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Abstract

This thesis is intended to study the initial value problem associated to some higher dimen-
sional versions of the Benjamin-Ono equation. Firstly, we consider a mathematical extension to
Rd of a two-dimensional model implemented to describe internal waves in stratified fluids. For
the initial value problem associated to this equation, we will determine some well-posedness and
ill-posedness results in classical Sobolev spaces Hs(Rd), and we will discuss some properties of
the generalized equation derived by varying the nonlinear term. We also study some unique
continuation properties of solutions to a large class of nonlinear dispersive equations. Addition-
ally, by establishing sharp well-posedness and unique continuation principles in weighted spaces,
we will characterize the spatial behavior of solutions of this model. A key ingredient in our ar-
guments is the deduction of a new commutator estimate for the Riesz transform that could be
applied for different problems. We continue our analysis studying the initial value problem asso-
ciated to a model arising in the study of capillary-gravity wave flows. Initially, we will prove local
well-posedness in Hs(R2) and in some spaces adapted to time-invariant energy of the equation.
The essential part to achieve these well-posedness conclusions is the deduction of a commutator
estimate concerning the Hilbert transform operator and fractional derivatives. Next, by employ-
ing the short-time Fourier restriction norm method, we shall establish local well-posedness in
bi-periodic Sobolev spaces Hs(T2). We follow by deducing local well-posedness in anisotropic
weighted spaces and some unique continuation principles that characterize the polynomial type
decay on the first variable of this model. Finally, by applying the preceding techniques, we will
derive new well-posedness results for the Shrira equation that appears in the context of waves in
shear flows.



Resumo

Essa tese pretende estudar o problema de valor inicial associado a algumas versões de maior
dimensão da equação de Benjamin-Ono. Primeiramente, consideramos uma extensão matemática
para Rd de um modelo bidimensional implementado para descrever ondas internas em fluidos
estratificados. Para o problema de valor inicial associado a essa equação, determinaremos alguns
resultados de boa e má colocação em espaços clássicos de Sobolev Hs(Rd) e discutiremos algu-
mas propriedades dos modelos gerados pela variação do termo não linear da equação descrita
acima. Também estudamos alguns princı́pios de continuação única de soluções para uma classe
de equações dispersivas não lineares. Além disso, ao estabelecer princı́pios de boa colocação lo-
cal e de continuação única em espaços com peso, caracterizaremos o comportamento espacial
das soluções desse modelo. Um ingrediente chave em nossos argumentos é a dedução de uma
nova estimativa de comutador para a transformada de Riesz, que produz uma ferramenta que
pode ser utilizada em outros problemas. Continuaremos nossa análise estudando o problema
de valor inicial determinado por um modelo que surge no estudo dos fluxos de ondas de gravi-
dade capilar. Primeiro, provaremos a boa colocação local em Hs(Rd) e em alguns espaços adap-
tados à energia invariante no tempo da equação. A parte essencial para se chegar a essas con-
clusões é a deducção de uma estimativa do comutador do operador da transformada de Hilbert e
derivadas fracionárias. Em seguida, empregando o método ”short-time Fourier restriction norm”,
estabeleceremos boa colocação local nos espaços bi-periodicos de Sobolev Hs(T2). Seguidamente
deduziremos a boa colocação local em espaços com pesos anisotrópicos e alguns princı́pios de
continuação única que caracterizam o decaimento do tipo polinomial na primeira variável deste
modelo. Finalmente, aplicando os métodos precedentes poderemos obter novos resultados de boa
colocação para a equação de Shrira que aparece no contexto de ondas em fluxos de cisalhamento.



Introduction

This work is aimed to establish several well-posedness conclusions for different models that
can be regarded, at least from a mathematical point of view, as a generalization to a several vari-
ables setting of the well-known Benjamin-Ono equation (see[1, 29, 43, 63, 64, 74, 85] and the refer-
ences therein):

(0.1) Btu�HxB
2
xu + uBxu = 0,

where Hx denotes the Hilbert transform defined by

Hxφ(x) =
1
π

p.v.
»

φ(z)
x� z

dz = F�1(� i sign(ξ)pφ(ξ))(x),

for φ P S(R) and p.v. denotes the Cauchy principal value.
We begin our analysis studying the initial value problem (IVP) for a higher dimensional ver-

sion of the Benjamin-Ono equation (HBO):

(0.2)

$&%Btu�R1∆u + uBx1 u = 0, x P Rd, t P R,

u(x, 0) = u0,

where d ¥ 2, ∆ stands for the Laplace operator in the spatial variables x P Rd and R1 denotes the
Riesz transform with respect to the first coordinate defined by

R1φ(x) = cd p.v.
»
(x1 � z1)φ(z)
|x� z|d+1 dz = F�1(�iξ1

|ξ|
pφ(ξ))(x),

φ P S(Rd) and cd = 1/(πVd�1), where Vd�1 is the volume of the unit (d� 1)-ball.
When d = 1, the Riesz transform coincides with the Hilbert transform, and so we recover

the Benjamin-Ono equation (0.1). When d = 2, equation (0.2) preserves its physical relevance,
it describes the dynamics of three-dimensional slightly nonlinear disturbances in boundary-layer
shear flows, without the assumption that the scale of the disturbance being smaller along than
across the flow, see for instance [2, 71, 87]. We emphasize that the existence and decay rate of
solitary-wave solutions in this case were studied in [62].

Some recent works have been devoted to establish that the IVP associated to (0.2) is locally
well-posed (LWP) in the space Hs(Rd), s P R and d ¥ 2. Here we adopt Kato’s notion of well-
posedness, which consists of existence, uniqueness, persistence property (i.e., if the data u0 P X

3
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a function space, then the corresponding solution u(�) describes a continuous curve in X, u P

C([0, T]; X), T ¡ 0), and continuous dependence of the map data-solution. Regarding the IVP
(0.2), in [39] LWP in Hs(Rd) was deduced for s ¡ 5/3 when d = 2 and for s ¡ (d + 1)/2 when
d ¥ 3. In [80], LWP was improved to the range s ¡ 3/2 in the case d = 2. To the best of our
knowledge there are no results concerning global well-posedness (GWP) in the current literature.
It is worthwhile to mention that local well-posedness issues have been addressed by compactness
methods, since one cannot solve the IVP related to (0.2) by a Picard iterative method implemented
on its integral formulation for any initial data in the Sobolev space Hs(Rd), d ¥ 2 and s P R. This
is a consequence of the results deduced in [39] (see Theorem 2.2 below), where it was established
that the flow map data-solution u0 ÞÑ u for (0.2) is not of class C2 at the origin from Hs(Rd) to
Hs(Rd) d ¥ 2.

Regarding some invariants of the equation, we notice that if u solves (0.2), then so does the scaled
version uλ defined by

uλ(x, t) := λu(λx, λ2t),

for any positive λ. Thus, one can calculate that

}uλ(�, t)}Ḣs = λ1�d/2+s ��u(�, λ2t)
��

Ḣs .

As a consequence, the scale-invariant regularity for (0.2) is s = d/2� 1. In particular, the d = 2
problem is L2-critical.

Real solutions of (0.2) formally satisfy at least three conservation laws (time invariant quanti-
ties)

(0.3)

I(u) =
»

u(x, t) dx,

M(u) =
»

u2(x, t) dx,

H(u) =
» ���(�∆)1/4u(x, t)

���2 � 1
3

u3(x, t) dx.

It should be mentioned that we do not know of any other conservation law available for (0.2), what
is more, it still remains an open question to determinate if this model is completely integrable. By
way of comparison, it is known that the BO equation (0.1) is a completely integrable Hamiltonian
system. For further information on this regard, we refer to [13, 49] and references therein.

Additionally, this manuscript concerns the initial value problem (IVP)

(0.4)

$&%Btu +Hxu�HxB
2
xu�HxB

2
yu + uBxu = 0, (x, y) P R2 (or (x, y) P T2), t P R,

u(x, y, 0) = u0,

where Hx denotes the Hilbert transform in the x-directions defined by F (Hxφ(x, y))(ξ, η) =

�i sign(ξ)φ(ξ, η) for φ P S(R2), and its periodic equivalent

Hxφ(x, y) =
1

2π
p.v.

» π

�π
cot
( x� z

2
)
φ(z, y) dz = F�1(� i sign(m)pφ(m, n)

)
(x, y),
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for all φ P C8(T2). This model was derived in [3] as an approximation to the equations for deep
water gravity-capillary waves. Numerical results determining existence of line solitary waves
(solutions of the form u(x, y, t) = ϕ(x � ct, y), c ¡ 0 and ϕ real valuable with suitable decay at
infinity) as well as wavepacket lump solitary waves were also presented in [3].

Alternatively, the equation (0.4) can be considered as a two-dimensional extension of the so
called Burgers-Hilbert equation (see, [5, 40]):

(0.5) Btu +Hxu + uBxu = 0.

We are also interested in studying the IVP associated to the Shrira equation:

(0.6)

$&%Btu�HxB
2
xu�HxB

2
yu + uBxu = 0, (x, y) P R2 (or (x, y) P T2), t P R,

u(x, y, 0) = u0.

This equation was deduced as a simplified model to describe a two-dimensional weakly nonlinear
long-wave perturbation on the background of a boundary-layer type plane-parallel shear flow (see
[72]). Existence and asymptotic behavior of solitary-wave solutions were studied in [24].

Concerning well-posedness for the IVP (0.4), LWP in Hs(R2) and Ys(R2) = t f P Hs : } f }Ys =

} f }Hs + }B�1
x f }Hs   8u s ¡ 2, were inferred in [21]. These results were provided by implementing

a parabolic regularization argument in the spirit of [45]. It was also showed in the same reference
that (0.4) is LWP in weighted Sobolev spaces Ys(R2)X L2(|x|2r + |y|2r dxdy), 0 ¤ r ¤ 1 and s ¡ 2.

With respect to (0.6), by adapting the short-time linear Strichartz estimate approach employed
in [50, 59], LWP in Hs(R2) s ¡ 3/2 was deduced in [11]. In [10], inspired by the work of [41, 57],
LWP was established in Hs(T2) s ¡ 7/4 assuming that the initial data satisfies,

³2π
0 u0(x, y) dx = 0

for almost every y. Recently, in [81], by employing short-time bilinear Strichartz estimates the
conclusion on the periodic setting was improved to regularity s ¡ 3/2 without any assumption on
the initial data. Furthermore, in [61], LWP was deduced in the spaces Hs1,s2(R2)X L2(|x|2θ dxdy)
s1 ¥ 2, where 0 ¤ θ   1/2 for arbitrary initial data, and 1/2   θ   1 assuming that pu(0, η) = 0
for almost every η. Besides, it was also determined LWP in the spaces Hs1,s2(R2)X L2(|y|2r dxdy),
s2 ¥ r.

It is worth pointing out that (0.4) does not enjoy of scale invariance. In contrast, if u solves
(0.6), uλ(x, y, t) = λu(λx, λy, λ2t) solves (0.6) whenever λ ¡ 0, and so

}uλ(�, �, t)}Ḣs = λs ��u(�, �, λ2t)
��

Ḣs .

Thus (0.6) is L2-critical. On the other hand, real solutions of (0.4) formally satisfy the following
conserved quantities (time invariant):

M(u) =
»

u2(x, y, t) dxdy,(0.7)

E(u) =
1
2

»
|D1/2

x u(x, y, t)|2 + |D�1/2
x u(x, y, t)|2 	 |D�1/2

x Byu(x, y, t)|2 �
1
3

u3(x, y, t) dxdy,(0.8)

and real solutions of (0.6) preserve the quantity M(u) and

(0.9) rE(u) = 1
2

»
|D1/2

x u(x, y, t)|2 + |D�1/2
x Byu(x, y, t)|2 �

1
3

u3(x, y, t) dxdy,



CONTENTS 6

where D�1/2
x is the fractional derivative operator in the x variable defined by its Fourier transform

as F (D�1/2
x u)(ξ, η) = |ξ|�1/2pu(ξ, η). As far as we know, it has not been determined whether (0.4)

and (0.6) are completely integrable.
This thesis is intended to obtain well-posedness conclusions for the model (0.2) in the spaces

Hs(Rd) and in weighted spaces. Concerning (0.4) and (0.6), we deduce well-posedness result
in the spaces Hs(K2), K P tR, Tu and in some spaces adapted to (0.8) and (0.9). Additionally,
we obtain some well-posedness conclusion for the models (0.4) and (0.6) in anisotropic weighted
Sobolev spaces. In consequence, we will study the spatial behavior of solutions of the previous
equations, determining that in general arbitrary polynomial type decay in the x-spatial variable is
not preserved by the flow of these equations. To achieve this conclusion, we shall establish some
unique continuation principles, as well as some commutator estimates for the Riesz and Hilbert
transforms (see Propositions 3.8 and 4.2 respectively) that may be of independent interest and are
of interest on their own in harmonic analysis.

