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Abstract

In this Ph.D. thesis, we focus on super curves with a trivial super volume form. The first
part, focuses in giving a correct way to define S(2)-super curves, since is not enough just
to give a super volume, we also have to consider an affine line bundle over the curve that
should be trivial in order to obtain a S(2)-super curve. The second part, analyses family
of S(2)-super curves over an purely even base, in order to proof that such families are ever
split. In the last part, we study the moduli space of such curves.



IV

Resumo

Nesta tese de doutorado, nos focamos em super curvas com uma forma de super volume
trivial. A primeira parte, é focada em definir dum jeito correto S(2)-super curvas, pois
nao ¢ suficiente dar uma super forma de volume, precisamos também considerar um fibrado
de linhas afim sobre a curva que seja trivial em ordem de obter uma S(2)-super curva. A
segunda parte, analisa familias de S(2)-super curvas sobre uma base puramente par, para
provar que tais familias sao sempre cindem. Na ultima parte, estudamos o spaco de moduli
de ditas curvas.



Contents

[1__Introductionl
[2.1 Super algebras|. . . . . ...
[2.2  Super modules| . . . . ...
[2.3  Super derivations| . . . . . . ...
[2.4  Automorphisms of Super algebras| . . . . . . ... ..o 00000
[2.5  Super Symplectic Forms| . . . . .. ..o
[3 Super Geometry|
[3.1 Super schemes|. . . . . . . ...
I;i.z E;g:!zllls:lllg: :illllg:! llls:{il ...............................
[3.2.1 Splitting super manifolds|. . . . . . . ... ... 00000
(3.2.2  S(l|n)-super curves . . . . . . . ...
[3.2.3 SUSY-super curves|. . . . . . . . ...
4__Ind-Schemes|
M1 Introduction| . . . . . . . .
M2 Tnd-Schemes| . . . . . . . . ...
4.2.1 The group Autg(R[m[n|])| . . . . . . .. oo
4.2.2  The group Aut‘SR!R_lﬂ_l ........................
[4.2.3 The group AwtZ(R[[A[n])] . . . . . . . ... ..
4.3 The bundle Autx| . . . . . . . . .
[> Applications|
I Theinduced curvel . . . . . . . . ...
(5.2 S(2)-super curves and SUSY -super curves| . . . . . . . ... ... ... ...
[>.3  Splitting curves| . . . . . ...
6 Moduli Spaces|
[6.1 Families of super curves| . . . . .. ... ... o
6.1.1 A family of S(2)-super curves| . . . . . ... ...
6.1.2 A family of S(1|2)-super curves| . . . . ... ... ...
[6.1.3 Example: The genus 1 curvel . . . . . .. . ... ... ... ... ...
[6.2  The moduli space of curves with a trivial Berezinian|. . . . . . . . . ... ..

1

41
41
45
46
47
49
49

53
53
57
60



[6.2.1  The reduced space] . . . . .. .. ... ...
[6.2.2 Odd part|] . .. ... .. ..
[6.2.3  Inner Automorphisml| . . . . . .. ... Lo

6.3

Automorphisms over S(2)[ . . . ...

[6.3.1 Automorphisms on super manifolds| . . . . . . ... ... ... ...
[6.3.2  Automorphisms on the reduced spacef . . . . . . . ... ... ... ..
[6.3.3  The Automorphism . . . . . . . .. ... ... o0

APPENDIX

[A An explicit calculation|

[Bibliography|




Chapter 1
Introduction

1.1. In his famous work on classification of Lie super algebras [1], Kac introduced a list
of infinite dimensional Lie super algebras generalizing the ordinary theory of Lie algebras
of Cartan type. These are subalgebras of derivations on a super commutative algebra
freely generated by n even variables and N odd variables. In the case n = 1 these are
algebras of vector fields on a punctured super disc SpecC((t))[1, ..., 0] preserving some

extra structure. In this case, the list consists of
1. W(1|N), all vector fields.

2. S(1|N), divergence free vector fields, that is, vector fields acting trivially on the

Berezininan, or preserving the section [dt|df; ... dfOy] of the Berezinian bundle.

3. CS(1|N), vector fields that preserve the Berezinian up to multiplication by a scalar

function.

4. K(1|N), vector fields preserving a contact-like form
dt+ ) 0;d6;,

up to multiplication by a scalar function.

Some of these algebras are isomorphic, for example W (1|1) ~ K(1]2). While some others are
not simple, for example S(1|2) is not simple, but its derived algebra S(2) := [S(1]2),S5(1|2)]
is.

For each such Lie super algebra, there is an associated class of algebraic super curves,
with certain geometric structures preserved by these vector fields. That is, the class of
super curves admitting an etdle cover where infinitesimal changes of coordinates are given

by vector fields in the corresponding Lie super algebra. For example, a W (1|1)-super curve
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is a general 1|1-dimensional super curve, they consist of a smooth algebraic curve C' together
with a line bundle £ over it. Another example are K (1|1)-super curves, called SUSY -super
curves by Manin in [2] and SUSY -super Riemman surfaces in [3, 4], they consist of a smooth
curve C' and a choice of a square root of the canonical bundle Q¢. Similarly, £ (1|2)-super
curves are called (oriented) SUSYs-super curves by Manin. In [5] Vaintrob studied the
geometry of all these super curves, obtaining a description of the corresponding moduli
spaces in each case.

In this work we focus on one example that is missing in Vaintrob’s list, these are the
so-called S(2)-super curves. These are smooth 1|2-dimensional super curves, endowed with
a trivializing section of its Berezinian bundle and with the additional condition that the
above mentioned changes of coordinates lie in Kac’s S(2)-algebra as opposed to the full
algebra S(1/2).

1.2. Deligne exploited the isomorphism W (1|1) ~ K(1|2) in [6] to describe an involution in
the moduli space of general smooth 1|1-dimensional super curves, the fixed locus of which
is the moduli space of K (1|1)-super curves. This involution is induced by an involution of
the Lie super algebra K (1|2), fixing its subalgebra K (1]1). Geometrically, a W (1|1)-super
curve, or a general 1|1-dimensional super curve, over a purely even super scheme S (that is
simply a scheme S) is given by a smooth curve C over S together with a line bundle £ over

it. Deligne’s involution corresponds to taking the Serre dual of L:
(C, L) + (C, QC/S ®og LY).

The fixed point set of this involution is parametrized by curves C' together with a choice of
a theta-characteristic (a square root of the canonical bundle). This is the moduli space of
K(1|1)-super curves as shown in [5].

In [7], Donagi and Witten show that when the base S is an arbitrary (non-necessarily
even) super scheme there exist non-split W (1|1) super curves over S. In particular these
curves are not given as the spectrum of the free super commutative algebra generated by
a line bundle £ as above. The description of Deligne’s involution in this case is not so

transparent.

1.3. Our main result is to generalize Deligne’s involution to the case of S(2) curves. In

order to do so we consider the sequence of inclusions
K(1|2) € S(2) € S(1]2) € K(1]4). (1.1)

This provides a sequence of embeddings of the corresponding moduli spaces: each K (1|2)-



super curve comes with a trivialization of its Berezinian bundle and the local changes of
coordinates are in S(2). Each S(2)-super curve is in particular a 1|2-dimensional super curve
with a trivialization of its Berezinian bundle Bere (an S(1]2)-super curve). Similarly if C
is a 1|2-dimensional super curve with a trivialization of Ber¢, consider its tangent bundle
Tc, alocally free O module of rank 1|2. The Grassmanian C of rank 0|2 subbundles of T¢
is a 1|4-dimensional super curve with a canonical K (1]4)-structure [§]. We show that there
exists an involution of K (1|4) that fixes pointwise its subalgebra K (1|2) and preserves (but

does not fix) S(2). This involution implies

Theorem 1.4 (Theorem . There exists an involution p of the moduli space Mgy of
S(2)-super curves such that the fived point set of i consists of the moduli space Mg (1)2) of

orientable SUSYs-super curves.

There are super curves with trivial Berezinian that are not S(2)-super curves. And the
Lie super algebra S(1/|2) is not stable under the involution p above. This shows that our

generalization of Deligne’s involution requires precisely the S(2)-structure as opposed to

S(1]2).

1.5. S(1]2) curves admit a simple geometrical description: these are 1|2-dimensional super
curves together with a trivialization of its Berezinian bundle. In contrast, S(2) curves do
not admit this simple geometrical description. To any S(1]|2) curve C' we attach an affine
bundle, or a GHEI torsor Ac. The class of this bundle is an obstruction for the S(1]2) curve
to be an S(2) curve, namely C'is an S(2) curve if and only if A is trivial (Proposition [5.2).

1.6. Given a W(1|1)-super curve C' over a purely even super scheme S, it is split in the
sense that there exits a smooth 1|0-dimensional curve Cy over S and a line bundle £ over
Co such that ' = SpecSymg,, L[—1]. This allowed us to describe Deligne’s involution as
taking Serre’s dual. A similar situation arises in the S(2) case: for a purely even scheme S
and an S(2)-super curve C' over S, there exists a smooth 1|0-dimensional curve Cy over S, a
rank two bundle & over Cj satisfying det £ = (¢, /5 and such that C' = Spec Sym,, c El-1).

That is we have
Theorem 1.7 (Theorem [5.2). Every S(2)-super curve over a purely even base S is split.

In this situation, our involution above is given just as in the W (1]1) case: it corresponds

to

(C(),g) e (Cg, QCO/S ®OCO 8*)

'The affine line with its additive group structure.



Observation 1.1. Theorem is false for S(1|2) super curves. Even over a purely even
base S, there are S(1|2)-super curves that are not split (see Example [6.1)), and therefore
they are not S(2)-super curves.

The condition on the base S on Theorem is necessary, that is, there exists families
of S(2)-curves over super schemes that are not split (see Example [5.3)).

From this point of view, the condition on a super curve with trivial Berezinian, of being
an S(2)-super curve is the analog of the condition of being oriented for general SU SYs-super

curves as in [2].

1.8. Our second result is a description of the moduli spaces of S(2) and S(1]2) super curves.

We first characterize the universal family of such curves over a purely even base S:

Proposition 1.1. (See Proposition [6.1) The data of a family of S(2)-super curves C' — S
whose reduction coincides with a given family of curves Cy — S over a purely even scheme S
1s equivalent to a rank 2 vector bundle E — Cy together with an isomorphism det E LN Qcy/s-
Two such super curves (E, 3) and (E',5') are equivalent if and only if there exists a bundle

isomorphism o« : E — E' such that ' o det o = f3.
Similarly for S(1]|2) super curves we have Proposition |6.2

Proposition 1.2. A family of S(1]2) curves C' — S with a given reduction 7 : Co — S over
a purely even base S is determined by a rank 2 bundle E — Cy together with an isomorphism
B :det E — Qcyys and a class T' € HY(Co,m*Og). Two such super curves (E,B,T') and
(E', 5, T") are equivalent if ' = I and the pairs (E, ) and (E', ") are equivalent as in the

PTEVious proposition.

The map (E,5,T') — (E, ) could be thought of as a fibration from the moduli space
of S(1]2) super curves to the moduli space of S(2) curves over purely even bases. However,
there are non-trivial odd deformations of S(2) super curves.

We describe the full moduli space of S(2) super curves under the assumption that the
base super scheme is split. Given such a split super scheme S with purely even reduction
Srd. The datum of a family of S(2) curves C' — S with reduction Cy — S,q is equivalent to
a class in H'(Cy, G) where G is a sheaf of groups over Cj described in (see Proposition

53).

1.9. The organization of this thesis is as follows. In chapter 2| we recall the basic preliminar-
ies on super commutative algebras, their modules, and their derivations. We introduce the
relevant infinite dimensional Lie algebras in Kac’s list and describe their associated infinite
dimensional groups as groups of automorphisms of a super disc preserving certain geometric

structure.



In chapter |3| we recall the basic preliminaries on super geometry. And in chapter
we define our curves of interest and construct a principal G, bundle characterizing the
obstruction of an 1|2 dimensional super curve with trivial Berezinian being an S(2) super
curve. We show that every S(2) curve over a purely even base is split (Theorem and
we finish that section attaching a SUSY 1|2V curve to any 1|V super curve.

In chapter [5| we describe the involution of the moduli space of S(2) super curves general-
izing that of Deligne for general 1|1 super curves. In chapter @ we give the above mentioned
examples of families of super curves: S(1|2) super curves that are not S(2) super curves.
Non-split S(1|2) super curves over a purely even base. Non-split S(2) super curves over a
super scheme. Also, we give a description of the moduli spaces of S(1|2) and S(2) super
curves. We describe the subspace of super curves over purely even schemes and then de-
scribe the possible deformations of such a curve in the odd directions of the base under the
assumption that the base is a split superscheme. We identify the full automorphism group
of such families of super curves for genus g > 4 and describe the corresponding orbifold
quotient.

Finally, in chapter [A] we give an explicit calculation of a non-trivial character for the

group of automorphism with a trivial Berezinian.

Notation
Throughout this thesis, we consider the following agreements:
1. From now k will be a field algebraicly closed and char(k) = 0.
2. Let Z/2Z = {0,1} be a field. We will consider the sign rule (—1)* = (—1)’ for i = 0, 1.

3. Let R be a ring. The spectrum is the set of prime ideals, Spec(R), with the Zariski
topology, specifying the closed sets by V(p) := {q € Spec(R) : q C p}.

4. For smooth varieties we consider the étale topology, an open set in M is an open map

¢
U—-M

such that T,U — T}, M is an isomorphism.

5. Let {U;}ier be a collection of sets. For a subset J C I we will write U; = N Us;.

Also, when J is explicitly showed we will write it without parenthesis, for example
Uij = UZ N Uj or U'L’jk = Ul N Uj N Uk



6. For a matrix A = (a;;) the ¢ index will denote the row and j the column. For example,
for1<i<n,1<j7<m
aix 0 Gim

A:

Ap1 Qpm

7. In a Z/27Z-graded space, we will write at the left the even elements and at the right

the odd ones. Also, we will separate those classes by a vertical line: |.



Chapter 2

Preliminaries

2.1 Super algebras

We use classical references as [2].

Definition 2.1. Let G be an abelian group and k be a field. A G-graded k-vector space
V' is a k-vector space joint with a decomposition V' = @4cqV;, where each Vj is a k-vector

space. An element v € V' is said to be homogeneous if v € V, for some g € G.

Example 2.1. Let V be a k-vector space and GG be an abelian group with identity element
0 € G, then V is trivially G-graded by taking Vo =V and V, = {0} for g # 0.

Observation 2.1. Let V, W be two G-graded k-vector spaces, then the direct sum V & W
is naturally a G-graded k-vector space by

VeWw),=V,eW,.
Similarly, the tensor product V' ® W has naturally a gradation given by

(Veow), @v ® Wy,

g9'9"=g

Definition 2.2. Let V,W be two G-graded k-vector spaces. A k-linear map T : V — W
preserves the gradation if T'(V,) C W, for any g € G.

Example 2.2. Let V' be a G-graded k-vector space. For any A € k the homothety T) :

V — V., v+ A, is a preserving gradation k-linear map.

7



Example 2.3. Let V be a k-linear space, the tensor algebra

TV = Hver,
n>0
is naturally a Z-graded k-vector space, with (T*V), = V& for n > 1, V®° = k, and
(T*V),, = {0}, for n < 0.
Similarly, the symmetric algebra Sym®V and the exterior algebra A*V are Z-graded

k-vector space. There exists a second gradation on A®V, given by

Nv-( @A) (@A),
n: even n: odd
defines a Z/27-gradation.
For any k-linear map T : V' — W, the induced map over T*V, Sym*V or A*V preserves

the gradation.

Definition 2.3. A k-super commutative algebra R over a field k is a 7. /27Z-graded k-vector
space, R = Rg® R with an unital multiplication R®; R — R that preserves the gradation,
in other words R; ® R; — R;4;, such that for homogeneous elements a € R;, b € R; we have
the commutative rule: ba = (—1)“ab.

Let R,S be k-super algebras, a k-linear map 7' : R — S is said to be even if T(R;) C
S;, 1 = 0,1, and is said to be odd if T(R;) C S,i1, i = 0,1. An even k-linear map
T : R — S is said to be a homomorphism of super algebras if T'(rr") = T(r)T(r") for any
r,r" € R and T(1) = 1. The set of super algebras homomorphisms is going to be denoted
by Homgag, (R, S). If there exists two homomorphisms 7" : S — R and 7" : R — S with
ToT =idg and T o T = idg, we will say that R,S are isomorphic and that T,T" are
isomorphisms. For a super algebra R, the space of isomorphisms 7' : R — R is going to be
denoted by Auti(R) and any element is going to be called an automorphism of R.

Let R, S be super algebras over k, we say that R is an S-algebra if there exists a homo-
morphism of super algebras ag : S — R. Let R, R’ be two S-algebras, an S-homomorphism
is an homomorphisms 7' : R — R’ such that T o agr = ag. For an S-algebra R, the space
of automorphisms that are S-homomorphisms are denoted by Autg(R).

An element a € R is called even if a € R and is said to be odd if a € R;. Also, we say
that a € R has parity j if a € R;.

For a non-nilpotent even element f € Ry we denote by Ry the super algebra given by
the localization of R with respect to the multiplicative set {1, f, f%,...}.

We are going to say that R = Ry @ Rj is a purely even super algebra if Ry = 0.



Observation 2.2. For any super algebra R, Rj is a commutative ring and Rj is an Rg-

module.

Example 2.4. A commutative ring R over k can be seen as a purely even super algebra

with Rg = R and Ry = 0.

Example 2.5. Given a super algebra R, the super algebra of polynomials R[t], with ¢ an

even variable, is defined as the usual algebra of polynomials with the Z/2Z-gradation:
R[t]; :={ao+ a1t + -+ a,t" :n € N,a; € R;},

then, R[t] is a super algebra. Recursively, we will consider the super algebra Rlty, ..., t,] =
Rlt1, ... tp_1][ts], for the even variables ty,.. ., t,.
For a super algebra R we can construct the Grassmann algebra R[f], with 6 an odd

variable, defined as the usual algebra of polynomials with the Z/2Z-gradation:
R[e]] = {Cl[) + a19 tag € Rjaal € Rj+i}7

then, R[f] is a super algebra with 6 € R[0];. Recursively, we will consider the Grassmann
algebra of rank n, R[#',...,0"] := R[0', ..., 6"1][9"], for the odd variables 6, ... 6™
We write R[m|n] := R[ty,...,t,][0",...,0"], where ty,...,t,, are even and §', ... 0" are

odd variables.

Similarly, we define the Laurent series R[[t]] = {ao + a1t + ast* + --- : a; € R},
R[[t1,. . tw]] == R[[t1,.. ., tm_i1]][[tm]] and R[m|n]] := R|[[t1,..., t,]][0",...,0"], for the
even variables t1,. .., t, and odd variables 6!, ..., 0"

Also, observe that we have a projection R[m|n| — R joint with a section R — R[m|n].

Equally, we have the projection R[[m|n]] — R with its respective section.

Observation 2.3. Let R, S super algebras, an homomorphism 7" : R — S and m,n € N,
we get homomorphism given by
R[m|n] — S[m|n]

extended by T(rt?67) = T(r)stp’.

Definition 2.4. Let R be a super algebra and & C Rj a multiplicative set. We denote by
Rs the super algebra given by the localization of R with respect to the multiplicative set
S. In this case, as Z/2Z-graded k-vector space we have: (Rs)o = (Rp)s and (Rs); = (R1)s,
here recall that Ri is an Rg-module. For an even non-nilpotent element f € R, we denote
by R(s) the localization of R through the multiplicative set (f) = {1, f, f%,...}. Also, for a
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prime ideal p C R, the set R — p is a multiplicative set and we will denote by R, by the

localization Rp_,.

