.5). (3.112)
This yields to the generalized advection-diffusion equation for the order parameter:

Db
ia_i V- (fu) = MAL. (3.113)

For miscible mixtures we neglect order parameter derivatives of order O(9) [55],
which implies that we can neglect influence of the Laplacian term in the chemical

potential inside the CH equation. Therefore

9¢ + V.- (¢pu) = M(p,7)A (i ln(

(3.114)

p—¢) 2(r—05)

p+o A1Gap b
ot 2 ’

Also, considering ¢ < p, we expand the logarithm and we keep only the first order
terms. We also neglect the constants because the CH equations only accounts for the

first variations of the chemical potential. The result is the following

a('b _ C% C%T(_;AB ‘ -
otV (ou) = [M(p, 7) (; - m)] Ap. (3.115)
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Next, define the approximate diffusion coefficient as

2 ArGup p7Gap
Dyp=M === ) =2 |(r—05)— : 3.11
AB (p?T) (p 2(7’ — 05)) Cy [(T 0 )) 9 ] (3 6)
and finally
¢ . ‘
E + V- (pu) = DopAd. (3.117)

This is the advection-diffusion equation for the order parameter in the Shan-Chen
method multicomponent method. It describes the order parameter evolution for the

miscible Rayleigh-Taylor system presented in Chapter 2.

3.4 Free-energy procedure and the mechanism of
the process of the separation of the components

In the systems formed by the equations (3.91), (3.92) and (3.111) the difference
between miscible and immiscible flows is essentially determined by the values of the
interaction parameter GGap. In this section, we give more details of the role of the
mechanisms of the separation of the components in the Shan-Chen model. These
mechanisms are completely analogous to the phenomenon of the spinodal decompo-
sition in classical thermodynamic theories based on the Ginsburg-Landau free energy
functional [58, 45, 32|.

The mechanism fixing the bulk densities in the phase separation process in the
Shan-Chen method is naturally associated with free energy functional in the continuum
limit (where all discrete lattice effects disappear) when 7 > 1/2. Consider the following

free-energy density of the form

F(p,¢) = ¢ (p ; {i)) log (p—;¢) +c? (,0%@) log (’0 ; {i)) (3.118)

CE(-;AU 9 2 1 (-;AU 2

This equation consists in two ideal free-energy densities plus an interaction term, and
is based on the form of the Ginzburg-Landau free energy for incompressible binary

mistures [32]. The bulk contribution is given by the so-called bulk potential

o fpto\, [(pto S (P—0\, (P—9 GGas [ 5
Vi(p,¢) = c2 (—2 )log( 5 )Jrcs (—2 log ( —— | + - (p* —¢%),
(3.119)
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which correctly reproduces the bulk contribution of the stress tensor (3.108) by using

the following generalized Legendre’s transformation

aV(p, o) ,  OV(p,o)
P~ o 96

2
—V(p,0) =cip+ % (r* —¢?).  (3.120)

By(p,¢) = +o
We next introduce the mass conserving free energy density

LMA2 = L — X\ — \ap, (3.121)

where Ay and A2 arc Lagrange multipliers introduced to ensure the global conservation

of ¢ and p. This leads to the Euler-Langrage equations

A1,A2 A1,A2 A1,A2
oLT oL o [ (3.122)
5 96 (V)
ArAy A Az ALAz
e [OL ] o, (3.123)
op dp A(Vp)
resulting in
_OV(¢,p)  Gas _OV(e,p) .
A = 96 3 Ap, A= T (3.124)

The free-energy density (3.118) is invariant with respect to translations of the
spatial coordinates, which implies in a correspondent conservation law for the system

according to Noether’s theorem [3]; i.c., V- C = 0, where C is sccond-order tensor

given by
DLA1A2
C=—IM" 4 Vp® - . 3.125
Using the solutions for the Lagrange multipliers, we obtain
G 2G 1G
C=|p—= 4““ AAD — "’-"%WW] I+ %v{ﬁ ® Vo, (3.126)

which corresponds to the total pressure tensor (3.106).
The free-energy formulation also permits to rewrite the chemical potential in the

order parameter equation (3.92) in terms of the

2 o A
OoF G log (p—|— qf') B Gap ng B csGap Ag. (3.127)

== = — c,
=56~ 2 p—o 9 s 4
Note that in the formula (3.92), we have some spurious influence of the parameter 7,

indicating the appearance of lattice discreetness effects, it shows that an exact match-

ing between momentum and order parameter equations starting from the continuum
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free-cnergy formulation (3.118) is not direct and more claborated arguments are nec-
essary [5]. Nevertheless, is possible to fix the bulk densities introducing the following

7-dependent functional

FD(p,¢) = ¢ (%b) log (#) +c (%ﬁ) log (%) (3.128)

‘v(T) ~(7)

2 _ 3?) 4 12AB g2, 3.129
= (0> —¢*) +ci 8 Vo (3.129)

where ('EL); = (7—71/2

) (3 A is the effective interaction parameter. Note that in the limit
T > 1/2, with constant viscosity, we have GE,‘TLJ; — G4, reproducing the continuum
value (3.118). This 7 dependence also has an influence in the values of the bulk

densities, which are determined by the bulk potential

Dipa) =2 (P2 10g (P2 pP—¢ P—0\ , GCHs 2 4
V (p?f))—cf( 5 )log( 5 )—I—c‘g( 5 log 5 | 1 ( ¢).

(3.130)

In Fig. 3.4, we show that a suitable choice of GEL); produces a double well struc-

ture, meaning that there are two possible bulk solutions, i.c., these are two bulk phases
that coexist in equilibrium characterizing an immiscible mixture. Once we know the
total density p and the interaction parameter a7 A U, we can determine the minima for

V (¢, p) and predict the bulk equilibrium values of the order parameter.
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Figure 3.4: Free energy density V(™) as a function of the variable ¢ for a fixed p = 1.1 as
a function of the order parameter ¢ for a two-phase (a) and a single phase (b) mixture.
We consider different interaction strengths parameters GE‘ 1); It is possible to sce that

increasing the values of G4p we obtain the spinodal decomposition characteristic of

the immiscible mixtures.



3.5 Immiscible and miscible Rayleigh-Taylor sys-
tems

Using the Shan-Chen multicomponent method we simulate the immiscible and
miscible Rayleigh-Taylor systems described in Chapter 2. The results arc shown in
the Figures 3.5 and 3.6 for the immiscible and miscible cases, respectively. In this

subsection, we describe the details of these simulations.

Figure 3.5: Immiscible Rayleigh-Taylor turbulence for the time ¢ = 83.000 correspond-

ing to the fully developed turbulent phase showed in Figure 1.3 from Chapter 2.

We choose Az = At = 1 (considered as lattice units) in the rectangular domain
of horizontal size L, = 10* and vertical size L, = L,/2. Periodic boundary conditions
arc assumed in the horizontal direction with the rigid bottom and top boundaries. The
no-slip condition, v = 0, is assumed at a rigid boundary. This condition is the simplest
choice for the boundaries, which is also convenient from a numerical point of view. We
stop our simulations before the mixing layer reaches the boundaries. The bounce-back
relation [63] is used for the distribution function f#(x,?) at the solid boundaries for
modeling the no-slip condition.

The relaxation time 7 = (.53 is chosen for both components, providing the kinetic
viscosity v = ¢?(7 — 1/2) = 0.01. The value of 7 was sct as low as possible to provide

the high Reynolds numbers needed to obtain the turbulent regime in RT systems. For
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7 < 0.53, the simulations become unstable.

We consider pure densities of both fluid components equal 1.10 and the gravity
parameter § = 9 - 107°%. Since changes of the total density due to pressure variations
and mixing arc small, we approximate p(x,t) = py by a constant. In this case, the
Boussinesq buoyancy force (2.6) agrees with our choice of the external force (3.110) for

normalized values of the order parameter.

Figure 3.6: Miscible Rayleigh-Taylor turbulence for the time ¢ = 83.000 corresponding

to the fully developed turbulent phase showed in Figure 1.2 from Chapter 2.

The coupling constant (G 45 has a critical value with the immiscible fluid for
stronger couplings and miscible fluid for weaker couplings. For our immiscible and
miscible models we select Gap = 0.1381 and G, = 0.0805, respectively. In the
interactions with the boundaries we use neutral wetting, i.c., Ga = Gy, = 0, to
minimize the influence of the boundaries.

In the immiscible model, two components are separated by a diffuse interface
having a width of approximately I;,; ~ 3 grid nodes [55]. This model approximates
the Boussinesq system formed by (2.2) and (2.5) considered at scales much larger than
l;ne With the surface tension v = 0.0059 obtained from pressure measurements for large
bubbles.  Similarly, one recovers the miscible Boussinesq system (2.38), (2.39) and
(2.37) in the continuous limit for small gradients of the order parameter. The diffusion

cocfficient can be estimated roughly using (3.116) as Dap ~ 0.002 [5]. Though the
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diffusion coefficient is a function of order parameter for a more accurate description,
such dependence is not important for our study based on the phenomenological theory
of turbulence.

We initialize the flow by using an equilibrium immiscible configuration and adding
a small random (white-noise) deformation to the interface with an amplitude of 4
grid points. In this equilibrium configuration, the first phase consists primarily of
component A with about 9% of component B, and vise versa for the second component.

The simulations arc implemented on GPUs of the model NVIDIA Tesla V100
PCle 32 GB with n_threads = 256 and n_blocks = 1,9531 - 10° as input paramecters for

the main kernel functions. This choice of parameters verifies
n_threads x n_blocks = L, x L,. (3.131)

The use of n_threads = 256 provides an optimized performance for our applications
in the mentioned GPUs. The simulations are performed in the cluster of computers
Tsunami5 located at IMPA. In this cluster, processors of the model Intel Xeon Platinum
8160 (33M Cache, 2.10 GHz) are used.

For the statistics used in this thesis we collect ensambles with at least 10 simula-
tions. Each simulation takes approximatelly 10 hours to perform 90.000 time steps on
GPUs.

One of the main advantages of the method described is to provide access to
hydrodynamic scales at an affordable computational cost, which is way beyond the
capabilitics of some other traditional methods to treat the same range of scales, like
Molecular Dynamics or Monte Carlo simulations, for example [55, 89, 5|. The compu-
tational configuration described for the Rayleigh-Taylor in this thesis can be associated
with different physical configurations. For a physical system with a given surface ten-

SI0N Yphys and ViScosity Vpnys, we can consider the following relations [55]

kpT AT)?
Vphys ~ F){Lﬂﬁa Vphys ~ VLB%? (3132)

where the subscript LB denotes the value in lattice Boltzmann units, kg is the Boltz-
mann constant, 7" is the temperatures in Kelvin and AZ and Af are the spatial and
time step sizes in the physical domain in meters. For the parameters used for the
simulations showed in Fig. 3.5, it is possible to obtain surface tensions characteristic

of microemusions and viscosities with values close to the water viscosity. [5)].
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We the next chapters, we performed a number of numerical tests justifying the
validity of the the lattice Boltzmann model to simulate the Rayleigh-Taylor instabil-
ity. In particular, we showed that the numerical dispersion relations are in agreement
with theoretical predictions showed in Chapter 2. Also, we verified that non-isotropic
contributions to the stress tensor, caused by variations of order parameter, are small
in the miscible case. In the immiscible flow, these contributions grow in time following
the increase of the interface, but remain small compared to buoyancy and viscous con-
tributions. Also, the numerical anisotropy of the Shan-Chen force generates spurious
currents within thin diffuse interfaces, which do not affect most of our measurements,

but may interfere in the results for enstrophy, as discussed at the end of Chapter 4.
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Chapter 4

Numerical tests of the Shan-Chen

multicomponent model

In this chapter, we show a series of basic experiments to test the validity and
to check the limitations of the Shan-Chen multicomponent method discussed in the
Chapter 3. In the first part, we analyze how to calculate the surface tension coefficient
using the Shan-Chen multicomponent model. This cocfficient is calculated using the
so-called Laplace-Young test. The value obtained is also compared with an alternative
method based on an analysis of the stress balance in a planar interface separating two
immiscible fluids. Thercafter, we investigate the dispersion relation (2.36) analyzing the
growth rate of single modes in lattice-Boltzmann simulations of the Rayleigh-Taylor
instability. In the final part, we discuss some limitations of the Shan-Chen method
associated to the appearance of the so-called spurious currents. For this purpose, we
study the statistics of the velocity and vorticity ficlds of droplets in regions far and close
to the interfaces. A similar analyses is also employed for the statistics of the vorticity

ficlds in the late stages of the immiscible and miscible Rayleigh-Taylor turbulence.

4.1 The Laplace-Young test and the surface tension
coefficient

The Laplace-Young test is a numerical experiment that consists of a way to

salculate the surface tension between two fluids using the Laplace-Young equation for
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bubbles in two dimensions given by

inside outside 2
Apy, = py*c — pptsit = o2 (4.1)

In this experiment, we simulate a liquid droplet of one component (component
A) inside of the other component (component B), and from the plot of the difference of
pressure Ap,, versus the inverse of the radius 1/R of the droplets, we obtain (analysing
the inclination of the lines) the surface tension 7. The value of pf“** is calculated by
(3.120) outside the droplet far from the interface, and pj™™ is calculated same way
inside the droplet.