This document is organized as follows: In Chapter 1 we set up some general notation and
preliminaries that will be implemented to analyze all the previous models. Next, in Chapter 2, we
proceed to study well-posedness and ill-posedness issues in Hs(Rd) for equation (0.2). In this part,
we also compile some remarks for a generalized version of this equation, and we determine some
local unique continuation principles for a large class of dispersive equations. Chapter 3 concerns
the study of (0.2) in weighted Sobolev spaces. More precisely, we determine LWP and unique
continuation principles in weighted spaces that characterize the spatial behavior of solutions of
(0.2). A key ingredient in our arguments is the deduction of Proposition 3.8, where we find a new
commutator estimate involving Riesz transform operators. Subsequently, Chapter 4 is devoted to
provide different well-posedness conclusions for the equations (0.4) and (0.6). We first prove local
well-posedness in Hs(R2) and in some spaces adapted to the energy (0.8). Then we determine
well-posedness in the periodic Sobolev spaces Hs(T2). We follow by establishing well-posedness
in anisotropic weighted spaces and some unique continuation principles. We conclude with an
appendix where we prove the fractional commutator estimate for the Hilbert transform stated in
Proposition 4.2.



Chapter 1
Preliminaries and notation

We will employ the standard multi-index notation, α = (α1, . . . , αd) P Nd, Bα = Bα1
x1 � � � B

αd
xd ,

|α| =
°d

j=1 αj, α! = α1! � � � αd! and α ¤ β if αj ¤ β j for all j = 1, . . . , d. As usual ek P Rd will denote
the standard canonical vector in the k direction.

For any two positive quantities a and b, a . b means that there exists C ¡ 0 independent of
a and b (and in our computations of any parameter involving approximations) such that a ¤ Cb.
Similarly, we define a & b, and a � b states that a . b and b & a. [A, B] denotes the commutator
between the operators A and B, that is

[A, B] = AB� BA.

Given p P [1,8], the Lebesgue spaces Lp(K) are defined in the usual manner, the norm will be
denoted by } f }Lp = } f }Lp(K) (the set K will be easily identified according to the context). In the two
dimensional case, to emphasize the dependence on the variables, we will denote by } f }Lp = } f }Lp

xy
.

We denote by C8c (Rd) the spaces of smooth functions of compact support and S(Rd) the space of
Schwartz functions. The Fourier transform is defined aspf (ξ) = F f (ξ) =

»
Rd

e�ix�ξ f (x) dx.

As usual, the operator Js = (1� ∆)s/2 is defined by the Fourier multiplier with symbol xξys =

(1 + |ξ|2)s/2, s P R. The norm in the Sobolev space Hs(Rd) is given by

} f }Hs = }Js f }L2 = }xξys pf (ξ)}L2 ,

where x�y = (1 + | � |2)1/2. Similarly, the homogeneous Sobolev space Ḣs(Rd) is determined by its
norm, } f }Ḣs = }|ξ|s pf (ξ)}L2 .

The Sobolev space W1,8(R2) is defined as usual with norm } f }W1,8 := } f }L8 + }∇ f }L8 , and
W1,8

x (Rd) is defined according to } f }W1,8
x

:= } f }L8 + }Bx f }L8x . We are also interested in studying
well-posedness issues in weighted spaces

(1.1) Zs,r(R
d) = Hs(Rd)X L2(|x|2r dx), s, r P R

and

(1.2) Żs,r(R
d) =

!
f P Hs(Rd)X L2(|x|2r dx) : pf (0) = 0

)
, s, r P R.

7



1.1. COMMUTATORS, INTERPOLATION AND SOME ADDITIONAL ESTIMATES 8

To analyze the spatial asymptotics of (0.4) and (0.6), we consider the following anisotropic weighted
Sobolev spaces:

(1.3) Zs,r1,r2(R
2) = Hs(R2)X L2(|x|2r1 + |y|2r2 dxdy), s, r1, r2 P R

and

(1.4) Żs,r1,r2(R
2) =

!
f P Hs(R2)X L2(|x|2r1 + |y|2r2 dxdy) : pf (0, η) = 0

)
, s, r1, r2 P R.

Now, if A denotes a functional space (for instance any of the spaces introduced above), we define
the spaces Lp

T A and Lp
t A according to the norms

(1.5) } f }Lp
T A = }} f (�, t)}A}Lp([0,T]) and } f }Lp

t A = }} f (�, t)}A}Lp(R),

respectively, for all 1 ¤ p ¤ 8.
The variable N is presumed to be dyadic, i.e., N P

 
2l : l P Z

(
. To study the IVP (0.4), we will

mostly use the dyadic numbers N ¥ 1, then we set D =
 

2l : l P Z+ Y t0u
(

. Let ψ0 P C8c (Rd)

radial such that

(1.6) 0 ¤ ψ0 ¤ 1, ψ0(ξ) = 1 for |ξ| ¤ 1, ψ0(ξ) = 0 for |ξ| ¥ 2,

and set ψ(ξ) = ψ0(ξ)� ψ0(2ξ) which is supported on 1/2 ¤ |ξ| ¤ 2. For any f P S(Rd) and N
dyadic, we define the Littlewood-Paley projection operators

(1.7)
yPN f (ξ) = ψ(ξ/N) pf (ξ),{P¤N f (ξ) = ψ0(ξ/N) pf (ξ), ξ P Rd

and rPN =
°

M�N PM (for our considerations,
°

M�N PM =
°
|j|¤2 P2j N). Then by support consid-

erations, PN1 PN2 = 0 when N1 ¡ 2N2. Next, we recall Bony’s paraproduct decomposition (see for
instance [68]) for a pair of functions f , g given by

(1.8) f g =
¸

N¡0

PN f rPN g +
¸

N¡0

PN f P N/2g +
¸

j

P N/2 f PN g

1.1. Commutators, interpolation and some additional estimates

To obtain estimates for the nonlinear terms, the following Leibniz rules for fractional deriva-
tives will be implemented in our arguments.

Lemma 1.1. If s ¡ 0 and 1   p   8, then

(1.9) }[Js, f ]g}Lp(Rd) . }∇ f }L8(Rd)}Js�1g}Lp(Rd) + }Js f }Lp(Rd)}g}L8(Rd),

where

[Js, f ]g = Js( f g)� f Jsg.

Lemma 1.1 was proved by Kato and Ponce in [48]. We also need the following lemma whose
proof can be find in [34].
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Lemma 1.2. Given d P Z+ and s ¡ 0, it holds that

}Ds( f g)}L2(Rd) . }D
s f }Lp1 (Rd) }g}Lq1 (Rd) + } f }Lp2 (Rd) }D

sg}Lq2 (Rd) ,(1.10)

}Js( f g)}L2(Rd) . }Js f }Lp1 (Rd) }g}Lq1 (Rd) + } f }Lp2 (Rd) }Jsg}Lq2 (Rd) ,(1.11)

with 1
pj
+ 1

qj
= 1

2 , 1   p1, p2, q1, q2 ¤ 8.

Lemma 1.3. Let σ, β P (0, 1), then

(1.12)
}Dσ

x Dβ
y ( f g)}L2(R2) .} f }Lp1 (R2)}D

σ
x Dβ

y g}Lq1 (R2) + }Dσ
x Dβ

y f }Lp2 (R2)}g}Lq2 (R2)

+ }Dβ
y f }Lp3 (R2)}D

σ
x g}Lq3 (R2) + }Dσ

x f }Lp4 (R2)}D
β
y g}Lq4 (R2),

where 1
pj
+ 1

qj
= 1

2 , 1   pj, qj ¤ 8, j = 1, 2, 3, 4.

Lemma 1.3 was deduced by Muscalu, Pipher, Tao and Thiele in [67].

In addition, we require the following set of inequalities, which were deduced in the proof of [50,
Lemma 2.1] (see equations (2.5), (2.6) and (2.7) in this reference). See also [59, Lemma 4.6].

Lemma 1.4. (i) Let 0   δ   1/2, then

(1.13) }D1/2+δ
x u}L8xy

. }u}L8xy
+ }Bxu}L8xy

.

(ii) If δ0 is a positive constant chosen small enough, then the following holds true. There exist#
2   p1, q1   8

1   r1, s1   8
with

1
p1

+
1
q1

=
1
2

,
1
r1

+
1
s1

= 1,

0   θ   1 and 0   δ1 = δ1(δ0, θ) ! 1 such that

(1.14) }BxD1/2+δ
x u}Ls1

T Lq1
xy
. }Bxu}θ

L1
T L8xy

}J3/2+δ0
x u}1�θ

L8T L2
xy

,

and

(1.15) }Dδ
yu}Lr1

T Lp1
xy
.
(
}u}L1

T L8xy

)1�θ(
}D1/2

y u}L8T L2
xy
+ }u}L8T L2

xy

)θ ,

for all 0   δ   δ1.

The following result will be useful to implement energy estimates for the equation (0.4).

PROPOSITION 1.5. Let 1   p   8 and l, m P Z+ Y t0u, l + m ¥ 1 then

(1.16) }Bl
x[Hx, g]Bm

x f }Lp(R) .p,l,m }Bl+m
x g}L8(R)} f }Lp(R).

The estimate (1.16) was established in [19, Lemma 3.1] and it was extended to the BMO spaces
in [56, Proposition 3.8].

Our arguments require the following proposition due to Coifman-Meyer (see [14, 15] and [33]).
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PROPOSITION 1.6. Let σ(ξ, η) P C8(Rd �Rdz(0, 0)) satisfying

(1.17) |B
γ1
ξ B

γ2
η σ(ξ, η)| .γ1,γ2 (|ξ|+ |η|)�(|γ1|+|γ2|)

for all multi-index γ1, γ2 and for all (ξ, η) � (0, 0). Define

(1.18) σ(D)( f , g)(x) =
»

eix�(ξ+η)σ(ξ, η) pf (ξ)pg(η)dξdη.

Then for any 1   p   8,
}σ(D)( f , g)}Lp . } f }L8 }g}Lp .

We shall use the following Fefferman-Stein inequality.

Lemma 1.7. ([26]) Let f = ( f j)
8
j=1 be a sequence of locally integrable functions in Rd. Let 1   p   8.

Then ���(M f j)l2
j

���
Lp
.

���( f j)l2
j

���
Lp

where M f is the usual Hardy-Littlewood maximal function.

Denoting by S 1(Rd) the space of tempered distributions, we have:

Lemma 1.8. Let φ P C8c (Rd) such that supp(φ) � t|ξ| ¤ Ru for some R ¡ 0. Consider the operator
Pφ f determined by yPφ f (ξ) = φ(ξ) pf (ξ). Then

(1.19) sup
zPRd

|Pφ f (x� z)|
(1 + R|z|)d .M( f )(x).

PROOF. See for instance [56, Lemma 2.3]. �

1.2. Preliminaries weighted spaces

For a given n P Z+, we introduce the truncated weights w̃n : R Ñ R satisfying

(1.20) w̃n(x) =

#
xxy, if |x| ¤ n,

2n, if |x| ¥ 3n

in such a way that w̃n(x) is smooth and non-decreasing in |x| with w̃1
n(x) ¤ 1 for all x ¡ 0 and

there exists a constant c independent of N from which |w̃2
n(x)| ¤ cB2

xxxy. We then define the
d-dimensional weights by the relation

(1.21) wn(x) = w̃n(|x|), where |x| =
b

x2
1 + � � �+ x2

d.

We require some point-wise bounds for the product between powers of the weight wn and a poly-
nomial with variables in Rd. More specifically, for a given θ P (0, 2] and multi-indexes α and β

with 1 ¤ |α| ¤ 2, by the definition of wN one finds

(1.22) |Bαwθ
n(x)xβ| . wθ+|β|�|α|

n (x),

where the implicit constant is independent of n and θ. In particular, when θ ¤ |α| and β = 0,
|Bαwθ

n| . 1.
The definition of the Ap(Rd) condition is essential in our analysis. For a more detailed discus-

sion on this regard, we refer to [20, 82].
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Definition 1.9. A non-negative function w P L1
loc(R

d) satisfies the Ap(Rd) inequality with 1   p  
8 if there exists a constant C independent of the cube Q, such that

(1.23) sup
Q

(
1
|Q|

»
Q

w(x) dx
)(

1
|Q|

»
w(x)1�p1dx

)p�1

= Qp(w) ¤ C

where the supremum runs over cubes in Rd and 1/p + 1/p1 = 1.