Example 2.6. Let R be a super algebra and R[[m|n]] := R[[t1,...,tn)][0%,...,0"]. We
have the maximal ideal m := (t1,...,t,]0",...,0"), and the localization R[[m|n]]) is called

R[[m|n]]-punctured disk.

Definition 2.5. Let R be a super algebra and its ideal J := Ry + R?. We define the reduced
ring of R as the quotient R4 := %, this is a ring endowed with the projection R — R.q4.

Observation 2.4. The ring R,q is not necessarily reduced, since it may contain nilpotent

even elements.

Observation 2.5. The projection R — R,q does not necessarily have a section. Take for
example the super algebra Ry = k[t|6', 0%] with its homogeneous ideal I = (t* — §'6?), then
the quotient R = Ry/I is a super algebra. In this case, R,q = k[t]/(t*) and suppose that the
projection R — R,q does has a section, then there exists an element ¢(t) = t+a(t)0'6? € R,
with ¢(¢)? € I. Finally, we have the equation:

(t+a(t)0'0%) = (> — 0'0*)(p(t) + q(t)0'6?)
2+ 2ta(t)0'0? = *p(t) + (—p(t) + t2q(¢))0'6°

then p(t) = 1 and t| — p(t) + t3q(t), what is impossible.

Example 2.7. For a commutative ring R and the Grassmann algebra R[6', ..., 6"], observe
that
R[O',...,0" — (R[A',...,0")wa ~ R,

and there exists a section R — R[A',...,60"].
Observation 2.6. Let T': R — S be a homomorphism of super algebras. Since T'(Ry) C S7,

then T(R; + R?) C St + Si. That is, T induces a homomorphism of commutative rings

T.q: R.q — Siq, and we can write the map:
HomSAlg(R7 S) — HomCRings(chh Srd)- (21)

Observe that in general, the map (2.1]) is not surjective. Take the example given in Obser-
vation and observe that for R = R,q, S = R the morphism idg, € Homcrings(Red, Frd)
is not in the image of (2.1)), since the projection R — R,q does not have a section.
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Let R = Ry & Ri be a super algebra, and consider a commutative ring S, observe that
any morphism ¢ : R — S vanishes over Rj, then we can factorize the map through the

projection R — R.q:

R— .5

%

so, for any super algebra R and a commutative ring S, we get a natural identification:

HOInsAlg(R, S) - HomCRings(era S)

_ 2.2
bs 3 (2:2)

On the other hand, for R = Ry @ R; a super algebra, S a commutative ring, then any
morphism S — R is a morphism S — Ry, so we get the identification

Homgaje (S, R) = HomcRgings (S, Ro)
61 6.

2.2 Super modules

Definition 2.6. Let R be a super algebra and consider M be Z/2Z-graded k-vector space,
we will say that M is an R-super module if is endowed with a k-bilinear homogeneous
product

oy R®p M — M,

that is R; ® M; — M,4;, and for any a,b € R and m € M:

oy (1®m) =m,

on(a®@opy(b®@m)) = oy ((ab) @ m).

In case there is no confusion we will only write op(a @ m) = a - m = am.
For a super module M we can construct the super module IIM as the same set M with

HMl = MH_L and oM = OM-

Example 2.8. For a super algebra R the super algebra R|m|n| is a R-super module. In

particular, R is a R-super module. Also, observe that IIR is an R-module.

Observation 2.7. Let M, M, be two R-super module, then the direct sum M; & M, is an
R-super module by a(m; ®&ms) = (am)® (amsz). Similarly, the Z/2Z-graded tensor product
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M;® Mj is an R-super module with the action a(m;®@msy) = (am;)@ma+(—1)9m; @ (ams),
for a € R;, my € M;.

Let R be an S-super algebra and M be an S-super module, we construct the R-super
module R ®¢ M with the action a(b® m) = (ab) ® m.

Example 2.9. The direct sum R"™" := R™ @ (ILR)" is an R-super module.

Definition 2.7. For two super modules M;, M over R and a k-linear map T : M; — Mo,
we say that T is even if T(M;;) C Ms;, i = 0,1, and odd if T(M,;) C My,y1,7=0,1. We
say that T'is an R-homomorphism of R-super modules if T has parity j and for any a € R;
we have T'(am) = (=1)“aT (m).

Over the space of R-homomorphism of R modules, denoted by Hom g (M;, Ms), we get
a Z/27Z-gradation of even and odd R-homomorphism:

HO_mR<M17 Mz) = HOHlR(Mh M2)6 D HOTHR(Mh M2)i-

An element 7' € Hompg(M;, My) is said to be invertible if there exists an homomorphism
S € Hompg(My, My)g such that T'o S = idy, and S o T = idy,. When T is even an
invertible € Hompg (M, Ms); we will say that T is an isomorphism. In this case, we say that
T has inverse S and that M; and M, are isomorphic. When M; = M,, an isomorphism
T : My — M, is called automorphism instead of isomorphism.

An R-module M is free, finitely generated and that has rank m|n if M is isomorphic to
the super module R™™ given in Example m

Observation 2.8. Let R be an S-super algebra and M be an S-super module, then the
7./27-graded tensor product R ®gs M is an R-super module. Also, if M is a free, finitely
generated and that has rank m|n S-super module, then R®g M is a free, finitely generated
and that has rank m|n R-super module.

In particular, if M is a rank m|n free R-super module, then M,q := R,q ®g M is a rank

m|n free R.g-super module. Such M, is called the reduced module.

Observation 2.9. From the odd k-linear map M — IIM, m — m, we see that is bijective

but not an isomorphism since this morphism is odd.

Example 2.10. Let R be a super algebra, for a super module M, an element a € R; induce

an R-homomorphism with parity ¢ by multiplication:

T,: M — M

m — am.
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Observe that any invertible element in Rj induce an automorphism in M.

Observation 2.10. Let M be a super module, and take
Endg(M) := Homp(M, M),

that is a Z/27Z-graded algebra with the composition as product. The subset of invertible
elements in Endg(M) is denoted by Invg(M).

Example 2.11. Let M be a R-super module, the dual module is given by the module
M* := Homp(M, R). Observe that if M is a free module, then M* is also free.

Observation 2.11. Let S be a R-super algebra and M, N be R-super modules. We extend

a morphism f € Homg(S ® M,S ® N)j by f(r ®@m) =r® f(m). More generally, any

element f € Homg(S ® M,S @ N); is extended by f(r ® m) = (—1)“r @ f(m), for any
re Rz

Example 2.12. Let M be a free super module of rank m|n and choose generators {t1, ..., |
6',...,0"}, with ¢; even and 67 odd, the construction given in (2.5)) gives us a super algebra,
Ar(M) == R[t1,...,t,]0",...,0"]. Observe, that this algebra is independent on the choice

of generators.

Now suppose that R is a commutative ring and M a rank n free R-module. Consider the
super algebra R[0|n] = R[IIM]. Similarly, take the super algebra S[0|1] = S[IIN], where S
is a commutative ring and N is a rank 1 free S-module V. Any morphism of super algebras
¢ : R[0|n] — S[0|1] is given by a morphism R — S and a morphism of R-modules M — N.

In particular, we get the following lemma:

Lemma 2.1. Let R be a commutative ring, M be a rank (0|n) free R-super module, then
there is a natural identification Homp_ga (R[M], R[0[1]) ~ ITM*.

Proof. Let ¢ € Homp_gsai,(R[M], R[0|1]), then the restriction to M — N determines ¢.
Such morphism of R-super modules correspond to an odd morphism M — R. Then we get

the isomorphism:

HomR_SAlg(R[M], R[OH]) —IIM*
¢ —¢|u.

Since any morphism in M* is odd, then IIM* is purely even, as Homp_gsai,(R[M], R[0|1]).
[
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Observe that the previous lemma is not true if M is not free.

The following lemma is going to be useful for doing computations:

Lemma 2.2. Let W be an n x n matriz with entries in R. Suppose that every entry is

nilpotent, then W 1s nilpotent.

Proof. Suppose that W = (w;;);;, with w;; € R nilpotent. Then, W* = (P ,.s(w;;)),s where
Py, are homogeneous polynomials of degree k. Since, there exists an integer N € N such
that w]} = 0, for any i,j = 1,...,n. Finally, WwnN = . O

Observation 2.12. Let 7 : R™" — R™™ be an invertible morphism represented by the

A B
. (O D), (21)

where A, B,C, D is am x m, m X n, n Xx m and n X n matrix, respectively, with inverse

A B
S = ;

then AA" + BC' = id, then AA’ = id — BC’. Since, B,C" has odd entries follows that
BC" has nilpotent entries, from Lemma (2.2) BC” is nilpotent. Finally, AA" = id — BC" is

invertible and A, A" are invertible too. Similarly, D is invertible.

matrix

Definition 2.8. Let M be a rank m|n free super module and T' € Inv(M) represented in
some basis by the matrix given by (2.1)). We define the Berezinian of T by

Ber(T) = det(A — BD™'C) det(D)". (2.2)

From the previous observation, det(D) is invertible, so (2.2)) is well defined.
Observation 2.13. The Berezinian verifies the following conditions:
A B A0
1. T = or T = , then Ber(T') = det(A) det(D)~!. In particular, for
0 D C D
the identity matrix, idy;, Ber(idy,) = 1

2. Let T', S be two automorphisms, then Ber(7'S) = Ber(7")Ber(S). In particular, Ber(T')
does not depend on the basis chosen. Also, Ber(7T') is invertible for any 7" € Inv(M).

3. Suppose that £ = C, and that M is finitely generated, so for T' € Endy(M) we can

define exp(T) = > .- f—,t In this case we have

Ber(exp(T)) = exp(str(7T)), (2.3)
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where str(7) := tr(A) — tr(D) is called the super trace.

4. To define the Berezinian, we just need that D in ({2.2)) is invertible, and the observations

above still hold even when 7' is not necessarily invertible.

Observation 2.14. For the free super module M with generators {t1,...,t,|0,...,0™}, we
can construct the free module Ber(M) generated by the formal element [t1, ..., t,[0%, ... 0™
with parity m mod 2. Then Ber(M) has rank 1]0 if m is even and rank 0|1 if m is odd.
An invertible homomorphism 7' : M — M, induce the automorphism Ber(7T') : Ber(M) —
Ber(M).

For a morphism of super algebras ¢ : R — S and a free R-module M. We obtain the

commutative diagram

Inv(M) B Inv(Ber(M))

l l (2.4)

Inv(Mg) ——2% s Inv(Ber(Ms))

where Mg := S ®pr M.

Example 2.13. Given the super algebra R, we get R[m|n]| with the projection R[m|n] —
R. For a free Rlm|n]-module M and T" € Inv(M) represented by a matrix (f;;), with

fij € R[m|n] with expression
fij = a;; + higher degree terms,

where a;; € R, then in (2.4) we get Ber(Tg) = Ber(a;;).
A similar result is obtained by taking the projection R[[m|n]] — R.

2.3 Super derivations

Definition 2.9. Let R be a S-super algebra and let D € Homg(R, R) with parity i. We
say that D is an S-derivation if D(s) = 0 for any s € S, and for any a € R; and b € R we

have:

D(ab) = D(a)b+ (—=1)“aD(b).

The vector space of derivations has a structure of R super module given by (aD)(b) =

aD(b), for any a,b € R. We denote by Derg/g the super module of derivations.



16
For two derivations D; € Derg/s; and D, € Derg/s; we define the bracket by:
[D1, D3] = DDy — (—1)7 Dy Dy,

with this structure Derg/s is a super Lie algebra.
The dual module (Derg/s)* = Qp/s is called the space of 1-forms.
Let R be a k-super algebra, we are going to say that is smooth if 1y is a free R-super

module.

Let R be a commutative ring, we know that Homp_cring(Sym%(Derryi), Rle]) ~ Dergy.
Suppose that R is a super algebra such that Derp/y is a rank m|n free module. In this case,

similar to commutative rings, we get the identification
Homp_gaig(Symy(Dergyi), Rleo, €1]) >~ Dergyy,

where ¢; has parity 4, €2 = 0 and e, = 0.
Observation 2.15. Consider a super algebra R, and the following recipe:
1. First, try to find R.q.

2. Second, suppose that R = A} (M) for some rank O|n free R q-super module. In order

to find M we could consider the exact sequence of R.q-super modules:
0> M — R.q®r DerR/k — Derer/k — 0,

in this case M ~ (R.q @ Derpgi)i.

This recipe does not work if 12 does not have the form R = A% (M), and this could happen,

for example, if the projection R — R,q does not have a section.

Example 2.14. Let R[m|n] := R[t,...,t,][0%, ..., 0"], be the super algebra of polynomi-
als associated to the super algebra R, then the set of derivations of R|[m|n] over R is a

R[m|n] free module with even part generated by {0;,,..., 0, } and odd part generated by
{891, e ,agn}.
Similarly, the generators of Derg(R[[m|n]]) are given by {0y,,...,0%,|0,...,0m}.

Definition 2.10. Let X = Aﬁtl +--- 4 Amﬁtm + 31891 4+ Bn(%n c DerR(R[[m]n]]) be

a vector field, we define the super divergence operator:

sdiv(X) := 0y AL+ -+ 0, A+ (—1)"0p By + - - - 4+ (—=1)""0pn By, (2.1)
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where B; has parity b;. Denote by S(m|n) the space of divergence free vector fields. Observe
that S(m|n) C Derg(R[[m|n]]) is a sub-super Lie algebra.

Observation 2.16. In a complete analogy with the usual definition of divergence, we
define the super Lie derivative by taking the module Ber(Qpgp,,) with generator A =
dty ... dt,|d0"...d0"] and the action

Lx(fA) = X(f)A + (=1)" fsdivX A,
where f € R; and X € Derg(R[[m|n]]);.

With this description, S(m|n) = {X € Derg(R[[m|n]]) : LxA = 0}.

Observation 2.17. There exists a more general description given in [5], Proposition 2.4,

for S(1|n) super algebras, given by
S(1n, A) := {X € Derc(C[[1|n]]) : Lx(t*A) = 0},

where C[[1|n]] = C[[t]][0",...,0"] and A € C. Also, there are non-trivial isomorphisms given
by S(1|n, ) ~ S(1|n,u) for A — u € Z.
These algebras are simple for n > 2 and A ¢ Z

Proposition 2.1. The super Lie algebra S(1|n) is not simple.

Proof. Firstly, observe that 0pi0pi = 0, and also for X = Ag0;+ A10p1+- - -+ A, 0pn € S(1|n);
we have that 9,49 = (—1)"(0p Ay + -+ + IpnA,). Let XY € S(1|n) vector fields with
X = A0+ A10p + -+ A0 € S(1n); and Y = By, + B10pn + - - - + B, 0pn € S(1|n);.
In order to calculate Op1 - - - Opn ([ X, Y] - t), observe that

[(X,Y] -t = X(By) — (—1)7Y(Ap)

= Agd By + Y A0 By — (—1)V (B()&tAO +) BkagkA())
k=1 k=1
= Ao <<—1)J‘ > aek3k> + ) Axdg: By
=1 k=1
— (=1)" (BO ((—1)1' > agkAk> +) BkagkAo) .
i=1 k=1
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Here, collecting terms:

agk((—l)jAoangk - (—1)l]Bk89kA0) - 1)]89kA089kBk — (—1)ZjangkagkAo

(_
(_1)j89kA060k Bk - (_1)ij+j(i+1)89kAoangk
0.

In the same way, Ogr(AxOpr By — (—1)"T Bydge Ay,) = 0.
Applying the operator Ogi - - - Ogn, We get:

Ot - O ([X, Y] - 1) = 0.

Finally, since Op1+--Ogn(Xo - t) = 1, then X,y ¢ [S(1|n),S(1|n)]. That is, S(1|n) is not
simple. O

Then S(1|n, A) is not simple for A € Z, since the vector field X, = 6 --- 679, € S(1|n, \)
is not in S(n, A) := [S(1|n, A), S(1|n, A)]. Actually, S(n) := S(n,0) is simple for n > 2.

Example 2.15. Let us consider the maximal ideal m = (t|0*,6%) C C][[1]2]]. The space of

divergence free vector fields in Derc(C[[1]2]],) has even generators:

m+1

N
L, = —tmt1y, — —t" ;eiam, for m € Z,

J2 =t"(0'0p — 6?0y2), for m € Z,
Jh =t"0' 02, for m € Z,

J2 =t"0?0p1, for m € Z,

K =060,

and odd part with generators:

. 1
G;n:_tm“ﬂaei, form€Z+§, fori=1,2.

N
) ) ) ) 1
H;, =t™ 2000, — (m +1/2)t™ 120"y " 670y, for i =1,2 and m € Z + 5

j=1

The map S(1]2) — S(1]2)/S5(2) has its image generated by K = 0'6?0,. For X € S(1/2),
then X € S(2) if and only if 0p10p2 (X - t) = 0.
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2.4 Automorphisms of Super algebras

Definition 2.11. Let S be an R-super algebras, we will consider the group of even R-
homomorphisms 7" : S — S with T(ab) = T'(a)T(b). Such group is denoted by Autg(S)

and its elements are called automorphisms of R-super algebras.

Example 2.16. Given the super algebra R, consider the R-algebra S = R[t]/(t""!), the
space of automorphism of R-algebras, Autg(S), is a super group. Any automorphism is
given by

F(t) =ao+ ait + - + ayt”,

where ag is nilpotent and a; is invertible. Composing with an affine automorphism, we are

concerned by automorphism given by
F(t) =t+agt® -+ a,t"

Let X = p(t)0; € Derg(S) be a nilpotent vector field, with p(t) = bgt? + - - - + b,t™, then
observe that:

exp(X)t = £+ p(t) + oW (1) + -+

the set of nilpotent elements in Derg(S) is denoted by Derg 1 (.S), and the automorphisms

generated by elements in Derg 4 (.5) is denoted by Autg 4 (.5).

Finally, we get an isomorphism
Derg 1 (S) = Autg+(S). (2.1)
Considering the affine automorphism, denoted by Autg(S), we obtain the surjection
Autpo(S) x Autp (S) = Autg(S). (2.2)

In particular, for any ® € Autg(S) there exists an affine automorphism ¢ € Autg((S) and
a vector field X € Derg 1 (S) such that

¢ = exp(X) o ¢.

Definition 2.12. Let R be a super algebra, for ® = (¢y, ..., dnlp", ..., p") € Autg(R[[m|n]])
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we define the Jacobian as:

Ondr -+ Oybm Oyp' -+ Opp"

J e atm¢1 e atm¢m atmpl e 6tmpn
acd = )

Dprpr -+ Opndp Opp™ -+ Ogrp"

Ognpr -+ Opnm  Ognp* -+ Ognp"

From the chain rule, we obtain

Jac(V o @) = ®(Jac(V))Jac(P).

Considering the 1|n-free super module Qg n) = (Derg(R[[1|n]]))*, we obtain an homo-

morphism of groups:

Autr(R[[1[n]]) — Inve(Qrpmn)
O — Jacd

In Observation (2.14)), we constructed the formal element Ag := [dt|df' - - - dO"], for the
generators {dt|d6" ---d6"} over Ber(Qppn), called super volume form. There is a group

homomorphism given by

Autp(R[[1|n]]) = Invr(Ber(Qrpmim))

(2.3)
® — Ber(Jac®).
This homomorphism depends on the basis chosen. Also, ®*Ay = Ber(Jac®)A,.

We will denote by Aut%(R[[1|n]]) as the kernel of (2.3). When there is no confusion we

just write Aut”[[1|n]] and we say that such automorphisms preserves the Berezinian.