In Fig. 4.1, we show the Laplace-Young experiment for droplets simulations in

grid 64x64. The values of pi}"“"id"" and pg““":‘i‘f arc calculated according to the formula

po = C2(pa+ pp) + EGappaps. (4.2)

described in Chapter 3. Both components arc initialized with the same densities
pa = pp = 1.10. The radii of the droplets are collected after some time in the simu-
lation necessary to reduce transient effects, which are detected by the analysis of the
magnitude of the velocity ficlds. These effects are the result of the lattice Boltzmann
initialization process due to the fact that sometimes the initial configuration is not
the system’s equilibrium solution. The blue line in Fig. 4.1 represents the Laplace-
Young experiment for G4 = 0.1381 and 7 = 0.53; and the red curve corresponds to
Gap = 1.2200 and 7 = 1.00. The parameters correspond to the same value of the

cffective interaction parameter

| 1.0 0.53
GO — T Gup=—— 129 —= 2 (1381 = 2.44. 4.3
AB T (205 T (10— 05) (0.53 —0.5) (4:3)

. -\ T - .y . . -
This value of G}, corresponds to the spinodal decomposition shown in Fig. 3.4(a).
AB
Alternatively, we compute the surface tension through the mismatch between the
normal and transversal components of the pressure tensor Ppop, integrated across a

planar interface [55] in its normal direction as
00
TOT TOT
v= [ (BT~ P"an. (1.4
—00

To be more precise, let us consider a planar interface located at y = 0 in a rectangular

domain with periodic boundary conditions in the horizontal direction and vertical rigid
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Figurc 4.1: (a) Total density ficld p = pa + pp in a droplet with radius R=51.2 (b)
Results of the Young-Laplace test for droplet of the fluid A in the fluid B for two
different interaction parameters in a system with size 64x64. We can see that the
pressure difference Ap, across the droplet interface is proportional to the droplet’s
curvature radius 1/R. The pressure difference and surface tension are shown in lattice

units.

wall in the vertical direction. The walls must be located far from the interface to not
generate any influence in the stress balance at the interface. Also, we consider no

external forces acting on the system. In this case we consider y the parameter for the

et TOT _ pTOT . TOT _ pTOT o }hore
direction P, " = P, ** and P, = P,,.”", where

pror _ 2 [p + EA8 gty 2By ci%lvffl] I (45)

uy 5 4
B 06\ 2
+ Ci(i” (%) , (4.6)

- G G G
PO = [p+%(p2—¢2)—c§ 200G — ¢ ;‘“Wqﬂ] I (47)

This leads to the following surface tension coefficient

A [as] 2
5 = Gl / (3_{,5) dy. (4.8)

4 oo \ Y

To prevent possible lattice discreetness effects [5], we add the contribution of the

K™ in (4.8)
64(;AB o 8(]5 2 o
= =227 ) d K"dy. 4.9
y 1 .[m(ﬁ?;) ?;Jrf_m ' dy (4.9)



The formula (4.9) gives the value v = 0.0585 for G p = 1.2200 and 7 = 1.22; and
v = 0.0053 for G4 = 0.1381 and 7 = 0.53. We can sce a good agreement with the
values obtained by the Laplace-Young test in Fig. 4.1.

4.2 Linear stabiility analysis of the Rayleigh-Taylor
instability

An important verification for parameters and accuracy for the lattice Boltzmann
method consists in the verification of the dispersion relation for the Rayleigh-Taylor
instability (2.36).

Consider the initial configuration for the immiscible RT instability presented in
Chapter 2. The Boussinesq approximation is equivalent to the symmetric system shown
in Fig. 4.2. In this system, both components have same density pg = (pa + pp)/2 and
viscosity v = (va + vB)/2, where pa, pp,va and vp arc the original densitics and
viscosities of the system that we are approximating with the Boussinesq equations.

Analogously, for this symmetrical system an upper bound for the respective dispersion

relation o(k) can be obtained by looking for a solution of the form h(x,t) ~ eketok)t
in the Boussinesq system [88, 15|, which gives
o(k) = —vk? + \/‘E;?k . 2lk3 b (vk2)2, (4.10)
Po

where g = Ag is the cffective gravity, A = (pa — pp)/(pa + pp) is the Atwood number
and ¢ is the usual gravity. This upper bound is know to be a good approximation
of the actual value of the growth rate measured in the simulations (88, 15]. For the
problem of the dispersion relation presented in Chapter 2, another solution for the

system formed by (2.31) and (2.35) is given by

F(k) = —vk? — gk — L k3 + (vk2)2, (4.11)
2po

originating a stable solution in the perturbation analysis. This solution does not affect
significantly the evolution of the perturbation y = h(z,t), as we show in Fig. 4.3, and
can be neglected.

Considering the viscous potential flow analysis employed in Chapter 2, we have
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Figure 4.2: Unstable configuration characteristic of the Boussinesq approximation of
the Rayleigh-Taylor instability. In this configuration, the components are accelerated
against cach other with the same buoyancy intensity g. In this configuration, any single
mode perturbation y = h(z,t), with a wave number smaller than some critical value

can generate the instability.

the following potential functions for the velocity field of the system

6a = Hac ™ cos(kx)e™ for y > h, (4.12)

O = O™ cos(kx)e for y < h, (4.13)

where 9:4 and 9; arc the mode amplitudes. These potentials lead to the following

vertical components of the velocities

—kb4e7 cos(kz)e for y > h
uy(z,y,t) = (4.14)

kOpe™ cos(kz)e” for y < h,
Considering a perturbation of the form h(z,t) = hgcos(2rk/Nz), for k € N, in a

domain with size Nz x Ny, we have the following [25)

1 0 Nzxz/2 1 Ny/2 Nx/2
2y = d ) 2d / d / ) 2da(4.15
(uy) NyNz / - y_/n (uy)dz + NyNz J, v/ (1,)*da(4.15)

— ~2 .2 T
k(6a +0p) [1 B C_Nyk] 2o (Rt (4.16)

Ny 2
where k = ?Vif Applying logarithm in both sides of (4.16) the equation above we have

Iny/(u2) o o (k)t. (4.17)
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It means that we can approximate the values of the dispersion relation (4.10) by
analysing the mean square root of the vertical component of the velocity w,. This
procedure is employed in the experiments showed in the Figures 4.3(b) and 4.3(d),
where we show the results of the dispersion relation analysis for a lattice Boltzmann
simulation in a grid of size Nz x Ny = 256 x 256, relaxation time 7 = 1.00 and in-
teraction parameter G p = 1.22. This choice of parameters provides the kinematic
viscosity v = 0.167 and a surface tension coefficient v = 0.061. The numerical data
(bluc and red circles) is obtained via best fit of In y/(u2).

In Figures 4.3(a) and 4.3(c), the same experiment is repeated with the data for
the dispersion relation obtained by measuring the exponential growth of the maximum
interface displacement. We can sce a good agreement between theoretical results and
the lattice Boltzmann measurements. The best agreement comes from the analysis of

the maximum interface displacement.

4.3 The anisotropy of the Shan-Chen model

Spurious currents are caused by numerical approximations of the surface tension
force. If the numerical discretization is not perfectly isotropic then tangential force
components originate spurious cffects. In many cases, the spurious currents are signif-
icantly slower than the characteristic flow. In this situations, we may not need to take
without additional care of the spurious currents [55]. For a better understanding of

the reasons for the spurious currents we need to expand the Shan-Chen force as

Fi9(x) = —py(x)G Z wips(x + ¢;)e;, (4.18)

(]

and look to the high order terms. Analogously to what was done in chapter 2, let us
expand cach density p,(x + ¢;At) about x
1 1
.Ios(x + CiAt) = Ps(xa f) + C;;L(?uﬂs(x; f) + icfﬂgf)f;af;ﬂs(xa f) + EC?C?CSOaabaf:ps(X; f) +ee
5
(4.19)
Including expansion terms from (4.19) up to fifth order, the continuum form of the

total Shan-Chen force F¥¢ = F5¢ + F3 becomes

- I et
Fa(,(x, t) = (—ciGABV(pA,OB) — E“pﬁ(q:?t)VApU(:r:, t) — —2“’,03(:3:, t)VApA(:r:?t)) +

+ Fe niso ) (4 ) 20)

on
n
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Figure 4.3: (a) Dispersion relation obtained by measuring exponential growth of the
maximum interface displacement in a grid Nx x Ny = 256 x 256 for lattice Boltzmann
simulations (blue circles) compared to the theoretical results for the immiscible RT sys-
tem (black curve). This experiment considers different values of the effective gravity
g = Ag for a fixed k = 27/256. In the picture (b) the same experiments is performed
with the dispersion relation obtained from the root mean square of the vertical compo-
nent of the velocity. In (¢) the dispersion relation obtained by measuring exponential
growth of the maximum interface displacement in a grid Nz x Ny = 256 x 256 for
lattice Boltzmann simulations (red circles) compared to the theoretical results for the
immiscible RT system (black curve). This experiment considers different wave num-
bers, k = 1,2,3,4,5, for a fixed effective gravity g = 0.0006. In picture (d) we repeat
the experiment in (¢) but calculating the dispersion relation using the root mean square
of the vertical component of the velocity field. Error bars for fitting are approximately

the size of the data symbols.



Up to the fourth-order, the isotropic terms lead to radial forces and the fifth-order term

gencerates a tangential component [55]
Foniso o (_}'AﬂpA(O;’ey + d%e,)pp + (;Agpﬂ(ﬁjcy +d%,)pa (4.21)

originates tangential force components responsible by the spurious currents showed in
Fig. 4.4(b). Essentially, these currents are caused by limitation in the discretization of
the interaction force F5¢.

The effects of the anisotropy contributions can be reduced by a refinement of the
curved interfaces [4], which helps to soften the local density gradients; or by improving
the isotropy of the discretized pscudo-potential. The first method is considered more
cffective, leading to a numerical reduction of the maximal current up to a factor 10
with only a doubling in the grid resolution. The improvement of the isotropy can be
archived by the using of a multirange interaction force scheme, which involves large
numerical stancils involving lattice nodes at greater distances [55, 89]. An affect anal-
ogous to the stretching of the interface given by the grid refinement can be obtained
by a simply rescaling of the coupling strengths with the reference density of the pseu-
dopotential [80]. By this way, it is possible to achicve an adaptive form of local grid
refinement without changing the structure of the lattice nodes.

In this thesis, we work mainly considering Az = Ay = At = 1 for reasons asso-
ciated with the stability of the numerical schemes, which is usually the main problem
in simulations of the immiscible Rayleigh-Taylor systems for high Reynolds numbers.
Discussion of grid refinements and multirange pscudopotential schemes are considered

topics for future rescarch in this thesis.

4.4 Spurious currents in the vorticity field

In our experiments of the Rayleigh-Taylor instability in Chapters 5 and 6, our
focus is on the late stages of the instability characterized by high Reynolds numbers.
In this context, we do not expect a significant influence of the spurious currents in
the large scale statistics for the velocity field and order parameter, but we may have
some influence in the small scale statistics, like those from the vorticity and enstrophy

evolution. In Fig. 4.5, we show a comparison between the typical values of the spurious



vorticity and the characteristic vorticities in the miscible and immiscible Rayleigh-
Taylor turbulence. It is possible to see that the spurious vorticity of a generic droplet

is comparable to the vorticity in the miscible case.
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Figure 4.5: (a) Example of vorticity field for immiscible and (b) miscible flow described
in Chapter 3. PDF's of the vorticity fields for immiscible (blue line) and miscible flows
(red line) compared with the PDF of the spurious vorticity of the dropplet shown
in Fig. 4.4(a). The region showed in pictures (a) and (b) corresponds to the time

t = 83.000 in Figures 1.3 and 1.4.

To investigate the possible spurious influence we separate the bulk vorticity in the
immiscible case by excluding small arcas around the interface. This is done numerically
by removing all nodes within squarcs of size 6 x 6, 8 x 8 and 10 x 10 at cach point of

the interface, as exemplified in Figures 4.6(a) and 4.7(a).
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Figure 4.6: (a) In blue we show an indication of the region excluded around the interface
by removing all nodes within squares of size 10 x 10 at cach point of the interface of the
droplet in Fig. 4.4(a). In picture (b) we show the PDFs of the vorticity fields obtained
by excluding squares of size 6 x 6, 8 x 8 and 10 x 10 around the interface of the same

droplet.

The filtered vorticity for immiscible RT instability is plotted in Fig. 4.7(a). In
Fig. 4.7(b) we plot PDFs of vorticity: one can sce that the PDFs for the miscible
(red) and filtered immiscible (purple, orange and green) flows are close, while the PDF
for the full immiscible flow favors much larger values of vorticity characteristic of thin
boundary layers. This observation also suggests that the immiscible flow in the regions
away from the interface features turbulent statistics similar to the miscible flow. Even
more, the normalized PDFs of vorticity shown in Fig. 4.7(c¢) reveals a distinctive shape
of the tails for large w, which is the same for the original and filtered ficlds in the

immiscible flow.
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Figure 4.7: (a) Example of vorticity ficld for immiscible flow excluding a small region
around the interface formed by removing all nodes within squares of size 8 x 8 at cach
point of the interface. (b) Comparison between PDFs of the miscible and immiscible
RT turbulence and the PDFs of the filtered vorticity fields obtained by removing all

nodes within squarcs of size 6 x 6, 8 x 8 and 10 x 10 at cach point of the interface.
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Figure 4.4: (a) Total density field p = p4 + pp in a droplet with radius R=51.2. In the

pictures (b) and (¢) we shown, respectively, the spurious velocities and vorticities of the

droplet. In picture (d) we shown a pdf for the vorticity ficld showed in the picture (c¢).

Simulations arc performed on grids of size 256 x 256 with paramecters corresponding to

the relaxation time 7 = 0.53 and interaction parameter Gy = 0.1381.



Chapter 5

Immiscible vs miscible
Rayleigh-Taylor turbulence:

comparing energy budgets

In this chapter, we study the energy budget for the miscible and immiscible
RT systems described in the previous chapters. To the best of our knowledge, no
such kind of numerical experiments comparing miscible and immiscible Rayleigh-Taylor
turbulence have been done in the scientific literature of this phenomenons. Our results
for the miscible case are in agreement with recent results for the miscible case done
by [12]. The equations of motion considered in this chapter are mostly based on the
Boussinesq system defined in Chapter 3, but the same results can be obtained as well if
we consider any other diffuse interface formulation of the same system (see Appendix
A).