For instance we have

|x|θ P Ap(R
d), whenever � d   θ   d(p� 1).

Since we are concerned with weighted energy estimates, we require some continuity properties of
Riesz transforms in weighted spaces (we refer to [83] for further information).

Theorem 1.10. ([73]) For 1   p   8 and l = 1, . . . , d there exists a constant c depending on
p and d so that for all weights w P Ap(Rd) the Riesz transforms as operators in weighted space Rl :
Lp(w(x) dx) ÞÑ Lp(w(x) dx) satisfies

(1.24)
(»

Rd
|Rl f (x)|pw(x)dx

)1/p

¤ c Qp(w)r
(»

Rd
| f (x)|pw(x)dx

)1/p

where Qp(w) is defined by (1.23), r = maxt1, p1/pu. Moreover, this result is sharp.

One can verify that for fixed θ P (�d, d), wθ
n(x), n P Z+, satisfies the A2(Rd) inequality with a

constant Q2(wθ
n) independent of n. From this fact and Theorem 1.10, we infer:

PROPOSITION 1.11. For any θ P (�d, d) and any n P Z+, wθ
n(x) satisfies the A2(Rd) inequality

(1.23).
Moreover, the Riesz transform is bounded in L2(wθ

n(x) dx) with a constant depending on θ but inde-
pendent of n P Z+.

Proposition 1.11 is helpful to show that our computations in the proof of Theorem 3.2 are
independent of the parameter n defining the weight wn. We also require the following commutator
relation.

PROPOSITION 1.12. Let θ P (0, 1) and 1 ¤ p1, p2   8 such that 3
2 = 1

p1
+ 1

p2
. Then

(1.25) }[Dθ , g] f }L2 . }| � |θpg}Lp1 }pf }Lp2 .

The following characterization of the spaces Lp
s (R

d) = J�sLp(Rd) is fundamental in our con-
siderations.

Theorem 1.13. ( [84]) Let b P (0, 1) and 2d/(d + 2b)   p   8. Then f P Lp
b (R

d) if and only if

(i) f P Lp(Rd),

(ii) Db f (x) =
(³

Rd
| f (x)� f (y)|2

|x�y|d+2b dy
)1/2

P Lp(Rd),

with

}Jb f }Lp = }(1� ∆)b/2 f }Lp � } f }Lp + }Db f }Lp � } f }Lp + }Db f }Lp .
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Above we have introduced the notation Ds = (�∆)s/2.

Next, we proceed to show several consequences of Theorem 1.13. When p = 2 and b P (0, 1)
one can deduce that

(1.26) }Db( f g)}L2 . } fDbg}L2 + }gDb f }L2 ,

and

(1.27) }Dbh}L8 .
(
}h}L8 + }∇h}L8

)
.

The estimates (1.26) and (1.27) yield:

PROPOSITION 1.14. Let h P L8(Rd) with ∇h P L8(Rd). Then

}h f }H1/2 .
(
}h}L8 + }∇h}L8

)
} f }H1/2 .

As a further consequence of Theorem 1.13 one has the following interpolation inequality.

Lemma 1.15. Let a, b ¡ 0. Assume that Ja f = (1� ∆)a/2 f P L2(Rd) and xxyb f = (1 + |x|2)b/2 f P
L2(Rd). Then for any r P (0, 1),

(1.28)
���Jra(xxy(1�r)b f )

���
L2
. }xxyb f }1�r

L2 }Ja f }rL2 .

Moreover, the inequality (1.28) is still valid with wn(x) instead of xxy with a constant c independent of n.

PROOF. The proof follows the ideas in [29, Lemma 1]. �



Chapter 2
Study of the HBO equation in Hs(Rd)

In this chapter, we study local well-posedness in Hs(Rd) for the initial value problem (0.2).
Additionally, we determine some ill-posedness conclusions for this model and we review some
results for the generalized equation determined by (0.2). We conclude by showing some unique
continuation principles for a family of dispersive equations that includes the equation (0.2). The
main results in this chapter are contained in [39].

2.1. Statement of results

To motive our conclusions, we combine the Kato–Ponce commutator estimate [48] with Gron-
wall’s inequality to obtain that any smooth solution of (0.2) defined on an interval [0, T] satisfies

(2.1) sup
tP[0,T]

}u(t)}Hs ¤ }u(0)}Hs exp
(

c
» T

0
}∇u(t)}L8 dt

)
.

Thus, if we could control the norm }∇u}L1
T L8x

of the exponential function by the Hs(Rd)-norm, we
could argue by compactness in order to establish existence of solutions with less regularity. If this
were to be done by using the Sobolev embedding Hs(Rd) ãÑ W1,8(Rd) with order of regularity
s ¡ d/2 + 1, we would not take into account the dispersive effect of the equation (0.2).

Instead, we follow the short-time Strichartz linear approach introduced by Koch and Tzvetkov
[54] implemented to study the local well-posedness of the one-dimensional Benjamin-Ono equa-
tion. Roughly this consists of determining a refined Strichartz estimate (see Lemma 2.7 below)
that allows us to control the L1([0, T]; W1,8(Rd))-norm of smooth solutions without relying on
Sobolev’s embeddings. Extensions of this method were given by Kenig and König [51], and in
two dimensions by Kenig [50], and Linares, Pilod and Saut [59].

Let us now state our results. Our first conclusion improves the standard well-posedness results
provided by a parabolic regularization argument on (0.2) (see Lemma 2.10 below).

Theorem 2.1. Let s ¡ sd where sd := d/2 + 1/2 for d ¥ 3 and s2 := 5/3. Then, for any u0 P

Hs(Rd), there exist a time T = T(}u0}Hs) and a unique solution u to (0.2) that belongs to

C
(
[0, T); Hs(Rd)

)
X L1([0, T); W1,8(Rd)

)
.

Moreover, the flow map u0 ÞÑ u(t) is continuous from Hs(Rd) to Hs(Rd).

13
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To the best of our knowledge, the previous theorem determines the first non-standard result
regarding local well-posedness for equation (0.2). In [80], by means of the short-time Fourier
restriction norm method developed by Ionescu, Kenig and Tataru [44], the result of Theorem 2.1
was improved to regularity s ¡ 3/2 for d = 2. However, our well-posedness conclusions are the
best known for (0.2) for dimension d ¥ 3.

Remarks. (i) Concerning the Benjamin-Ono equation (0.1), Tao [85] introduced a gauge trans-
formation which allowed him to establish local and global results in H1(R2). Moreover, it was
possible to go all the way to L2(R2) by using this gauge transformation; see [43, 64]. However,
we do not know if there is such a gauge transformation for the equation (0.2). Additionally, we do
not know of a maximal estimate function for (0.2) that would help us to adapt the arguments in
[51] to improve our conclusion in Theorem 2.1.

(ii) Our well-posedness results require too much regularity to take advantage of H(u) in (0.3). As
a matter of fact, we do not know of any result concerning global well-posedness for the equation
(0.2).

Next, we will show that the flow map u0 ÞÑ u(t) is not of class C2 for any s P R. In particular,
this implies that (0.2) cannot be solved by using the Duhamel formulation combined with the
contraction mapping principle in Hs(Rd).

Theorem 2.2. Let s P R. Then (0.2) does not admit a solution u such that the flow map u0 ÞÑ u(t) is
C2-differentiable from Hs(Rd) to Hs(Rd).

With d = 2, we use the existence of solitary wave solutions [62] to show that the flow map
cannot be uniformly continuous in L2(R2).

PROPOSITION 2.3. Let d = 2. Then (0.2) does not admit a solution u such that the flow map
u0 ÞÑ u(t) is uniformly continuous from L2(R2) to L2(R2).

Additionally, we are interested in study ill-posedness issues for the following generalized
equation associated to (0.2),

(2.2) ut �R1∆u + ukux1 = 0 (x, t) P Rd+1

with k ¥ 2 integer. To motivate our result, we notice that if u solves (2.2) with initial data u0,
then uλ(x, t) = λ1/ku(λx, λ2t) also solves (2.2) with initial condition uλ(x, 0) = λ1/ku0(λx) for all
λ ¡ 0. Consequently, since

(2.3) }uλ(�, 0)}Ḣs = λ1/k�d/2+s }u0}Ḣs ,

we deduce that the scale-invariant Sobolev space to study (2.2) is Ḣscrit(k)(Rd) where scrit(k) =

d/2� 1/k. Thus, the natural spaces Hs(Rd) to address well-posedness issues are those with regu-
larity s ¥ scrit(k).

The next result establishes that below the critical index scrit(k) the flow-map data solution as-
sociated to (2.2) fails to be of class Ck+1. In particular, this implies that (2.2) cannot be solved in
Hs(R), s   scrit(k) employing a contraction argument. This type of ill-posedness result can be view
as an extension of those deduced in [65] for the generalized Benjamin-Ono equation.
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PROPOSITION 2.4. Let k ¥ 2 integer and s   d/2� 1/k. Then for any T ¡ 0, the flow-map u0 ÞÑ u
(if it exists) is not of class Ck+1 from Hs(Rd) to C([�T, T]; Hs(Rd)) at the origin.

We follow by presenting some known facts concerning the stability of solitary wave solutions
for the equation (0.2). Finally, we conclude this chapter establishing some unique continuation
properties of solutions to a large class of nonlinear dispersive equations.

This chapter is organized as follows: we begin by showing some linear and energy estimates.
Theorem 2.1 is deduced in the following subsection. Next we prove the ill-posedness conclusions
of Theorem 2.2 and Proposition 2.3 in Section 2.4. In Section 2.5, we deduce Proposition 2.4 and we
discuss some aspects regarding stability and instability of solitary wave solutions. Finally, Section
2.6 is aimed to deduce some local unique continuation principles.

2.2. Preliminary estimates

2.2.1. Linear estimates. This subsection is devoted to deduce some estimates for the linear
equation determined by (0.2):

(2.4)

#
ut �R1∆u = 0, x P Rd , t ¡ 0,

u(x, 0) = u0(x),

whose solution are defined trough the unitary group

(2.5) U(t)u0(x) =
»

eiξ1|ξ|t+ixξ pu0(ξ) dξ,

t P R. We begin by recalling the following Strichartz estimates for the group tU(t)utPR established
in [39].

PROPOSITION 2.5. The following estimates hold

(2.6) }U(t) f }Lr
t Lq

x
. } f }Ḣsd

and

(2.7)
���D�2rsd

» t

0
U(t� t1)G(t1) dt1

���
Lr

t Lq
x

¤ c }G}
Lr1

t Lq1
x

for q   8 with $''&''%
10
q

+
12
r
¤ 5 and rs2 = 1�

2
q
�

2
r

, if d = 2

1
q
+

1
r
¤

1
2

and rsd = d(
1
2
�

1
q
)�

2
r

, if d ¥ 3.

Remarks. (i) Actually, the conclusions in [39] determined that (2.6) is sharp with respect to the
regularity and the Lebesgue exponents.

(ii) We will only work on the Sharp lines of indexes determined by Proposition 2.5. More precisely,#
2 ¤ q   8

12/5 ¤ r ¤ 8
satisfying

10
q

+
12
r

= 5 and rs2 =
2
5r

, if d = 2
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and #
2 ¤ q   8

2 ¤ r ¤ 8
satisfying

1
q
+

1
r
=

1
2

and rsd =
d� 2

r
, if d ¥ 3.

Since the endpoint Strichartz estimate corresponding to (r, q) = (2,8) is not known, we need
to lose a little bit of regularity to control this norm.

Corollary 2.6. Let s ¡ sd � 3/2, where sd = d/2 + 1/2 for d ¥ 3 and s2 = 5/3. Then for each
T ¡ 0 and 0   δ   s� sd + 3/2, there exist κδ P (0, 1/2) such that

(2.8) }U(t) f }L2
T L8x

¤ cδTκδ} f }Hs

PROOF. We take r sufficiently large to assure that δ ¡ d
r and the conditions in Proposition 2.5

are satisfied. Then, Sobolev’s embedding and (2.6) yield

(2.9) }U(t) f }L2
T L8x

¤ cδT
r�2
2r }U(t)Jδ f }Lr

T Lq
x
¤ cδT

r�2
2r }Jsd�3/2+δ f }L2 .

Therefore, setting kδ := r�2
2r , kδ P (1/12, 1/2) for d = 2, and kδ P (0, 1/2) for d ¥ 3, the proof is

completed. �

A key ingredient for our arguments is the following refined Strichartz estimate. This estimate
has been deduced in different context for other dispersive models, see for instance [50, 59].