Example 2.17. Let ® = (F|p',..., p") € Autr(R[[1|n]]), and suppose that ® verifies:

F(t|0*,...,0™) = F(t)
pr(tO, ..., 0™) = 0rgu(t) + -+ 0"gu(t), fori=1,... n.
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then the Jacobian is given by

O F () opt - O
Jac(®) = 0 911.(15) . 9171'(t) |
0 G1(t) - gan(t)

then ® € Aut%(R[[1|n]]) if and only if 9,F(t) det ™" G(t) = 1, where G(t) = (935 (1)) ;-
Using the projection R|[[t|#",...,0"]] — R[[t]], observe that for the diagram

InV(QR[[Hn]]) — B IHV(Ber(QR[[lln]]))

l l

Inv(Qg[) _ Be Inv(Ber(Q2gyq))

Then ® € Autf(R[[1]n]]) if and only if ® € Autd,(R[[t]]).

2.5 Super Symplectic Forms
Definition 2.13. The even non-degenerate form
w=dt+0'do" + -+ 0"do" (2.1)

is called super symplectic form.

When an element ® € Autg(R[[1|n]]) preserves (2.1) up to multiplication if ®*w = fw,
for some function f € R][[1|n]], in such case we write ® € Auty(R[[1|n]]). When there is no
confusion we write Aut”[[1|n]]. Observe that Aut“[[1|n]] is a group with the composition as

multiplication.

Observation 2.18. In [5] is described another super Lie group that looks similar to
Aut®|[[1|n]]. First, define the twisted contact form:

wy =dt+0'dot + -+ 0" dO" T + 0" do"™.

Second, we define Autf[[1|n]] = {® € Aut[[1n] : ®*wy = fw,, for some f & R[[1|n]]}.

Observation 2.19. Let ® = (F|p',...,p") € Autr(R[[1|n]]), taking the pullback of (2.1])
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through ® we obtain:

O*(dt + 0'dO* + - - - + 0"dO™) =0, Fdt — Op Fdf* — - - - — Ogn FdO"
+ pt (O dt + O p'df* + - - - 4 Ognp*dO™) + - - -
+ 0" (0up"dt + Dprp"dO" + - - + Dgnp"dO")
=(0F + p'0p" + - + p"Op")dt
+ (=0 F + p'Oyp" + - - + p"0,0™)db* + - - -
+ (=0gn F + p'Oip* + -+ - + p"Opp™)dO"™.

Defining the operators D' = 0°0; + Opi, i = 1,...,n, we obtain that ® € Aut“[[1|n]] if and

only if the following equations are verified:
D'F =p'Dipt +---+ p"D'p" foralli=1,...,n. (2.2)

Observation 2.20. The super Lie group Aut®(R[[1]2]]) has two connected components,
one of them defined by the one containing the identity and the other one containing the
element &y € Autz(R[[1]2]]) given by

Do (1]0", 67) = (162, 0"). (2.3)

Later, we will characterize the two components of Aut},(R[[1]2]]).

Definition 2.14. Let X € Derg(R[[1|n]]) be a vector field, if Lyw = fw, with w as ([2.1))
for some function f € R[[1|n]], we say that X is a super conformal vector field and write
X € K(1ln).

Observation 2.21. The super conformal vector fields are given by:

1 e~
- _ i i
D= ot 317 2 (DD
where D' = 00, + i, for any f € R[[1|n]];.
For n = 2, observe that for some homogeneous f € R[[1|n]]; and the vector field D/ we

get

sdiva, (D7) = 0, f + (_1)j+1<_1)j%(D1D1f) + (—1)j+1(—1>j%(D2D2f>

1 1
=0uf — §8tf - §3tf
= 0.
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Also, we remark that the condition K (1|n) C S(1|n) only holds for n = 2.
Proposition 2.2. The super Lie algebra K(1|2) is contained in S(2).

Proof. Taking D't = f+1(=1)7 (D' f6* + D?*f6?) = f+1(—1)7 ((Op f)0" + (Dp2f)6?), then

O Og2(DTt) = 9910y ( Fa %(—1)1 (991 1)0" + (92 f)62))

Oy S+ %(-1)]’ (~1Y 0051 f + (— 1) 90 )
_o.

Finally, we get the inclusion K(1]2) C S(2). O

Observation 2.22. Suppose that N = 2n, over R[[1]2n]] consider the change of coordinates

s=t+i(0'0°+---+ 6>,
p=—i(—07 +i0%), j=1...n,
W o=—di(0% +i0¥), j=1...,n,

we obtain that w = dt + 6'df* + - - - + 0*dfO™ changes as
w=ds+p'dy' + -+ p"dn" (2.4)

so, the group of automorphisms of R[[1|2n]] that preserve w up to multiplication by a
function coincides with the group of automorphisms of R[[s|p!,---,p" 7', -+ ,n"]] that
preserve (2.4)) up to multiplication by a function.

Let us consider R[[1|2n]] = R[[1|n]][p,...,p"] and the inclusion R[[1|n]] < R][[1]2n]].
Let ® = (Fl¢',...,¢") € Aut[[1|n]] and consider the pullback of (2.4]) through the super
function ® = (Flgt, ..., 9" n', ...,n"), is given by

(T)*(dt +p'dO + -+ pdO") =0, Fdt — Op FdO' — - - - — Ogn FdO”
4 (Bipdt + Oy dtdOt + -+ DgnpdO”) + - - -
+ (8" dt + D1 " dO + - - - + Dgn " dO™)
=(OF + 7' 0,p" + - - + "0y 0™)dt
+ (=0 F +0'0" + - - +0"0,0™)dO + - - -
+ (=0 F +1'0,0" + -+ + " 0,0™)dO"™.
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Then, defining the differential operators D; = pid; + 8py, the function ® € Aut®[[1]2n]]
if and only if
DiF =n'Di¢* +---+ "D, i =1,...,n. (2.5)

Since the matrix (D;¢’);; is invertible, we get:
1
D¢t --- Dig" DyF n'
: : =1 (2.6)
D¢t - D" D, F n"

With these coordinates, ® = (Flgt, ..., o™ n', ...,n") makes the following diagram com-

mutative:

R[[1|n]] —— R[[L|n]]

l ) l (2.7)

R[[1|2n]] —— RI[[1|2n]]
and we obtain the inclusion of groups:

Aut[[1|n] & Aut?[[1]2n]]. (2.8)

Also, we obtain an inclusion of Lie algebras Derg(R][[1|n]]) Zy K(1]2n).



Chapter 3

Super (Geometry

3.1 Super schemes

Definition 3.1. Let X be a topological space. A sheaf of super algebras over X, is a sheaf
F such that for any open subset U C X the set of sections F(U) is a super algebra. A
local super space is a pair (X, F) where X is a topological space and F is a sheaf of super

algebras and for any closed point p € X the stalk Fx, is a local super algebra.

Observation 3.1. Let X, Y be two topological spaces and F be a sheaf of super algebras
over X. Then any continuous function ¢ : X — Y define the push-forward sheaf of super
algebras F, over Y given by ¢, F (V) := F(¢~1(V)). The sheaf ¢,F is also a sheaf of super
algebras (over Y).

Definition 3.2. Let R be a super algebra, we define the spectrum Spec(R) as the set of
prime ideals with the Zariski topology.

Example 3.1. Let R be a super algebra and its ideal J = R; + R?. Let p C R be a prime
ideal. Since any nilpotent element is inside to any prime ideal, we have that J C p. Then,

using the projection 7 : R — R,q, we get the homeomorphism:

Spec(R) — Spec(R.q)

P (p)
T Hq) <.
In particular, for a commutative ring R, the super algebra R[0|n] = R[#',...,0"], the

projection 7 : R[0|n] — R induces a homeomorphism Spec(R[0|n]) = Spec(R).
Observation 3.2. Let R be a super algebra. Recall that for the Zariski topology a subset

25



26

U C Spec(R) is open if is empty or there exists a proper ideal I C R with
U=U; :={p € Spec(R): I Zp}.

More precisely, we have a basis of the Zariski topology given by non-nilpotent elements
f € Rg:
Uisy = {p € Spec(R) : f ¢ p}.

Observe that Uy could be identified with Spec(R ) and U(zg) = Uy NU(g. Also, we notice
that if I C I’, then Uy C Uyj.

Example 3.2. Let R be a super algebra and f € R be an even element. To the open set
Uy we assign the super algebra ;. Using this correspondence, we define the sheaf of super

algebras Ospec(r) by

Ospec(r)(Ur) = {s : Uy — H Ryy) : for any non-nilpotent f € I the section s|y, € Ry}.
Icp

The pair (Spec(R), Ospec(r)) is called super affine scheme. The super affine scheme is a local

super space.

Definition 3.3. Let F, F’ be two super algebras over the topological space X. A a mor-
phism between ¢ : F — F' is a family of homomorphisms of super algebras {¢(U) : F(U) —
F'(U) : U C X open subset} such that for any pair of open subsets V' C U C X the
following diagrams commutes:

FU)29, mv)

l

F (V)

where the vertical lines are the restrictions maps of sheaves. Clearly, could be defined the
composition of two morphisms and there exists the identity morphism.

Let ¢ : F — F’ be a morphism, we can define ker(¢), ima(¢) and coker(¢) as sheaves
of super algebras over X. A morphism ¢ : F — F’ is said to be injective, respectively
surjective, if ker(¢) = {0}, respectively coker(¢) = {0}.

Two sheaves of super algebras are isomorphic if there exist ¢ : ¥ — F" and ¢ : F' — F
such that ¢’ o ¢ =idx and ¢ o ¢’ = idx.

Let (X, F), (Y, G) be two locally super spaces a morphism between them is a pair (F, F#) :
(X,F) = (Y,G), where F' : X — Y is a continuous map and a morphism of sheaves
F# . F' — F,(F). Naturally, we can define a composition of morphisms and the identity

morphism. If there is no confusion, we just write F': X — Y.
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A morphism (F, F#) : (X, F) — (Y, G) is said to be an immersion, respectively submer-
sion, if F'# is surjective, respectively injective. In case F' : X — Y is a closed map and
(F, F#) an immersion, we will say that (F, F#) is a closed embedding.

We say that (X,F),(Y,G) are isomorphic if there exists two morphisms (F, F#) :
(X, F) = (V,G) and (G,G#) : (Y,G) — (X, F) such that (F, F#) o (G,G%) = (idy, idg)
and (G,G%) o (F, F?) = (idy, idr).

Example 3.3. Any even morphism of super algebras F' : S — R defines the continuous

applications

F* : Spec(R) —Spec(S)
P (p).
Over Spec(S) we define the sheaf F,(Ogpec(r))(U) 1= Ospec(r) ((F*) 1 (U)), and a morphism
of sheaves given by F#(Uy) : Ogpec(s)(Uy) = St — Fu(Ospec(r))(Uy) = Rp(y) the localization
of F': S — R. Then the pair (F*, F#) is a morphism.
A pair (X, Ox) is called super affine scheme if is isomorphic to (Spec(R), Ogpec(r)), for

some super algebra R.
Definition 3.4. A super scheme is a local super space (M,Q,,) if there exists an open
covering of M, {U, }:er, such that

(Ui, Omlu,) = (SpecR;, Og,)

for some super algebra R;. A morphism M — N is also called a family of super schemes.

Observation 3.3. For any super algebra R, we have the projection R — R,q, then for an
affine super scheme we get the closed embedding Spec(R,q) — Spec(R). More generally, we
get a projection Oy — Oy, and a closed embedding

Mrd — M. (31)

We will say that M.,q is the reduced scheme of M.
For a super scheme M we say that is projected if there exists a left inverse for (3.1). In

this case, we have an inclusion Oy, — Ou.
Following, (2.2) we obtain

Lemma 3.1. Let M be a super scheme and N be a scheme, then we have the natural
identification Homgge, (N, M) = Homge, (N, Myq).
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Observation 3.4. Let (M.O)) be a super scheme. From the gradation Oy = (Op)5 ®
(On)7 we get a sheaf of algebras given by (Oyr)s. The pair My = (M, (Oypr)5) is a super

scheme.
Similar, to Lemma [3.1, we get:

Lemma 3.2. Let M be a super scheme and N be a scheme, then we have the natural
identification Homggen (M, N) = Homgg, (Mo, N).

Example 3.4. Considering the Example ([2.4)), a scheme (M, O,;) defines naturally a super
scheme (M,Oyr). Also, any locally free Op/-sheaf with rank n, F, through (2.12) for

m|n = 0|n, we obtain a super manifold. Such super scheme is going to be denoted by

(M, \* F).

Let M be a super scheme. We say that M is split if there exists a locally free sheaf F
over Myq with M ~ (M4, \* F).

Observation 3.5. Let R be a super algebra, the reduction R — R,.q induce the closed
embedding Spec(R,q) — Spec(R). In this case, Spec(R) is split if there exists an R.4-
module, M, such that A% (M) = R, in particular we have a section Ry — Ay (M) =R
of the reduction. As we already see in Observation [2.5] this not happens ever. An easy test

to see if Spec(R) is split or not is to check if Qg is a free super module over R.

Definition 3.5. Let (M, Oy;) be a super scheme, an Oy/-module, F, is a sheaf such that
for any open subset U C M the space of sections F(U) is an Oy (U)-super module such
that for any pair of open sets V' C U C M the following diagram commutes:

Ou(U) x F(U) —— F(U)

| l

Ou(V)x F(V)—— F(V)

where the vertical lines are the restrictions maps.
We will say that F is a locally free Opr-module if there exists an open covering {U; }ies
of M such that F(Uj;) is a free Oy (U;)-super module, for any i € I.
Given two Op;-modules F, G, we can construct the sheaf of homomorphisms Oyr-modules
Hom(F,G) by
Hom(F, G)(U) := Hom,, 1) (F(U),G(V)).

In particular, for a Oy/-module F we can construct the dual Oy/-module F* given by
F* := Hom(F,Oyp).
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Observation 3.6. Let R be a super algebra and N be an R-super module. For the affine
scheme (Spec(R), Ospec(r)) We define the Ogpec(r)-module as the sheaf N defined over the
open set Uy as Ogpec(r)(Uy) = Ny. With this definition, N is an Ospec(r)-module. Recipro-
cally, any Ogpec(r)-module is defined by an R-super module.

Similarly, a free sheaf Ogpec(r)-module is given by free R-super modules.

Example 3.5. Let R be a k-super algebra and S an R-super algebra, the super module
of derivations Der(9) induces an Ogpec(r)-module called module of derivations over S. For
S = R we will denote this sheaf as Der(Ogpec(r)) =: Tspec(r)- More generally, for a super
scheme (M, Q) we define the Oy-module of derivations Tar by Tulu, = Tu,|u,, for the
open affine covering {U, }ie;.

For a morphism of algebras S — R we could define over Spec(R) the sheaf of S-relative
differentials given by the R-super module Derg(R). More generally, for a family M — N

we define the Oyr-module of relative differentials Tar/n by Tan|u, = Tu,jv;|u,, for the open
affine covering {U, };c; such that U; — V;, with V; C N affine open subset.
On the other side, the dual Oy/-module Q; := (Ty)* is called cotangent bundle. Simi-

larly, for a family M — N we define Qp/ny := (Tayw)* is called relative cotangent bundle.

Definition 3.6. A super manifold is a super scheme (M, Oy/), such that the sheaf of Oy-
modules given by Ty is a locally free sheaf of modules. If Ty, has rank m|n we say that M
has dimension m|n.

For a closed point, p € M, there exists an open set U such that Oy (U) = /\EQMI-d (E),
for some Oy, (U) free module E.

For a morphism M — S we say that is a family of super manifolds when Ty /g is a
locally free sheaf of modules. If Ty/s has rank m|n we say that M — S is a family of m|n

dimensional super manifolds.

Example 3.6. Let C™" = SpecC[ty,...,t,|0",...,0"] be a super manifold. Let us consider
the space of r|s vector subspaces on C™", we call this space the rank r|s super Grassmann
space over C™™ and denote it by Gr(r|s,C™"). It was proved in [9], Chapter 4, Section
8, that this space is a super manifold. The reduced space, Gr(r|s, Cm|")rd, is isomorphic to
the Grassmann space Gr(r,C™) x Gr(s, C").

More generally, for a locally free sheaf F of rank m|n over a super manifold M we can
construct the super manifold Gr(r|s, F) that parametrizes the subspaces of rank r|s over
each fibre in F. In this case, we have a natural projection Gr(r|s, F) — M with fibre

Gr(r|s, C™") over any closed point.
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3.2 Geometric structures

3.2.1 Splitting super manifolds

Recall that a split super scheme is given by a pair M = (M, \* E) where M,q is a scheme
and F is a locally free Oy ,-module. Observe that this is not true even locally, as we already
see in Observation [3.5] When this happens locally, we are going to say that M is locally
split.

Proposition 3.1. Let M be a super manifold, then M s locally split.

Proof. Let p € M be a closed point. Since Ty is locally free, then there exists an open set
U C M and local generators (0,,,...,0,, |0p,...,0m). Using the coordinates (z1,..., zy)
we get the scheme U, and the local coordinates (6*,...,0") give us the rank n free Oy, -
module F such that U ~ (U, A" E). O

From now on we are going to consider that any super scheme is locally split.

Observation 3.7. Let M be a super scheme, let us consider Jy; := ker(Oy — Oypy,) an

Opr-module. Then we have the exact sequence:
0—= Ju — Op — O, — 0. (3.1)

Since Opr, = Opr/Jar, then Jyr/J3, is an Oy, ,-module.
Let i € N, we can construct the local super space M® := (M,q, Opr/J"1) joint with the

sequence of inclusions:
MO 5 MM s s M,

where, in particular, M) = M,4. Also, if M is a manifold and .J5;/J?, has rank r then
Jit=o.

Observation 3.8. For M locally split, for an open subset small enough U C M we have
that U ~ (Ua, A*(Jar/J3;)). We can suspect that M ~ (M, A\*(Ja/J3;)). In order to

U, — OM|UZ} of " we

check that consider a covering {U; }ie; and local splits {m; : O,

obtain:

Tij = Tilvy, — T

Usj c JM(UU) (32)
observe that
mij(fg) =mi(fg) — m;(fg)

:7Tz<f)7Tz<g) - Wj(f)ﬂl<g)
=mi([)mi;(g) + mi;(f)mi(g)
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Then, we can identify m;; with an element in 7, ® Ja(Us;). Additionally, 7;; verifies the

cocicle condition:

Tij + T+ The =(Tilv — miloge) + (Tl — mloge) + (Telvg, — milog,)

=0

so {mi;} € H' (Mo, Ty, ® Jpr). This class vanishes when M — M, is projected.
In some cases we can refine the sheaf 7y, ® Jys. For example, if M — S is a family with

S a scheme, then we use the sheaf Ty, @ J3;.

Example 3.7. Let M be an m|l-super manifold family over a point. For Jy, recall the
sequence of sheaves of super algebras (3.1)).

Observe that Jy, is an Oyg,-module. Also, the Oy -module Jy; has rank 1. Since
J2, = 0 the sheaf Ty, ® J3, is null. Finally, we get that M ~ M,q(J). In other words, any

m/|1-super manifold over a point is split. In general we proof:

Proposition 3.2. Let S be a purely even scheme. Then any m|1-dimensional family M — S
15 split.