In this chapter, we first analyze the potential and kinetic encergies of the system
and its variations. By comparing the components of the kinetic energy variation of the
system, we verify the accuracy of the Schan-Chen multicomponent method for miscible
and immiscible RT turbulence. Thereafter, we show that the main differences between
miscible and immiscible RT flows are associated to the energy flux due to the Korteweg
stress tensor (3.109) and the viscous dissipation. In subsequent subsections, we show
that the such differences are connected to the energy needed to generate interfaces and

the vorticity generated by them.
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In the numerical experiments of this section, we consider ensembles with at least
10 simulations for the immiscible and miscible flows performed for different random
initial disturbances as we explained in Chapter 3; sce Figures 5.1 and 5.2. The choice
of the size of the ensembles for out statistical analysis is motivated by small values of
standard deviations verified in our numerical experiments, indicating a small depen-
dence on the initial conditions for big computational grids like the ones used by us.
For smaller grids and carly stages of turbulence, the influence of initial conditions was

studied in [69, 8.

t =17.000 t =23.000 t = 83.000

Figure 5.1: Mixing layer of the immiscible Rayleigh-Taylor turbulence, where the yel-
low color represents a heavier phase and the brown color corresponds to a lighter
phase. Lower pictures show the phases in the small region (marked in the center of the
main panel) for three different times: the initial lincar growth, formation of nonlincar
mushroom-like structures at intermediate times, and fully developed turbulent mixing
at larger times. Simulations are performed on the grids 10.000 x 5.000 in lattice Boltz-
mann units (Ibu), a simple artificial set of units with spatial and time steps verifying

At = Az = Ay = 1.

To avoid complications with the boundaries, the energy flows are calculated in a

subdomain D obtained by cutting 10 rows close to the top and 10 rows close to the
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bottom of the original computational domain. It means that D has the size |D| =
10.000 x 4.980. The time derivatives and differential operators in the equations showed
in this chapter are numerically calculated using centered finite difference schemes of

second order.

Figure 5.2: Mixing layer of the miscible Rayleigh-Taylor turbulence, where colors de-
scribe the fluid density; lighter colors represent a heavier fluid. Lower pictures show the
densities in the small region (marked in the center of the main pancl) for three differ-
ent times: the initial lincar growth, formation of nonlincar mushroom-like structures at
intermediate times, and fully developed turbulent mixing at larger times. Simulations
arc performed on the grids 10.000 x 5.000 in lattice Boltzmann units (lbu), a simple

artificial set of units with spatial and time steps verifying At = Az = Ay = 1.

5.1 Potential and kinetic energy statistics

In this subsection, we develop the equation for the kinetic and potential energics
of the system also showing the evolution of such energies for the immiscible and miscible
RT system using numerical data from the Shan-Chen multicomponent method.

First, let us recall the equations for the Rayleigh-Taylor system developed in
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Figure 5.3: Components of the velocity field for the immiscible Rayleigh-Taylor flow
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shown in Fig 5.1. The velocities are indicated in simulation units.

Chapter 3:

o - )
P ((0_t + (u- V)u) — _y.puon 4 y. [pv(Vu + v )} _ dje,. (5.1)
Vo =0, (5.2)
O r
ot +V-(pu) = V-[MVy, (5.3)

with PT97) heing the momentum-flux tensor

PO — 14+ PX 4+ KT (5.4)
where
(JA}_;(’Z
P = C ,O-I— 1 —=(p 2 —fi)Z), (5.5)
pr — [—mﬁ)Aqﬁ . 5|vgaf*|} I+ KkVe® Ve, (5.6)

KO _ aPAPB (T B 1)?‘ (Vm B Vpg) o (Vm B Vpg)
Cop 2 pa PB P PB

T

Gas
s d k —_ _,4
al Cg 1

for the Shan-Chen method. The part P* is called the Korteweg stress

tensor [3, 50, 49]. By the definition of the potential energy (per unit of arca) [25], we

65



t = 83.000 (magnitude)

t = 9.000 (magnitude) .103 = 15.000 (magnitude) 0.042

.

t = 9.000 {x-component) x10% ¢ =15.000 (x-component) t = 83.000 (x-component)
R 0.028
I 0 0.007
3 -0.014

t = 9.000 (y-component) «102 = 15.000 (y-component) t = 83.000 (y-component)

0.042
- H M I0 i
0.032

0.15

0.075

0.003

-0.071

-0.146

-0.036

-0.019

-0.075

Figure 5.4: Components of the velocity ficld for the miscible Raleigh-Taylor flow shown

in Fig. 5.2. The velocities are indicated in simulation units.

have

E, = | [[PA{}ydﬂ’?d’r - //pg‘ég;dmdg;
ye) -

Qe

where the brackets denotes spacial averages calculated in the subdomain D.

For the variation of the potential energy, we have

1 1500]
E, = — Gy —dxd
oL, D .fjgy&?t rdy

= |13| / /ﬁ?;(—V-(¢u) + V- (MVp))dzdy
= g(pu-e,).

(5.8)

(5.9)

In the integration by parts, we consider the no-slip condition u = 0 at the boundaries

in the vertical direction and periodic boundary conditions in the horizontal direction.

In Fig. 5.5, we show a numerical verification of the relations (5.8) and (5.9). It is

possible to see that no significant difference is observed in the potential energy statistics

between miscible and immiscible flows.
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Figure 5.5: (a)Evolution of the potential energy for miscible and immiscible flows. (b)

Variation of the potential energy for miscible and miscible flows. The shaded regions

corresponds to standard deviation values.

Analogously, the kinetic energy per unit of arca can be defined as

pa—dzrdy + — //p —dzdy = //p
B |D|/ / D] Y2 D]

dzdy,  (5.10)

where p = p4 + pp. The respective variation will be given by

0 Ek

] ) ‘
L @|“| + pu - Ju dzdy (5.11)
\D|J ] ot 2 ot

| 2

1 U
|D| / / -V (pu) =~ +pu- (=(u- V)u-
V-PTOD V. (nVu+ Vi) + ¢7)] dedy

o [ ey - e )]dm@;—
(- (V- PEODY) 4 (0¥ - (0 4 9 7u")) + (u-67)

where 17 = pr is the dynamic viscosity. Using that

we have

e

Iul2

u-(u-Vju=u-V

uf”

-(u-V)u]d:r:dy:/ —p——u-ds =0,
o9 2

as a conscquence of the boundary conditions considered. We can sce three different
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Figure 5.6: (a)Evolution of the kinetic energy of for miscible and immiscible flows. (b)
Variation of the kinetic energy for miscible and miscible flows. The shaded regions

corresponds to standard deviation values.

contributions to the kinetic energy variation:

— Contribution of the momentum-flux tensor = — <u (V- P(Tm')» ,
— Contribution of the viscous term = <u (V- (?}'Vu + nVuT))> . (5.13)
— Contribution of the buoyancy term = (u - ¢ge,) .

A direct comparison between the kinetic energy statistics miscible and immiscible can
be seen in Fig. 5.7. It is possible to sce that the kinetic energy in the miscible case
grows faster than in the immiscible case. In Fig. (5.8) we can sce that this difference
associated with the contribution of the terms V- P and V - (?}'Vu + ?}VUT). In Fig-
ures 5.7(c) and 5.7(d), we verify the balance (5.11), giving strong indications that the
solutions for the order parameter ¢ and the velocity field u given by the Shan-Chen
multicomponent method, satisfy accurately the proposed system (5.1), (5.2) and (5.3).

The contribution of the momentum flux tensor, responsible for the effects of the
surface tension in the immiscible Rayleigh-Taylor system, is negligible in comparison
with the contribution of the buoyancy and the viscous terms. This result has important
implications in the analysis of the long time behavior of Rayleigh-Taylor systems, as
we show in the Chapter 6.

The components of the kinetic energy variation (5.13) are analyzed in Fig. 5.8.

In these figures, it is possible to observe that the main differences between miscible
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Figure 5.7: (a) Evolution of the kinetic energy of the for miscible and immiscible flows.
(b) Variation of the kinetic energy of the for miscible and miscible flows. Verification of
the kinetic energy balance (5.11) for immiscible (¢) and miscible (d) flows. The shaded

regions corresponds to standard deviation valuces.

and immiscible flows are associated with the terms V- P and V - (?}'Vu + T}‘VU_T).

In Fig. 5.15, we analyze the decomposition
(u-(V-PTO)) = (u-Vp,) + (u- (V-P¥)) + (u- (V-K7)), (5.14)

showing that the contribution of the spurious term K™ is negligible in comparison
with all the other contributions and does not gencrate a significant impact in the
measurements of the energy flux. Another significant difference between miscible and
immiscible flows is related to the Korteweg stress tensor P In the next subsections we
show that this difference is connected to the portion of kinetic energy which is converted
into the energy of interface. The energy flux (u - Vp,) is similar between miscible and
immiscible flows, and the oscillatory aspect is essentially caused by density fluctuations

due to the initialization process of the lattice-Boltzmann algorithm.
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Figure 5.8: (a) Components of the kinetic energy variation for (a) immiscible flows
and for (b) the miscible flows. The shaded regions corresponds to standard deviation

values.

5.2 Energy of the interface

If we ignore the gradients of the total density and the spurious contribution K™,

we can simplify the contribution of the momentum-flux tensor in (5.13) as

(u-(V-PTO)) = (u-Vp,) — (u- (6V(Ag))) (5.15)
= —((V-u)p) + (u- VoAP) + ((V - u)pAd)
= (u-VoAp).

In this subsection, we analyze the right hand side of (5.15), showing that this flux
corresponds to the variation of the total energy of the interface. For this purpose, we
first need to introduce some concepts of differential geometry of plane regular closed

Curves.

5.2.1 Some general results about plane regular curves

Consider initially a closed, simple and regular curve in R? parametrized by some
function R = R(s), s € I C R. Let us introduce a normal coordinates system that

moves with the interface [32]; i.c.,
x(s,u) = R(s) + un(s), (5.16)
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where R(s) indicates the positions of the interface, s is the are length parameter, n(s)
is the unit vector normal to the interface calculated at s and u is a parameter related
to the distance with respect to the interface in the normal direction. Naturally, the

center of the interface is given by x(s,0) = R(s), and we define
t=— (5.17)

as the unit tangent vector to the interface at s. It also implies t-n = 0. The relationship

between the fields t and n and the curvature K is given by the Frenet formulas [34]

dt dn

— =K — = —Kt. H.18
ar O o (5.18)
y -~ B v
n(s) = &
t(s)
Qy@ ¢p=1
1o
e 0
':17

Figure 5.9: Schematic representation of the normal coordinates system. The indication
of the components is indicated by values of the function ¢. The length ¢ is the interface
width (sce Appendix A). If the curve is the the level set of some function ¢ then we

can represent the normal to the curve by the ficld n = Vo /|V.

A very important consequence of the Frenet formulas is the following relation

0 0 on .
n=(nZz1tZ) n=t-L = . K(s)t = —K(s). 5.1¢
V-n (n(‘]u + t(‘]s) n=t 5 t- K(s)t K(s) (5.19)

If the interface is an implicit planar curve ¢(z,y) = 0, then the normal field can be

fined ac m — V& 2l
defined as n = ~al which gives

K(s)=—-V- (%) . (5.20)
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5.2.2 Evolution of time dependent plane curves

To study the evolution of the energy of the interface in the immiscible Rayleigh-
Taylor turbulence is useful to understand some concepts of differential geometry of
families of plane closed curves that evolve in time.

Consider a family of closed smooth planc curves. In this case we can consider
a time dependent parametrization R = R(s,t) for the family, where s is the time-
dependent arc length parameter and 7 indicates the time parameter defined for some
interval [0, T"). Analogously, the tangent to a curve at s is given by t(s, ) = OR(s,t)/0s,

with the variations of the tangent and normal with the arc length given by

Ot(s,t)/0s = K(s,t)n(s,t), (5.21)
on(s,t)/0s = —K(s,t)t(s,t), (5.22)

where K = K(s,1) is the time-dependent scalar curvature. The fact that t- g—i = () and

n- 2 =0, leads to [32]

Ot(s:t) o (‘}H(S?t) - .
o = omls,t), — g = —at(s 1), (5.23)

where « is proportionality function.
The velocity OR(s,t)/0t can be decomposed into normal vy (s, #) and tangential

vp(s,t) components, i. c.,

OR(s,t
# =on(s, t)n(s,t) + vp(s, t)t(s, ). (5.24)
ot
Define T* = Image(R(-,t)) as the evolution of some initial closed curve T' =

'’ = Image(R(-,0)). The variation of the total length £' = L£(T") of the curve T
can be associated with the curvature K and the normal velocity vy by the following
equation [84]

%Et + ‘/ﬂ K(s,t)uy(s,t)ds = 0. (5.25)

This formula can be is naturally generalized for interfaces with many closed compo-
nents.
In the following calculations we give an ideia on how to derive the relation (5.25).

Let us reparametrize T'* by a difecomorfism @ such that s = ®(u), where u € [0, 1) such
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that ds/du = |R,|, for any ¢t > 0 [84] (since we are considering the evolution of closed

curves). We have

0 o
—R,=—R,. H.2
ﬁtRu (‘}u,Rt (5:26)
The left hand side of (5.26) gives
0 0
—R, = —(|R.|t 5.27
SR = (R (5.27)
O|R.| ot
== t Rfu e
ot * |( f
)
= lr|£|t—|—|1?i’ lan.

and from the right hand side of (5.26), we have [32]
BRL E}Rg 85

= 5. o, H.28
ou ds Ou (5.28)
OR,
= s 1
) %) v
= (E¥n oy Ty vrys ot |R,|
Os Js Js
vy Oy
— (S0 —oyKt+ St + opKn |R,|
Js Js
Comparing (5.28) and (5.27) in the tangential direction t, we obtain
€3|Ru| 8?}1
K|R,| = —— 5.29
(‘}f UnN |Ru.| |R | () )

By integrating (5.29) over the interval [0,1) and taking into account that dvp/0s
satisfics periodic boundary conditions, we obtain the total length equation (5.25).
The relation (5.25) will be useful in the next subsections to establish a clear link
between the variation of the total length of the interface and the energy flux associated
with the Korteweg stress tensor PX.
In the next subsections, for the seck of clarity, we omit the time dependence of the

developed equations. This dependence will be given by the context of the calculations.