Lemma 2.7. Let s ¡ sd � 1 where sd := d/2 + 1/2 for d ¥ 3 and s2 := 5/3. Then there exists
κδ P (1/2, 1) and δ ¡ 0 such that

(2.10) }w(�, t)}L1
T L8x
. Tkδ

(
sup

tP[0,T]
}w(�, t)}Hs +

» T

0

��F(�, t1)
��

Hs�1 dt1
)

whenever T ¤ 1 and w is a solution to

(2.11) Btw�R1∆w = F.

PROOF. We will follow the arguments in [51]. We write [0, T] =
�n

m=1 Im such that Im =

[am, bm] and bm � am = T/N. Recalling the projectors (1.7), we apply the triangle inequality to
obtain

(2.12)

}w}L1
T L8x

¤ }P¤1w}L1
T L8x

+
¸

N¡1

}PNw}L1
T L8x

¤ }P¤1w}L1
T L8x

+
¸

N¡1

Ņ

m=1

}PNw}L1
Im L8x

. }P¤1w}L1
T L8x

+
¸

N¡1

Ņ

m=1

(T/N)1/2}PNw}L2
Im L8x

,

where the last line is obtained by Hölder’s inequality. Now, we proceed to estimate each term
on the rand-hand side of the above inequality. Let us deal first with the low frequency term. Let
0   δ   (s� sd � 1)/2, then since P¤1w solves the integral equation

(2.13) P¤1w(t) = U(t)P¤1w(0) +
» t

0
U(t� t1)P¤1F(�, t1) dt1,
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we deduce from Hölder’s inequality in time and Corollary 2.6 that

(2.14)
}P¤1w}L1

T L8x
. T1/2

(
}U(t)P¤1w(0)}L2

T L8x
+

» T

0

��U(t� t1)P¤1F(�, t1)
��

L2
T L8x

dt1
)

. T1/2+rκδ

(
}Jsd�1+δw(0)}L2

x
+

» T

0
}Jsd�2+δF(�, t1)}L2 dt1

)
,

for some rκδ P (0, 1/2) and where we have employed that

}JδP¤1F(t)}L2 = }Jsd�2+δ J2�sd P¤1F(t)}L2 .s }Jsd�2+δF(t)}L2 .

This estimate completes the analysis of the first term on the r.h.s of (2.12). On the other hand, by
employing Duhamel’s formula on each Im, it is seen

(2.15) PNw(t) = U(t� am)PNw(�, am) +

» t

am

U(t� t1)PN F(t1) dt1

for all t P Im and each N ¡ 1, thus Corollary 2.6 yields

(2.16)

¸
N¡1

Ņ

m=1

(T/N)1/2 }PNw}L2
T L8x

.
¸

N¡1

T1/2+rκδ N�1/2( Ņ

m=1

}Jsd�3/2+δPNw(am)}L2 +

»
Im

}Jsd�3/2+δPN F(t1)}L2 dt1
)

. T1/2+rκδ(
¸

N¡1

N�δ)
(

sup
tP[0,T]

}Jsd�1+2δw(t)}L2 +

» T

0
}Jsd�2+2δF(t1)}L2 dt1

)
.

Plugging the previous estimates in (2.12) completes the proof. �

2.2.2. Energy estimates. By means of the Kato-Ponce commutator estimate Lemma 1.1, we
deduce the following a priori estimate.

Lemma 2.8. Let T ¡ 0 and u P C([0, T]; H8(Rd)) be the solution of the IVP (0.2). Then there exists
a positive constant c0 such that

(2.17) }u}2
L8T Hs ¤ }u0}

2
Hs + c0 }∇u}L1

T L8x
}u}2

L8T Hs

for any s ¡ 0.

PROOF. Applying Js to the equation in (0.2), multiplying by Jsu and integrating in space yields
to

1
2

d
dt

»
Rd
(Jsu)2 dx = �

»
Rd
[Js, u]Bx1 uJsu dx�

»
Rd

uJsBx1 uJsu dx,

where it is not difficult to see that the factor concerning the dispersive term in (0.2) is zero, since
R1 defines a skew-symmetric operator. The first term on the right-hand side (r.h.s) of the equality
above is bounded by using Hölder’s inequality and Lemma 1.1, while the second is controlled by
integrating by parts and using Hölder inequality again. Summarizing

(2.18)
d
dt
}Jsu}2

L2 . }∇u}L8 }Jsu}2
L2 .

Integrating on time the inequality above yields the proof of the lemma. �
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Now we derive some energy estimates for the Strichartz norm. More precisely, we estab-
lish a priori estimates for the norms }u}L1

T L8x
and }∇u}L1

T L8x
. Our arguments relay on the refined

Strichartz estimate deduced in Lemma 2.7.

Lemma 2.9. Let s P (sd, d + 1] where sd = d/2 + 1/2 for d ¥ 3 and s2 = 5/3 for d = 2. For T ¤ 1,
let

(2.19) f (T) := }∇u}L1
T L8x

+ }u}L1
T L8x

.

Then there exists a constant and cs ¡ 0 such that

(2.20) f (T) ¤ csTκδ(1 + f (T)) }u}L8T Hs ,

whenever u P C([0, T]; H8(Rd)) solves the IVP (0.2).

PROOF. We first estimate }∇u}L1
T L8x

. Let

(F1, . . . , Fd) =
(
(�Bx1(uBx1 u), . . . ,�Bxd(uBx1 u)

)
= �

1
2
Bx1∇(u2),

by considering the corresponding equations determined after setting F = Fj in (2.11) for each
j = 1, . . . , d, Lemma 2.7 reveals that

(2.21)

}∇u}L1
T L8x

�
ḑ

j=1

}Bxj u}L1
T L8x

. T1/2
(

sup
[0,T]

}Js�1∇u(t)}L2 +

» T

0
}Js�2∇(uBx1 u)(t1)}L2 dt1

)
. T1/2

(
sup
[0,T]

}Jsu(t)}L2 +

» T

0
}Js(u2)(t1)}L2 dt1

)
.

To estimate the r.h.s of the above inequality, we apply Lemma 1.2 to find

(2.22) }Js(u2)(t)}L2 . }u(t)}L8}Jsu(t)}L2 .

Gathering together (2.21) and (2.22), we find

(2.23) }∇u}L1
T L8x
. T1/2(1 + }u}L1

T L8x
)}u}L8T Hs .

On the other hand, Lemmas 2.7 and 1.2 yield

(2.24)

}u}L1
T L8x
. T1/2

(
}Js�1u0}L2 +

» T

0
}Js�2(uBx1 u)(t1)}L2 dt1

)
. T1/2

(
}Js�1u0}L2 +

» T

0
}u(t1)}L8}Js�1u(t1)}L2 dt1

)
. T1/2(1 + }u}L1

T L8x
)}u}Hs�1 .

This estimate completes the proof of the lemma. �
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2.3. LWP in Hs(Rd), s ¡ sd, where sd = d/2 + 1/2 for d ¥ 3 and s2 = 5/3

This section is devoted to proving Theorem 2.1. Considering that this result relays on a com-
pactness method, we will obtain solutions in low-regularity spaces as a certain limit of smooth
solutions.

Accordingly, we require to assure existence of smooth solutions for the initial value problem
(0.2). But first, we notice that for s ¡ d/2+ 1, Theorem 2.1 is obtained by implementing a parabolic
regularization argument in the spirit of [45, 47, 60]. Roughly speaking, an additional term �µ∆u
is added to the equation, after which the limit µ Ñ 0 is taken. The precise consequence of this
technique is stated in the following lemma:

Lemma 2.10. Let d ¥ 2 integer and s ¡ d/2 + 1. Then for any u0 P Hs(Rd), there exist T =

T(}u0}Hs) ¡ 0 and a unique solution u P C([0, T]; Hs(Rd)) of the IVP (0.2). Furthermore, the flow-map
u0 ÞÑ u(t) is continuous in the Hs-norm and there exists a function ρ P C([0, T]; [0,8)) such that

}u(t)}Hs ¤ ρ(t), t P [0, T].

Moreover, the existence time does not depend on s, in the sense that u can be extended, if necessary, to the
interval [0, T(}u0}Hs0 )], if s ¥ s0 ¡ d/2 + 1, with u0 viewed as an element of Hs0(Rd).

Lemma 2.10 allow us to deduce existence of smooth solutions and a blow-up criterion.

PROPOSITION 2.11. Let d ¥ 2 and u0 P H8(Rd). Then there exists u P C([0, T�); H8(Rd))

solution of (0.2) with initial data u0, where T� is the maximal time of existence of u such that T� ¥

T(}u0}Hd+1). Moreover, it follows

(2.25) lim
tÒT�

}u(t)}Hd+1 = +8 if T�   8.

Consequently, in virtue of Lemma 2.10, we will restrict our considerations to prove the case
sd   s ¤ d + 1, where sd = d/2 + 1/2 for d ¥ 3 and s2 = 5/3.

2.3.1. A priori estimates. We first prove that the smooth solutions determined by Proposition
2.11 exist long enough for our purposes. We then provide some additional a priori estimates whose
prove follow closely the arguments in [59].

Lemma 2.12. Let s P (sd, d + 1] where sd = d/2 + 1/2 for d ¥ 3 and s2 = 5/3. Then there exists
a constant As ¡ 0 such that for all u0 P Hd+1(Rd) there is a solution u P C([0, T�(Hd+1(Rd)))) of (0.2)
with T� ¥ (1 + As}u0}Hs)�2. Moreover there exists a constant K0 such that

(2.26) }u}L8T Hs ¤ 2 }u0}Hs , and f (T) ¤ K0,

whenever T ¤ (1 + As}u0}Hs)�2.

PROOF. We define

T0 = sup
!

T P (0, T�) : }u}2
L8T Hs ¤ 4}u0}

2
Hs

)
.

Since u P C([0, T�); H8)), we have that T0 is well-defined. Arguing by contradiction, let us sup-
pose that 0   T0   (1 + As}u0}Hs)�2. Then continuity yields }u}2

L8T0
Hs ¤ 4}u0}

2
Hs , and Lemma 2.9

determines
f (T0) ¤ 2csT1/2

0 (1 + f (T0)) }u0}Hs .
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Thus, if we choose As = 8(1 + c0)cs, where c0 and cs are defined as in Lemmas 2.8 and 2.9 respec-
tively, we find

f (T0) ¤
1

3c0
.

This result and Lemma 2.8 show

}u}2
L8T0

Hd+1 ¤
3
2
}u0}

2
Hd+1 , and }u}2

L8T0
Hs ¤

3
2
}u0}

2
Hs .

In view of the blow-up alternative in Proposition 2.11, the former estimate implies that T0  

T�. On the other hand, the latter estimate and continuity establish that for some T0   T   T�,
}u}2

L8T Hs ¤ 3}u0}
2
Hs , which in turn contradicts the definition of T0. The proof is completed. �

2.3.2. Uniqueness. Let u1 and u2 be two solutions of equation (0.2) in the class

C([0, T], Hs(Rd))X L1([0, T], W1,8(Rd))

with respective initial data u1(�, 0) = ϕ1 and u2(�, 0) = ϕ2. By setting v := u� v, we find that

Btv�R1∆v +
1
2
Bx1((u1 + u2)v) = 0.

Then, multiplying the previous equation by v and integrating in space, it follows that

1
2

d
dt

»
Rd

v2 dx = �
1
4

»
Rd
Bx1(u1 + u2)v2 dx,

where the factor concerning the dispersion is zero since R1 is a skew-symmetric operator, and the
right-hand side of the above expression is obtained by two integration by parts. Thus Hölder’s
inequality determines

1
2

d
dt
}v(t)}2

L2 . (}∇u1(t)}L8 + }∇u2(t)}L8)}v(t)}2
L2 .

An application of Gronwall’s inequality (see for example [86, Theorem 1.12]) gives

(2.27) sup
tP[0,T]

}u1(t)� u2(t)}L2 ¤ ecK}ϕ1 � ϕ2}L2

where K = }∇u1}L1
T L8x

+ }∇u2}L1
T L8x

. Uniqueness is now a consequence of (2.27).

2.3.3. Existence. We shall implement the Bona-Smith argument [7]. We state some properties
of the projectors defined in (1.7).

Lemma 2.13. Let σ ¥ 0 and N P D = t2k : k P Z+u Y t1u. Then,

(2.28) }P¤N Js+σu0}L2 . Nσ}Jsu0}L2 .

Moreover, let M, N P D with M ¥ N and 0 ¤ σ ¤ s, then

(2.29) }Js�σ(P¤Nu0 � P¤Mu0)}L2 =
NÑ8

o(N�σ).