Observation 3.9. For a family of m|l, 7 : M — S with S a super scheme that is not
a purely even scheme, in the sequence the first problem is that not necessarily J is
an Oj,,-module, since 7*Og could have nilpotent elements. For example, consider the
1]1-dimensional family C2? — Spec(C[p]), with p an odd variable, over it we have the two

automorphism given by

A(t)0) = (t +1]0),
B(t|0) :== (t + 7+ 0p|0),

with 7 € C, &(7) > 0. The quotient T, := C?2 — Spec(C[p])/(A, B) is an analytical family
of super torus. In order to see that this quotient is algebraic, let us recall the Weierstrass

function p given by the parameter 7. Then we obtain the closed immersion:

T, — P*(L)
(t|0) = (p(t; T+ 0p), Oip(t; T + 6p), 1]0),

where L is the trivial bundle over P2. The image of this immersion is given by the equation:
y* =4z’ — gao(T + dp)x — gs(T + dp), (33)

with (z,y,1]¢) € P?(L). Since (3.3) is even, then T, is a 1|1-dimensional family.
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To see that this family is not split, suppose that there exists a 1|0-dimensional family
M — Spec(C[p]) and a line bundle Ly over the family such that M(Ly) = T,. Observe
that such family should be a family of torus, also the change of coordinates over any torus
should have the form ®(¢|6) = (¢(¢)|0A(t)) and in this case A(t) corresponds to the cocicle
of Ly. Over Tr, /g, S = Spec([p]), we have the global section given by J;, so we have the
exact sequence
0 — (0r) = T,/ = Tr./s/{0r) — 0.

Given a change of coordinates ®(t|6) = (¢(t)|0A(t)) then the change of coordinates of
Tr./s/(0;) are given by A(t). On the other side, for coordinates (¢, 0) the vector field 9 is a
well defined global section in Tt ,5/(0), that is Tr_/s/(0;) is a trivial bundle, in particular
Ly is also a trivial bundle. From this, the tangent bundle over M (L) should be trivial,
since the tangent bundle over the torus is trivial and we can define a global section 0y for 6’
a global section in Ly. If this happens, then the space of global sections has dimension 1|1.
Let us take a section s of Tr,/g. With respect to the étale topology, from the projection
T, := C?2 — Spec(C[p]) — T, := C%? — Spec(C[p])/(A, B), we obtain a section of the

tangent bundle 7¢/g, such section should have the form

s(t]0) = s(t + 1]0),

(3.4)
s(t|0) = s(t + 7+ 6pl0).

Using the decomposition s(t|0) = a(t|0)0; + b(t|0)0y. From the relations (3.4, we obtain
that b should satisfy

b(t|6) = b(t + 1]0),

(3.5)
b(t|0) = b(t + 7+ 0p|6).
from this b should be constant, then we get:
a(tlf) = a(t + 1|0),
(t6) = aft + 119 .

a(t|f) = a(t + 7+ 6p|0) — bp.

Similarly to (3.5), taking derivative on (3.6) we obtain that a is constant and b = 0. That
is, the vector space of sections has dimension 1]0, and this contradicts that such space of

sections has dimension 1|1. Then the family of torus T is not split.

Example 3.8. For a family of m|2-super manifold M — S, for S an even super scheme.
In the same sequence (3.1]) with Jy; = ker(Oy — Oyy,) is not true that J3, = 0. Instead,
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consider F := Jyr/J3;, a rank two bundle over M,q and construct the exact sequence:
0 — det F — (Opr)o — Onr,, — 0, (3.7)

where Oy = (Onr)o @ (Onr)1. For the manifold My := (M, (Onr)o) we get the inclusions
M,q — My 25 M.
Repeating the arguments given in (3.2]) we take local splits m; : Oy, (U;) = Opro(Us) in

(3.7) to define

Wi = T Uij- (38)

U — T

In this case we can identify w;; with an element in Ty, ®det F(U;;) and {w;; } € H* (Mo, Th, @
det F). It was proved in [10] the following

Proposition 3.3. Let S be a scheme and M — S be a m|2 dimensional super manifold.
The class given by (3.8) vanishes if and only if M — S is split.

For an m|n super manifold with n bigger than two, there is an obstruction constructed
in [11].

3.2.2 S(1|n)-super curves

Definition 3.7. Let M be a super manifold M and F be a locally free sheaf of rank m/|n,
consider a cover {U,}ic; with trivializations ¢; : F(U;) — (’);Zl”. Then, for 4,5 € I over
Uij = Uij we have

n ¢i_1 b4 m|n

oy F(Uy) 4 op (3.9)

SO ¢y : OYUYZL" — OZZL" an invertible homomorphism, then from the homomorphism of groups

, we obtain
Ber(qbij) S IDV(O)((UZ]))

With this we construct a bundle of rank 1|0 if n is even or rank 0|1 if n is odd.
This bundle BerF is called Berezinian bundle of F. Set Bery := Ber(€;,), and for a
family M — S, we will write Berys/g := Ber(Qas).

Example 3.9. Let (M, O)s) be an m|n a super manifold, the tangent bundle is a rank m|n
locally free sheaf. If over an open set U we consider local coordinates (21, . . ., 2,|0%, ..., 0"),
then the tangent space is locally trivialized, by (0.,,...,0,,, |0,...,0n). Similarly, the
cotangent bundle Q,; is locally trivialized, by (dz1,...,dzy,|d0", ..., d0™) over the open set
UcCM.

On the other hand, we get a local generator of Bery(U) given by [dz; . .. dz,|d6" ... do"].
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Let M = (M, \" E) be a split super manifold, then we can take the local coordi-
nates (21,...,2m|0%,...,0") over an open set U C My. For another coordinates ® =

(Wi, ..., wylpt, ..., p") with

wi:gbi(zl,...,zm), izl,...,m

pj:Qlalj(zl,...,zm)+-~—i—@"anj(zl,...,zm), ]:1,,n

The change of coordinates for the cotangent bundle is given by

Jac(®) = (13 i) ,

where A = (9,,¢1), B = (0,,07)ij,C = (a;;). Then the change of coordinates for the

Berezinian of the cotangent bundle is given by
Ber(Jac(®)) = det Adet C~! = det(d,, ¢) det(a;;) "
Using the closed embedding, j : M.q — M, we get the isomorphism
J Bery = Qf; @ det E”.

Observe that in this case Bery is a trivial bundle when QF; =~ det E' as line bundles over
M,q.

Definition 3.8. A 1|n-super curve (C, O¢) is a connected super manifold of dimension 1|n.
An S(1|n)-super curve is a pair (C' — S, A), where C' — S is a super curve joint with a
nonvanishing section A € H°(C, Berg/s).

Let C — S be a super curve, for a section A € H°(C,Ber¢c/s) and coordinate patch
{(U;, ®;)}. There exists a family of functions f; € H°(U;, O¢) such that

Aly, = fildz]d6; - - doy]. (3.10)

Observation 3.10. Let us consider a 1|n-super curve C' — S, a coordinate patch U C C
with a trivialization ®, and a nonvanishing section A € H°(U, Bergs) with f € H(U, O¢)
as in (3.10)). Taking an even function F(z|f',--- ,0"), and shrinking U if is necessary, with

azF(Z’(glv"' 79”) = f(2|91,'“ 7‘9n)7
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then the system of coordinates ¥ = (w|p!,--- , p"), given by

w:F(z|01,--- ,0"),
pi=6,i=1...n;

verifies A = [dwl|dp' - - - dp™]. We will say that such coordinate system ¥ is compatible with
the section A.

Finally, for a nonvanishing section A € H°(C,Berg,s) there exists {(U;, ®;)}; an atlas
for C' = S such that

Aly, = [dz|d6} - - - dor).

For any pair of coordinates ®, ¥ defined over the same open set U both compatible with
Aly, then the change of coordinates ® o W1 preserves the Berezinian.
For a fixed curve C' — S and a nonvanishing section A € H°(C,Ber¢,s) we will only

consider coordinates compatible with A.

Observation 3.11. Let C' be a super curve, from the inclusion j : C;q — C a section
A € H°(C,Bere) induces a global section j*A € HY(Cyq,j*Berc). Actually, if A does not

vanish then j*A is a non-vanishing section.

Example 3.10. Let C' — S be a split super curve associated to the bundle £ and the curve
Cl4, then C'— S has a trivial Berezinian if and only if Q¢ = det E.

Over a curve C' — S with a nonvanishing section A € H°(C, Berc/g), over an open set

we can define the space of vector fields:

S2)(U) :={X € Teys(U) : sdivaX = 0},

(3.11)
S2)(U) = [S(1[2)(U), S2)U)].

Observe that these sheaves are not Og-modules. For the family = : C' — S, they are
sheaves of 7*Og-modules.

Finally, we get a m*Og-module A¢ defined over an open set U C C' by:

_ S(A2))
Aoll) =g iy

Observation 3.12. Let C' = (Cyq, E') be a split 1|2 dimensional super curve over a point.
We already see that C' is an S(1|2)-super curve if and only if det B =5 Q¢ . Let ¢ =
(2]0%,6?) be local coordinates in C. The local section 61623, is well defined globally, since
for any change of coordinates ® = (F|¢!, ¢2) = (3]6*,62), where F(z|6",6%) = F(z) and
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¢t = 0'ay; + 0%ay;, for i = 1,2. Here, a11a92 — a12a12 = F’, then the local section transform
515205 as

0'920; = ((a11a22 — a12a12)0"6%0.)(F'(2)) 0.
= 0'6%0,.

Then we obtain that the local section 6'620, is globally defined. Finally, A¢ is a trivial

m*Og-module.
More generally, we have:

Proposition 3.4. Let S be an scheme and C — S be a split S(1|2)-super curve, then the

bundle Ac is trivial.

3.2.3 SUSY-super curves

Definition 3.9. A 1|n-super curve C' — S with a covering and atlas {®;}; such that any
change of coordinates verifies ®;; = ®; 0 &' € Aut“[[1|n]] we will say that C' — S is a
SUSY,,-super curve.

Observe that the local form (2.1 in coordinates ¢; = (z;6},...,0")

wi = dz; +0,d0} + -+ 01'd6? (3.12)

is well defined, up to multiplication by a function, over C' — S. Then for a SUSY,,-super
curve we can define the line bundle D locally generated by the section w; given in .
For any coordinate system ® = (z]0',...,0") we are going to say that ® is compatible to
the SUSY -super structure if dz + 01do* + - - - + 6"d0™ generates D locally.

Also, we can define a SUSY,,-super structure over the 1|n-super curve C' — S as a locally
free subsheaf £ C T¢ of rank 0|n, for which the Frobenius form

E®FE —Tc/E

is nondegenerate and split, i.e., it locally has an isotropic direct subsheaf of maximal possible
rank k for n = 2k or 2k + 1 (cf. 2)).

For a system of coordinates ® = (2|6, ..., 0") compatible to the SUSY -super structure,
then 60, + Op1,--- ,0"0, + Oy generates E.

Let us recall some properties about SUSYs-super curve. First, in this special case, there
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exists an exterior automorphism ¢ € Aut®[[1|2]] given by
D : (2104, 60%) — (2]0%,6").

For some coordinates (z|0',6?) over C' and considering the change of coordinates ® =
(F|¢t, $?), we obtain the equations

D'F = $'Di¢* + ¢ Dig?, i = 1,2,
where D' = 60, + 0p,. Then, taking {D*, D7} = 26,;0,, we get the relations:

{D', DIYF = D'¢' DG + D'g?DIg? — 6H{D', DI} — 6{ D', DV},
that reducing terms, we obtain:

O.F +¢'0.0" + $°0.¢° = D'¢'D'¢' + D'¢°D'¢*, i = 1,2, (3.13)
0:D1¢1D2¢1+D1¢2D2¢2. ’

A simpler way to write these equations uses the matrix A = A(®) = (D'¢’) and the
expressions (3.13]) are write as:

AA" = (0.F + ¢'0,¢" + ¢°0.4%)id. (3.14)

In particular,
det A = £(0,F + ¢'0.¢" + $*0.4%). (3.15)

Actually, ® is an inner automorphism if and only if det A(®) = 9.F + ¢'0.¢' + ¢20.¢?,

otherwise we will say that ® is an outer automorphism. With this, we have the description:

Proposition 3.5. The elements in the connected component of Aut®|[[1|2]] containing the

identity are the inner automorphisms. The other component are the outer automorphisms.

Geometrically, the condition that {®;};c; is an atlas with ®;; = ®; o ®; ! an inner
automorphism, for any ¢,7 € I, is expressed as a split on £ = L; & Ly, where E is the
bundle defining the SUSYs-super structure. We are going to say that such curves are
orientable SUSYs super curves.

Suppose that C'is a curve over a point with a SUSYs-super structure. Over the reduced
curve Cyq we could consider the Cech class v € H'(Cyq, {1}) that choose 1 depending
on the sign took in equation . This class v vanishes if and only if C' can be endowed

with an orientable SUSY, super structure.
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Now, let study the Berezinian of ® = (F|¢', ¢?). Since D'F = ¢'D'¢p! + ¢?D'¢p?, for

1 = 1,2 or equivalently
D'F !
— A ¢ :
D*F ?

then we get:

O.F  0.0"  0.¢°
Ber(®) = Ber | D'F D'¢! D!'¢?
DQF ngbl D2¢2

:<@F—{@¢ @¢%41(D >>daA*,
= <8zF_[az¢1 az¢2 ( ))detA—

= (0.F + ¢'0.¢" + $°0.¢°) det
= 41,

where the sign depends on equation (3.15). The inclusion {1} C O¢,, give us that any

orientable SUSYs-super curve has a trivial Berezinian. Actually, we obtain

Proposition 3.6. Let C' be a SUSY5-super curve, then the coordinates compatibles with the

SUSY -structure define a global section on the Berezinian if and only if C' is orientable.

Also, from (3.14)), we get the following relationships for an inner automorphism ® =

(Flo", ¢%):
1.1 2 2
D¢ =D (3.16)
D1¢2 — —D2¢1,

that looks very similar to the Cauchy conditions for complex structures. Then, we can take

the following holomorphic coordinates:

w=z+ 1016,
1

0= 5(01 —i6?),
1

P = 5((91 +292),

with its respective change of coordinates (F + i¢'¢*|1 (¢ —i¢?), 1(¢' — i¢?)), we obtain

that our initial curve C' is endowed with a projection to another 1|1 super curve C” given by
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C — ', (w]d, p) = (w]h). Reciprocally, if we start with a 1|1 super curve we can construct
an associated SUSY;-super curve, such curve is going to be orientable. We will explain this
with more detail later.

Another fact that we can observe for oriented SUSYs-super curves over points, is that
in the projection C' — C’, we know that C’ is an split curve, defined by its reduction Cyq

and a line bundle L, then we obtain:
Proposition 3.7. Let C be an oriented SUSY,-super curves over a point, then C' s split.

Proof. We already see that C' has a system of coordinates (z, 6, p) with a change of coordi-
nates ® = (G|¢,n), where F, ¢ does not depend on p. Since C’ is split we can modify the
(G|¢) by (G|¢) such that G does not depend on the odd coordinate. Finally, we can modify
® by ® such that C is split. m

Observe that the process described above was not canonical. Later, we are going to show

a most natural way to split such curves.

Example 3.11. We are going to see that not any SUSYs-super curve is an S(1|2)-super
curve.

Let C be a split 1|2 super curve associated to the reduced genus g > 1 curve Cyq and the
rank two bundle £ = A @ B, where A, B are line bundles over Cyq with A®? = B®? = Q¢ |
and A % B. First, observe that local coordinates over C' given by (z|0',6?%), where z is a
local coordinate in Cyq, 6! and 6? are local sections of A and B, respectively, define (locally)
the form dz+6'd0* +6%d6?, up to multiplication by a function. Finally, C' is a SUSYs-super
curve.

On the other hand, observe that for the Berezinian bundle Ber(C') and the inclusion
J : Cra = C we obtain that j*Ber(C) = Q¢ ® (A® B)* = A® B* # O¢,,. Finally, C is

not an S(1]2)-super curve.
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Chapter 4
Ind-Schemes

We are going to set here the basis to work with infinite dimensional schemes since we want
to deal later with them. For example, for rings as R[[t]] is not clear the correspondence

between super schemes and Spec(R[[t]]).

4.1 Introduction

Recall that a category C is a pair (Obj(C), Hom¢), where Obj(C) is the collection of objects
of C and Hom¢(A, B) is the collection of morphism between A, B. From now on, we are
going to consider locally small categories, that is the collection Hom(A, B) is a set for any

pair of objects A, B.

Example 4.1. Let C = Sets the category of sets with objects the collection of sets and for
any pair of sets A, B, Homges(A, B) is the collection of functions between A, B.

Example 4.2. Let X be a topological space, we define the category C = Ux with objects
the collection of open subsets of X and for any pair of open sets A, B, Homges(A, B) is the
set with one element {A < B : inclusion} if A C B or empty otherwise.

Example 4.3. Let k be a field. We define the category CRings, of commutative rings
with objects the k-commutative rings and for any pair of objects A, B we denote by
HomCRingsk(A, B) the collection of homomorphism of k-commutative rings. Here we are
going to consider finitely generated k-commutative rings. In the same direction, we define

Schy, the category of schemes over a field k.

Example 4.4. Let k be a field. We define the category C = SAlg, of super algebras with
objects the collection of super algebras with morphisms the collection of homomorphisms

of super algebras. If there is no confusion we will write SAlg. Here we are going to consider
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finitely generated k-super algebras. Also, we define SSch; the category of super schemes

over k.

Definition 4.1. Let C,C’ be two categories, a functor F is an asignation between objects,
such that Fopj(A) is an object of C’ for any object A of C, for morphisms, the asignation is
such that F(f og) = F(f) o F(g), for any f a morphism between A, B and g a morphism
between B, C. We are going to denote this by F : C — C’, and similarly we will denote the
asignation of objects and morphisms by Fop; : Obj, — Obje and for any pair of objects of
C, A, B, we write From : Hom(A, B) — Hom(F(A), F(B)), respectively.

Example 4.5. Let X be a super scheme, then the structure sheaf Oy is a contravariant

functor between Ux and SAlg;,.

Example 4.6. Let SSch; be the category of super schemes over the field k. Fix a pair of

non-negative integers m, n, then the asignation:

S+ {¢: X — S :where ¢ is a flat morphism of codimension m|n.}

is a functor denoted by SSchy(m|n) and any ¢ : X — S is called a family of super schemes
m|n-dimensional. Observe that for any morphism f : S — 5" and a family ¢ : X — 5" we
can define the pullback family ¢y : X xg S — S.

Example 4.7. Let C be a category and an object A, then we can define the contravariant

functor

ha:C — Sets
B+~ hA(B> = Homc(A,B).

Similarly, the asignation h*(B) := Home(B, A) defines a covariant functor.

Definition 4.2. Let F : C — C’ be a functor F. We are going to say that F is faithful
if for any pair of objects A, B the map Fiom(A, B) : Hom(A, B) — Hom(F(A), F(B)) is
injective. Similarly, we are going to say that F : C — C’ is fully faithful if Fyom(A, B) :
Hom(A, B) — Hom(F(A), F(B)) is bijective.

Example 4.8. We have the reverse parity functor II : SMod — SMod, with I o IT = id. If
M has rank m|n, then IIM has rank n|m.

Example 4.9. Let m,n natural numbers. Then, we obtain a functor:

SAlg — SAlg
R Rlm|n] = R[ty,...,t,]0" ..., 0",
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that also, give us a functor

CRings < SAlg

R — R[m|n]. 41

In particular, we obtain a natural inclusion functor j : CRings — SAlg.

Example 4.10. Let SAlg be the category of super algebras, then the reduction R — R.q

is a functor. This functor is a left inverse of the inclusion (4.1)).