5.2.3 Cauchy-Crofton formula and total length of plane curves

The total energy of the interface in the immiscible Raleigh-Taylor flows is cal-
culated by the product between the surface tension coefficient v and the total length
of the interface £ [12]. Numerically, we calculate the total length of the interface us-

ing a numerical implementation of the Cauchy-Crofton formula [34, 61]. Specifically,
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suppose that the interface forms a rectifiable plane curve I' (or a union of rectifiable
curves). Given an oriented line [, define n(p, £) as the number of points where I' inter-
sects a given straight line C', where ' is parametrized by the direction £ with respect to
the horizontal axis and by its signed distance p from the origin. The Crofton formula

expresses the total length £(I') of the interface thought the following integral

L(T) = %f /n(p,ﬁ)dfdp, (5.30)

i.c., an integral over the space of all oriented lines. In the following calculations, we
demonstrate the formula (5.30) for interfaces that are formed by polygonal lines.

In more specific terms, in R? we can determine a strait line M by a unit vector
v = (cos&,sing) and the inter product p = v -« of v and the position a = (z,y)

of L. To associate M with (p, &) we must identify (p,&) ~ (p,& + 2nk), k € Z, and
(p,&) ~ (—p,€). Thus, the sct of all strait lines in R? is represented by

A= {(p,€) €R% (p,€) ~ (p,& +2k) and (p,&) ~ (—p,€)} - (5.31)

It is possible to define a measure for any subset ¥ € A as

| / | /L dpde, (5.32)

and it is possible to prove that this formula is, up to a constant factor, the only measure
on A that is invariant under rigid motions [34].

Consider a curve C' which is a segment of a straight line with length £. Assume
that the coordinate system has its origin 0 in the middle point of ' and that the
horizontal axis is in the direction of C. This assumption is a consequence of the fact
that (5.32) is invariant under rigid motions. The measure of the set of straight lines

that meet C' is given by

27 |cosg|(L/2) 27 I
f /dpd{ = / / dp | d§ = / §| cos&|dE = 2L. (5.33)
P J0 J0O S0

Next, consider the situation where €' is a polygonal line formed by a finite number
of segments C; with length £; such that ), £; = £. Consider again n(,p) as the
number of intersection points of the straight line with €. Then, applying (5.33) to

cach segment and summing up the results, we obtain

/ / dpdéndpdS =2 " L; = 2L, (5.34)
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]

Figure 5.10: Schematic representation of the intersection of a curve with four families

of straight lines. The intersections with these families are indicated by the red points.
The grid points of the computational fluid domain are indicated by the points in
green. Within the gray region limited by the interface, we have one fluid component,
and outside, the other component. We count the number of intersections by looking
for sign changes in the values of the order parameter ¢ between different grid points.
Numerically, the four families of straight lines are families of sub-vectors formed by
points of the computational grid. Every variation of the sign of ¢ in a sub-vector is

counted as an intersection.

originating the Cauchy-Crofton formula for a polygonal line. By a limiting process,
the formula (5.34) can be extended to any regular curve [34].

The formula (5.34) has interesting applications in numerical analysis. Consider a
given family of horizontal straight lines, rotate this family by the angles /4, 27 /4, 37 /4
to obtain, for example, four families of straight lines. Consider that the families with
inclinations 7/4 and 37 /4 are distanced by 72 and indicate the number of intersections
with them by n;. The other families have straight lines distanced by ry, with the
number of intersections with them being denoted by n,. An schematic representation

of this configuration is shown in Fig 5.10. We have

1 1 1
5?11?"1% + 57?,2?"2% ~ 3 / / ndpdé = length of C. (5.35)



5.2.4 The Korteweg stress tensor and energy flux at the in-

terface

In this subscction, we show that the energy flux <(V - PK) -u) due to the Ko-
rteweg stress tensor is directly connected with the variation of the total energy of the
interface defined as the product between the total length £ of the interface and the
surface tension 7.

Using the relation (5.15), we have
1 1
(V-PH)u) = D] f OV (A¢) - udx = Dl /k‘V- (Vo)(Vo -u)dx (5.36)

1 .
- o [ - @IV (V6 uix

_ IDI / ((v V| + |v| VquSl) (V- u)dx
- = 5 [ HVRT m)m - wax + ﬁ/k [n-v ('Vf'2)] (n-u)dx

_ |D|fLIV¢|K(H Wi+ k[n-V(Wflz)](ﬂ'u)dX;

where k& = ¢1G /4 for the Shan-Chen method. Considering the system of normal

coordinates given by (5.16), we have

, O oo -
Vo=n ((}u) +t (a) . (5.37)

For small curvatures we can neglect the derivative of ¢ with respect to the arc length [32],

which leads to the approximation

Vol™ = (t'f)u) +((‘3£ “\ou) - (5.38)

Considering the same hypothesis, we can assume [3]

[n v ('VSP)] n~v (|V2¢|2) , (5.39)

c., the variations of the function |V¢|?/2 are dominated by the variations in the

normal direction of the interface. The approximation (5.39) is better if the interface

becomes sharper [65, 96]. Thus, we have

/k[n.v(|vj|z)](n-u)dx ~ fv('vflz)-udx (5.40)

— / |V¢'|2 (V-u)dx =0
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considering the incompressibility condition V - u = (. Therefore
K 1 27 1
((V-P¥)-u) = 1D E|Vo[*K(n - u)dx ~ 1ol vK(n - u)ds, (5.41)
where we used the approximation

A\ 2
/k|V{f)|2du ~ /k (13_(;5) du ~ 7. (5.42)

ou

In the last equality, we used the surface tension relation (4.8).
The normal velocity of the fluid n - u in the interfacial region corresponds to the

normal velocity of the interface vy, described by the formula (5.24), which implies in

, 1
(V-P5) - u) ~ “1DI wa{TJNd.G, (5.43)

and by the formula (5.25), we have

1 d(v£)

((V-P") - u) ~ Dl (5.44)

This formula implies that the energy flux due to the Korteweg stress tensor (3.109)
corresponds directly to the variation of the energy of the interface.

We studied the flux (V- P¥)-u) for miscible and immiscible RT flows in the
Figures 5.15(b) and 5.15 (d). In Fig. 5.15(b) is possible to sce a significant difference
in the energy flows. In Fig. 5.15(d) we verify the relation (5.44) showing that the
difference in miscible and immiscible is associated with the appearance of the interface
in the immiscible flows. The encrgy of the interface is calculated by the product between
the surface tension v and the total length of the interface £,,;, and the result is shown
in Fig. 5.15(c), with the total length calculated by the Cauchy-Crofton formula (5.35).
A possible explanation for the difference between the two curves in Fig. 5.15(d) can
be attributed to the diffuse interface assumption in the lattice-Boltzmann algorithms
and the appearance of high values of curvatures in the late stages of the immiscible

Rayleigh-Taylor turbulence.
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Figure 5.11: (a) Comparison between the energy flux due to the bulk pressure and

spurious term. (b) Comparisson between the energy flux due to the Korteweg stresses.

(¢) Evolution of the total length. (d) Comparisson between the energy flux due to the

Korteweg stresses and the right hand side of (5.44) indicated as the variation of the

cnergy of the interface.

5.3 Viscous dissipation and enstrophy

In this subsection, we analyze the flux (u (V- (nVu + nVuT)D showing direct

connections with the evolution of the enstrophy of the system, defined as

|
Q= / lw?dx, (5.45)
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where w = V x u is the vorticity. In the next calculations, we consider the scalar
vorticity w = w - k, where k is a unit vector perpendicular to the plane of the flow.

Neglecting the density variation, we have

(w- (V- (nVu +9vu")) = n{u-Vu), (5.46)
= —n(u-(Vx(Vxu)
= —n(|Vxuf’) + (V- (ux (Vxu))).
= —n(|V xul’)
2n

= —=1o,
D

where we used the following identities [43]

Vu = -V x(Vxu)+V(V-u) (5.47)
V-(ux(Vxu) = |[Vxuf—u-(Vx(Vxu)), (5.48)

and the incompressibility condition, V-u = 0. In the integration by parts, we assumed
the periodic boundary conditions in the horizontal direction and the no-slip condition
in the walls in the vertical directions. A verification of the relation (5.46) is shown in
Figures. 5.12(a) and 5.12(b). It is possible to sce a significant difference in the evolution
of the viscous dissipation between miscible and immiscible flows.

It is apparent from Fig. 5.14(a), that the values of the enstrophy are considerably
larger for the immiscible low. We now argue that this difference can be attributed to
the flow in a small neighborhood of the interface. Figure 5.14(b) shows the vorticity
field for the immiscible flow; it corresponds to the a small arca of 667 x 467 lattice
points marked by the rectangle in the center of Fig. 5.1 and amplified in its right small
pancl corresponding to ¢ = 83000. Visually, it is clear that a considerable part of high
vorticity is concentrated near the interface. For comparison, we present the vorticity
field for the miscible case in Fig. 5.14(c), which corresponds to a small arca from Fig.
5.2. In the miscible case, the vorticity is more dispersed and its amplitude is roughly
twice smaller (notice the difference of color scales).

Part of the enstrophy may have a numerical origin coming from spurious currents
of the lattice Boltzmann method (sce Chapter 4); however, the experiments suggest
that this numerical contribution is not large cnough to account for all the vorticity

generated by the interface.
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Figure 5.12: (a) Comparison between the evolution of the enstrophy and dissipation
function for immiscible flows. (b) Comparison between the evolution of the enstrophy

and dissipation function for miscible flows.

In the following, we analyze some theoretical developments analysing the possible
sources of vorticity the immiscible RT turbulence.

Applying the curl operator in the momentum cquation (5.1), we obtain the fol-
lowing vorticity equation equation [25]

o +(u-Vw= —E(V x (ApV@)) + vAw — i(V(;ﬁ X e,). (5.49)
ot Po Po

7!

Fluid A

Fluid B

Figure 5.13

Let us consider a control arca D C D which contains part of the interface denoted

by T, sce Fig. 5.13. In this subdomain, the integral form of (5.49) is given by

o
o
—_—
L]
o —

a

— [ wdx = % va-flds—i—j{ n-(v,—u)ds— (5.f
dt Jp Job

JD Po JD Po

_ / K (v x (Apve))ax — L f(v@ﬁ x e,)dx.

80



where v, is the velocity of the boundary D of the control volume. The term

[ 2 x (aove)ix. (5.51)
JD Po

is negligible for miscible flows; sce Fig. 5.15, but for immiscible flows this term accounts
for part of the vorticity generated at the interface, which also has a contribution of the

term

fﬁ %(V{f) x e,)dx, (5.52)

as we show in the next calculations.
In the sharp interface formulation (see Appendix A) the vorticity generated by
the interface is represented by a source of vorticity o located at the interface in such a

way that

d
— | wdz = % vVw - nds + 51( n- (v, —u)ds + /st (5.53)
dt Jp oD oD Jr

For no-slip viscous fluid-fluid interfaces [54], an explicit expression for o is given by [93]

=5 | 5] | - a2t (5.54)

with p and u satisfying the cquations (2.5) and (2.4), and @, is a potential function
for the body forces. As in [20] we use symbol [[B]] = B4 — Bp to indicate the jump
across the interface of the value of some function [, where ¢ indicates the values of
the function 8 in the component s. In formula (5.54), the viscosity does not appear in
the vorticity generation terms, and circulation may only be generated on the interface
by pressure jumps and body forces. Still, according to 93], the viscous forces produce a
flux of vorticity into the fluid interior, so that all circulation generated by the inviscid
mechanism appears as a boundary flux on the interface.

For viscous interfaces, the continuity of the normal stress across the interface

implics in the following [93]

()= 2 [ (252 + e w)) || o (5.55)

considering the no-slip condition at the interface, the jump in pressure becomes

) = =21} (5% + Kow ) =K (5.56)
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where vy and vy are tangential and normal velocities of the interface, see (5.24). In

the Boussinesq approximation for the Rayleigh-Taylor systems, we have

P HEH I ()] (0 | S(KUN)) L0k e

os||pl|  po Os po \ 0s? 0s po Os
and

(]l =0, [[®]] = —2p0y9, (5.58)

where in the last relation we used (2.6). Thus,

1 -
o~——(7K)+ —,)—(Qypng)- (5.59)
Po

In the following, we show that

/E(Vx (ApVo))dx 5 1 [0(K)
JD o poJt Os

ds (5.60)

and

f E(V{f)x e,)dx ﬂ) —l qu
D Po ! po Jr Os ’

where § — 0 indicates the sharp interface limit (sece Appendix A). Consider the follow-

(5.61)

ing
1 1
— / (V x (kA¢VH))dx = — f V x (kVoV - (Vo))dx (5.62)
Po JD Po
ARG ARG
= = [ Vx [ke=|V|V- [ ==|Vg|) ) dx
o |7 (e (v
1
= - [V (VoY - (@[Ve) dx
0
1 2
~ L[y« (—k|V¢|2Kn+kV ('Vf’ﬁ' ))dx
Po 2
~ _pl /V x (k|V¢|°Kn) dx
0.

12

—% / (V(E|VO]’K) x n)dx — % / E|V@|?K(V x n)dx.

Now, define the auxiliary function ¢ = ¢/|V¢|, we have

Vo  ¢Vo-V?¢ V¢

Vo = — — = 5.63
7 R 77 77 209
where we considered ¢ = 0 at the interface. Thus,
Vo —
Vxn=Vx (W) =V x(Vg) =0. (5.64)
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Conscquently,

L /; (V x (kApV))dx ~ —% / (V(k|V|2K) x n)dx (5.65)

Po JD

12

1 25 e\
—g'/ (V(EIVHPEK) - t)d

2 -
- _i//md};du
o . Os

1 [O0(K)

ds
po . 0s

verifying (5.60). Note that we used again the approximation (5.42) and normal system
of coordinates defined by (5.16).