PROOF. The estimate (2.28) follows directly from the properties of the projectors P¤N . On the
other hand, by support considerations

(2.30) |xξys�σ(ψ¤N(ξ)� ψ¤M(ξ)) pu0(ξ)|
2 . N�2σ|ψ¤N(ξ)� ψ¤M(ξ)|2|xξys pu0(ξ)|

2

and so if σ   s the result follows by Plancherel’s identity. For σ = s, an application of Lebesgue
dominated convergence theorem yields the result. �
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Let s P (sd, d + 1] where sd = d/2 + 1/2 for d ¥ 3 and d2 = 5/3. For each dyadic N P D, we
consider the solutions uN P C([0, T]; H8(Rd)) of (0.2) emanating from P¤Nu0:

(2.31)

#
BtuN �R1∆uN + uNBx1 uN = 0, x P Rd , t P (0, T],

uN(x, 0) = P¤Nu0,

where in virtue of Lemma 2.12 we can find a time

(2.32) 0   T ¤ (1 + As}u0}Hs)�2

(for some constant As ¡ 0) independent of N, such that

(2.33) }uN}L8T Hs ¤ 2}u0}Hs

and

(2.34) K := sup
N¥1

!
}uN}L1

T L8x
+ }∇uN}L1

T L8x

)
  8.

Now, given M ¥ N ¥ 1 dyadic numbers, we set vN,M := uN � uM so that vN,M satisfies

(2.35) BtvN,M �R1∆vN,M + uNBx1 uN � uMBx1 uM = 0,

with initial datum vN,M(�, 0) = P¤Nu0 � P¤Mu0.
Arguing as in the deduction of (2.27) and applying (2.29) we find

(2.36) }vN,M}L8T L2
x
¤ ecK}P¤Nu0 � P¤Mu0}L2 =

nÑ8
o(N�s)

and so interpolating with (2.33), we get

(2.37) }JσvN,M}L8T L2
x
¤ }JsvN,M}

σ
s
L8T L2

x
}vN,M}

1� σ
s

L8T L2
x

=
NÑ8

o(N�(s�σ))

for all 0 ¤ σ   s.
Below we will show that tvN,Mu determines a Cauchy sequence in C([0, T]; Hs(Rd)), but first

we prove that the sequence is a Cauchy sequence in L1([0, T]; W1,8(R)). In fact, we prove a
stronger result that will be helpful later

Lemma 2.14. Let M, N P D = t2k : k P Z+ Y t0uu, M ¥ N ¥ 1. Then,

(2.38) }vN,M}L1
T L8x

= o(N�1)

and

(2.39) }∇vN,M}L1
T L8x

= o(1)

provided that T as in (2.32) is chosen sufficiently small (that is, As large enough).

PROOF. We first deduce (2.38). Since vn,m solves equation (2.35), we apply Lemma 2.7 with

F = �
1
2
Bx1(uN + uM(vN,M))

to deduce

(2.40)
}vN,M}L1

T L8x
. T1/2

(
}Jsd�1+δvN,M}L8T L2

x
+

» T

0
}Jsd�2+δBx1((uN + uM)vN,M)(t1)}L2 dt1

)
=: T1/2(A1 +A2),
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where 0   δ   (s� sd), sd = d/2 + 1/2 and s2 = 5/3. Our choice of δ and (2.37) imply

(2.41) A1 =
NÑ8

o(N�1).

To estimate A2, we combine (1.11) and (2.37) to find
(2.42)

A2 .
» T

0
}Jsd�1+δ(uN + uM)(t1)}L2}vN,M(t1)}L8 + }(uN + uM)(t1)}L8}Jsd�1+δvN,M(t1)}L2 dt1

.
(
}uN}L8T Hs + }uM}L8T Hs

)
}vN,M}L1

T L8x
+
(
}uN}L1

T L8x
+ }uM}L1

T L8x

)
}Jsd�1+δvN,M}L8T L2

x

= O(}u0}Hs}vN,M}L1
T L8x

) + o(N�1).

Therefore, gathering (2.40)-(2.42) we have

(2.43) }vN,M}L1
T L8x

=
NÑ8

o(N�1) + O(T
1
2 }u0}Hs}vN,M}L1

T L8x
).

Then taking T sufficiently small in (2.32) with respect to the implicit constant above (which does
not depend on N), we conclude (2.38).

On the other hand, (2.39) is deduced by a similar reasoning as above. Indeed, we apply Lemma
2.7 with F = �1

2∇Bx1(uN + uM(vN,M)) and (1.11) to deduce

(2.44)

}∇vN,M}L1
T L8x
. T1/2

(
}Jsd+δvN,M}L8T L2 +

» T

0
}Jsd�1+δBx1((uN + uM)vN,M)(t1)}L2 dt1

)
. T1/2

(
}Jsd+δvN,M}L8T L2 + (}uN}L8T Hs + }uM}L8T Hs)}vN,M}L1

T L8x

+ (}uN}L1
T L8x

+ }uM}L1
T L8x

)}Jsd+δvN,M}L8T L2
x

)
.

Hence, our choice of δ, (2.37) and the preceding estimate for }vN,M}L1
T L8x

determine

(2.45) }∇vN,M}L1
T L8x

=
NÑ8

O(}Jsd+δvN,M}L8T L2
x
) + O(}vN,M}L1

T L8x
) =

NÑ8
o(1).

The proof is completed. �

PROPOSITION 2.15. Let N, M P D with M ¥ N. Then,

(2.46) }vN,M}Hs Ñ
nÑ8

0.

PROOF. Applying the operator Js to (2.35), multiply then by JsvN,M, integrating in space we
deduce

(2.47)

d
dt
}JsvN,M(t)}2

L2 = �2
»

Rd
Js(uNBx1 uN � uMBx1 uM)JsvN,M

= �2
»

Rd
Js(uMBx1(uN � uM))JsvN,M � 2

»
Rd

Js((uN � uM)Bx1 uN)JsvN,M

=: �2(A1 + A2).

Integrating by parts we obtain

(2.48) A1 =

»
Rd
[Js, uM]Bx1 vN,M JsvN,M �

1
2

»
Rd
Bx1 uM(JsvN,M)2.



2.3. LWP IN HS(RD), S ¡ SD , WHERE SD = D/2 + 1/2 FOR D ¥ 3 AND S2 = 5/3 23

Then from Lemma 1.1, Hölder’s inequality and (2.33) it follows

(2.49)
|A1| . }∇uM(t)}L8}JsvN,M(t)}2

L2 + }Bx1 vN,M(t)}L8}JsuM(t)}L2}JsvN,M(t)}L2

. }∇uM(t)}L8}JsvN,M(t)}2
L2 + }∇vN,M(t)}L8}u0}

2
Hs .

On the other hand,

(2.50) A2 =

»
Rd
[Js, vN,M]Bx1 uN JsvN,M +

»
Rd

vN,M(JsBx1 uN)JsvN,M.

Hence Lemma 1.1, Hölder’s inequality and (2.33) yield

(2.51) |A2| . }∇vN,M(t)}L8}JsuN(t)}L2}JsvN,M(t)}L2 + }vN,M(t)}L8}Js+1uN(t)}L2}JsvN,M(t)}L2 .

To control the norm }Js+1uN(t)}L2 , we employ energy estimates and Lemma 1.1 to observe

(2.52)
d
dt
}Js+1uN(t)}2

L2 . }∇uN(t)}L8}Js+1uN(t)}2
L2 ,

so that Gronwall’s inequality and (2.28) yield

(2.53) }Js+1uN(t)}L2 ¤ ecK}Js+1P¤Nu0}L2 . N}u0}Hs ,

where K is defined as in (2.34). Thus in view of (2.33)

(2.54) |A2| . (}∇vN,M(t)}L8 + N}vN,M(t)}L8) }u0}
2
Hs .

Summing up our estimates for A1 and A2, we find that

(2.55) d
dt
}JsvN,M(t)}2

L2 ¤ a(t)}JsvN,M(t)}2
L2 + b(t)

where

a(t) := C0

(
}∇uN(t)}L8 + }∇uM(t)}L8

)
,

b(t) := C1

(
N}vN,M(t)}L8 + }∇vN,M(t)}L8

)
}u0}

2
Hs .

Now, if g(t) solves $&%
d
dt

g(t) = a(t)g(t) + b(t),

g(0) = }P¤Nu0 � P¤Mu0}
2
Hs ,

then
d
dt
(
}JsvN,M(t)}2

L2 � g(t)
)
¤ a(t)

(
}JsvN,M(t)}2

L2 � g(t)
)

with initial condition, }JsvN,M(0)}2
L2 � g(0) = 0. Then by an application of Gronwall’s inequality,

we find that }JsvN,M(t)}2
L2 ¤ g(t) for all t ¥ 0. Now, since g(t) has the explicit form

g(t) = g(0)e
³t

0 a(t1) dt1 +

» t

0
b(τ)e

³t
τ a(t1) dt1 dτ,

if follows

}JsvN,M(t)}2
L8T L2 . ecK

(
}P¤Nu0 � P¤Mu0}

2
Hs + }u0}

2
Hs

(
N}vN,M}L1

T L8x
+ }∇vN,M}L1

T L8x

))
=

nÑ8
0,

where we have employed Lemmas 2.13 and 2.14. The proof is completed. �
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We deduce from Proposition 2.15 and Lemma 2.14 that uN has a limit u in

C([0, T]; Hs(Rd))X L1([0, T]; W1,8(Rd)).

Now, recalling that

(2.56) uN(t) = U(t)P¤Nu0 �
1
2

» t

0
U(t� t1)Bx1(uN(t1))2 dt1,

and the estimate����» t

0
U(t� t1)Bx1(uN(t1)2 � u(t1)2) dt1

����
Hs�1

¤

» t

0
}uN(t1)2 � u(t1)2}Hs dt1

.
» t

0

��uN(t1) + u(t1)
��

Hs

��uN(t1)� u(t1)
��

Hs dt1,

we see that u also solves the integral formulation of (0.2) in the C([0, T]; Hs�1(Rd)) sense. This
completes the existence part of Theorem 2.1.

2.3.4. Continuity of the flow map data-solution. Let s P (sd, d + 1] where sd = d/2 + 1/2 for
d ¥ 3 and s2 = 5/3. Let u0 P Hs(Rd) fixed. By the existence and uniqueness parts above, we
know that there exist a positive time T = T(}u0}Hs) and a unique solution u P C([0, T]; Hs(Rd))X

L1([0, T]; W1,8(Rd)) to (0.2). Now, since T is a nonincreasing function of its argument, for any
0   T1   T there exists δ̃ ¡ 0 such that for all

v0 P Bδ̃(u0) :=
!

v0 P Hs(Rd) : }u0 � v0}Hs   δ̃
)

the corresponding solution v of (0.2) is defined at least on the time interval [0, T1].
We require to prove that for all ε ¡ 0, there exists δ ¡ 0 with 0   δ   δ̃ such that for any initial

data v0 P Bδ(u0), the solution v P C([0, T1]; Hs(Rd)) emanating from v0 satisfies

(2.57) }u� v}L8T1H
s   ε.

Therefore, for any N P D, let uN , vN P C([0, T1]; H8(Rd)) be the smooth solutions of (0.2) with
regularized initial data P¤Nu0 and P¤Nv0 respectively. Then we have

(2.58) }u� v}L8T1H
s ¤ }u� uN}L8T1H

s + }uN � vN}L8T1H
s + }v� vN}L8T1H

s .

The proof of existence assures that for some dyadic number N0 ¥ 1 large,

(2.59) }u� uN}L8T1H
s + }v� vN}L8T1H

s   2ε/3,

for all dyadic N ¥ N0. On the other hand,

(2.60) }P¤N0 u0 � P¤N0 v0}Hd+1 . Nd+1�s
0 δ}u0 � v0}Hs . Nd+1�s

0 δ.

Then, by using the continuity of the flow map for smooth solutions, we can choose δ ¡ 0 small
enough (according to (2.60)) such that

(2.61) }uN0 � vN0}L8T1H
s ¤ }uN0 � vN0}L8T1H

d+1 ¤ ε/3.

Consequently, (2.57) follows by combining (2.59) and (2.61).
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2.4. Lack of C2-regularity and uniformly continuity for the flow-map data solution

Here we prove that (0.2) cannot be solved in Hs(Rd) by a Picard iterative scheme based on the
Duhamel formula. This result can be viewed as an extension of [66], where the C2 ill-posedness in
Hs(R) is established for the Benjamin-Ono equation.