Definition 4.3. Let F, F’ be two functors. A natural transformation 7 is an asignation
between the objects n(A) : F(A) — F'(A), such that for any morphism f : A — B the

following diagram commutes

We are going to denote this by n : F — F’. For two natural transformations n : F —
F.n F — F, the composition n' on : F — F" is naturally defined. Also, the identity
idr : F — F is a natural transformation.

Two functors are said to be isomorphic if there exists two natural transformations 7 :
F — F and n : F' — F such that non =id% and n/ onp = id.

We are going to say that a functor F is representable if is isomorphic to h 4, for some
object A.

Observation 4.1. Let R be a super algebra and S be a commutative ring, recall the natural
identification (2.2)). That means, considering the composition

CRings,, <i> SAlg,, by Sets,

we get that: hg|cRings, = MR-
Using this, we gain the following lemma

Lemma 4.1. Let M be a super scheme, then the functor hyrlsen s representable by the

scheme M,q.

Observation 4.2. Suppose that M is a m|n dimensional super manifold, recall that M
is given as the manifold that represents the functor hps|se,. Since Ty is an Op-module

with rank m|n, then for the inclusion j : M;q — M the pullback j*7Tys is an Oy, ,-module
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with rank m|n. Locally, for an open set U C M,q the super manifold M is isomorphic to
(U, \*(5*Tar)1)- Finally, in order to understand a super manifold through functoriality we
have to understand first the functor hys|sa, and the families N — M|eg, 1], where ¢; with
parity i and €3 = €2 = ¢ye; = 0, with a fixed family Ny — M. This recipe is similar to

observation ([2.15]).

Example 4.11. In this example, we will see how to use the tools given by Lemma [£.1] and
Observation (4.2

Suppose that we try to understand the space of super manifolds with dimension 1|1 and
fixed genus g, that is the functor that asigns to any super scheme Y flat families X — Y
with relative dimension 1|1 such that for any closed point y € Y the reduced fiber (X,).q is
a projective curve with genus g. Let first consider the restriction to schemes, then we are
looking for families X — S, where S is a scheme. It was proved in [I2 Proposition 2.9] that
any such family is canonically split, and that Ox = Ox,, @ IIL, where L is a line bundle
over X,q. Then, the family over a scheme is given by choosing X,q — S a family of genus g
curves and a line bundle L over it. We will denote by M, ; to the functor of genus g curves
joint with a (stable) line bundle over it.

Let S be a scheme and a fixed family of 1|1 genus g super manifolds X — S, for E a
trivial rank 1 free Og-module, if we try to extend the family X — S to (S, A" F) we have

to understand the diagram:
X X

| |

S— (S,A\°F)

Now, fix local coordinates over X — S, that is, a covering of the 1|1 super curve X, — {y}
for a closed point y < S given by {U;};cr and a family of isomorphisms ¢; : U; x S ~ V;,

where V; C X is open and the diagram commutes:

UZXS—>‘/l

N

S

Extending these coordinates over (S, A* E) by ®;, shrinking U; if is necessary, we obtain
that the change of coordinates ®;; := ®; o <I>j_1 € Aut(U; x (S, \* E)) has reduction ®;;,4 =
¢i; € Aut(U; x S), where ¢;; 1= ¢; o gbj_l Then

Qi = ¢ij + €Xij,
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where X;; is a derivation over X, and € generates £. Actually, what we achieve is

Proposition 4.1. Any extension of the family X — S with fized fibre X, — {y} relative
to the closed point over (S, \* E) is parametrized by (H'(X,, Tx,))1-

Then, we can see this extension as a section of the bundle R'p, Tx.

Finally, the functor of 1|1 genus g super curves is described with the reduced scheme
M4y and odd part described by R'p,T.

4.2 Ind-Schemes

Definition 4.4. Let C, D be two categories, an ind-family over C is a collection of functors

{Fi:C — D}y joint with natural transformations
i Fr— Frga

We define the limit F, as a functor F : C — D, joint with natural transformations j; : F; —

F, such that the diagrams are commutative:

F Ji F

i .
Ji+1

Fi

for any k£ € N, and that is universal.

From now on we will consider that D is the category of sets Sets.

Lemma 4.2. The limit F, joint with these natural transformation exists and are unique up

to isomorphism.

Example 4.12. Let {F;},en a family as above such that there exists an L € N with F; = Fp,
and ¢; = id, for any [ > L. Then lim F;, = F.

Example 4.13. Let R be a k-super algebra and consider hf® : SAlg, — Sets given by
hE(S) = Hom(R[t]/(#),S) is a representable functor such that the limit is represented by
the super algebra R[[t]] that is not finitely generated.

Observation 4.3. Suppose that we have two families {F;};eny and {G;}ien such for any
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[ € N there exists a natural transformation j; : F; — G; with commutative diagram

F—" g

| |

Froi———— G
Ji4+1
then, for the limits F, G there exists a unique natural transformation F — G.

In particular, if any JF;, G; are groups with F; — G; homomorphism, we obtain the limit
F — G and also G/F is the limit of G,/ F.

Definition 4.5. Let {F;},en be a ind-family over SSchy. We will say that such family is an
ind-(super) scheme if F; =~ hyy, is a (super) scheme for any [ € N and for the induced maps
M; — M, are closed immersions.

An ind-scheme {F; };en is said to be smooth if each M, is smooth, for any [ € N. Equiv-
alently we will say that {F;}ien is an ind-super manifold.

Given a morphism between ind-schemes {¢; : F; — G;} is smooth if ¢, is smooth for any
leN.

When each M is an algebraic (super) group and each map M; — M, is an homomor-

phism of groups, we will say that the ind-scheme {F;},cy is an ind-(super) group.

Example 4.14. Given a family of ind-scheme group F; — G;, the projection G, — G,/ F; is

smooth. In particular, we have a F-principal bundle
Gg—G/F

Example 4.15. Let R be a super algebra. Following Example we define the ind-group
Autr(R[[t]]) = lim Autr(R[t]/(t')).

4.2.1 The group Autg(R[[m|n]])

In this section, we are interested in the super group AutO := Aut(R[[1|N]]), where the
product is formed by the composition.

Let R be a super algebra, for the super algebra R[[m|n]] we will consider the collection
of even automorphisms that are also homomorphism of R-super algebras and denote this
group as Autg(R[[m|n]]). If there is no confusion, we will use Aut(R[[m|n]]) or Aut|[m|n]].

We are interested in the group of automorphism Aut(R[[1|n]]) and its group structure
given by ® x ¥ = U o ®.
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Example 4.16. Let R be a k super algebra, for a nilpotent X € Derg(R[[1|n]])o, we define

its exponential by:
2

X X
exp(X) =id + m + or +- (4.1)

For two nilpotent N, L € Derg(R|[1|n]])o with [V, L] =0 we get
exp(N + L) = exp(N) exp(L).
In particular, exp(N) has an inverse exp(—N). Finally, exp(X) € Autg(R[[m|n]]).

Let | € N, and the R-super algebra R; := R[t|0',--- ,6"]/m!, where m := (t|0,... 0").
Similar to Example 2.1} an element X € Derg(R[t[f",--- ,6"]/m!) is nilpotent, so we can
define the exponential as (4.1). For the ind-family of R-algebras {R[t|0",--- ,6"]/m!'} e,
we get the pronilpotent Lie algebra:

Derg (R[[1|n]]) := llim Derg(R[t|0,--- ,60"]/m!)
and a well defined exponential:
exp : Derg 4 (R[[1|n]]) — Autgr(R[[1|n]]). (4.2)

Its image is prounipotent ind-group denoted by Autg i (R[[1|n]]). An automorphism @ is
said to be generated by a vector field X € Derg 1 (R[[1|n]]) if exp(X) = ® in (4.2)).
Denote by Auto(R[[1|n]]) the quotient group Autg(R[[1|n]])/Autg+(R[[1|n]]). It was

proven in [I3| Lemma 6.2.1]:

Proposition 4.2. The group Autg(R[[1|n]]) is a semi-direct product of Auto(R[[1|n]]) and
Auty (R[[1|n]]).

4.2.2 The group Aut%(R[[Hn]])

Recall the definition Aut%(R[[1|n]]) for the elements in Autg(R[[1|n]]) that preserves the
Berezinian.
Consider the finitely generated R-super algebra R; := R[t|0%,...,0"]/(t|0%,...,0™)!. For
a vector field X € Derg(R;) observe that exp(X) is well defined and following we obtain
Ber(exp(X)) = exp(sdiva,(X)). In particular, for a vector field X € Derg o (R[[1|n]]) we
get the relation
Ber(exp(X)) = exp(sdiva, (X)),
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then, ® = exp(X) preserves the Berezinian if and only if sdiv(X) = 0. This define the
subalgebra
S(1|N)4 := Derg  (R[[1|n]]) N S(1|N).

For the group Aut’(R][[1|n]]), we will denote by
Aut’ (R[[1]n]]) == Aut (R[[1]n]]) N Aut’ (R[[1]n]]),
and
Autg(R[[1]n]]) := Aut’(R[[1|n]])/Aut’ (R[[1]n]])

so we get the surjection
S(1|N), =2 Auti(R[[l]nH).

From Lemma we get:

Lemma 4.3. The group Aut$(R[[1|n]]) is a semi-direct product of Autd(R[[1|n]]) and the
prounipotent group Aut’, (R[[1|n]]).

Definition 4.6. Recall the super Lie algebra S(n) = [S(1|n), S(1|n)]. The automorphisms
generated by fields inside S(n) and the group Aut)(R|[]
is going to be denoted by Aut®(R[[1|n]]) C Aut’(R[[1|n]]). The group Aut®(R[[1|n]]) is

simple for n > 2.

1|n]]). The sets of such elements

When there is no confusion we simply write Aut®[[1]2]].

From the Lemma , for any change of coordinates ® € Aut®(R[[1]2]]) there exists a di-
vergence free field X € S(1]2), and T € Autd(R[[1]2]]) with ®(z|0",62) = exp(X)(T'(z]6*, 6)).
Our interest is to study such automorphisms where X € S(2); := S(2) N Derg o (R[[1|2]]),
when this happens we write ® € Aut®(R[[1/2]]) and observe that Aut®(R[[1]2]]) is a sub-
group of Aut’(R[[1|2]]).

On the other hand, we have the isomorphisms

exp : S(1]2); — Aut?.(R[[1]n]).
exp : S(2), — Aut®(R[[1]n]]),

and Aut)(R[[1|n]]) = AutS (R[[1]n]]), so, we have the isomorphism:

S(12) | Aut’(R[[1[n]])
exp : S2) — Aut®(R[[1|n])) —

G.. (4.3)
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4.2.3 The group Aut%(R[[1]n]])

Recall the definition of Aut}(R[[1|n]]), as the automorphisms preserving the even nondegen-
erate form up to multiplication by a function. Observe that Aut”[[1|n]] is an ind-group
with the composition as multiplication.

Also, recall that a vector field X € K(1|n) if Lxw = fw, with w as for some
function f € R[[1|n]] and write K (1|n); := Derg 1 (R[[1|n]]) N K(1|n). We can notice that
for a vector field X € K(1|n); we have exp(X) € Aut“[[1|n]]. The group generated by
automorphisms ¢ = exp(X), X € K(1|n),, is denoted by Aut?[[1|n]]. In other words, we
have

Aut} [[1[n]] = Aut®[[1[n]] 0 Aut [[1|n]].

Also, define Autg[[1|n]] = Aut*[[1|n]]/Aut?[[1]|n]].
In this case, the Lemma [4.2] is write as:

Lemma 4.4. The group Aut}(R|[[1|n]]) is a semi-direct product of Auty(R|[[1|n]]) and the
group Aut’, (R[[1|n]]).

Observation 4.4. Recall the exterior automorphisms ®g(z|6',6%) = (2]6%6') defined in
(2.3). This automorphism is not generated by a vector field. Actually, Autg(R[[1|n]]) has
two components one containing the id, Aut{" ™ (R[[1|n]]), and the other one containing ®,.
The group Aut® " (R[[1|n]]) is a semi-direct product of Auty ™ (R[[1|n]]) and Aut® (R[[1|n]]).

4.3 The bundle Auty

In this section, given a super curve X we are going to define the space of pairs {(z,t,) : = €
X,ty : Ox, = O}. Clearly this space is not a smooth manifold. Instead, we are going to

give a structure of ind-scheme.

Definition 4.7. Let R = k[ty,...,tn|0%...,0"]/(Py,..., B) be a finitely generated su-
per algebra over k, for some polinomials P; € k[m|n]. For each p € N we will define
the p-Jet ring by the even variables t;r) and odd variables #*() where r = 0,...,p,
j=1,...,m, k = 1,...,n, such that they verify the equations P, that appear as the
coefficient of t* on Pj(t;(t), 0%(t)), with t™)(t) = Zty)ﬂ and similar for 0%(t). Such quo-
tient, k[ty,...,tm|0, .. ,0"/(Pis, ..., Ps) =: J,R is called the p-Jet algebra of R.

Proposition 4.3. The super algebra J,R represents the functor:

SAlg, — Sets
S — HOIHSAlg<R, S® k[t]/(tp+1)).
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Proof. We will recall [14], Proposition 2.2. Let us consider the finitely generated super
algebra R = klt1,...,t,|0%,...,0"/(P,..., P). An homomorphism ¢ : R — S®k[t]/ (')
is defined by the images ¢(t1),...,d(tn), d(01),...,¢(0") such that verifies the relations
induced by Pi,..., P. Considering

¢(tl) = Qp; + (Zh't + -+ (Ipitp
G(07) = boj + byt + - - - + by;t?

Observe that the equations, independent on S, obtained by

Pi(p(th), - d(t)|$(0"), ..., 3(0™) =D Pr(aoo, - - - Gy boo, - - -, b
This, give us the relations over variables {as;, b,;} that define the scheme J,R. O

Example 4.17. Let R be a k-super algebra, then J;R is canonically isomorphic to the

super algebra of derivations Der(R).

Following the Proposition 4.3| we get the family of functors {h,r}pen joint with a family
of projections
Homga, (R, S ® k[t]/(#71%)) — Homgais(R, S ® k[t]/(t"))
fe=r
that induce a family of closed immersions J,R — J,1;R. Finally, we obtain the ind-

algebra Jet-algebra of R, denoted by JR. This ind-algebra represents the functor S —
Homs g (R, S[t]]).

Observation 4.5. We say that JR is an ind-super algebra instead of a super algebra, since

we are considering finitely generated k-super algebras.
Proposition 4.4. Let R be a smooth k-super algebra, then JR is smooth.

Proof. This follos directly from the construction. O]

Observation 4.6. for any p € N we get an inclusion R — J,R given by identifying t;o)
and 6% with tj, 0y, respectively. Since, this inclusion respect the diagrams , then this

inclusion is well defined R — JR.

Dualizing the process, from Proposition we obtain:
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Proposition 4.5. Let X = SpecR be an affine super scheme. The super scheme J,X :=
SpecJ, R represents the functor:

SSch;, — Sets
Y +— Homga (Y x Spec(k[t]/(tp+l), X)).

Definition 4.8. From the family {J, X },en, we obtain the ind-scheme Jet-scheme of X, de-
noted by JX. This jet-scheme is endowed with a projection JX — X defined in Observation
4.6l

Lemma 4.5. The projection JX — X defined in Observation[4.0 is affine.
Proof. This follows directly from the construction and its functorial property. O]

Lemma 4.6. Let U C X be an affine open subscheme of the affine super schemem X. Then
for any p € N, the super scheme J,U C J,X is an open subscheme. More generally, the
jet-scheme JU C JX 1is an open subscheme.

Proposition 4.6. From the previous lemma, for any super scheme X we can construct the

ind-super scheme JX following the rules:

1. Let {U;}ier be a covering of X by affine open super subschemes such that Uy; is also
affine.

2. For any 1 € I and p € N, construct J,X by the gluing of the affine super schemes
JpU;, with the marked intersection J,U;;.

3. The closed immersions J,U; — Jp11U; are well behaved, and induce the closed immer-
stons J,X — J1 X.

4. The family {J,X }pen is an ind-scheme, called Jet-scheme of X.
Proof. The proof follows from the Lemmas [£.5] and [4.6] O
Proposition 4.7. Let X be a smooth super scheme, then JX is a smooth ind-scheme.
Proof. This comes directly from Proposition [4.4] O

Definition 4.9. Let R be a super algebra, for any p € N, we already see that J, R represents
the functor S — Homgay (R, S ® k[t/(t*T1)]). Now, we will consider the elements with

f=lo+ fit+-+ ft"
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where f; € Hom(R, S), fori =0,--- ,p, and f; # 0. This functor is represented by the super
algebra of coordinates Aut,R. The family {Aut,R} ey is the ind-scheme that represents the

functor

SAlg, — Sets
S +— { f € Homgay(R, S[[t]]) with a non vanishing differential. }

As we already done, for any affine super scheme X = SpecR we define the ind-scheme of
coordinates Auty. Finally, following the rules given in Observation for a super scheme

X we define the ind-scheme of coordinates Auty.

Proposition 4.8. Let X be a super scheme, then Autx is an open subscheme in JX. Also,
if X is smooth, then JX is smooth.

Observation 4.7. Let X be a smooth super scheme. From the projection Auty — X,
for any closed point z € X the fiber Autx , represents the space of coordinates around
x € X, that is Autx, = {t, : Ox, = O}. In particular, the ind-group Aute acts on the
fiber Auty , by composition on the left, that is ¢, - & = ® o ¢,. More generally, Autx is an
AutO-principal bundle.

Observe that a system of coordinates around x € X define a local section of the bundle
Auty — X. Also, for a group G acting on the bundle Autxy — X a global section of the
quotient Auty /G — X is equivalent to have a system of coordinates {¢;};c; defined over
open sets U; C X such that ¢; o gb;l U, NU; — G.
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Applications

5.1 The induced curve

Proposition 5.1. Any 1|n-super curve has an SUSYs,-super curve associated.
Proof. Given a super curve C' — S, consider the Aut[[1|n]]-principal bundle Aut¢, then we
can construct an Aut“[[1|2n]]-principal bundle given by

Autw[[1|2n]] X Aut[[1]n]] Aute

for the inclusion Aut[[1|n]] C Aut“[[1|2n]] given in (2.8).
The structure of 1|2-super curve give us family of local sections of the bundle Aute — C,
{®i}ier; then the family of local sections {®; = (1, ¢;) }ies gives us a family of K (1|2n)-super

curves. O

The curve obtained in proposition (5.1)) is going to be denoted by C'. If we have an atlas
{¢; = (2]0",6%)}icr over C' — S with cocicles @;; = ®; o @;1, we construct the atlas over C
given by {51 = (2|6%,60%, pt, p*)}, with cocicles &&;1 = j(¢i;), with j given in (2.8).

Observation 5.1. In the previous construction, we get a projection locally given by
(2164, ...,0" p" .. p") e (2|08, 0™).
By construction, the projection C = C well defined. For any point p € C the fiber has

dimension 0|n.

Observation 5.2. There exists a geometric description of this fact given by [8]. The
space C' is described by the space of O|n-subspaces of T,C' for any p € C. The SUSY-
super structure for a point (p, F) is given by the distribution EC T, E)é defined by the
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local form dz + p'df' + --- + p"dd™ for p = (2]|6',...,0™). Locally, E is generated by
{0,1,...,0pm,p' 0, + Opr,...,p"0s + Opn}.

In this context, the projection C =5 Cis given by (p, E) — p and the distribution E is
given by dr~'(E), for T( pC A, T,C.