Now, consider the following

/ 9(Vo x e,)dx = /‘E;"ng - eudx (5.66)

<D

= /‘E}"|V{f)|n-e$dx

- —ff.§'|vqﬁ|t-eydsdu,

where we used n - e, = —t - e,. It is possible to show that 18]

/ \Vo|du ~ 2p,, (5.67)

since we have ¢ varying between py and —pg in the definition of the order parameter

for the solutions given by Shan-Chen method. Consequently, from (5.66), we have

/_ﬁ'(ngx ey)dx ~ — /2p(]§t - e,ds (5.68)
JD .
. OR(s)
~ —./ Zpﬂgi&g -eyds

_O(R(s) -
= = /20(19%0{3

_Jy(s
= = /240(19 ‘(f;(‘;)ds

25
_ (2p09y) ds,
. 0s

demonstrating (5.61), where y(s) is the vertical coordinate of the interface position
R(s); sce Fig. 5.9.
For quantification of the interface contribution, we separate the bulk enstrophy

in the immiscible case by excluding small arcas around the interface. This is done
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Figure 5.14: (a) Evolution of total enstrophy averaged over 10 realizations for the
immiscible (bold blue) and miscible (thin red) simulations; shaded regions indicate
standard deviations. The dashed black line corresponds to the filtered enstrophy of
the immiscible flow, by excluding small neighborhoods of the interface. (b) Example
of vorticity ficld for immiscible and (¢) miscible flow. (d) PDFs of the vorticity fields.

(¢) PDFs of the vorticity ficlds normalized by the respective standard deviations (SD).

84



numerically by removing all nodes within squares of size 8 x 8 at cach point of the
interface (sce Chapter 3). This size is much smaller than the typical drop for the late
turbulent times (£ ~ 50) and roughly twice larger than the expected viscous scale 7 (in
Chapter 6 we estimate 17 ~ 4) and the numerical interface width (I, ~ 3).

The filtered enstrophy is plotted in Fig. 5.14(a) by the dotted black curve, which
agrees very well with the miscible data for the times corresponding to turbulent mix-
ing. Though such a fine agreement may partially be attributed to the chosen filter,
removing larger arcas around the interface yields only a moderate effect, as shown in
Chapter 4. This observation suggests that the immiscible flow in the regions away from
the interface features turbulent statistics similar to the miscible flow. This conclusion
is also justified in Fig. 5.14(d), where we plot PDFs of vorticity: one can sce that
the PDFs for the miscible (red) and filtered immiscible (dotted black) flows are very
close, while the PDF for the full immiscible flow favors much larger values of vorticity
characteristic of thin boundary layers. Still, normalized PDFs of vorticity shown in
Fig. 5.14(e) reveal a distinctive shape of the tails for large w (rare events), which is the

same for the original and filtered fields in the immiscible flow.

5.4 First topology changes and critical velocities

The graphs in Fig. (d) mark a transition to a new regime starting at times close
to t = 30.000, at which the variation of interface energy attains a local maximum. We
argue that this transition indicates the moment when the interface becomes discon-
nected generating small drops and large disconnected clusters. This behavior is clearly
seen in Fig. 5.15, where we plot the density profiles at four different times. These
figures show the process of how the interface becomes disconnected after £ = 30.000.
A similar phenomenon was observed in [6] for the one-dimensional convective Cahn-
Hilliard equation, where, for some particular examples of velocity fields, it has been
shown the existence of critical velocities such that steady states in a form of droplets
exist for velocity values smaller than a given critical velocity. When the velocity is
slowly increased past the critical values, the droplet splits in the middle and break up

into two droplets and no such steady state exists for the system.



t = 30.000 t = 32.000

t = 34.000 t = 36.000

Figure 5.15: Evolution of the interface profile for times close to the local maximum
for the total interface energy; sce also Fig. (d). For time ¢ = 30.000 the interface has
only one component, while in the next few times the first topology changes take place

leading to the first drops and large disconnected clusters.

5.5 Concluding remarks

In this chapter, we provided a study of the energy budget of the Rayleig-Tayvlor
systems in the linear, non-lincar and turbulent regimes. We focused in the immiscible
-ase, where according to (5.46) and (5.25), we expected to obtain

( ) !uf) o igz (r](]{})

O(Ex + E,) = —ﬁ? D]

The dissipation in the total energy budget for the miscible case corresponds only to
the generation of the enstrophy of the system.

With respect to the numerical investigation, we can highlight the following results:
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e The potential energy statistics are similar between miscible and immiscible.

e Kinctic energy statistics show significant differences between miscible and immis-
cible flows. Analyzing the components of the kinetic energy variations, we found
that the differences are connected to the energy flux due to the stress tensor

(u-(V-PTOT)) and the viscous dissipation (u - V(7Vu +7(Vu)")).

e The verification of the balance (5.11) and the fact that the spurious contribution
(11 (V- K(T))> is negligible, show that the solutions provided by the Shan-Chen
multicomponent method solve accurately the equations for the proposed RT sys-

tems.

e We verify the expected connection between the flux due to the Korteweg stress
tensor P* and the variation of the total length of the interface, calculated nu-

merically by the Cauchy-Crofton formula.

e We show indications that the interface acts as a source of vorticity, which can
explain part of the difference in the viscous dissipation statistics verified between

miscible and immiscible flows.

e Analyzing the variation of the total energy of the interface, we verify the existence
of a critical time in the transition to turbulence. The analyses of the density
profiles close to this critical point show that the fast variation is associated to
the first topology changes that leads to the appearance of the first drops and

large disconnected clusters.
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Chapter 6

Immiscible vs miscible
Rayleigh-Taylor turbulence: testing
phenomenologies with lattice

Boltzmann simulations

6.1 The 1941 Kolmogorov’s theory (K41)

In this section, following [38, 74, 33, 53|, we bricfly discuss a phenomenological
theory for the turbulent motion of homogencous (translational invariance), isotropic
(rotationally invariant) and stationary turbulence of free shear flows.

In this type of flow, the turbulent motion range in size from the characteristic
length of the flow to much smaller scales. In the paper [53], Kolmogorov proposed a
scenario where the flow is assumed to be homogencous and isotropic and is left alone
to slowly dampen out by viscosity, configuring the so-called decaying turbulence. In
this section, we consider a flow maintained by a force active on large scales of the flow
and is kept in a state of statistical cquilibrium in the sense that on average of the
kinetic energy injected by the external force is balanced by the energy dissipated by
viscosity [33].

The central ideas in the Kolmogorov’s theory of turbulence are the energy cas-

cades and the Kolmogorov hypothesis. The energy cascades correspond to the idea
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that the energy is injected in the turbulent motion flow at the largest scale L of the
motion (associated to the typical size of the mechanism responsible for gencrating the
turbulent flow [38]) and transferred to smaller and smaller scales of motion without
dissipation, at a constant rate e, until be dissipated in some small scale n by viscous
action [74]. In this picture, there is a range of scales 7 such 7 < r < L and such that
the energy is not injected cither dissipated, such range is called the inertial range. For

every scale 7 < L, it is possible to associate a typical velocity d,u defined as

RIS (u(x+r)—ux))- . (6.1)

where the symbol ¢ ~ ¢ means proportionality [33], r is any vector with length |r| =7
(since we consider an isotropic flow) and (-) denotes the ensemble average (or time
average considering the ergodic hypothesis). The respective typical time scale 7, (or

eddy turn over time) is defined as

r

Ty~ —.
O,

(6.2)

Some natural questions are related to the what is typical size of the smallest
eddies responsible for the dissipation of the energy, and how d,u and 7, changes if
r decreases. These questions were partially answered by the theory of Kolmogorov,

which can be stated, according to [38], in the form of three hypothesis:

(H1) In the limit of infinite Reynolds number, all possible symmetries
of the Navier-Stokes equation, usually broken by the mechanism producing
the turbulent flow, are restored in a statistical sense at small scales and

away from any boundarics.

(H2) Under the same assumptions as in (H1), the turbulent flow is

sclf-similar.

(H3) Under the same assumptions as in (H1), the turbulence has a

finite non vanishing mean rate of dissipation £ per unit of mass.

By small scales we mean scales such that » < L. The hypothesis (H2) implies

that the typical velocities are related by o, u = f(ra/r1)d,,u, where f is some universal
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function [33] to be obtained later in this section. For (H3), in the limit of infinite
Reynolds number, we must keep the integral scale L and the typical velocity U constant,
and let v — 0.

Considering the characteristic quantities defined previously and the Kolmogorov’s
hypothesis, we now approach the phenomenology of turbulence in the sense of Kol-
mogorov. By phenomenology we mean a kind of shorthand system whereby the same
results can be recovered in a much simpler way, and naturally, at the price of less rigor-
ous arguments [38]. The phenomenology of the fully developed turbulence is generally
associated to some mental visualization, like the idea of the Richardson cascade, which
considers that the turbulent flow is composed of eddies of different sizes. The eddies
of size r have a characteristic velocity 8,1 and timescale 7,.. By ’eddy’ it is understood
a turbulent motion, localized within a region of size r, that is at least moderately
coherent over this region [74]. The eddies in the largest size range are characterized
by the lengthscale 7, which is comparable to the flow scale L and their characteristic
velocity U. The Reynolds number in the biggest eddies (given by Re = UL/v) is large,
with the direct effects of the viscosity being negligible. In the Richardson notion, the
biggest eddies are unstable and break up into smaller eddies. Those eddies undergo
to a similar break up process, transferring their energies to yet smaller eddies. This
process continues until a Reynolds number small enough to make the eddies stable,
and the viscosity is effective in the dissipation of the energy [74, 38].

The time scale 7, is also a typical time for the energy transfer between scales in
the inertial range. Thus, the energy flux, denoted by I1,., can be estimated by

(6,u)? N (6,u)? _

Ty T

I, ~ (6.3)

In the inertial range, there is no injection and no dissipation of cnergy, which implies
that the energy flux should be independent of the scale 7 and equal to the mean energy
dissipation rate ¢, which leads to

(6yu)?
T

g, for n<«r < L. (6.4)

Thus

Spu ~ gt Prt/3 (6.5)
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in the inertial range. The respective time scale is given by
T~ /3213, (6.6)
At the top of the inertial range, we have
U~ e'BLM3, (6.7)

The bottom of the inertial range, where the viscous effect becomes significant, can be
estimated as follows. The typical time for viscous diffusion to attenuate the energy
flux on the scale ~ r is given by [74]

1if f r’
te 6.8
T I/ ? ( )

and the match between (6.6) and (6.8) happens at a scale 1 given by

U3 1/1
ne~ | — ; (6.9)
£

which is the so-called Kolmogorov scale.

Naturally, more phenomenological predictions can be computed; see [38]. The
results obtained by the phenomenology are compatible with well established results
in 3D turbulence, like the two-thirds and four-fifths laws. In some experimental re-
sults [33], deviations from the phenomenological predictions were found, characterizing,
for example, the phenomenon of intermittency [38, 74].

For a flow constrained in two dimensions, the scenario is significantly different
from what is observed in 3D turbulence. In two dimensions, the vorticity acts as a
passive advected quantity and the enstrophy is an inviscid invariant of the flow, like
the energy. For an unforced flow with high Reynolds number, the enstrophy must grow
in order to dissipate the energy at small scales, which is impossible, since the enstrophy
can only decrease from its initial value due to dissipation. It implies that a cascade
of energy for small scales (direct cascade) does not happens in the 2D turbulence [33],
and what actually happens is an inverse cascade of energy, i.c., kinetic energy flowing
to the biggest scales. The scale relationships of Kolmogorov’s phenomenological theory
arc also expected in two dimensions, since the scale arguments used do not assume a

specific direction of the energy cascade.
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In the next sections, we study a two-dimensional extension of the Komolgorov’s
phenomenology for the context of complex fluids. Specifically, we approach a phe-
nomecnological theory for the Rayleigh-Taylor turbulence described in Chapter 2. The
predictions then are tested using numerical results obtained by using the Shan-Chen

multicomponent method shown in Chapter 3.

6.2 Rayleigh-Taylor turbulence and numerics

6.2.1 Evolution and shape of the mixing layer

In this subsection, we investigate the large-scale dynamics of the RT mixing layer,
comparing its development in immiscible and miscible flows. We consider ensembles
with at least 15 simulations for the immiscible and miscible flows performed for different
random initial disturbances, as described in Chapter 3. Recall that the choice of the
size of the ensembles is motivated by small values of standard deviations verified in our
numerical experiments, indicating a small dependence on the initial conditions.

Development of the mixing layer from a small initial perturbation of the straight
interface line are presented in Fig. 5.1 (immiscible) and Fig. 5.2 (miscible). The pancls
in the bottom of these figures correspond to zooms of a small region in the middle of
the computational domain (red rectangles in the main plots) at different times. They
illustrate the initial lincar growth of perturbations, which develop to nonlincar quasi-
periodic pattern with mushroom-like structures. For later times, these structures break
down, forming a fully developed turbulent mixing layer.

Macroscopic propertics of the turbulent mixing layer are described by its width
L(t) and the large-scale velocity fluctuation U(t). To estimate the evolution of mixing
layer L(t), we consider a simplified version of the Boussinesq approximation showed
in Chapter 2. In this simplification, the energy relations arce obtained by analyzing
the movement of plumes with fixed base B (for simplicity) and height given by the
L(t) [13]. The variation of the potential energy of the plumes, with densitics p; and
pa, 18 approximated by

AP = (p1 — p2) L’ By, (6.10)
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and the kinetic energy change by

dL*

AE = (py + Pz)LB? 5 (6.11)

where g is the gravity acccleration. Using Euler-Lagrange equation for the Lagrangian

L =F —2a, P, we obtain

d?L 1dL*?

where the dimensionless parameter o, characterize the efficiency of the conversion of
potential energy into kinetic energy [15]. The solution of the equation (6.12), for a
initial condition L(0) = L, associated with the first times of the appearance of self-

similar profiles, is given by
L(t) = L() + Q(QLA‘QL[))IKQIS + QLAgt2 (613)

Extending this analysis from a single plume to the whole interface, it is possible to

show the growth of the mixing layer for late times follows asymptotically the law [13]
L((t) ~ apgt®. (6.14)

Recall that the Atwood number A characterizes typical density variations, and we
denoted g = Ag in the Boussinesq approximation and the lattice Boltzmann method.