PROOF OF THEOREM 2.2. Suppose that there exists T ¡ 0 such that (0.2) is locally well-posed
in Hs(Rd) on the time interval [0, T) and such that the flow map

Φ(t) : Hs(Rd)Ñ Hs(Rd), u0 ÞÑ u(t)

is C2 differentiable at the origin. When φ P Hs(Rd), we have that Φ(�)φ is a solution of (0.2) with
initial data φ, so by Duhamel’s principle Φ(t)φ must satisfy the integral equation

Φ(t)φ = U(t)φ�
1
2

» t

0
U(t� t1)Bx1

(
Φ(t1)φ

)2 dt1.

We compute the Fréchet derivative of Φ(t) at ψ with direction φ1,

(2.62) dψΦ(t)(φ1) = U(t)φ1 �

» t

0
U(t� t1)Bx1

(
Φ(t1)ψ dψΦ(t1)(φ1)

)
dt1.

Supposing that (0.2) is well-posed, uniqueness implies that Φ(t)(0) = 0, so that d0Φ(t)(φ1) =

U(t)φ1. Differentiating again we find that

d2
0Φ(t)(φ1, φ2) =

B

Bγ

(
γ ÞÑ dγφ2 Φ(t)(φ1)

)����
γ=0

= �

» t

0
U(t� t1)Bx1

(
dγφ2 Φ(t)(φ2)dγφ2 Φ(t)(φ1)

)
dt1

����
γ=0

�

» t

0
U(t� t1)Bx1

(
Φ(t)(γφ2)d2

γφ1
Φ(t)(φ1, φ2)

)
dt1

����
γ=0

,

which implies

d2
0Φ(t)(φ1, φ2) = �

» t

0
U(t� t1)Bx1

(
(U(t1)φ1)(U(t1)φ2)

)
dt1.

Now, if the flow map were C2 then d2
0Φ(t) would be bounded from Hs � Hs to Hs, i.e.,����» t

0
U(t� t1)Bx1

(
(U(t1)φ1)(U(t1)φ2)

)
dt1

����
Hs
. }φ1}Hs}φ2}Hs .

We will prove that this does not hold in general, following the arguments in [66].
Indeed, we will construct two sequences of functions, φ1,N and φ2,N , such that

(2.63) }φ1,N}Hs , }φ2,N}Hs ¤ C

and

(2.64) lim
NÑ8

����» t

0
U(t� t1)Bx1

(
(U(t1)φ1,N)(U(t1)φ2,N)

]
dt1

����
Hs

= 8.
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We define φ1,N and φ2,N via their Fourier transforms as$&%yφ1,N(ξ) = λ
1�2d

2d N�sχA1(ξ), with A1 = [N, N + λ]� [λ1/d/2, λ1/d]d�1,yφ2,N(ξ) = λ
1�2d

2d χA2(ξ), with A2 = [3λ, 4λ]� [λ1/d/2, λ1/d]d�1

where N " 1, λ = N�(1+ε) and 0   ε   1/(2d � 1). First, we observe that φ1,N and φ2,N sat-
isfy (2.63).

On the other hand, taking the Fourier transform with respect to the space variable,

(2.65)

xIN(ξ, t) :=
"» t

0
U(t� t1)Bx1

(
(U(t1)φ1,N)(U(t1)φ2,N)

)
dt1

*^
(ξ)

=

»
Kξ

ξ1eitξ1|ξ|
eiZ(ξ,η)t � 1

Z(ξ, η)
yφ1,N(η)yφ2,N(ξ � η) dη

where the resonant function is given by

Z(ξ, η) := �ξ1|ξ|+ (ξ1 � η1)|ξ � η|+ η1|η|

and
Kξ :=

!
η P Rd : η P A1, ξ � η P A2

)
.

When η P A1 and ξ � η P A2, we claim that

(2.66) |Z(ξ, η)| � λN.

Indeed, using that pIN(ξ) is supported on

A3 = [N + 3λ, N + 5λ]� [λ1/d, 2λ1/d]d�1

we easily obtain

(2.67) (ξ1 � η1)|ξ � η| � λ(d+1)/d.

Moreover, from the inequality

|ξ| ¤
(
(N + 5λ)2 + 4(d� 1)λ2/d

)1/2
¤ N + 6λ

which holds for N large, λ = N�(1+ε) with 0   ε   1/(2d� 1), we have

(2.68) (N + 3λ)2 ¤ ξ1|ξ| ¤ (N + 6λ)2.

Analogously, we get

(2.69) N2 ¤ η1|η| ¤ (N + 2λ)2.

Then, (2.66) follows from (2.67), (2.68) and (2.69).
Now, since λN = N�ε and |Z(ξ, η)| � λN it follows

(2.70)

����� eiZ(ξ,η)t � 1
Z(ξ, η)

����� = |t|+ O
(

1
Nε

)
.

From (2.70) and |Kξ | � λ(2d�1)/d, we infer that

|xIN(ξ, t)|χA3(ξ) &
Nλ(2d�1)/d

Nsλ(2d�1)/d
|t|χA3(ξ).
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Therefore we arrive at

}IN(t)}Hs & Nλ(2d�1)/2d|t| = N1/2d�ε((2d�1)/2d)|t|.

Since 0   ε   1/(2d� 1), we deduce (2.64), which completes the proof. �

The following corollary (of the proof) shows that it is not possible to solve (0.2) in Hs(Rd) via
the usual contraction argument.

Corollary 2.16. Let s P R and T ¡ 0. Then there does not exist a space XT continuously embedded in
C([0, T]; Hs(Rd)) such that

(2.71) }U(t)φ}XT ¤ C}φ}Hs

and

(2.72)
����» t

0
U(t� t1)

(
F(�, t1)Bx1 F(�, t1)

)
dt1

����
XT

¤ C }F(�, t)}2
XT

.

PROOF. We write F = F1 + F2 and note that��� » t

0
U(t� t1)

[
FBx1 F(�, t1)

]
dt1

���
XT
¥

����» t

0
U(t� t1)Bx1

(
F1F2(�, t1)

)
dt1

����
XT

�

����» t

0
U(t� t1)

(
F1Bx1 F1(�, t1)

)
dt1

����
XT

�

����» t

0
U(t� t1)

(
F2Bx1 F2(�, t1)

)
dt1

����
XT

.

Now taking F1(�, t1) := U(t1)φ1,N and F2(�, t1) := U(t1)φ2,N , by (2.71) and (2.63), we have

}F}XT , }F1}XT , }F2}XT ¤ C.

Thus, if (2.72) holds, we would find that����» t

0
U(t� t1)Bx1

(
U(t1)φ1,N)U(t1)φ2,N)

)
dt1

����
XT

is uniformly bounded in N, contradicting (2.64). �

Next we prove that the flow map could not be uniformly continuous in L2(R2). We recall that
Mariş [62] proved that there exist solitary wave solutions of the form uc(x1, x2, t) = ϕ(x1 � ct, x2)

with c ¡ 0. That is, ϕc is a solution of the equation

(2.73) � cϕ� (�∆)1/2ϕ +
1
2

ϕ2 = 0

where ϕc P Hs(R2) for all s ¥ 0, and where (�∆)1/2 = D is defined by the Fourier symbol

F ((�∆)1/2φ)(ξ) = F (Dφ)(ξ) = |ξ|pφ(ξ) = b
ξ2

1 + � � �+ ξ2
d
pφ(ξ).

PROOF OF PROPOSITION 2.3. Let ϕc(x1, x2) := cϕ1(cx1, cx2) where ϕ1 solves (2.73) with c = 1.
Then ϕc solves (2.73) with c ¡ 0 and we consider solutions

uc(x1, x2, t) := cϕ1(cx1 � c2t, cx2)

to (0.2). In particular we will consider solutions uc1 and uc2 with c1 � c2.
By a change of variables it is easy to see that, for all t ¡ 0,

}uc1(�, t)}L2 = }ϕ1}L2 = }uc2(�, t)}L2 ,
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so that

(2.74) }uc1(�, t)� uc2(�, t)}2
L2 = 2 }ϕ1}

2
L2 � 2xuc1(�, t), uc2(�, t)yL2 .

Changing variables by c2x1 � c2
2t Ñ x1 and c2x2 Ñ x2, we see that@

uc1(�, t), uc2(�, t)
D

L2 =
c1

c2

»
ϕ1
( c1

c2
(x1 � c2(c1 � c2)t), c1

c2
x2
)

ϕ1(x) dx.

Therefore, taking c1 = n + 1, c2 = n, from the Lebesgue dominated convergence theorem, it
follows that, for all t ¡ 0,@

uc1(�, t), uc2(�, t)
D

L2 =
c1

c2

»
ϕ1
( c1

c2
(x1 � nt, x2)

)
ϕ1(x) dx Ñ 0 as n Ñ8,

while @
uc1(�, 0), uc2(�, 0)

D
L2 Ñ }ϕ1}

2
L2 as n Ñ8.

Thus, in view of (2.74), we deduce

}uc1(�, 0)� uc2(�, 0)}L2 Ñ 0 as n Ñ8,

while on the other hand, for all t ¡ 0,

}uc1(�, t)� uc2(�, t)}L2 Ñ 21/2 }ϕ1}L2 as n Ñ8,

completing the proof. �

2.5. Some remarks on the generalized equation

2.5.1. Ill-posedness conclusions. This part is aimed to prove Proposition 2.4.

PROOF OF PROPOSITION 2.4. We consider the flow map φ ÞÑ u(x, t; φ) and define uk+1 by

(2.75) uk+1 :=
Bk+1u
Bk+1ϕ

����
ϕ=0

(hN , . . . , hN)

where the sequence hN will be constructed below. Uniqueness yields u(�, �; 0) = 0, and so by some
simple calculations

(2.76) uk+1 = (k + 1)!
» t

0
U(t� t1)Bx1((U(t1)hN)

k+1) dt1.

Then, the assumption that φ ÞÑ u(x, t; φ) is of class Ck+1 at the origin assures that there exists a
positive constant c ¡ 0 such that

(2.77) sup
tP[�T,T]

}uk+1(t)}Hs ¤ c }hN}
k+1
Hs .

In the sequel, we will show that (2.77) fails for a suitable sequence of functions (hN). Let A and B
be positive real numbers (which will be chosen later) such that A   B. Consider the real-valued
function hN defined via its Fourier transform by

(2.78) xhN(ξ) = N�(2s+d)/2 (ψ+(ξ/N) + ψ�(ξ/N)) ,

where ξ P Rd, N " 1 and ψ+ is a smooth nonnegative function supported in the d–cube [A, B]d

and such that

(2.79) ψ+(ξ) = 1, @ ξ P [A + (B� A)/4, B� (B� A)/4]d,
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and ψ�(ξ) = ψ+(�ξ). Note that for all s P R and N ¥ 1,

}hN}Hs � 1.

On the other hand, by Fubini’s theorem we compute

(2.80)

puk+1(ξ, t) =
» t

0
ξ1ei(t�t1)ξ1|ξ|F ([U(t1)hN ]

k+1)(ξ) dt1

= N�(k+1)(2s+d)/2iξ1eitξ1|ξ|

�
k+1̧

p=0

(
k + 1

p

) » t

0
eit1ξ1|ξ|Fx(U(t1)F�1ψ+)

k+1�p(U(t1)F�1ψ�)
p).

Since the Fourier transform of (U(t1)F�1ψ+)k+1�p(U(t1)F�1ψ�)p is supported in the d-cube

[(k + 1)AN � pN(A + B), (k + 1)BN � pN(A + B)]d,

for all t P [�T, T], we choose A and B such that A ¡ kB/(k + 2) to obtain

(2.81)

puk+1(ξ, t)χ[(k+1)AN,(k+1)BN]d(ξ)

= N�(k+1)(2s+d)/2iξ1eitξ1|ξ|

» t

0
e�it1ξ1|ξ|Fx((U(t1)F�1ψ+)

k+1)

= N�(k+1)(2s+d)/2ξ1eitξ1|ξ|

»
Rdk

eitG(ξ,η1,...,ηk) � 1
G(ξ, η1, . . . , ηk)

� ψ+

(
ξ � η1

N

)
. . . ψ+

(
ηk�1 � ηk

N

)
ψ+

(
ηk

N

)
dη1 . . . dηk,

where

G(ξ, η1, . . . , ηk) = �
(
ξ1|ξ| � (ξ1 � η1

1)|ξ � η| �
k�1̧

j=1

(η
j
1 � η

j+1
1 )|η j � η j+1| � ηk

1|η
k|
)
.

Notice that on the support of the integral on the right hand side (2.81), we have

d1/2A2N2 ¤ (ξ1 � η1
1)|ξ � η1|, (η j

1 � η
j+1
1 )|η j � η j+1|, ηk

1|η
k| ¤ d1/2B2N2,

for all j = 1, . . . k� 1. Moreover, ξ P [(k + 1)AN, (k + 1)BN]d determines

d1/2(k + 1)2A2N2 ¤ ξ1|ξ| ¤ d1/2(k + 1)2B2N2.