For SUSY,-super curves C' — S the operators D' = 0°9, + 0; define a 0|n-distribution
over Tgyg with D!, = (Diop 5)Dh + -+ + (D,¢% 5)Djs, @ = 1,...,n. For the change of
coordinates (F|¢!, ..., ¢") the operators D?, for i = 1,...,n, verify

D'F = ¢'Di¢' + -+ ¢"D'¢", i =1,...,n. (5.1)

Observation 5.3. The SUSYj;,-super curve C associated to the 1|n-super curve C' — S has
a rank O|n bundle locally generated by the local fields D' = 9, i = 1,...,n. Reciprocally,
suppose that C' — S is a SUSYa,-super curve with the local coordinates (w|6!,--- ,6%")
with a change of coordinates (F|¢,- - ,¢"), introducing the new variables

w=z+i (00 +---+ 67710

¢ =—i(—=07 1 44i0%), j=1,...,n.

p=—i(0% 1 4i6%), j=1,...,n.
For the change of coordinates

G:F+Z (¢1¢2+___+¢2n71¢2n)

W= —i(—¢¥ T +ig™), j=1,....n,

W =—i(¢¥ 1t +igY), j=1,...,n,
and considering the operators DL = 3 {D% £iD%~1}, the equation (5.I)) reads:

DL.G =n'Diyp' + -+ " DIy (5.2)

This induces the rank 0|2n-distribution

D => ((D)*D%_+ (D) n")D3 ) (5.3)
k=1

and if the following equations hold

Dyt =0, jk=1,....n; (5.4)
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then we can define the 1|n-super curve by the coordinates (w|¢',...,¢™). The conditions
described in equation (5.4)) are equivalent to have the 0|n-subdistribution locally defined by
Di,jzl,...,n.

Also, let C' — S be a SUSY,-super curve taking the Aut“[[1|4]]-principal bundle Auts —
C, we obtain that it comes from a 1|2-super curve if and only if the bundle Aut[[1|2]]\Autc

has a global section.

Example 5.1. The 1|1-super curves induce what is called oriented SUSYs3-super curves.
For a general SUSYa-super curve and change of coordinates (F|i),n) equations (5.3)) are:

Do+ =Da s Dg— + Do ynDp 4,
Da’_ :Da,—d}Dﬁ,— —+ Do“_T]Dﬁ’_;,_,

Da,+¢ Da,—i-n
Do -t Do -1

is invertible, then D, _¢ D, +n # 0. If (5.4)) holds, differentiating equation ((5.2), we get

and since the matrix

DavaO[’,F - Dm, (77Da,f¢) )
== _Da7_7]Da’—w - nDa,—Da,—¢;

since D, D, = 0, we obtain that D,_nD,_1¢ = 0, then D, _n vanishes. Finally, there
exists another bundle defined by D_ that for a change of coordinates (F'|i,n) we get

D._ =D, _vDgs_.
This line bundle induce another curve C defined by the coordinates:
Z=z—0p,
p=p
this curve is called “dual” curve associated to C' — S. The situation was described in [2].

Example 5.2. In this example we will see a SUSYj-super curve that does not come from
a 1|2-super curve.

Over the affine plane C'* consider the following relations
1. S(z]0%,0% 63,0 = (= + 1]0*,0% 63, 6%).

2. T(2|0Y,602,0%,0%) = (z+ 1 — 20102030%|01 + 02030, 02 — 01030, 0° + 01620", 0 — 01026°).
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where 7 is even. The quotient C*/(S,T) is an elliptic curve T, with a SUSYj-super
structure. Its tangent bundle 75 does not have a subbundle of dimension 0[2 then this

curve does not come from a 1|2-super curve.

Observation 5.4. For n = 2 the change of coordinates for our new variables (p', p?) are

given by the equation:

771 - O F aQCbQ _81¢2 /01 8z¢2 1 2
e R AR CA

where A = (9;¢7); ;. More specifically, observe that the local coordinates p'p?, p', p* define
a 1|2 bundle over C' — S and since

n'n? NFOF p'p’
| =det AT [Oh0t O1p'\ [—OLF\ | + Ber(®)JP | p?
—771 82¢2 91¢2 O F —,01

Then the sheaf Wz that defines C is given by the extension of O¢ by Berc s ® (¢:
O—>00—>W5—>Berc/s®ﬂc—>0.

When our curve is split, and associated to the bundle E, then Cisa split curve associated
the reduced curve C,q and
W=E&(E" ®Qc,).

In this special case, we can consider the dual curve as the split curve associated to the curve
Crq and odd part E* ® Q¢ ,.

Example 5.3. Here, we will see a S(2) super curve that is not an K(2) super curve. Over

the affine plane C'? consider the following relations
1. S(z]0%,0%) = (= + 1]6',6?)
2. T(2|6*,0%) = (2 + 7+ 0'p|0*,6?)

where 7 is even and p a nonzero odd constant. The quotient C**/(S, T is an elliptic curve
T,, with the Berezinian [dz|df'df?]. Notice that its tangent bundle has a well definite
110 vector field 9, and suppose that £ C 7Tr, , is a 0[2-subbundle. Since the projection is
E — Tr,,/(0.) is an isomorphism and Tt /(0.) is trivial, with global sections {0;, 0.},
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then FE' is trivial. Now, the étale covering

Tere — T,

L]

1|2 7"
cle =T,

implies that the pullback 7*F is trivial. A global vector field X has the form a0, + b0y + c0s

that should verifies the relations
1. a(z+1,0%,0%) = a(z,0%,0%), a(z + 7+ 0'p,0',0%) = a(z,0%,0?) + pb(z, 6%, 6?).
2. b(z+1,04,0%) = b(2,0",0%), b(z + 7+ 0'p,0",0%) = b(z,0',0%).
3. c(z+ 1,01, 0%) = c(2,04,0?), c(z +7+ 0,01, 0%) = c(2,0%,67).

we deduce that a, b, c are constants, and moreover, pb = 0. Then 7*F is not trivial. Then

Tr., is a curve with a trivial Berezinian that is not a SUSYj-super curve.

5.2 S(2)-super curves and SUSY,-super curves

In this section we define the most important family of curves on our work.

Fix a base super scheme S, we will consider curves and bundles relative to S. Recall that
for a 1|2 super curve C' — S we write Ber¢)s = Ber(€2¢/s) and that an S(1|2)-super curve is
a pair (C, A), where C' — S is a super curve and a nonvanishing section A € H°(C, Bergys).

Definition 5.1. An S(2)-super curve is an S(1|2)-super curve (C, A) such that there exists
an atlas {U;, ®;} compatible with A and change of coordinates ®;; = ®;0®; " € Aut®[[1]2]].
We say that a flat family of curves C' — S is a family of S(2)-super curves, if for any closed
point y € S, Cy is an S(2)-super curve.

Observation 5.5. For an S(1|2)-super curve (C, A) we can construct the bundle of coordi-
nates preserving the Berezinian, Aut‘é, considered as the set of pairs (Z, ®) for Z a S-point
in ' — S and ® a local system of coordinates compatible with the section A. This bundle
is an Aut’(R][[1|2]])-bundle, and observe that the quotient:

Aut®[[1)2]]\Auts, — C (5.1)

is an G,-bundle. From (£.3)), we get that Aut®[[1|2]]\Aut, is isomorphic to A.

Now, we can reformulate the definition of S(2)-super curves:
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Proposition 5.2. An S(2)-super curve is an S(1|2)-super curve (C,A) such that the G,-
bundle (5.1)) is trivial.

Proof. Observe that the bundle is trivial if and only if it has a section. In this case,
a section is an atlas {(U;, ®;)}; such that the change of coordinates ®;; := ®; o ®;! €
Aut(R[[112]).

Finally, the bundle is trivial if and only if there exists a covering for C' — S with
trivializations {(U;, ®;)}; compatible with A such that the change of coordinates ®;; €
Aut®[[1]2]], that is, (C, A) is an S(2)-super curve. O

The adjoint action Ad, : Aut®[[1]4]] — Aut”[[1]|4]] given by o € Aut“[[1]4]]:
a(z|0Y, 6%, p', p?) = (2 = 0'p" — 7%, p", p*, 6%, 6%).

Observe that « is involutive and Ad, fix the subspace Aut”[[1|2]] C Aut“[[1[4]].
For the automorphism Ad, we have that Aut[[1[2]] N p (Aut’[[1]2]) = Aut®[[1[2]]. We

recall the commutative diagram

Aut®[[1)2]] — 2% Aut®[[1]2]]

| |

Aut?[[1]4]] —2%— Aut“[[1]4]]
Let C — S be an S(1]2)-super curve, over Aut, we construct the Aut®[[1]4]]-principal
bundle, Aut®[[1]4]] X g o1 2 Autl,, after this we obtain a morphism given by:

gt AUt[14]] X g1y Aute = Aut®[[14]] X 5 o112 Aute

(5.2)
(9, (2, ®)) = (aog,(z,P)).

If C — S is an S(2)-super curve, then the bundle A = Aut®\Aut}, — C is trivial,
then we have a global section s : C' — A, defined by local sections {¢;}; of the bundle
Aut}, — C such that ¢; o ¢;' € Aut®[[12]]. Using (5.2), we obtain the local sections
of Aut“[[1[4]] X (12 Autl, — C given by {Ad, ((1,¢;)) = (v, )}y, since ¢; o gbj_l €
Aut®[[1|2]], then p(¢; o ¢;') € Aut®[[1]2]]. In particular, such sections gives us a global
section of Aut[[1[2]\Aut”[[1[4]] X (12 Aut}, — C. Then, we obtain another family of
S(2)-super curves C' — S. Such family is called dual family of curves, or simply dual curve.

Then the bundle Ad,(A) defines a family of S(2)-super curves if C' — S is a family of

S(2)-super curves.
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Observation 5.6. Let us consider an element ® € Aut®[[1|2]] such that p(®) = ®. Then

we have the condition ® o @ = o 0 ®, expanding this we obtain:

()= ()

Using the formula given by the inclusion (2.8)), we obtain
-1
Di¢! Di¢? DyF ¢!
= o . (5.3)
Dy¢'  Dy¢p? Dy F ¢?

D; = D' — (0" — p"0.,
Hoa=H— (0" —p"YD'H — (6> — p)D*H — (6* — p*)(0* — p')D'D*H,

Using the relations:

where H = H(z,0',6?) is a regular function. Replacing this relations on the left hand side

of we obtain:
1
B qubl D1¢2 91 o pl DlF 91 _ pl
s (e i) (o) ot 00)) ((B0) -2 (527))
., (D'F - Y
=A™ <D2F> — (det A)A™ (92 _p2> — (0" = p")(0* = p?) ( 5,01 ) ,

D1¢1 qubZ
qubl D2¢2

1 ol _ ol DID24!
RHS = (Zz) - A (92 _ 22) — (0" = p") (" = p?) (DID;;) ‘

Comparing both sides, and replacing in (5.3), we obtain that the only parts that contain

Dlgbl D1¢2 -1 DF ¢1
<D2¢1 D2¢2> <D2F> - (¢2> ’

so, we should have that ® € Aut“[[1|2]]. In order to see that ® € Aut“[[1|2]] verifies (5.3)),
we simply recall the equations (3.14]) and recall that Aut®[[1|2]] N Aut®[[1|2]] = Aut**[[1]2]]

where A = ( ) . Similarly, expanding the right hand side we obtain:

the variables z, 0%, 62 are
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should preserve the orientation, that is we use the identities (3.16|) and we are done.
Finally for ® € Aut“"[[1|2]] we have u(®) = ®, then for a SUSYs-super curve the
construction given in Proposition [5.2|the dual curve is canonically isomorphic to the original

one.
Similar to [5.2 we obtain:

Proposition 5.3. Given a family of S(1|2)-super curves C — S, the image Ad,(A) in
(5.2) defines a family of 1|2-super curves if and only if C — S is a family of S(2)-super
curves. In such case, we obtain the family of dual curves. Also, if our curve is an oriented

SUSY;-super curve, the dual curve is isomorphic to the original one.

Proof. The bundle Ad,(A) defines a 1|2-super curve if and only if the projection of Ad,(.A)

over Aut[[1|2]]\ (Aut®[[1]4]] XAuté[[1\2]]AUt§c) has a global section, since Aut[[1]2]]Nu (Aut’[[1|2]) =
Aut®[[1]2]] then such projection is isomorphic to A, then Ad,(A) is trivial if and only if A

is trivial, that is if C' — S is an S(2)-super curve.

The second part comes from the observation above. O]
Finally, we obtain:

Theorem 5.1. There exists an involution i of the moduli space Mgy of S(2)-super curves.

The fized point set of u contains the moduli space Mg )2y of orientable SUSY,-super curves.

Observation 5.7. This duality was observed in [I5] as an involution over the super algebra

S(2).

5.3 Splitting curves

The criterium given in Proposition is very complicated to use in practice, since the
Aute bundle is infinite dimensional, there exists a simplest criterium given by the operator
defined over Aut(1|2) > ® = (F|¢!, ¢?):

D1D2F D1D2¢1 D1D2¢2
v(®) =Ber | D'F D't Di¢? |,
D2F D2¢1 D2 ¢2
where D = 0°0, + 0yi. That give us the useful lemma that is going to be proved later:

Lemma 5.1. Suppose that ® € Aut’(1]2), then ® € Aut®(1|2) if and only if v(®) vanishes.
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Observation 5.8. We already see in Proposition [3.6] that any oriented SU SY5-super curve
is naturally an S(1|2)-super curve. Now suppose that we fix coordinates compatible with
the SUSY -structure, and consider the change of coordinates ® = (F|¢', $?). From the

relations given in (2.2)) we calculate:

D1D2F D1D2¢1 D1D2¢2
v(®)=Ber | D'F Dot D'¢?
D*F D' D2g? (5.1)

D'F
_ 12 _ 1241 112 42 -1 -1
_<DDF (DD¢ Dng)A (2F>>detA ,

where A = (D'¢?). Derivating by D! the condition D*F = ¢! D?¢! + ¢! D?¢! given in (2.2)
an using (3.14]) we obtain that

DlDZF:—QSlDlDQle—¢2D1D2¢2.

Finally, replacing this in (5.1)) we get that

D'F
1241 112,42 -1
( (p'p2%' D'p2¢?) A <D2F>>detA
= (D
0.

D'D*F
1

D'D*F 1D2<b1 D1D2¢2) (2 )) det A1

So we obtain the following proposition:

D'D’F + ¢'D'D?*¢' + ¢>’D'D*¢?) det A"

Proposition 5.4. Let C' be an oriented SUSY;-super curve, then C' is an S(2)-super curve.

In particular, if C' be an S(2)-super curve over a point, that comes from an oriented

SUSYs-super curve from Proposition we obtain that C' is split.

Observation 5.9. Let {®; = (z]6},6?)} local coordinates over C' — S. For the change of

177

coordinates ¢;; we get
2 = Fij(z) + Gij(2:)0;6;

0; = 0}ayn(z) + 07 a12(2;)
07 = 0} as (z) + 07 az(z:).
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Since C' — S has a trivial Berezinian, then G;; = \;;0,, Fj;, for \;; a constant, then we have

2 = Fij(2i) + Xij0:, Fig(20)0:07 = Fij(zi + Xi0:67)
931‘ = 0ia11(z) + 0l ara(z) = gilj(ziwl'l’ 0;)
02 = O as (=) + 0an(z) = g7 (=0}, 62).

From the generators given in Observation (2.15)), we get that (T)ij = (Fylgi;,95) €
AutA[[1|2]] and Zi + /\Ué’lﬁf = exp()\wellgfﬁzz)(zz), then q)ij = EI/)ij o exp()\,d@zl@f@zl), that is
exp(\;;07670,,) gives the cocicle in (b.1)).

i

The relation of (3.8) with the class (|5.1]) is the following:
wij(f) = 710, 070... f

for local coordinates (z;|6},62) over Uj.

In [10] it was proved that C' — S is projected if and only if {w;;} € H'(C, O¢/s) vanishes.

Then we obtain

Theorem 5.2. Every S(2)-super curve over a purely even base S is split.

In order to get a geometric interpretation of this,consider a 1|2-super curve C' — S, the
inclusion C,q & Cp and the space of differentials over {¢,, we obtain that j*(}¢, is a rank
2 bundle over Cq with a projection j*Q¢, — Q¢ — 0. Actually, we get the sequence of

O¢,-modules:
0 — det F — j*QCo — chd — 0. (52)

As an extension of O¢, ,-modules, (5.2), is defined by an element of
Ext'(Qc,,,det F) = H'(Qf, , @ det F) = H' (T¢,, ® det F),

and such element is the class {w;;} defined above.

Now, if det F = Q¢ ,, then we have the sequence
0— Qc, = 7 Qc, — Qo — 0. (5.3)

When C' — Sis a S(1|2) curve, to distinguish an element in H(Cyq, 7*Os) C H'(Cyq, Oc,,),
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where 7 : C'— S, we have to notice that the sequence (/5.3)) fits in the following diagram:

0 0 0
0 chd L®chd—>QCrd—>0
d 1®d d
0 Oc, —2—+L® O, — O, ——0 (5.4)
0—— 7Oy L m™0g ——0
0 0 0
where L ® Q¢ = j*Q¢, and L as an extension of 7*Og-modules represents the class

I'c e Hl(Crd, W*OS).
Finally, in [I6] and [7] it is proved that each 1|2 super curve, over a point, is defined by

the data of (Ciq, F, {wi;}), where {w;;} represents an extension of O, ,-modules:
0—=detF =L —Qc, —0.

For an S(1]2) we need (Cyq, F,T'¢), where I, represents an extension of 7*Og-modules
0—7m0g—L—>71"0g—0

which gives rise to the diagram ((5.4)).
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Chapter 6

Moduli Spaces

6.1 Families of super curves

6.1.1 A family of S(2)-super curves

Observe that for an S(2)-super curve, over its SUSY,-super curve C we have the local fields

D' = 9, and D’ = 9, + By on the coordinates (2|0, 62, p', p?) given by satisfying

the relation {D’, DY = 8:70,. The change of coordinates satisfies the equations (5.2)):
D'F =1'D ¢! + 1D’ ¢",
thus we have
(D', D' }F = D' n'D’ ¢' —n*{D’, D’ }¢' + D' *D’ ¢* — *{D’., D? }¢?,
and that implies:
0;;(0.F +1'0.¢" +1%0.¢%) = Din' D’ ¢' + D', n* D ¢*.

Follows from ({5.5) that
D_li_nl D-1|-7]2 B D%¢2 _D2_¢1
Dinl D3r772 o —D£¢2 Dl(bl ’

0.F +n'0.¢" +n*0.¢° = D' ¢' D> ¢* — D' ¢*D* ¢, (6.1)

Finally, we get

then we have that the projection det E — 75 /(£ + E) is an isomorphism.

65



66

Conversely, suppose that we start with a 1|0-family over a purely even base S, my : Cy —
S, and a rank 0|2 bundle £ with an isomorphism (3 : det E — Q¢,/s. Given such data, we
construct m: C'— S given by

C’rd = COu
(Oc)o = Oc, @ det E,
(Oc), = TIE.

The S(2) structure is given (locally) by the coordinates z and local sections 6',6? of
E such that (6" ® 6?) = dz. This data defines the Berezinian [dz|d§'d#?]. Since 3 is an
isomorphism, then such class is well defined. Also, we already see in Proposition [3.4] its

associated bundle A¢ is trivial, then C' — S is an S(2)-super curve.

Similar to [2] we obtain:

Proposition 6.1. For any family my : Co — S of relative dimension 1|0 over a purely even

base, the following data are equivalent:

1. An S(2)-family of curves m: C — S over S with Crqg = Cy and Oco = O¢, (1), where
Co(1) is the first neighborhood of the diagonal in Cy x g Cy.