The Figure 5.8 from Chapter 5 shows that the energy flows at the large scales
duc to the viscous term V - (nVu + n(Vu)?)) and momentum flux tensor —V - PZ07)
arc negligible in comparison to the flux of the buoyancy term —¢ge,,, for miscible and
immiscible flows. It implies in following phenomenological relation for the large scales
cnergy balance

dE dP

ab _aF 15
dt dat’ (6.15)

which describes the transfer of potential energy P o< —AgL into kinctic energy E oc U2.

This encrgy balance provides the relation

dU
which gives
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Figure 6.1: Definition of the mixing layer as the region between two points, where the

averaged component densities pa (red) and pp (black) attain 20% of the total density.

where the dimensionless parameter oy is also related to the efficiency of the conversion
of potential into kinetic energy.

The numerical procedure for the analysis of mixing layer is illustrated in Fig. 6.1.
Here the red and black lines show the dependence on the vertical coordinate y for
the component densities pa(x,t) and pp(x,t) averaged with respect to the horizontal
coordinate z. We define the mixing layer as the region between two points, at which the
averaged density of cach component reaches 20% of the total density. This definition
separates the central region of the mixing layer, cutting off its most non-homogencous

outer parts. Then, the large-scale velocity fluctuation is introduced as
U? = ([[ull*)mw, (6.18)

where the averaging is performed within the central region of the mixing layer.
Numerical measurements for the width L(#) and speed U(t) of the mixing layer,
averaged with respect to ensembles of realizations, are presented in Fig. 6.2 for both
immiscible and miscible flows. We associate the beginning of turbulent mixing with
the time when mushroom-like structures break down into a chaotic multi-scale mixing
layer; sce Figs. 5.1 and 5.2. In our simulations, turbulent mixing layers develop roughly
at the times ¢ 2 4 x 10" in the immiscible case and ¢ 2 3 x 10 in the miscible case. The
difference between these initial times can be attributed to the resistance caused by the
surface tension in immiscible flows. All simulations are stopped at times t ~ 8.5 x 10%.

For larger times, the mixing layer may be affected considerably by the top and bottom
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Figure 6.2: (a) Width of the mixing layer L(t) and (b) large-scale velocity fluctuation
U(t) depending on time for immiscible (bold blue) and miscible (thin red) flows. Shaded
arcas indicate standard deviations. The inset in figure (a) compares the graphs /L(t)
in the region of turbulent mixing with the estimated slopes (6.20) shown by dotted

lines.

rigid boundaries. In terms of the Reynolds number, defined as
Re=UL/v, (6.19)

the developed turbulent regime corresponds to (0.3 ~ 2.1) x 10" for the immiscible flow
and (0.1 ~ 2.1) x 10" for the miscible flow.
In order to verify the phenomenological predictions (6.14) and (6.17), we estimate

1 [dL\* 1 dU
_ ([ eE _ - 20
= G AgL (dt) T Agdt (6.20)

where the derivatives are computed by centered finite differences of second order. Such
relations are more robust numerically because they are insensitive to shifts of the
initial time, ¢ ~ t — t,, accounting for the carly non-turbulent development of the
mixing layer. Results of computations with formulas (6.20) are shown in Fig. 6.3
demonstrating clear tendencies to constant values in the regions of developed turbulent
mixing. The estimated values are a; = 0.027 £ 0.005 and «p = 0.083 £ 0.007 for
immiscible and a; = 0.033 & 0.004 and oy = 0.1 £ 0.005 for miscible flows:; see also
the direct comparison in the inset of Fig. 6.2(a). Notice that previous experiments [30,
81, 26, 13| reported the pre-factors oy, between 0.01 and 0.06 for the miscible mixing

layer, which are compatible with our estimates taking into account that we usc a
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Figure 6.3: Mecasurement of the dimensionless pre-factors for the immiscible (bold blue)
and miscible (thin red) flows: (a) ay for the mixing layer width and (b) «y for the
large-scale velocity fluctuation. Constant values (dashed lines) are estimated in the

regions of turbulent mixing,.

different definition of L. Our results provide a value of «; in the immiscible case
slightly lower than those in the miscible situation, sce Fig. 6.3(a), indicating that
the immiscible RT turbulence may be less efficient in the conversion of potential into
kinetic energy; the same conclusions are valid for the other pre-factor ay. However,
the differences are small (comparable to standard deviations), which does not exclude
the possibility that they are actually equal for immiscible and miscible flows in the
asymptotic limit of infinitely large domain. Analogous universality of the mixing layer
pre-factors with respect to small-scale physics was observed recently for the Kelvin-
Helmholtz instability [94], where Navier-Stokes flows were compared to a point-vortex
model.

A different model for the typical large-scale velocity is proposed by [13], which

here we call U, considering only the vertical component of the velocity field, i.c.,
—_D 9 .
U = (llu-eyl")mL (6.21)

where e, is the unit vector in the normal direction. The result is shown in Fig. 6.4.
For this experiment, the values of o are slightly smaller than the values shonw in
Fig. (6.3)(b), but it is still possible to observe the horizontal shape of the curve of the
curve for oy for late times, indicating the lincar growth of the respective typical velocity.

The estimated values are ay; = 0.068 4= 0.007 for immiscible and oy = 0.08 = 0.005 for
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Figure 6.4: (a) Large-scale velocity fluctuation U(t) depending on time for immiscible
(bold blue) and miscible (thin red) flows. (b) ag for the large-scale velocity fluctuation.

Constant values (dashed lines) are estimated in the regions of turbulent mixing.

miscible flows.

The Figure 6.5 shows profiles for the density py of component A averaged with
respect to the horizontal coordinate z and ensemble of realizations. The figure (a)
shows profiles at three conscecutive times both for immiscible (bold blue) and misci-
ble (thin red) flows. By the dimensional argument leading to power laws (6.14) and
(6.17), one can also conjecture that the averaged density profiles are self-similar in the
regime of developed turbulent mixing, with the dependence only on the ratio y/L(t).
This conjecture is supported by Fig. 6.5(b), where the graphs from the left panel col-
lapse into a single curve when plotted with respect to the rescaled coordinate y/L(t).
The graphs suggest hat the inner region of the mixing layer develops a lincar average
density profile with a slope decreasing proportionally to 1/L(t) oc ¢ 2. This lincar
profile implies statistical homogeneity inside the mixing layer [13]. Notice that, up to
numerical fluctuations, the self-similar profiles are indistinguishable for the immiscible
and miscible cases. This provides further evidence for the universality of large-scale
properties in the RT turbulence for immiscible and miscible flows.

Self-similarity, homogeneity and isotropy in the statistical sense [38] are impor-
tant assumptions for phenomenological theories derived similarly to the Kolmogorov's
theory of turbulence (K41) [53]. For miscible Rayleigh-Taylor systems, the tendency
toward isotropy restoration of small-scale fluctuations has been numerically verified

by [10, 14, 16] and experimentally by [75]. The similarities of the statistics between
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Figure 6.5: Density profiles for the component A averaged with respect to horizontal
coordinate = and ensemble of realizations. The results are shown at three consecutive
times t = 4.5 x 10", 7 x 10" and 8.9 x 101. (a) Dependence on the vertical coordinate y.
(b) Dependence on the rescaled vertical coordinate y/L(t) demonstrates self-similarity

and universality of the density profile for immiscible and miscible flows.

miscible and immiscible RT flows in our experiments indicate that the same tendency
may also happen for the immiscible Rayleigh-Taylor systems, which motivates the defi-
nition of turbulence for the observed late time behavior. Notice that, though numerical
simulations confirm seclf-similar RT dynamics, some experiments report on departures

from the canonical turbulence scenario with strong sensitivity to initial conditions; sce

c.g. [69, 68, 77].

6.2.2 Evolution of interface in the immiscible RT turbulence

An intricate evolution of the interface between two phases is the most distinctive
feature of immiscible RT turbulence. In this section, we study statistical propertics of
the interface depending on time and scale, distribution of drops with respect to their
size, and the cffects of the interface on the flow.

The interface evolution with the formation of drop-rich (emulsion) regions is
driven by the velocity fluctuations at small scales. In the RT turbulence, such fluc-
tuations can be described phenomenologically assuming that the dynamics at small
scales adjusts in a quasi-stationary (adiabatic) manner to the large-scale growth of the

mixing layer described by the width L(#) and velocity U(t). In two-dimensional flows,

98



statistics at small-scales follows the so-called Bolgiano-Obukhov scenario [17, 71, 85,
which assumes the balance of buoyancy and nonlinear terms with density fluctuations
cascading toward small scales at a constant rate. For equations (2.5)-(2.6), this balance

reads

0,1

~ Ago.0, (6.22)

where we denoted coarse-grained velocity fluctuations at scales r by 6,u and analogous
fluctuations of the order parameter by 6,6. With the estimate

(6,.0)%5,u

r

£o (6.23)

for the flux of order-parameter fluctuations. These laws are valid at scales of the
inertial interval n < r < L limited from below by the viscous (Kolmogorov) scale 7,
at which viscous forces must be taken into account. There is also a limitation caused
by the interface introducing the scale £ of a typical drop size. We will see later that
the interface affects the turbulent fluctuations considerably at scales r < /7.
The change of fluctuations in time is derived using the conditions §,u ~ U(t) and
6,0 ~ 1 at the scales r comparable to the size of the mixing layer L(t). From (6.23),
we have
(6,.0)%0,u U
A

- - (6.24)

combining with (6.22), we obtain [28|

2/5 3/5 1/5 3/5
oy r au 2/5 T
Ot ~ | —- J(t) | —= ~ | —
b (a%) e (L(t)) (m) A7

1/5 1/5 2/5
5,8 ~ ap / r\Y Qv / (Ag) 1/ iﬁ
' ary, L(t) ay, ’ t2/5°

where we used relations (6.14) and (6.17). Note that this derivation yields the well-

(6.25)

known Bolgiano-Obukhov scaling laws d,u oc 7%/ and 4,6 oc 7'/°. It is also important
to note that these scaling laws are only approximate duce to the expected intermit-
tency [13]. The prefactors (ap/ar)'? and (o /ar)?® in (6.25) are close to 1 for the
experimental values of ay and ay, shown in Figures 6.4 and 6.3, and do not gencrate a
significant effect in the phenomelological predictions. For the sake of simplicity, these

prefactors are omitted in the next calculations of this chapter.
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The scale r ~ 7(t) at which viscous and nonlincar terms become comparable is

found as

Ij((S,rug) N (57-?5)2_ (6.26)

2 T

With the use of (6.25), this yiclds [28]

/s 1/8 .

In our simulation, the viscous scale computed by expression (6.27) stays close to the

value 77 = 4 (four lattice distances) at all times corresponding to turbulent mixing.
Let us denote by £ the size of a typical drop (or the typical size of small interface

structures) in the emulsion-like state; sce Fig. 6.6(a). It can be estimated as the scale

where kinetic and surface energy densities are of the same order (28, 72|,
po(0pu)? ~ % (6.28)

where 7 is the surface tension. Using (6.25), we find
5/11

- v 2/11 9
((t) pg/ll(.Aq)”lr"llt . (6.29)

This formula is derived under assumption that the typical drop size £(f) exceeds the
viscous scale 7(t) given by expression (6.27). As we show later in Fig. 6.6(c), a typical
drop size in our simulations is about ¢ ~ 50, which is an order of magnitude larger than
the viscous scale. Therefore, ¢ belongs to the inertial interval at times corresponding
to turbulent mixing.

If typical-size drops arc dense (distances among drops are comparable to their
sizes) in the mixing layer of width L(#) and horizontal length L., the total number of

drops is cstimated as

L.L(t)
t) ~ ———=. 30
This yields an estimate for the maximum total length of the interface as
Using relations (6.14), (6.17) and (6.29), we obtain
5/11 15/11
Lio(1) - Po (Ag) / £20/11 (6.32)

L, g5/11
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This expression provides, up to a dimensionless cocfficient, a phenomenological estimate
for the growing length of the interface.

At smaller scales, the mean kinetic energy is insufficient for forming a drop.
Therefore, drops of sizes r < ¢ are very rare, being induced by extreme velocity
fluctuations. On the contrary, drops can form freely at larger scales 7 > £, Let us
denote by A, the total number of drops having size of order 7. It is estimated similarly

to typical-size drops as
L,L(t)

r2

N.(t) (6.33)

The total interface of such drops L, () ~ N,.(¢)r is expressed using relations (6.14) and

(6.17) as

Lt) | 4,0
s rr‘ *

(6.34)

Naturally, this length decreases for larger r and, therefore, the total length of the
interface is dominated by drops of typical size r ~ £.