Then, combining the above estimates we arrive at

(2.82)
d1/2(k + 1)N2A2((k + 1)� (B/A)2) ¤ |G(ξ, η1, . . . , ηk)|

¤ d1/2(k + 1)B2N2((k + 1)� (A/B)2).

By choosing A close enough to B (which is compatible with A ¡ kB) and

tN =
N�2

d1/2(k + 1)A2((k + 1)� (B/A)2)
,
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it follows that

|puk+1(ξ, t)|χ[(k+1)AN,(k+1)BN]d

& N�(k+1)(2s+d)/2N�2|ξ1|

�

»
Rdk

ψ+

(
ξ � η1

N

)
. . . ψ+

(
ηk�1 � ηk

N

)
ψ+

(
ηk

N

)
dη1 . . . dηk.

In view of (2.79),

|puk+1(ξ, t)|χ[(k+1)AN,(k+1)BN]d

& N�(k+1)(2s+d)/2N�1(χ[aN,bN]d � � � � � χ[aN,bN]d)(ξ),

where

a = A + (B� A)/4, b = B� (B� A)/4.

Now, recalling that

pχ[aN,bN]d(ξ) = 2d
d¹

j=1

e�i(a+b)Nξ j/2 sin((a� b)Nξ j/2)
ξ j

,

we find

(2.83)

χ[aN,bN]d � � � � � χ[aN,bN]d(x)

= 2d(k+1)
d¹

j=1

»
R

eixj�iξ j�i(k+1)(a+b)Nξ j/2
(

sin((a� b)Nξ j/2)
ξ j

)k+1

dξ j.

Hence, changing variables

(2.84)

χ[aN,bN]d � � � � � χ[aN,bN]d((k + 1)(A + B)N/2 + rN, . . . , (k + 1)(A + B)N/2 + rN)

= 2d(1�k)(B� A)kdNkd
( »

R

cos(4r/(B� A))

(
sin w

w

)k+1

dw
)d

.

This proves by continuity that for r ¡ 0 small enough, there exists c ¡ 0 which does not depend
on N, such that

|puk+1(ξ, t)|χ[(k+1)(A+B)N/2�rN,(k+1)(A+B)N/2+rN]d

¥ cN�(k+1)(2s+d)/2N�1Nkdχ[(k+1)(A+B)N/2�rN,(k+1)(A+B)N/2+rN]d

so that

}uk+1(t)}Hs & N�ks+kd/2�1

from which (for fixed T ¡ 0)

(2.85) lim
NÑ8

sup
tP[�T,T]

}uk+1(t)}Hs = +8,

as soon as s   d/2� 1/k. This yield a contradiction to (2.77). The proof is completed. �
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2.5.2. Solitary wave solutions. This subsection is devoted to present a survey of known result
regarding the existence of solitary-wave solutions for the equations,

(2.86) ut + vR1∆u + upux1 = 0, (x, t) P Rd+1,

with v � 0. Motivated by the two-dimensional model (see [2, 71, 87]), we are interested in study
solitary–wave solutions of the form u(x, t) = ϕ(x1 � ct, x̄), where x̄ P Rd�1, and c denotes the
speed of propagation. Substituting ϕ(x1 � ct, x̄) into (2.86), integrating once with respect to the
variable z = x1 � ct, and assuming that ϕ has an appropriated decay for suitably large values of
|z|, we observe that ϕ satisfies

(2.87) � cϕ + v(�∆)1/2ϕ +
1

p + 1
ϕp+1 = 0.

We will assume that the power p = k/m, where k and m are relatively prime and m is odd.
Consequently, we can define a branch of the map r ÞÑ r1/m real on the real axis.

Next, we establish a non-existence result for solutions of (2.87).

PROPOSITION 2.17. Equation (2.87) cannot have a smooth non-trivial solitary-wave solution unless
either

(i) v   0, c ¡ 0, p   2
d�1 ,

(ii) v ¡ 0, c   0, p   2
d�1 ,

(iii) v ¡ 0, c ¡ 0, p ¡ 2
d�1 , or

(iv) v   0, c   0, p ¡ 2
d�1 .

By ”smooth”, we mean that the functions have sufficient regularity to justify the following
computations. We emphasize that only the case (i) with p = 1 is of physical relevance. Ad-
ditionally, cases (ii) and (iii) are the same as (i) and (iv) respectively except that the sign of the
nonlinearity is reversed.

PROOF. We will deduce some Pohozaev–type identities to derive the desired conclusion. Mul-
tiplying (2.86) by ϕ and integrating on Rd it is seen

(2.88)
»
�cϕ2 + v(�∆)1/2ϕϕ +

1
p + 1

ϕp+2 dx = 0.

On the other hand, we claim

(2.89)
»
((�∆)1/2ϕ)xj ϕxj dx = �

1
2

»
(�∆)1/2ϕϕ + (�∆)�1/2B2

xj
ϕϕ dx

for all j = 1, . . . , d. Indeed, by Plancherel’s identity and integration by parts it follows that

(2.90)

»
((�∆)1/2ϕ)xj ϕxj dx = �

»
|ξ|pϕ(ξ) B

Bξ j

(ξ j pϕ(ξ)) dξ

= �

»
|ξ||pϕ(ξ)|2 dξ �

»
|ξ|ξ j pϕ(ξ) B

Bξ j

pϕ(ξ) dξ

= �

»
|ξ||pϕ(ξ)|2 dξ +

»
|ξ|�1ξ2

j |pϕ(ξ)|2 dξ +

»
|ξ|

B

Bξ j
(ξ j pϕ(ξ))pϕ(ξ) dξ

= �

»
(�∆)1/2ϕϕ dx�

»
(�∆)�1/2B2

xj
ϕϕ dx +

»
((�∆)1/2ϕ)xj ϕxj dx.
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This establishes (2.89). Now, multiplying (2.87) by xj ϕxj and using (2.89), we get»
cϕ2 � v(�∆)1/2ϕϕ� v(�∆)�1/2B2

xj
ϕϕ�

2
(p + 1)(p + 2)

ϕp+2 dx = 0

which leads after summing over j = 1, . . . , d to

(2.91)
»

cϕ2 � v

(
d� 1

d

)
(�∆)1/2ϕϕ�

2
(p + 1)(p + 2)

ϕp+2 dx = 0.

Finally, substituting (2.88) into (2.91) we have»
cϕ2 � v

(
(d� 1)p� 2

dp

)
|(�∆)1/4ϕ|2 dx = 0.

The above identity yields the proof of Proposition 2.17. �

Concerning the cases (i) and (ii) of Proposition 2.17, existence of solitary waves was established
in [62] for the two-dimensional problem with p = 1. For arbitrary dimensions, existence can be
deduced as a particular case of the results proved by Frank, Lenzmann and Silvestre in [31] (see
also [30]) for the class of nonlocal equations:

(2.92) Ψ + (�∆)sΨ� |Ψ|rΨ = 0, in Rd,

with d ¥ 1, s P (0, 1) and 0   r   r�(d, s) where

r� =

$&% 4s
d�2s for 0   s   d/2,

+8 for s ¥ d/2.

Let us now state some of the results derived in [31] concerning (2.92). To establish the existence
of solutions, one can use the Weinstein classical approach which consists of determining the best
constant Copt in the Gagliardo–Nirenberg inequality

(2.93)
»
|u|r+2 dx ¤ Copt

(»
|(�∆)s/2u|2 dx

)dr/4s (»
|u|2 dx

)(r+2)/2�dr/4s

,

so that Copt is obtained by minimizing the functional

(2.94) J(u) =
(³
|(�∆)s/2u|2 dx

)dr/4s (³
|u|2 dx

)(r+2)/2�dr/4s³
|u|r+2 dx

defined for u P Hs(Rd) with u � 0. Indeed, by methods of variational calculus (see Appendix D
in [31]), it is seen that C�1

opt = infu�0 J(u) is attained. Moreover, by computing J1(u), it easily seen
that any minimizer Ψ P Hs(Rd) satisfy equation (2.92) after a suitable rescaling Ψ ÞÑ c1Ψ(c2�) for
some constants c1 and c2. Finally, the inequality J(|u|) ¤ J(u) implies that the minimizer Ψ can be
chosen to be nonnegative.

On the other hand, uniqueness issues have been addressed in [31] for the class of nonlocal
equations (2.92). They consider ground state solutions according to the following definition.

Definition 2.18. Assume that Ψ P Hs(Rd) is a real–valued solution of equation (2.92). Let L+ denote
the corresponding linearized operator given by

(2.95) L+ = (�∆)s + 1� (v+ 1)|Ψ|r



2.5. SOME REMARKS ON THE GENERALIZED EQUATION 33

acting on L2(Rd). We say that Ψ ¥ 0 with Ψ � 0 is a ground state solution of equation (2.92) if L+ has
Morse index equal to 1; i.e., L+ has exactly one strictly negative eigenvalue (counting multiplicity).

It is worth pointing out that if Ψ ¥ 0 is a (local) minimizer of the functional J(u), then L+

has Morse index equal to 1 (see the comments after Definition 3.2 in [31]). In particular, any
nonnegative minimizer Ψ of J(u) is a ground state in the sense of the above definition (cf. [30]).
Summarizing the result in [31], we have:

Theorem 2.19. Let d ¥ 1, s P (0, 1) and 0   r   r�(d, s). Then

(i) Existence: There exists a minimizer Ψ P Hs(Rd) for J(u), which can be chosen a nonnegative
function Ψ ¥ 0 that solves equation (2.92).

(ii) Symmetry, regularity, and decay: If Ψ P Hs(Rd) with Ψ ¥ 0 and Ψ � 0 solves (2.92),
then there exists some x0 P Rd such that Ψ(� � x0) is radial, positive, and strictly decreasing in
|x� x0|. Moreover, the function Ψ belongs to H2s+1(Rd)X C8(Rd) and it satisfies

C1

1 + |x|d+2s ¤ Ψ(x) ¤
C2

1 + |x|d+2s for x P Rd

with some constants C2 ¥ C1 ¡ 0 depending on s, d, r and Ψ.
(iii) Uniqueness. The ground state solution Ψ P Hs(Rd) for equation (2.92) is unique up to transla-

tion.

Consequently, Theorem 2.19 establishes existence of solutions for (2.87) under the restrictions
(i) and (ii) of Proposition 2.17. Indeed, considering the conditions (i) for simplicity, it can be as-
sumed that (2.87) has the normalized form

(2.96) � ϕ� (�∆)1/2ϕ +
1

p + 1
ϕp+1 = 0,

which follows by scaling the variables as

(2.97) u(x, t) = av(bx, dt),

where a = |v|1/p, b = |v|�1/2 and d = 1/c. Then, letting ϕ(�) = (p + 1)1/pΨ(�), where Ψ ¥ 0
is given by Theorem 2.19 for r = p   2/(d � 1), we find that ϕ solves (2.96). In conclusion, we
deduce:

Corollary 2.20. Let d ¥ 2, vc   0, and p = k
m   2/(d� 1), where m is an odd positive integer and

m and k are relative prime. Then equation (2.87) admits a non-trivial solution in H1/2(Rd) that satisfies
the properties stated in part (ii) of Theorem 2.19.

Regarding stability, by scaling, we will restrict our attention to the case c ¡ 0 and v = �1 in
(2.87). We require the following quantities for our discussions

E(u) = 1
2

»
|(�∆)1/4u|2 �

2
(p + 1)(p + 2)

up+2 dx,(2.98)

M(u) =
1
2

»
u2 dx.(2.99)
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In virtue of the embedding H1/2(Rd) ãÑ Lp+2(Rd) valid for all p   2/(d � 1), we have that
H1/2(Rd) is a natural space to define E(�) and M(�). Now, we introduce the following function

(2.100) d(c) := E(ϕc) + cM(ϕc),

where ϕc solves (2.87) for c ¡ 0 and v = �1. In particular, we notice that

(2.101) ϕc(�) = c1/p ϕ1(c�),

where ϕ1 solves (2.96). It is well-known that the function d(�) is employed to study stability and
instability of solitary waves (see for instance [6, Theorem 2.3], [8, Theorem 3.1 and Theorem 4.1],
[22, Theorem 3.2] and [25]). It is expected that the solitary wave ϕc is stable when d2(c) ¡ 0 and
unstable if d2(c)   0. In our case, multiplying (2.87) with v = �1 by ϕc yields

(2.102) E 1(ϕc) +M1(ϕc) = 0

so that changing variables and employing (2.101)

(2.103) d1(c) = M(ϕc) =
c2/p�d

2
M(ϕ1).

From this we infer

(2.104) d2(c) =
1
2

(
2� pd

p

)
c2/p�d�1M(ϕ1).