B
2. A rank 2 bundle E joint with an isomorphism det E = Q¢ /s up to equivalence: a pair
(E, B) is equivalent to (E', 3" if there exists an isomorphism, such that the following
diagram commutes:

E——F

N

Qcy/s

Proof. The previous comment shows (2) — (1).

To see (1) — (2) consider the SUSYj-super curve C' associated to C' — S. Since C' — S
is S(2), we have the well defined (0]2) bundle

E = (p'0. + 8y, p*0. + 0)

over C. The pullback £ := z*(HE) over the inclusion i : Cy < C is a rank 2 bundle. We
get from equation (6.1 that det £ ~ Q¢, /s, where Cy = Cyq. Finally, since C' — S is 5(2),
then Ocy = O¢, ® det £ and O¢; = IIE. O



67

6.1.2 A family of S(1]|2)-super curves

Example 6.1. Here we will see an example of a S(1|2)-super curve over a point that is not

an S(2)-super curve. Over the affine plane C'? consider the following relations
1. T(z]0%,6%) = (= + 1]6',6?),
2. S(z]0%,6%) = (z + 7 + 6'6%0*,6?),

where 7 is even. The quotient C'?/(T', S) is an elliptic curve T, with Berezinian [dz|d6'd6?).
Consider the SUSY,-super curve associated, 'Tf}, since ﬁw does not have a split then T,

does not have an S(2)-structure.

A general family of S(1]2)-super curve C' — S over the even base S, with a nonvanishing

section A € H°(C,Bergs), defines a class
I'c € H(C, 7 0y), (6.2)

given by the bundle A in (5.1)) and Proposition Suppose that this class is defined by an
atlas {(U;, @;) }ier compatible to A and I'c = {;;}, then the change of coordinates is given
by

2 = Fij(2:) + 75505, Fij(2)0; 60;
0]1 = 03@11(22‘) + 91'2@12(22')
9]2 = 03&21(21‘) + 91'2@22(22').

Here the covering {U;} and the change of coordinates {Fj;} defines a curve Cy and

A an(zi)  aa(2i)
ij =
ax(zi) az(z)

defines a rank 2 bundle £ over Cy with det E >~ Q.

We can define the new curve C" = Cy(FE) that is actually an S(2)-super curve.

The sheaf (O¢)o defined over Cp is a sheaf of algebras that is isomorphic to Cp(1),
the first neighbourhood of the diagonal on Cy xg Co, if and only if {v;;} € H*(Co, 7*Os)
vanishes. In general, each class ' € H'(Cy, 7*Ogs) defines a curve Cr = (Cy, (O¢)o) by the

diagram from (5.4). First take £L =L ® O¢, and B = a(O¢, ), with these we construct the
sheaf

Te1s
(rQy—y®r,a®a:z,y€ L yacB)

(Oc>0 =
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Observe that this sheaf fits on the diagram of algebras:
00— Qc, = (Oc)o — Oc, — 0,

where the image of Q¢, have the zero multiplication. Since we consider terms of degree
greater then zero, then (O¢)o does not necessarily has the structure of O, algebra.

Finally, we consider
(OC)l =1IF y
with multiplication given by the isomorphism

det B — QCO-

So, we get the S(2)-super curve (C,O¢). Finally:

Proposition 6.2. For any family over a pure even base g : Cy — S of relative dimension

110, the following data are equivalent:
1. An S(1|2)-family of curves m: C' — S over S with Cyq = Cpra and (Oc)o = Ocy.-

2. A class T € HY(Cy,m*Og) and a rank (2|0) bundle E with an isomorphism det E LN
Qcyys up to equivalence: a pair (E, B) is equivalent to (E', B') is there exists an iso-

morphism, such that the diagram

commautes.

Proof. The previous comment shows (2) — (1).
To see (1) — (2) we get the class I' € H*(Cy, 7*Og) by taking v;; = v(P;;) as in (6.2)),
and considering the S(2)-super curve ' = C(E), from the comment, the associated C’

super curve verifies what we want. ]

6.1.3 Example: The genus 1 curve

For the special case of genus 1 curves, we have that the even part is given by an ordinary
curve Fy and an element of H'(Ey, SL(2,C)).
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Is known that the space of elliptic curves is given by a quotient of the upper half space H
by the group SL(2,7Z), where any element 7 € H defines a quotient of C by the action of the
group Z, = {a+ b7 : a,b € Z}. Similarly, any element (7,a) € H x sl(2,C), the quotient of
C'2 by the action of S(z|0",6%) = (2 + 1|0, 0%) and T(2]0",60%) = (z + 7|(6", 6?) exp(27ia)).

A family of even deformation is given by H x s[(2,C) considering the action of the
following three groups: SL(2,7Z), Z*, SL(2,C).

1. The group SL(2,Z): Consider the action
a b ar+b a
(1ya) = | ——, ——
c d ct+d et +d
and for the quotient, we have the isomorphism induced by

a b 1oy z 1 a2 . ca
(c d) (2]0°,6%) = (CT+d(6,9)exp 2mzc7'—|—d

and observe that such isomorphism preserves the Berezinian if and only if ¢ = 0 and
d=1.

2. The group Z?: Consider the action
(m,n)-(r,a) = (1,a +m7 + n)
and for the quotient, we have the isomorphism induced by
(m,n) - (2]6',0%) = (2|(6",6?) exp (2mmiz))

and observe that such isomorphism preserves the Berezinian if and only if m = 0.

3. The group SL(2,C): Consider the action
C-(r,a) = (1,CaC™)
and for the quotient, we have the isomorphism induced by
C - (2|64, 0% = (2|(0%,6%)C)

and observe that such isomorphism preserves the Berezinian.
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Finally, if we consider the group SL(2,Z) x Z* x SL(2,C) with the product
(4,7,0) - (A7, C") = (A4, v + 7 A", CC)

we get the fine moduli space My = H x sl(2,C) J SL(2,Z) x Z* x SL(2,C) of the even

families of S(2)-super curves.

Observation 6.1. The moduli space of oriented SUSY;-super curves is given by (7,a),
where a € 5[(2,C) is diagonal. In this case and coordinates given by (2|01, 6?), the SUSY-
structure is obtained by w = dz + 6%d6*.

6.2 The moduli space of curves with a trivial Berezinian

It was studied in [5] the moduli space of super curves with a fixed Berezinian. Also, a
deformation is viewed as a deformation of a curve together with a deformation of a section
A € H°(C,Berg/s). Observe that the same happens when we study the moduli space of
S(2)-super curves.

The routine to study this is by the following recipe:
1. Suppose that the moduli is a super scheme SM,.
2. The reduced space (SMy).q represent the functor SMg|seh.

3. The odd part is given (locally) by the sheaf (j*7saz,)1. The deformations over the
odd part are represented by families over the super scheme Spec(k[eg,€1]), where

€5 = €2 = oe; = 0 and ¢; has parity j.

4. Locally, the scheme SM, is given by (SM,).,qa(E), with E a sheaf over (SMy),q.

Observation 6.2. The process described above is justified by the following construction:

Suppose that we have a family C' — S of S(2) curves, then the diagram

C() ZZXXSrdS—>X (61)

| |

Srg —— 5

Since Syq is a scheme and Cy — S,q is family of S(2) super curves, then this family is given
by a morphism ¢q : Sya — (SMy):q and the pullback ¢§(SM,)a — Sia. Since locally, S

is a split scheme, then in an open neighbourhood U C S,4 there exists a fiber bundle F
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such that, locally, S|y = U(FE). Assuming that U is affine we will proof uniqueness on the
extension of such family Co(U) — U.

Finally the family 7 : X — S is going to be described as the gluing of local open pieces
{m=1(U;) — U;}; through morphisms U; — SM,. Finally, the inner automorphism is going

to give us an orbifold description of such object.

We first work on the moduli space of super curves with a fixed Berezinian, that is for a
super scheme S and the functor Mg, the set Mg2),4(S) denotes the collection of 1|2
dimensional families C' — S of genus ¢ super curves with a global non-vanishing section
A € H°(C,Bergys). This moduli was described by il as an orbifold. Here we give a local

description.

6.2.1 The reduced space

It follows from proposition that an even deformation of an S(2)-super curve is given
by deformation of curves and a rank 2 bundle with determinant the canonical divisor. In
this case, we have that such moduli space is parametrized by the space of curves, and a
rank 2 fiber bundles F joint with an isomorphism det £ >~ Q¢,.

In order to do this, first consider the moduli space of curves joint with a rank 2 bundles

M, o, over it consider the natural transformation

det : My o —Jac
(Co, E) =(C,det E).

The preimage of pairs (Cp, Q¢, ) representing genus g curves joint with the canonical bundle,
represents the pairs (Cy, E'), where Cj is a curve and E is a rank 2 bundle joint with a

isomorphism det £ = Q¢ .

Observation 6.3. For simplicity (and smoothness) we are going to consider only stable
bundles. It was seen in [17] that this space is not smooth and is not endowed with a universal

curve. This space has an stratification given by the subspaces
Moy = 1{E € Myq : dim H(Cra, E) > k}.

the singular locus is given by M, o 41 and, in general, the dimension of M, g is 6g — 6 —

(k+1

5 ), for g > 2. However, the dimension of an open part of this space is 6g — 6, when g > 2.

Observation 6.4. Suppose that we consider families C' — S of genus g super curves with
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g > 2 and S a scheme. If we have an automorphism of the family given by

D
—
¢
—

n+——Q
n—Q

such that they coincide over a point. Considering the reduced scheme C,q — S, this is a
family of genus g curves over S. Since this family does not have automorphism different
from the identity, then ¢ = idg. Recall that ® is induced by an automorphism of a rank 2
bundle ¢ : £ — E that preserves the isomorphism det £ ~ Q¢ /g, that is ¢ € SL(E).

That is, the set of automorphism preserving the family C' — S of genus ¢ super curves
with g > 2 over a scheme S are given by isomorphisms of rank 2 bundles ¢» € SL(FE). In

particular the functor representing families of S(2) super curves over schemes is an orbifold.

6.2.2 0Odd part

Let 7 : C'— S be a family of S(2)-super curves with a fixed genus g, for a split supermanifold
S, with reduced space S;q and Og_-free module W. Considering the closed point sy € .S and
the fiber Cs, — {so}, there exists a covering by affine open sets {U;} of Cj, such that the
family C' — S restricts to U; x S — S. This observation follows from [I8, Theorem 1.2.4].
Then the global family is determined by the change of coordinates in ®;; € Aut((U;;) x 5).

Considering the reduced family Cy — S;q given by , fixing the reduced family, then
the reduced part of the change of coordinates ®;; is fixed, denote it by ¢;; € Aut((U;;) X S)sa-
Then, the gb;jl@ij is an automorphism being the identity over the reduced space, then this
morphism is the exponential of a nilpotent vector field relative to S. To get a family of S(2)

curves we need the distribution:
D=5 (2) NTc /S

where S(2) was described in (3.11]), and the sheaf A/ of nilpotent elements of A®* 7*W. Then,
gbi_jlq),-j = exp(X;;) for an even vector field X;; € N'® D. The group bundle

G = exp((NV @ D)), (6.2)

and the deformations are parametrized by H'(Cjy, G).
Finally, we get

Proposition 6.3. Let S be a split super scheme and a family C' — S of S(2)-super curves,
then this family correspond to a extension of Cy — Siq and a class in HY(Cy, G), for G in

62).



73

Observation 6.5. We are going to calculate the dimension of the odd part. Suppose that
we take an S(2)-super curve over a point, given by a curve C;q and a rank 2 bundle over
Ciq. Take the fat point Spec(kle;]), where €; is odd. Any extension is given by an element
in H'(Cyq, @), with G in (6.2). Any element in is given by a class {exp(X;;)} with
Xi; € (N ® D). In this case the nilpotent part is described by:

e14ij, Aij € D(Uiy)

In this case, D is described as a sum of the distributions E; = (g1, 0g2), By = (010.,6%d.)
and observe that Fy ~ E as bundles over C,q. Since E is stable, then the odd dimension is
dim H°(Cq, E) when g > 2. Doing the same calculation for Fy ~ E* @ Q¢, we obtain that
the dimension of the odd part is 2dim H°(Cyq, E). It was proved in Theorem 1.1 [19] that

in general the dimension of this space is zero.

6.2.3 Inner Automorphism

Now, we will check which automorphisms preserves the family of curves. We are looking for
maps ¥ : S — S such that the families of S(2)-super curves C' — S, ¥*C' — S are equal,
in this case we are going to say that ¢ : S — S preserves the family. First consider the

following lemma:

Lemma 6.1. Let 7 : C' — S be a family of curves, suppose that 1 : S — S preserves the
family and 1.q : Sra — Sia s the identity, then v is the identity.

Proof. Since, we can cover S by open split super schemes {S;};, then ¥|¢, : C; — S;, with
C; = 7 1(S;), is the identity over S;,q. The family C; — S; is defined by C; o — S;.q4 and a
class H'(C;,G;). Since ¢ define the same family, then both classes should coincide, then
1 should be also the identity. O]

From the previous lemma, it follows that any automorphism of the family X — S is
given by an automorphism over the reduced space Syq.

Let 7 : C — S be a family of S(2)-super curves, S is a scheme and E be the rank
2 bundle defining w. Considering the reduction Cyqy — S, we obtain a family of genus g
curves over S. From now on we consider only the case g > 2. There does not exists any
automorphism different from the identity. Then, in order to study such automorphism we
have to check what happens in the odd part generated by the bundle E, that is we have
to study the automorphisms of the rank 2 bundle ¥ — (.4, with the chosen isomorphism
det E — Cyq. Considering the stable bundles, we have Autc, (E) = (7*Og)*, since we need
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that such automorphism preserve the isomorphism det £ — C'q, this group reduces to +1.
The corresponding automorphism given by 1 is the identity, while the automorphism given

by —1 is denoted by W. Then we get the lemma:

Lemma 6.2. Let m: C' — S be a family of genus g S(2)-super curves, S is a scheme and
E be the rank 2 stable bundle defining w. Then any automorphism 1 : S — S preserving
the family corresponds to a class oy, € H'(S,Z/27).

Finally, we get

Proposition 6.4. Let 7 : C — S be a family of genus g S(2)-super curves. Then any
automorphism ¢ : S — S preserving the family corresponds to a class o, € H' (S, Z/27).

From now on, let M., be the moduli space of genus g curves C' joint with a rank 2
bundle F — C with a fixed isomorphism det F ~ Qs. With this notation, the previous

proposition could be rephrased as follows:

Theorem 6.1. Let C' — S be a family of S(2) super curves, then from Proposition
define a map h : S;q — M and from Proposition we define a class 7 € H'(Cy, G).
The pair (h,T) are unique up to the equivalences (h,T) ~ (ﬁ,?) if and only zfﬁ = hou,
tau = %\au, for 1 as Proposition .

Observation 6.6. From Observations and over the point (Cyq, E) the orbifold (in
general) has dimension 6g — 6|0, when g > 2.

6.3 Automorphisms over S(2)

6.3.1 Automorphisms on super manifolds

We start asking what kind of automorphisms are allowed between super manifolds. Let M
be a super manifold with reduced space M,q4, then observe that any ® € Aut(M) induce by
reduction a ®,q € Aut(M,q), so we get a natural map extending (2.1)):

Aut(M) — Aut(M,q) (6.1)

Observation 6.7. More generally, let M, N be super manifolds. We saw a natural map
Homggen (M, N) — Homgep, (Mg, Nyg), there is no chance that this map is surjective. For
example, take N = M4, then if there exists a morphism ¢ : M — M4 such that the
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following diagram commutes
M —¢> Mrd

I

id
Mrd —_— Mrd

That is equivalent to M being projected. Since this is not true for super manifolds, then,

in general, the correspondence Homgge, (M, N) — Homge, (M,q, Nyq) is not surjective.

When we restrict to automorphisms, we firstly ask if is surjective. Let M be a
split super manifold, associated to a manifold M4 joint to a vector bundle E. Suppose that
¢ : Myq — M,q is an automorphism, any extension ¢ : M — M is an isomorphism of vector
bundles

E — ¢"E.

This is true when ¢ is homotopic to the identity. In general, we cannot assure that E, ¢*FE

are isomorphic.

Example 6.2. Let C' be a torus and ¢ : C' — C the degree —1 map, that is, consider
¢(P) = —P with respect to the abelian structure. Any point P € C defines a divisor [P]
over C, and the pullback is given by ¢*[P] = [-P]. Then D ~ ¢*D if and only if 2D ~ 0.
Then, if a line bundle L is isomorphic to ¢*L, then L? ~ O, that is, L is a spin structure
over C.

On the other side, for any translation tp : C' — C, Q — Q+ P, we get that for any divisor
D the corresponding pullback tpD = D +deg(D)P, then such divisors are equivalent if and
only if deg(D) = 0 or P = 0. In particular, for a line bundle L the line bundles L, ¢} L are
isomorphic if and only if L has degree zero or P = 0.

Finally, we get a complete description of the image in for a super manifold M with
M.q = C and associated to the line bundle L. If L is a spin structure, then any composition
¢otp, for ¢ a morphism of degree +1 and ¢p is a translation, is in the image of . When
L has degree zero but is not a spin structure, then just the translations ¢tp are in the image
of . Finally, if deg L # 0 then just the identity is in the image of .

We just see that (6.1]) is not surjective, the next question is if this map is injective.

Example 6.3. (The canonical automorphism) Let M be a super scheme. From the decom-

position Oy = (Onr)g + (Onr)1 we can define the automorphism

7: (Om)o + (Om)1 —=(Oum)o + (Om)1

ag + a1 —ag — as.
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This automorphism is the identity when we restrict to M,q. Such automorphism 7 is called

canonical automorphism, and observe that 72 = id,y.

More generally, let & € Aut(M) with reduction ¢ = idyy,,, then for any f € Op(U) we
get that ®(f) = f mod J. In particular, ® preserves the filtration

Ouy>JDJ*D. ...

From this, we obtain the isomorphism ® : .J/.J? — J/J? of vector bundles over M,q. Also,
the induced map for topological spaces is the identity and since for a covering of M,q given
by {U;} we get O (U;) =~ Op,(J/J?)(U;) and we already know how this homomorphism
behaves on J/J?. Finally, to fully determine @ is still miss a family of automorphism
®;; € Oy(Uij) that represents a class in H'(Mq, Aut® (Oy)), where Aut®(0y) is the
sheaf of automorphism ¢ with ¢(f) = f mod J2.

Observation 6.8. Let U C M, be an open set and ¢ € Aut®(Oy,)(U), then such au-
tomorphism is given by the exponential of a nilpotent vector field X. We could suppose
that there exists a distribution D C 7Ty, that vector fields corresponds with elements in
Aut®(Oy), but this is false, since the exponential map exp : D — Aut®(0y) is not

linear.

To finish the section we mention how to understand the automorphism over a super
manifold. Firstly, we have to obtain the image of , that is all the automorphism over
M,q that extends to M. Secondly, we check when ® € Aut(M) with ®&,q4 = id. In order to
do this, we just classify this by a subset in Auty;, (J/J?) x H'(M,q, Aut®(Ox)).

Example 6.4. Let M be an n|l-dimensional super manifold, then Oy ~ Oy, @ L for
some line bundle L over M,q. Also, observe that Aut®(©,,) is a trivial group, because
L? = 0. Finally, we get that any map ® € Aut(M) is represented by a pair (¢,), where
¢ € Aut(M,q) and ¢ : L — ¢*L is an isomorphism of vector bundles over M.

In particular, following Example we get a complete description of the automorphisms

over M a 1|1 super manifold with reduced space a torus.