In the numerical simulations, as in Chapter 5, the interface is determined as the
curve, at which densities of the two components A and B arc equal; sce Fig. 6.6(a).
Then, the typical drop size can be accessed through the measurements of the interface
curvature radius R = 1/K, the inverse of the curvature K. Recall that we define the
typical drop size as two times the most frequent curvature radius. We numerically
computed the curvature radius for cach adjacent pair of small interface segments at
a given time ¢, and also associated weight using the lengths of the corresponding in-
terface segments. More specifically, the curvatures are calculated using the following

expression [34]

' (s)y" (s) — ' (s)a" (s)|
((z'(s))* + (/' (5))2)2*

where z(s) and y(s) are coordinate functions of some parametrization R(s) = (z(s), y(s))

K(s) = (6.35)

of the interface (sce Figure 5.9), and in this particular formula s is not necessarily the
arc length parameter. Numerically, we can fit polygons to the vertices of the numerical

interface in the form

z(s) = ags® + azs + ay, (6.36)

y(s) = bys® + bys + by, (6.37)

where V' = (2(0),y(0)) corresponds to the vertice. By this way, for every vertice, we

fit different polygons. Then, from (6.35) follows that the curvature of at the vertice V'
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is given by
|f12b:; - 5203|
((az)? + (b2)2)23

The data for curvature for all the points of the interface is represented in the form

K(s) = (6.38)

of a histogram with logarithmic binning for the curvature radius R; sce Fig. 6.6(b).
This histogram approximates the (not normalized) probability density function (PDF)
for the values of log R within the interface. The histogram in Fig. 6.6(b) has the well de-
fined maximum at R = Ruyax(t), and we define the typical drop size as £(t) = 2Rax(t).
The measured value is demonstrated in the insct of Fig. 6.6(a) by a blue circle of di-
ameter £, providing a visual validation of our numerical approach. The Figure 6.6(c)
presents the measurements of typical drop sizes at different times shown in logarithmic
scale, with the straight line corresponding to the phenomenological prediction (6.29).
In addition to having a good agreement between theory and numerical simulations, we
arc able to estimate the dimensionless pre-factor in the expression (6.29) as 6.7 £ 0.7.
Notice also that the slope of the histogram in Fig. 6.6(b) to the right of the max-
imum value (dashed red line) confirms our prediction (6.34) for the distribution of
drops with respect to their size. This slope extends to the integral-scale structures
with R ~ L(t) ~ 10%. At larger values of R 2 10°, Fig. 6.6(b) measures the increased
probability of almost flat interfaces segments; such segments can be recognized both
in Fig. 2.3 and Fig. 6.6(a).

Fig. 6.7(a) presents the temporal dependence of the total interface length in
our simulations, which is computed using the CauchyCrofton formula [34, 61]. Tts
logarithmic derivative is shown in Fig. 6.7(b) demonstrating a well-established power
law in the regime of turbulent mixing. The measured exponent of this power law is
equal to 1.64+0.07 (dashed horizontal line), which is rather close to and slightly below
its theoretical estimate of 20/11 (solid horizontal line) from Eq. (6.32). The difference
between these exponents may be attributed to our theoretical assumption that typical-
size drops are densc in the mixing layer. The lower numerical value of the exponent

implics that typical-size drops get more sparse at larger times.
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Figure 6.7: (a) Time dependence for the total interface length £, averaged over en-
semble of 10 immiscible RT simulations; the shaded region shows standard deviations.
(b) Logarithmic derivative of the previous graph, d(log L,.)/d(logt), indicating the
power-law dependence in the turbulent regime (¢ = 4.5 x 10%) with the exponent
1.64 £ 0.07 shown by a dashed horizontal line. The solid horizontal line shows the

phenomenological estimate (upper bound) 20/11 for the same exponent.

6.2.3 Enstrophy and vorticity statistics

In this subsection, we study the influence of the interface on propertics of the flow.
Namely, we will show that the immiscible RT turbulence generates a considerable larger
enstrophy compared to the miscible flow, and that the source of this extra enstrophy
is confined within a small neighborhood of the interface.

The phenomenological estimate for fluctuations of the scalar vorticity w = (V x
u) - k (where k is a unit vector perpendicular to the plane of the flow) in the inertial
range is obtained using expression (6.25) as

S (Ag)s

r r2/541/5°

0w (6.39)

Vorticity fluctuations increase at smaller scales and attain the maximum at the viscous
scale r ~ n(t). Thus, the total enstrophy of the flow £2(#) can be estimated as a product
of (§,w)? and the size of the mixing layer L(t)L,. Using expression (6.14) for L(t) and

(6.27) for n(t), we derive the power law for the enstrophy €2 in the form

Q . Ag)? .
T~ ()L () ~ (,,1—;2 £3/2. (6.40)

b

104



Numerical verification of this relation is presented in Figs. 6.8(a,b). In the first figure,
we plot the total enstrophy as a function of time for the immiscible (bold blue) and
miscible (thin red) flows; and the second figure shows their logarithmic derivatives
demonstrating a good agreement with the phenomenological exponent 3/2 (a horizontal
linc). Note that v = 0.01 and D ~ 0.002 in our miscible simulations, which implies
that the particle diffusion does not affect the inertial range.

It is apparent from Fig. 6.8(a) that, despite the power-law exponents being the
same in both immiscible and miscible cases, the dimensionless pre-factor is considerably
larger for the immiscible flow. In Chapter 5 we argue that this difference can be
attributed to the flow in a small neighborhood of the interface.

It is remarkable that the filtered part of enstrophy, which is concentrated in
a thin neighborhood of the interface, follows the same power law as its bulk value,
Fig. 6.8(b). We conjecture, however, that this similarity is coincidental, because the
vorticity generation by the interface is not described by the Bolgiano-Obukhov sce-
nario. The enstrophy corresponding to the interface can be estimated as a product of
the total interface lengths and the lincar enstrophy density; see (5.49) and (5.59). The
former grows as a power law with the measured exponent 1.64 4= 0.07; sce Fig. 6.7(b).
The latter may depend on the drop size and velocity fluctuations, both change very
slowly in time; sce Egs. (6.25) and (6.29). These cstimates suggest that a power law
for the enstrophy growth gencrated by the interface may have the exponent close to
3/2, i.e. very similar to the prediction (6.40) following from the Bolgiano-Obukhov

theory.
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Figure 6.8: (a) Evolution of total enstrophy averaged over 10 realizations for the im-
miscible (bold blue) and miscible (thin red) simulations; shaded regions indicate stan-
dard deviations. The dashed black line corresponds to the filtered enstrophy of the
immiscible flow, by excluding small neighborhoods of the interface. (b) Logarithmic
derivatives, d(log2)/d(logt), of the same graphs compared with the theoretical power
law exponent (horizontal line). (¢) Example of vorticity ficld for immiscible and (d)
miscible flow, with the respective density fields indicated in (e) for immiscible and in (f)
for the miscible flow. The density ficld correspond to the final times in the Figures 5.1

and 5.2 _
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6.3 Concluding remarks

In this chapter, we provided a series of phenomenological predictions for the
miscible and immiscible Rayleigh-Taylor systems in the turbulent regime. We focused
in the immiscible case, studying the structures of the interfaces and the evolution of

the enstrophy. In this study, we can highlight the following new predictions:

5/11
Y 2/11 . .
t) ~ g ——t (typical drop size) (6.41)
po - (Ag)
Lior(t) Py (Ag)1¥/1
E L~ DT t20/11  (total length of the interface) (6.42)
. o
£,(t) 2 S
I~ Ag p (total length for structures with size r > f)  (6.43)
Q Ag)? .
— (Ag)” t3/2, (enstrophy) (6.44)

L. 2

With respect to the numerical investigation, we can highlight the following results:

e We simulated the first high resolution study of the developed immiscible RT

turbulence in 2D using the Shan-Chen multicomponent method.

e The large-scale statistics for mixing layer, typical velocity and average density
profile have been compared with the miscible case and found to have very similar

power law behaviors.

e In the immiscible case, the presence of the interface affects the small-scale statis-
tics, leading to a significant difference, with respect to the miscible RT, in the

evolution of the enstrophy.

e The evolution of the typical drop size and the total length of the interface in the
cmulsion-like state of developed RT turbulence are measured and shown to be

compatible with our phenomenological predictions.
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Chapter 7

Conclusions

We have presented the first high resolution study of the developed immiscible RT
turbulence in 2D using the Shan-Chen multicomponent method. Through an appro-
priate choice of parameters, forcing scheme and initial configuration, we were able to
simulate the Boussinesq approximation for the miscible and immiscible RT systems.
The simulation of the Shan-Chen multicomponent method in GPUs made it possible
to collect a robust set of statistics, allowing direct verifications of phenomenological
predictions for the RT turbulence.

With the numerical results provided by the Shan-Chen model, we analyzed the
cnergy budget of the RT turbulence (miscible and immiscible). In this analysis we
found that the potential energy statistics are similar between miscible and immiscible.
Significant differences were found in the kinetic energy statistics, and analyzing the
components of the kinetic energy variations, we found that the differences are associated
with the energy flux due to the momentum flux tensor and the viscous dissipation. We
show that the flux due to the Korteweg stress tensor is corresponds to the variation of
the total length of the interface, calculated numerically by the Cauchy-Crofton formula.
We show indications that the interface acts as a source of vorticity, which can explain
a significant part of the difference in the viscous dissipation statistics verified between
miscible and immiscible flows. The results for the miscible case are in line with the
current studies about energy balance found in the scientific literature [101].

Analyzing the variation of the total energy of the interface, we verify the existence

of a critical time in the transition to turbulence. The analyses of the density profiles
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close to this critical point show that the fast variation is associated to the first topology
changes that leads to the appearance of the first drops and large disconnected clusters.
This phenomenon shows similarity with similar phenomena associated with bifurcation
points observed in the context of the one-dimensional Cahn-Hilliard equation. [6)].

In the final part of the thesis, supported by the results of the energy budget anal-
ysis, we approach a phenomenological theory for the 2D Rayleigh-Taylor turbulence. In
the numerical verifications of this phenomenology, we showed that the large-scale statis-
tics for mixing layer, typical velocity and average density profile have been compared
with the miscible case and found to have very similar power law behaviours with close
overall prefactors but different transient behavior. In the immiscible case, the presence
of the interface affects the small-scale statistics, leading to a significant difference, with
respect to the miscible RT, in the evolution of the enstrophy. The Bolgiano-Obukhov
assumption generates a valid prediction for the power law behaviour of the temporal
evolution of total enstrophy also for the immiscible case (see eq. (6.40)), but does not
account for the big change in the prefactor, which could be affected by extra vorticity
induced by the interface. The evolution of the typical drop size and the total length of
the interface in the emulsion-like state of developed RT turbulence are measured and
shown to be compatible with our phenomenological predictions.

A natural question that can be addressed in the future is about the statistics of
the structures with a typical size smaller then the typical drop size. In this range of
scales, the presence of capillary waves propagating along the interfaces of the drops is
expected [29]. The developed numerical scheme can also be applied to the problem of
fragmentation and whitecapping at the surface of breaking waves, which involves a com-
plex process with formation of drops and bubbles; see e.g. [35, 67]. Tt is also important
to note that most of the numerical procedures presented in this article are naturally
extendable for the three-dimensional immiscible Rayleigh-Taylor turbulence, which is a
more suitable configuration for experimental procedures, although such an extension of
the present GPU code, with appropriate optimizations to obtain affordable statistics,
can be a non-trivial task. Some laboratory experiments for the two-dimensional case
may be conducted in thin liquid films [102; 22| using, for example, aqueous gelatin
solutions with very high concentration [69]. The corresponding extension of the lattice

Boltzmann method to these case seems feasible, but requires further study.
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Appendix A

Diffuse interface models

In this appendix, we briefly discuss the general equations of the so-called diffuse
interface methods for multicomponent flows. The Shan-Chen method described in
Chapter 3 is included in this class of methods. In the two-dimensional sharp interface
models, the interface is a 1D boundary which is mostly represented by an the order
paramcter ¢ (sce Chapter 2) which is discontinuous at the interface. In the numerical
methods based on this formulation, the motion of the interface need to be explicit
tracked, requiring extra solvers on ecither side of the boundary [55]. Such numerical
methods have well known problems associated with topological changes in the fluid
domains [100].

In the diffuse interface approach, the main idea is to replace the sharp interface
with a diffuse one in such a way that the computation of the interface dynamics can be
performed on fixed grids [25]. In this approach, the order parameter smoothly varies
across the interface between the two bulk values. The length scale that characterizes
the variation in the density profile across the interface is called the interface width, to
be defined with precision later in this appendix.

In the first part of this appendix we consider, like in Chapter 3, a mixture of
two components A and B with the respective the number of molecules per unit of
volume given by n, and ng. The smoothness of the macroscopic quantities of the fluid
system at the interface can be obtained by taking mesoscopic averages over a large
cnough local volume in the fluid domain. This leads to a set of equations for mixtures

of incompressible Newtonian fluids that corresponds to almost the same equations of
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motion obtained by the lattice-Boltzmann method in Chapter 3. Thercafter, we char-
acterize the sharp interface limit, and in the final section, we approach the relationship
between the free-energy of the RT system and the other forms of energy deseribed in

Chapter 5.

A.1 Diffuse interface formulation

In this section, we approach the formulation of equations of motion of the Rayleigh-
Taylor system described in the Chapter 2 assuming a diffuse interface. This formulation
is essentially a coarse-graining analysis of the dynamics of the system. Consider the
following definition for the order parameter [23]

('T?;A T nU)'rm_‘.su
(TLA + nU>mcsr}

¢(x) = (A1)

where na g denotes the number of molecules of the components A and B per unit of
volume locally, respectively. For the sake of simplicity, we assume the molecules of the
of the components A and B have the same constant molecular volume; the mesoscopic
average is taken over a large enough local volume V.., of a region with geometrical
center in a point x of the fluid domain ). By this way the order paramcter vary
smoothly across the interface between the two bulk values such that —1 < ¢ < 1, with
¢ = +1 within the bulk regions. Different ways to smooth the interface can also be
used [18].

The diffusc-interface models can be viewed as a physically motivated methods,
describing the interface dynamics by the idea of mixing cnergy. The structure of the
interface is determined by molecular forces; the tendencies for mixing and demixing
arc balanced through the non-local mixing energy [100]. The idea of mixing energy
can be formalized by the assumption of the Girzburg-Landau-Wilson [32] (GLW) free
cnergy given by

Vol?| dx, (A.2)

k
Flol = [ [Vio.o)+5

Ja
where € is the region occupied by the system, V(p, ¢) is the bulk potential and drives
the system towards demixing while the term k% favors a perfect mixing. The non-
trivial equilibrium state is the result of this competition [26]. The GLW functional is

originated from a mean ficld analysis of the configurational partition function of the
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system [45, 59|. For the Shan-Chen method described in Chapter 3, we have

Al A
(_TA_U Cg

k ~
4

(A.3)

for 7> 1/2.
The equilibrium state is the minimizer of the free-energy F, i.c., a configuration
such that
= oF = v EAp =0 (A.4)
dp 0o
where g is the chemical potential. If we impose a perturbation of the cquilibrium
configuration of the system, this perturbation will displace the phase field to a new
configuration for which in general g # 0. The system will try to react in a such way
to reach again an cquilibrium configuration [25]. The approach to equilibrium for the
system implies that the free-energy F' steadily decreases to approaches a minimum.
The conservation of mass in the system implies that the evolution of the phase field is

subject to the constraint

é(x, t)dx = 0. (A.5)
J 0

for a symmetric binary mixture. In the RT systems, we also consider periodic boundary
conditions in the horizontal direction and vanishing derivatives in the vertical direction
as boundary conditions for the order parameter. One solution for the phase field

dynamics is given in terms of gradient flow of F. i.c.,

0
%f + V- (u¢) = —Mgrad,F(¢) (A.6)
M is a cocfficient called mobility and the symbol grad, represents the sense of the

Gateaux derivative on the subspace of H'(€) given by the mass-conserving func-
tions(sce [36]) satisfying (A.5) [37]. As a consequence of the Lax—Milgram theorem [60],
we have grad, F[¢] = —Ap, where g = (;—g is the chemical potential of the system. Thus,
the equation (A.6) becomes

g—f + V- (up) = MAp, (A7)

this is the so-called the Cahn-Hilliard equation. For a mixture of incompressible mis-
cible fluids, it is possible to approximate Ay by A¢ up to a multiplicative constant,
obtaining the transport equation (2.37), as shown with more details in Chapter 3 in

the context of the lattice Boltzmann method.
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Momentum balance equation and Boussinesq approximation

The functional (A.2) also gives information about the momentum balance equa-

tion of the system by the introduction of the action functional [65]

A(x>=['./é“{g

where X is the initial Lagrangian material coordenate and x(X,¢) is the Eulerian

x(X, 1) — Flp(x(X, 1), (x(X, t)]} dXdt (A8)

coordinate. The set €y is the initial domain occupied by the fluids, which is constant
for the applications under consideration in this theses. For incompressible materials,

we look at the volume preserving flows such that
x (X, 1) =u(x(X,1)), x(X,0)=X. (A.9)

By the least action principle [65, 100, 19], the lincar momentum balance equation shall
be the least action state in a system without viscosity. As a result, we obtain the

following Euler equation

0
p(%—l—u-Vn) - -V.P (A.10)
where P is a second order stress tensor given by
oV OV (¢, k
P— [of fgﬁ P) éf) P) _ V(6 p) — koAb — §|V¢|2] 11 kVo® Ve, (A1)
(]

This tensor is analogous to the pressure tensor PT9T) obtained Chapter 3 for the
Shan-Chen method.

We can scparate two part in the stress tensor (A.11)

owvi(g,p) , OV(d,p)

mw = ¢ 96 +p p V(o,p), (A.12)

PE = |—koAp — g Vél*| I+ kVo® Ve, (A.13)

where pj is called the bulk pressure and P¥ is so-called the Korteweg stress tensor [95].

The tensor PX accounts for the effects of the interface and surface tension [3],
incorporating the kinematic boundary conditions (2.4) by replacing the pressure tensor
pI by the smooth anisotropic stress tensor (A.11) in the Navier-Stokes equation (2.1).
Including the cffects of the viscosity and the gravitational force, the equation (A.10)

becomes

5 ”
p(% +“‘V“) =—V-P+ V- [p(Vu+Vu")| - pge,. (A.14)
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In the Boussinsq approximation, the density fluctuations affects only the buoy-

ancy te 56, 51|. Considering (2.6), the Boussinesq approximation leads to
ancy term (56, H1 ,

ou -
m(@”*““g:—V%P+mwn+vme+vmn—Aw%, (A.15)
where A is the Atwood number (see Chapter 2) and py = (pa+pp)/2 is the background
density. Denoting Ag = § as the buoyancy intensity and P = P + pogyl, we obtain

the equations of motion of the system

9 B ”
Po (% +u- Vu) = —V-P+V-:[p(Vu+ vul )] — oge,, (A.16)

V-u = 0, on . (A.17)

Considering also the equation (A.7) and the boundary conditions, we obtain the dif-
fuse interface formulation of the Rayleigh-Taylor systems for small Atwood numbers

described in Chapter 2.

A.2 The sharp interface limit

A common form for the bulk potential V' (p, ¢) in the functional (A.2) is given by

the Helmholtz free energy for binary mixtures [32]:

o) — ¢ — ¢ 2 _ 2
Vi o=t (%) o (%b)%ﬂ (p 2 i)) 8 (p 2 i)) it (p - ) ’

kg is the Boltzmann constant, 7" is the absolute temperature and y is a function of

the temperature describing the enthalpic interaction between the two species [24]. If
x is large and positive the separation of the components is favorable, i.c., if ¥ < .
the mixture is miscible and immiscible for y > y.. for some critical value x,. depending
on the substances involved in the mixture. In the Shan-Chen multicomponent method
shown in Chapter 3, the interaction paramcter G ap plays the role of the parameter y.
Also, the value kgT' corresponds to the square of the speed of sound, which in the is
denoted by ¢? in Shan-Chen multicomponent method.

Many features of kinetics of the system are insensitive to the detailed shape of
V(p, ¢) [32]. Lets consider the Landau expansion of the free energy around the critical

point ¢, = 0 up to fourth order

1 1
V(p,6) = V(p,0) + 5026" + Jas" (A18)
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2
where ay = (‘3—(/52( p,0) and a, = %(p, 0) is a temperature independent constant. We
can sct V(p,0) = 0 without loss df generality, as a consequence of the incompressibility
condition. The odd powers of ¢ arc not taken into account in the Landau expansion if
we assume symmetry between ¢ and —¢ like in a symmetric 50-50 binary mixture [32].

V(p, ¢) has a single minimum for y < x., and two minima for y > y. at
+Pmin = E[—az/a4]"? (A.19)

corresponding to the two coexisting components in equilibrium. For the Shan-Chen

method described in Chapter 3, we have [82]

2
(A.20)

for 7> 1/2.

Let us now consider an interface between the two components. In the following
we derive an analytical expression for surface tension and interface width. First, it is
important to note that these quantities are associated with the calculus of the chemical
potential of the system. When the system is in equilibrium the thermodynamic force

density F' = —¢Vp must be zero, which implying in a constant chemical potential, i.c.
as¢ + a,d® — kA¢p = const. (A.21)

Let us introduce a dimensionless order parameter ¢ = ¢/¢min. The equation (A.21)

becomes

asp — a@q_f)g — kA¢ = const. (A.22)

We can set the constant to be zero looking at the bulk regions where ¢ = +¢,,,;,,. For
simplicity, let us assume that the two fluids are separated by a planar interface, whose
normal is in the y direction. We have ¢ = +1 when y = 400, i.c., in the bulk regions.

In this context, the equation (A.22) has an interface solution [55] given by

_ 1 1
¢ = tanh (ﬁ) . ¢ = Oumintanh (ﬁ) , (A.23)

where

5 = /k/|aa], (A.24)

is the interface width, also called correlation length [32].
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The interfacial tension « in diffuse interface models corresponds the surface excess

free energy F' per unit arca when the reference surface y = 0 is chosen in such a way

that
0 oo
(¢(?}) + ¢'rr1irz)d?f + f ((]5(?;‘) - {bmiu)dy = 0 (A25)
—00 0
Then )
e k (do(y) ‘
Y= .[m AV + 5 ( a dy, (A.26)
where

(V(p?{i)) - V(p? _gbmin)); f()I‘ — 00 < y < 0
(V(p?{i)) - V(p:{i)miu))a for 0< 1 << 00.

AV =

The equilibrium order parameter profile minimizes the excess surface free energy. Thus

L Poly) _ dAV
T dy? o

=0, (A.27)

multiplying by (j—i’) we can integrate this equation to obtain

do(y)\”
dy '

Avwﬁyzg( (A.28)

Consequently, we can obtain the surface tension as

o0

The expression (A.29) defines the so called mean field surface tension. In Chapter
3, we show a similar expression for the surface tension in the context of the lattice

Boltzmann method. Substituting the interface solution (A.23) into (A.29), we obtain

8k
V= Drin 4?5. (A.30)

The sharp interface limit is obtained using parametrized parameters: aj = as/e,
aj = aq/e and k* = k. In the limit € — 0, the values of v and ¢y, are kept constant
while the interface width ¢ is sent to zero. For more details, see [42, 3].

Consider the non-equilibrium state with a moving interface given by I'(f) =
{x € Q; ¢(x,t) =0}, for a immiscible binary mixture. For a given test function
w € C®(Q x [0,T);R*) with compact support, we have the following relations for
sufficient small values of curvatures [65, 32

A¢pVp - w o~ kEf |V(;§|2KE SW vyen-w.  (A.31)
Q

V- -P8)w =Lk°
fg( ) I -

Ay
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where n = IV I and is the normal field on I'(f), K = —V -n is the scalar curvature and
PX is the pressure tensor given by (A.13). The relations in (A.31) roughly clucidates
the connection between the stress tensor P¥ with the kinematic boundary conditions
(2.4) in the sharp interface formulation. Also, analogously to the calculations in Chap-

ter 5, is possible to show that P¥ is directly connected to the variation of the energy

of the interface.

A.3 Free-energy and the energy budget for the RT
systems

In this section, we study the energy budget for the Rayleigh-Taylor systems in
the context of a general diffuse interface model, analogously to what was shown in
Chapter 5. The formulas are mostly based on the Boussinesq approximation formed
by (A.16) and (A.17). We consider immiscible and miscible Rayleigh-Taylor flows as we
D| = L, X L,,.

explained in Chapter 2, see Figures 5.1 and 5.2, with a domain with size

Defining the free-energy density of the system by Ep. = F/|D|, where F is the
free-cnergy functional (A.2), we can define the total energy for the Rayleigh-Taylor
systems as [25]

In the following we clucidate the energy exchanges between Ej, E, and Ep. We
first calculate the evolution of the free energy disregarding the diffusion term in the

Cahn-Hilliard equation, i.c., we first consider

9
(Tf 1+ V(éu) = 0. (A.33)

Let us call this variation as d,F;, we have

O F +kVo-V

oV (3,0 oV 0¢ 1) ‘
dp ot Do Ot (‘Jt) (A-34)

oV

T (5 )+ G (o) — kA0 ) d

(5
(
(pV (")V) Y (1‘;) u+ kAG(V - (¢ ))) dx
(

pV (()V) + ¢V (?;) -u— koV(Ag) - u) dx.
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Using the identity

oV (Ap) =V - ([—kgﬁAqﬁ — g|Vqﬁ|2] I+kEVo® V{f)) , (A.35)
we obtaln
0 %
oF, = / \Y gb(,—v + p(— cu—VV-ut+ (A.36)
Ja ) dp

k
+ V. ([k{,m(p + §|V¢|2] I-kVo® V(p) : u) dx

- V(p,p) ~ V(hp) _
— ’/Qv-([qﬁ 56 "o, Vi(é,p)

k
—  kopAgp — 3 |V¢|2] I+EkVo® V{f)) -u dx.
Thus,
O F, = ((V-P)-u)|D|. (A.37)

where P is given by (A.11). Consider now the Cahn-Hilliard equation (A.7) without

the convective part, i.c.,

¢

=V - (MVpu A.38
5 = V- (M), (A38)
the respective free-energy variation, indicated by 0, Fy, is given by
WV
oF, = f (( 99 V- (MVup)+kVe-V(V- (IVIV;;))) (A.39)

) ( ) (MVp) + kVe-V(V - (IVIV;L)))

( ) (MVp) — kA(V - (MV#)))

(Y ( kAqﬁ) -(M’V,u)) dx

-, V(M)(Mv”)

= f —M|Vp|*dx = — (M|Vp|*) |D|.
0

AS
Q(
1.C
S

where M is the mobility cocfficient. Therefore, the total variation of the free energy

density Ej is given by
OEp = ((V-P)-u) — (M|Vpu*). (A.40)
Neglecting the variations of the total density p, we have
Ep ={((V-PX)-u) = (M|Vpu|*), (A.41)
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where P* is the Korteweg stress tensor (A.13).
Considering also the formulas for variation of Ej and E,, shown in Chapter 5, we

obtain the following set of equations

OE, = (u-dgey) (A.42)
hEx = —(u-(V-P%)) —n{|Vul’) — (u- ¢ge,) (A.43)
OBy = (u-(V-PX))—(M|Vpu). (A.44)

This set of equations shows the direct correspondence between the different forms of

cnergy in the Rayleigh-Taylor flows. For these systems, the gravitational potential

cnergy becomes kinetic energy, and part of the kinetic energy becomes free-energy.
Conscquently, the variation of the total energy of Rayleigh-Taylor systems in

Chapter 2 is given by
OWE = O,E, + 0,Ey, + 0,Ep = — {|Vu|*) — (M|Vpu|*). (A.45)

It shows that, cven without viscosity, the Rayleigh-Taylor systems are dissipative.

Energy of the interface

In a symmetric system (a 50-50 mixture with density matched) the energy of the
interface can be estimated by the excess of free-energy at the interface compared to

the bulk regions [32, 42, 3]. This excess of free-energy is given by
k 2
AF = AV + §|Vq§| dx (A.46)
Ja
where
AV = V(p,¢) =V(p, 1)1 = ¢(x)) + (V(p,0) = V(p, =1))p(x). (A.47)
Using the system of local coordinates (5.16) introduced in Chapter 5, we have
V¢=n ()_(,ﬁ +t a—{b , (A.48)
ou s
where s is arc length paramecter, from which follows
AN 2 AN 2 2
2 ) ) )
= | — — ) ~ | = A.49
Vol (31;:) i (88 ou) ’ (A.49)
where the last approximation holds for small values of curvatures [32].
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For very small values of the interface width (A.24), it is expected the following

approximation [96]

AV ~ §k|v¢|2. (A.50)

Consequently, from (A.46) we can write

ko 0\’
AV + —|Vo|” |dx ~ k — | dsdu = vds = YLy, (A.51)
Q 2 Ja ou Jr()

where L, is the total length of the interface and v is the surface tension cocfficient

given by (A.30).
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