6.3.2 Automorphisms on the reduced space

We are interested on natural automorphism F of the functor S(2), : SSch — Sets. Observe
that such natural automorphism induce two reductions: F|se, is the natural transformations

defined in S(2)4|sen corresponding to

{C — S} — {F(C) X F(S) ./—"(S)rd — .F(S)rd}
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The second one is defined as a natural transformation F,q given by
{Ciq = S} = {F(C)ra = F(S)a}-

Such projection corresponds to the process of having a family of S(2) super curves C' — §
and construct the family of curves Cyq — Siq. Then, any automorphism on S(2), will induce
an automorphism over M. Since g > 2, following [20] Proposition 3.5, such projection is

just the identity.

For the first one, once we define the automorphism over M,, we note that the auto-
morphism Flgq, is going to define an automorphism over each fiber of S(2)y|scn — M,.
Since for each curve C' the fiber is given by M¢(2,2). Now, in [21] Theorem 5.3 is proven
that if ¢ > 4 then any automorphism of such space is given by a line bundle L with
L% = O¢ or L®? = w&?. In order to define Flsqs we need to choose a line bundle L¢
for any C' € M,. It was proven in [22] Theorem 2 that if g > 3 then any section of the
Picard bundle P, ; — M, has the form C' Q%<d/29_2). Then, we can only take C' — O¢
or C'+— Q¢. These sections correspond to the identity and the automorphism given by to
{C(E) = S} — {C(E* ® Q¢) — S}, respectively.

Finally we get that for g > 4 the only automorphisms in S(2)4|sc, are the identity and
{C(E) = S} — {C(E*®Qc) — S}. The second automorphism is going to be denoted by

o and we get

Proposition 6.5. Let g > 4, then the unique automorphism on S(2)4|scn are the identity
and o : C(E) — C(E* ® Q¢).

Now, let C' be an split S(2)-super curve over a point, defined by its reduction and the
rank two bundle E. Since, for any rank two bundle over a curve C.q we have the natural

isomorphism of bundles:

E*®detE - FE

a@uAv—iy(uAv)=alu)v—alv)u

we obtain that the automorphism o is the identity on Sch, since det & = Q¢ ,. Nevertheless,

we will see later an example (Example [6.5) where the automorphism is not the identity.

Observation 6.9. If we repeat the same argument to the functor S(1]|2) we obtain that

any automorphism is given by id or ¢ and an automorphism of the bundle L.
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6.3.3 The Automorphism p

Recall the involution given in Theorem Let C' be an S(2) super curve and consider

local coordinates (z|6',6?), the automorphism p induces the coordinates on C by the rule:

E:Z_elpl_92p2
ﬁlzpl
PP =p

Since, C' is split and described by the reduced curve C;q with a rank two bundle E over
Ciq, then for a change of coordinates ®(z|0',6?) = (f(2)|d' (2|01, 0%), ¢*(2|0*,6?)) we obtain
that the change of coordinates over C given by Ad,(®). To obtain an explicit expression,
first we will see what happens in the inclusion Aut[[1|2]] < Aut”[[1|4]]. Considering the
coordinates ® = (f|¢!, ¢?), with f(z]0%,6%) = f(z), the construction given in is given

by

D, ¢?
Dy¢?

D, ¢?
Dy¢?

) |
)

D f
D, f
pro.f
p?0. f

Here ¢'(z|0,60%) = 0'a;; + 6%a;1, for i = 1,2, that means

[0 ¢?] =1[0" 674,

where A = (a;;). Observe that det A =0, f.

) |
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Now, to calculate u(®), first we have to get the expression:
-1
Lt [T Z g ga(Pr00 Diot) (p10:f
f=lé ¢>](n2)—f [0 6]A<D2¢1 Dog? iy
-1
I p2 Di¢' Dyo*\ o, f
f—=1[0" 67 <D2¢1 Dy A oy
-1
1 pl - plazf
=f—0" ¢ 1d+(p2> (0.0 0.07) A 1) <p2azf>

o ) Ao o ()
= (0'p" +6*p)0.f — p'p*0.(¢"¢")

f= (0" +0°0%)0.f — 0'6%p' p°02 f

flz—=0'p" = 6p").

Similarly, we can calculate 7*(Z|p*, p?) and we obtain that

f=r
7’ =AM 77,

in (Z]p', p?) coordinates.
Then, we obtain that such coordinates corresponds to a the same reduced curve C,q and
bundle E* ® Q¢ ,. Finally, we obtain:

Proposition 6.6. For a split S(2) curve C — S associated to Cyq and the vector bundle

E, the dual curve C is also split and is associated to Crq and the vector bundle E* @ Q¢ .

In particular, the involution C' — C is explictly the automorphism o over Sch. Finally,

we get:

Proposition 6.7. Let g > 4, then the unique automorphisms over S(2), are the identity

and p, up to an affine transformation and a unipotent morphism.

Example 6.5. We are going to see that p is not the identity.
Let C be the S(2)-super curve described on Example , observe that the dual curve C
is given by the quotient of the plane by the relations:

L S(wlp', p?) = (w + 1|p', p).

2. T(wlp', p?) = (w +7|p" — p, p?).
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Observe that the tangent bundle 7¢ has a rank 0|2 distribution given by the global sections
(g1, Dp2), but does not have a 1|0 global section that over the reduction Ciq generates the
tangent space. On the other side, over C , the global section J,, generates the tangent space

Tc,,. That is, C and C are not isomorphic.

Also, observe that SUSY,-super curves are fixed points of this involution. Finally, we

resume this as follows:

Theorem 6.2. The fixed points of the involution p consists on the SUSY,-super curves and

the reduced space S(2)4a-



Appendix A
An explicit calculation

Let us recall that R[[1|2]] = R[[2]0",6?]] and fix the differentials D* = 60, + Jp:.
Definition A.1. Define the operator « as follows:

v = Aut(R[[1]2]])— R[[1]2]]
D'D?*F D'D%*¢' D'D?¢?
® = (F|¢',¢*) — v(®) :=Ber | D'F D! D¢ | (2]6",6%).
D*F D?¢t D?¢?

Since ® = (F|¢!, ¢*) € Aut(R[[1|2]]) and the matrix (D'¢’) is invertible, then v(®) is well
defined.

Proposition A.1. For the restriction:
7 - Aut’(R[1]2]]) — R[1]2]]
we have that ker (7| sy pj2)) = Aut®(R[[1]2]).
Proof. We divide the proof into three steps:
1. For any ® = (F|¢', ¢?) € Aut®(R][[1]2]])

NOF  010:0" 01020°
J@) =Ber | aF o0 o |. (A1)
OoF  Oap'  Dy¢?

in particular, y(T) = 0 for any T € Aut)(R[[1|2]]).

81
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2. For any ®, ¥ € Aut’(R[[1]2]])
VP * W) = (@) +7(¥) (D(2]6",6%)), (A.2)

where ®(z2(0%,6%) = (F'(2|0",6%)[¢" (210", 6%), ¢*(2]6", 6%)).

3. Let X € S(1|2) and 7 € C put ¢, = exp(7X), then

dy(®-)
= X - A.
dr =0 a182< Z)a ( 3)
in particular, % = 0 if and only if X € S(2).

7=0

Let us show that the Proposition follows from these three statements.

For a change of coordinates ® = (F|¢', ¢*) = exp(X) o T, where X € S(1]2), and
T € Autd(R[[1]2]]). From (A.2) we get that v(®) = v(exp(X))(T).

Let &, = exp(7X), for X € S(1]2); and 7 € C, we have

Py =0,0P, =P, 0.

By (A2) 7(®rss) = 7(Ps) +7(®,)(P,). Taking | we get:
dy (P, dy (D
flT ) T:U(Zml’@?) _ C(iT ) T:O(qDU(Z‘&l?eQ))' (A4)

Observe that 9105(X - z) is constant. Indeed 0;010:(X - z) = 0 for i = 1,2, and for 9, we
write X = Aoaz —+ A181 + Azag

820182(X : Z) :816282()( . Z)
26182<82A0)
=105 (—(—1)M 91 Ay — (—1)"20,A,)
=0.

(A.5)

Therefore, from (A.4) and (A.5)), then we have v(®,) = 70,05(X - 2), so X € S(2) if and
only if v(®;) = 0. So the assertion follows.

In order to prove 1, we fix A = (9;¢?)1<ij<2 and B = (D'¢’)1<;j<o. Then B = A+
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(0'0,¢7). From Lemma [2.2| B is invertible and expanding in the geometric series we obtain:

B—l :A—l o A—l Hlangl 0162¢2 A—l
020,06 620,4°

00,6' 00,4 010,6' 0'0,4°
~-1 z z -1 z z -1
A <e2az¢1 92@(;)2) A <e2az¢1 020,4° A

and
01 1 01 2
detB:detA{1+tr a1 (0000 000
620.¢" 6%0.4*
19 11 plo 42
e (2 05Y))
620.¢ 620,¢>
91
—det A1 — <8Z¢1 M?) A7, ) —20'0°0.0'0.07 det A7
Let 7(®) the right hand side of (A.1)). Let a := v(®) det B, we have

a = 01021412 + 02142 + 01_/41 + Ao,

where
nF
_ 92 _ 2 41 2 12 —1
Arp = 82F (ang 8Z¢>A (82F>
010,40 09,02 OF +0'0.F
Ay = —010.F + (0,0,6" 0,0,¢*) S A1 — A1 N § A—l} :
? ' <1 ¢ 9 ¢>{ ( 0 0 ) Oy F

0 0 o F
Al = 00,F — (00,91 9,0,02) A1 — A7 A—l}
T G { (92az¢1 92az¢>2> Do + %0, F

0.0 0'0.0"\
019,06 0'0,0"

019.¢" 69,0 010.¢" 6190 D'F
—|—A_1 z z A_l z z A_l}
(elangl 9182¢1) <elaz¢1 010,¢' D2F

Since Ber® = 1, expanding we obtain

AO = alaQF - (8162¢1 81(92¢2> {A_l - A_l <

2

OF
0.F = (0.6" 0.07) A7 (é;F) +det A (A.6)
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differentiating (A.6]) we get:

00.F = (000" 0,0.6) A

)

( 0, ¢! 8Z¢2> A! (2) 7(P) det A + 0y (det A)
020, F = (82 0,0* Oy Z(bg A ( > 0,0 8Z¢2> At (é) 7(P) det A + O(det A)
W F

01020”

02F = (20! 0267) A ( )—wzmgb%( )+ (000 0.0) (_M 4

> + 0.(det A)

Replacing we get

B - 0102¢?
a _9192{_232(25132(]527(@) + (angl az¢2> (—8182¢1> + 0. (det A)}

_ 92{— (0.0 0.07) A7 (?) (@) det A + 8y (det A)
_ (alangl alazas?) A7 (Z:) det A}
91{ (8z¢1 az¢2) A1 (é) F(®) det A + y(det A)
_ (azaqul aQazqs?) A1 (Z;) det A}

. 2
+3(@) det A+ (010200 810207) ( aajf ) 0'0*

—5(®) det A {1 - (azd)l 8Z¢2> AL (Z;) —20.0'0,6%0'0° det A—l}

so we obtain, y(®) det B = 7(®) det B and (A.1) follows.

For the second statement, and a general derivation D = Ay0, + A0 + A20g2, a function
F(z]6',6%) and a change of coordinates ¥ = (G|¢',1?) we get

D(F(9))(z]0%,6%) =DG (2|6, 0%)0,F(¥(z|0", 6%))
+ Dyt ()64, 0%)0, F (¥ (2|0, 62))
+ Dy?(2]04, 0*) 0o, F (W (2|0, 62))



so we obtain,

0105(F())(2]0,6) = 0:0,G (210", 0%)0.F (¥ (2|0, 6?))
+ 01010 (2]0",6%)0, F (T (2]6*, 6%))
+ 010,0°(2]0", 62) 0, F (T (216", 6%))
+ 0,G0,G(2]0", 0% F (W (2]6", 62))
+ (01GO" — 0,GOYY)(2|60%,6%)0,0. F (¥ (2]0%, 6%))
+ (1 GOY* — 0,GO?) (2|0, 0%)020, F (W (2]6", 62))
+ (010 001p? — Oo1p* 0190%) (210", 0%)0,10o F (U (2|60*, 67))

joining terms, we get

Y(P o W) =v(V)Ber(®) (V) + ag + a1 + as + as,

where
OZF (W)  02(¥)  02¢%(¥)
6o =0, GO,GBer (61<F<\P>> o1 (61 (1) al<¢2<\11>>) ,
Oa(F(W)) 0a(6'(T)) 92(*(V))
010.F (V) 010.¢" (V) 0,0.¢°(V)
a1 =(h G — GO )Ber | 01(F(V)) 01(¢M(P)) u(e*(W)) |,
Or(F(W))  0a(8'(V))  0a(*(T))
0n0. F (W) 020.9" (V) 0,0,0%(¥)
az =(01GOp* — 0yGO1*)Ber | 01 (F(T))  01(¢" () 01(*(D)) |,
Oa(F(T)) 02(¢'(V)) 0a(4*(V))
0105 F (W) 01020 (V) 0100 ( D)
az =(01' 0op* — Dp1p*19p*)Ber (81(F(\If)) (o1 (1)) 81(¢2(\Il))).
Oa(F(V))  0a(6'(T))  D2(*(V))
We have
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where A = (9;17). Writing B = (9;¢7), then

O (¢" (W) Ou(e*(V))\ EXe 1 ;
(82<¢1(\1f>) 82(¢2(\Il))> =AB(Y) + (32G> (M 0:¢ ) ().

After, we have

(&(qﬂ@)) ww»)‘l (wm») g (w) )
00 (1) aa(e*(¥)))  \ou(F(W)) OuF

oG
+ Ber(®)det B{AB}™!
er(®) det B{AB) (82G>

0.¢"

— Ber(CID) det A_181G82G <_8z¢2> (‘I})

and

et (alwlov)) al<¢>2<\v>>>
0a(9' (V) D2(¢*(V))
—det AB{1- (8.0" 0.?) (W){AB}"" (g;g)
— 2 (det AB)™! alaagaazqslazwxp)}

Expanding the second term on the right hand side of equation (A.7)), we get:

ao = 81Ga2G{a§F(qf) - (agqsl a§¢2) (0)B~! (gli ) (\Il)}ml,
2

now, if we differentiate (A.6)):

ao :aleaQG{—2az¢18z¢2(\1f)’v(<1>)

01020

+(0.0" 0.0%) (9) (_ Bu6nc

) (U) + 0, (det B(\I/—l))}m—l.
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Repeating the process, we obtain:

~0i1¢?

a =<61G82¢1—02G01w1>{—(zwl 0.4%) (V) ( oo
1

) (0)y(®)

+Ou(det BOUT) —det B (910,01 910.02) (W){AB}! <gg) bt

o ~(O1Gaw? ~ aGon){ (0.0 0.6%) (v) (_a;;) (1) (®)

+ 05(det BU ™)) — det B (8,00 0:0.6) (W){AB} " @g) }m_l

e
a3 = det A{y@) det B — det B (0,056 010,6%) (W){AB}™! (a;c;>

-y
+det A7L9 GG (alaQ¢1 alam?) () ( aaﬁ ) (\If)}m_l

adding all in (A.7)) we obtain:
"}/((I)(\I/» = ’}/(\D) —+ (81G82Gb12 —+ (%Gbl -+ 82G62 + b())mil,

where

D102
— 01059
+ 61¢18282¢2(\I]) - 8za2¢101¢2(\1’) - 62¢18261¢2(\Ij)

bo = ~20.0'0.6°(W)(@) + (0.0 0.6?) ( ) () + 0.0,0" a0 (1)

~det B (0,0.6' 0,0.6°) (V)B”" <(1)> ~det B (0,0.0' 0:0.6°) (V)B”" <0>

1
-0, 2
+ (01020 010,0?) < @Zq:? ) (D)

b =1(@) {0 (0.0" 0.0) (‘;f) (@) +220? (0.0" 0.67) (_%i) (W)}

+ 001 (0191010207 — 019°01050" ) (V) + 0x1p* (0209 01020° — 02¢701026" ) (V)

+ det Adet B <8182¢1 8182¢2> (\I/){AB}_I ((1])
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and
—0h¢? Dr?
o) {0 (0.0 0.6°) ( 916! ) () - 0% (0.0 0.07) (_ % ¢1> ()}
+ 020! (0191 0,:020° — 0107010201 ) (V) + 020° (0201 01020° — 0267010201 (V)

+ det Adet B (8162¢1 8162¢2> (W){AB}_I <(1)> .

Replacing such terms, we get

A @(D)) = 7 (W) + 7(D)(T) det AB{l — <az¢1 8Z¢2> (U){AB}! @g)

— 20,G0,G0,¢0,0*(V){det AB} }ml

Hence, cleaning terms we obtain:
V(P o W) =7(¥) +~(P)(¥),

so we get (A.2).

Finally, consider the function

O F,
v(®,) = (81(92FT - (8182(1971- 813%253) At (alF )) det A7?

2

Since ®q is the identity then 0;F, = 0, 8182¢6 = 0 and (8@6) is the identity. Then the

derivative is

dy(®,) _ (510, F) _(d(alazqﬁ;) d(alam})) e ok
dr =0 dr =0 dr dr =0 * \oF,
dA) (R
1 1
+(0u0a0h 010004) AT ST A ((%)
(0L F;
— (01020 0108%) Ay (d(m | )detA =
d(det A;)
(@) det A7 =0 dr =0
_d(010,F)
- dr 7:0.
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Finally, since 0, and 0; commutes and F; = exp(7.X)z, then we obtain

)

So we get (|A.3]). O

Observation A.1. The Proposition give us that v : Aut(R[[1]2]]) — R is a character.
For such character, the kernel is given by Auty(R[[1]2]]).

dvy(®-)
dr

:@182 (—d(FT)
=0 dr

:8182(X . Z)

In particular, we obtain:
Proposition A.2. The group AutZ(C[[1]2]]) is simple.

Observation A.2. The operator 7 is still additive if we consider the group defined by the
preimage of R with respect to the map Ber : Autg(R[[1]2]]) — R][[1|2]]. Such group, is de-
noted by Aut?(R[[1]2]]) and denote the kernel by Aut?(R[[1]2]]). In this case Aut®(R[[1|2]]) C
Aut?(R[[1]2]]) and Aut®(R[[1]2]]) N AutP(R[[1]2]) = Aut®(R[[1|2]]).

In this case we still can define the dual curve, that is the construction given in Teorema
still holds for curves with change of coordinates inside Aut”(R[[1|2]]).

There is another way to characterize S(2) super curves C' 5 S. From the condition

(W @) =y(V) + V(y(P))

we obtain a class I'c = {7(®;;)}i; € HY(C,7*Os), where 7*Og is the sheaf given by the
pullback C' % S, and observe that this class is zero if our curve is an S(2) super curve. For

the converse, suppose that the class I'c is null, then there exists a 1-cycle {v;}; with
Yi — 5 = (Pij),
so we can modify the local coordinates ®; by

O, (201, 67) = exp(—01020,,)(D;(2i]6),62)),

1771 177

That generates the cocicles
iy = exp(—;6,6;0.,) (By5(2:16},67)) exp(:6}670.,)

and observe that is well defined.
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Finally, from (A.2) we get that

Y(®y5) = y(exp(—7if1620.,) o By o exp(v,;61620.,))
= =% +7(®y) +
—0

so we get that the curve is an S(2) super curve.
Observe that the class {y(¢;;)} only depends on (C,A), we denote this class by ['c,a €
Hl (C, m* OS)

Theorem A.1. A family of S(2) super curves C = S is a family of S(1|2) super curves
(C,A) such that the class Toa € HY(C,7*Og) vanishes.
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