Therefore it is seen

(i) d2(c) ¡ 0 if and only if p   2/d,
(ii) d2(c)   0 if and only if 2/d   p   2/(d � 1). (The condition p   2/(d � 1) assures

existence).

Remark 2.1. Unfortunately, the physically relevant case p = 1 and d = 2 satisfies d2(c) = 0, and so
it still remains an open problem to determinate stability or instability. Additionally, the range of indexes p
covered by the previous approach does not include an integer number.

Based on the previous remark, we decided not to proceed into any more aspects concerning
orbital stability/instability. However, after establishing a local well-posedness theory for (2.86),
one can adapt the ideas in [4, 6, 22, 25, 58, 70] for instance, to obtain stability of solitary wave
solutions for the case p   2/d, and instability whenever 2/d   p   2/(d� 1).

2.6. A note on local unique continuation principles

This section is aimed to present some unique continuation principles for a family of general-
ized dispersive equations that incorporate the model (0.2). More precisely, the idea is to prove that
if u1(x, t), u2(x, t) are two suitable solutions of a dispersive equation for (x, t) P Rd � [0, T], such
that there exists some non-empty open set Ω � Rd � [0, T] for which

u1(x, t) = u2(x, t), (x, t) P Ω,

Then it follows u1(x, t) = u2(x, t) for all (x, t) P Rd � [0, T].
Our analysis on this subject is inspired by the recent results deduced by Kenig, Pilod, Ponce,

and Vega in [52]. We remark that some other unique continuation principles for (0.2) are estab-
lished in Chapter 3.
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In this section, we are interested in examine the unique continuation principle stated above
for the family of equations:

(2.105)

#
Btu� Bx1 Dau + uux1 = 0, (x, t) P Rd+1, a P (�1, 2]zt0u

u(x, 0) = u0(x),

where the dimension d ¥ 2, Da f = (�∆)a/2 f is defined by the Fourier symbol: |ξ|a pf (ξ), |ξ| =b
ξ2

1 + � � �+ ξ2
d. The case a = 1 coincides with (0.2), and a = 2 with the widely studied Zakharov-

Kuznetsov equation (see [55, 89]). The equation (2.105) for 1 ¤ a ¤ 2 can be regarded as a
mathematical model to measure the effects of dispersion on all the variables between the physical
relevant models a = 1 and a = 2. The cases a P (�1, 1)zt0u can be implemented as a mathemat-
ical equation to measure the effects of weak dispersion and nonlinearity in a higher dimensional
model. We emphasized that a = �1 yields the equation:

(2.106) Btu +R1u + uux = 0,

which can be seen as a mathematical extension of the Burgers-Hilbert equation (0.5).
Formally, real solutions of (2.105) satisfy three conservation laws:

(2.107)

Ia(u) =
»

u(x, t) dx,

Ma(u) =
»

u2(x, t) dx,

Ha(u) =
» ���Da/2u(x, t)

���2 � 1
3

u3(x, t) dx.

Reffering to well-posedness for (2.105), the best known local well-posedness conclusion for 1 ¤

a   2 were established in [80], it was proved that (2.105) is LWP in Hs(Rd) s ¡ d/2 + 3/2� a
whenever 1 ¤ a   2. Concerning the initial value problem for the Zakharov-Kuznetsov a = 2, in
[53], it was shown LWP in Hs(R2) s ¡ �1/4 and Global well-posedness (GWP) in L2(R2), in [38]
it was determined LWP in Hs(Rd) s ¡ (d� 4)/2 for d ¥ 3, and GWP in L2(R3). As far as we know
there are non-standard results addressing well-posedness issues for the dispersions �1   a   1
with a � 0.

Our main result is the following:

Theorem 2.21. Let a P (�1, 2)zt0u. Let u1, u2 be two real solutions of the IVP (2.105) such that

(2.108) u1, u2 P C([0, T]; Hs(Rd))X C1([0, T]; Hs1(Rd)),

with s ¡ maxta + 1, d/2 + 1u, s1 ¡ mints � (a + 1), s � 1u. If there exists a non-empty open set
Ω � Rd � [0, T] such that

u1(x, t) = u2(x, t), (x, t) P Ω,

then, u1(x, t) = u2(x, t) for all (x, t) P Rd � [0, T].

The existence of solutions for (2.105) in the class (2.108) can be obtained by applying a parabolic
regularization argument in the spirit of [45, 47] or [60, Chapter 10]. Notice that this technique does
not consider the effects of dispersion to establish the existence of solutions.
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We remark that some unique continuation properties of solutions to the Zakharov-Kuznetsov
equation (α = 2 in (2.105)) for dimensions d = 2, 3 have been studied in [9, 16, 17]. Roughly,
in these references it was established that for two sufficiently regular solutions u1, u2, if u1 � u2

decays fast enough at two distinct times, it follows u1 � u2.
A key argument in the proof of Theorem 2.21 is the following global uniqueness results for

fractional Schrödinger equation established in [32, Theorem 1.2].

Theorem 2.22. Let a P (0, 2) and f P Hs(Rd) for some s P R. If there exists an open (non-empty) set
Θ such that

(2.109) (�∆)a/2 f (x) = f (x) = 0, in D1(Θ),

then f � 0 in Hs(Rd).

In the last theorem, D1(Θ) denotes the space of distributions on Θ, i.e., the space of continuous
linear functional on C8c (Θ).

Remark 2.2. The statement of Theorem 2.22 clearly extends to a P (0,8)z2Z. Indeed, writing a =

2k + b, where k P Z+ Y t0u, b P (0, 2) and g := (�∆)k f , by using that (�∆)k is a local operator we have

g(x) = (�∆)k f (x) = (�∆)a/2 f (x) = (�∆)b/2g(x) = 0, in D1(Θ).

Thus, Theorem 2.22 establishes that g � 0 in Hs�2k(Rd), and so f � 0 in Hs(Rd).
Additionally, the conclusion of Theorem 2.22 holds for a P (�d/2, 0)z2Z assuming that f P Hs(Rd)

for some s ¥ 0 such that tsu ¡ |a|/2. To see this, we first notice that by Hardy-Littlewood-Sobolev
inequality (�∆)a/2 f is a well-defined function in Lp(Rd), where 1/p = 1/2 + a/d. Then, we let g :=
(�∆)tsu+a/2 f , so since (�∆)tsu is a local operator the desired conclusion follows by the previous result for
positive fractional derivatives and by observing that

g(x) = (�∆)tsu(�∆)a/2 f (x) = (�∆)tsu f (x) = (�∆)|a|/2g(x) = 0, in D1(Θ).

PROOF OF THEOREM 2.21. We define w(x, t) := u1(x, t)� u2(x, t), then

(2.110) Btw� Bx1 Daw + Bx1 u1w + u2Bx1 w = 0, (x, t) P Rd � [0, T].

Since u1, u2 are in the class (2.108), the equation (2.110) is satisfied in Hs1(Rd) and in consequence
it is valid for almost every (x, t) P Rd � [0, T]. Then it follows

(2.111) Bx1 Daw(x, t) = 0, a.e. (x, t) P Ω.

We emphasize that by Hardy-Littlewood-Sobolev inequality Daw(�, t) is a well-defined function
in Lp(Rd) with p = 2 if a P (0, 2), and in 1   p   8 with 1/p = 1/2 + a/d, if a P (�1, 0).

According to (2.111) there exist t0 and Θ � Rd open non-empty such that Θ� tt0u � Ω and
Bx1 Daw(x, t0) = 0 for a.e. x P Θ.

Therefore, Theorem 2.22, Remark 2.2 and the fact that Bx1 w(�, t0) is a continuous function yield
Bx1 w(x, t0) = 0 for all x P Rd, that is, w(x1, x1, t0) depends only on the variables x1 = (x2, . . . , xd).
However, Fubini’s Theorem implies that w(�, x1, t0) P L2(R) for almost every x1 P Rd�1, so it must
follows that w(x, t0) = 0 for all x P Rd. This completes the proof. �
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Remark 2.3. The previous reasoning in the proof of Theorem 2.21 extends to the equation in (2.105)
with a more general non-linearity. As a matter of fact, Theorem 2.21 applies to any pair of appropriate
solutions u1, u2 of the IVP associated to the equation

(2.112) Btu� Bx1 Dau + F(u, . . . , Bαu) = 0, (x, t) P Rd+1,

where a P (�d/2,8)z2Z, α P Nd is a multi-index and F(�) is a regular enough function representing the
non-linearity. In particular, taking F(u, Bx1 u) = ukBx1 u, k P Z+, we deduce Theorem 2.21 for the IVP
associated to (2.2).



Chapter 3
Study of the HBO equation in weighted
spaces

In this chapter, we study the initial value problem (0.2) in weighted spaces. Our purpose is
to establish local well-posedness results in weighted Sobolev spaces and to determine according
to them some sharp unique continuation properties of the solution flow. In consequence, optimal
decay rate for this model is determined. We remark that a key ingredient in our considerations
is the deduction of a new commutator estimate involving Riesz transforms (See Proposition 3.8
below). The results stated in this chapter are contained in [76].

3.1. Statement of results

This work is intended to determine if for a given initial data in the Sobolev space Hs(Rd) with
some additional decay at infinity (for instance polynomial), it is expected that the corresponding
solution of (0.2) inherits this behavior. Such matter has been addressed before for the Benjamin-
Ono equation in [27, 29], showing that in general polynomial type decay is not preserved by the
flow of this model. As a consequence of our results, we shall determine that the same conclusion
extends to the (0.2) equation.

Let us now state our results. Our first consequence is motivated from the fact that the weight
function xxyr = (1 + |x|2)r/2 is smooth with bounded derivatives when r P [0, 1]. This property
allows us to consider well-posedness issues for a more general class of weights.

PROPOSITION 3.1. Let ω be a smooth weight with all its first and second derivatives bounded. Then,
the IVP (0.2) is locally well-posed in Hs(Rd) X L2(ω2 dx) for all s ¡ sd, where s2 = 5/3 and sd =

d/2 + 1/2 for d ¥ 3.

The proof of Proposition 3.1 is similar in spirit to that in [18] for a two-dimension model. A
remarkable difference is that our well-posedness results in Theorem 2.1 (see also [39]) enable us
to prove Proposition 3.1 in Sobolev spaces of lower regularity compared with those obtained by
implementing a parabolic regularization argument as in Lemma 2.10.

Next, we discuss LWP for the IVP (0.2) in the weighted Sobolev spaces Zs,r(Rd) and Żs,r(Rd)

defined by (1.1) and (1.2) respectively.

38
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For the purpose of obtaining a relation between differentiability and decay in the spaces (1.1),
we notice that the linear part of the equation (0.2) L = Bt �R1∆ commutes with the operators

Γl = xl + tδ1,l(�∆)1/2 + tBxlR1, l = 1, . . . , d,

where in this chapter δ1,l will denote the Kronecker delta function with δ1,l = 1 if l = 1 and zero
otherwise, thus one has

[L, Γl ] = LΓl � ΓlL = 0.

For this reason, it is natural to study well-posedness in weighted Sobolev spaces Zs,r(Rd) where
the balancing between decay and regularity satisfies the relation, r ¤ s.

Remark 3.1. For the sake of brevity, from now on we shall state our results for the (0.2) equation only
for dimensions two and three. Actually, it will be clear from our arguments that solutions of this model in
the spaces (3.1) behave quite different in each of these dimensions. Nevertheless, following our ideas one can
extend the ensuing conclusions to arbitrary even and odd dimensions.

Theorem 3.2. Consider d = 2, 3. Let s ¡ sd where s2 = 5/3 and s3 = 2.

(i) If r P [0, d/2 + 2) with r ¤ s, then the IVP associated to (0.2) is locally well-posed in Zs,r(Rd).
(ii) If r P [0, d/2 + 3) with r ¤ s, then the IVP associated to (0.2) is locally well-posed in Żs,r(Rd).

The proof of Theorem 3.2 is adapted from the arguments used by Fonseca and Ponce in [29]
and Fonseca, Linares and Ponce in [28]. Additional difficulties arise from extending these ideas
to the (0.2) equation, since here we deal with a higher dimensional model involving Riesz trans-
form operators. Among them, the commutator relation between R1 and a polynomial of a certain
higher degree requires to infer weighted estimates for derivatives of negative order. In this regard,
as a further consequence of the proof of Theorem 3.2 we deduce.

Corollary 3.3. Consider d = 2, 3 and r0 P [0, d/2). Let u P C([0, T]; Żs,r(Rd)) be a solution of the
IVP (0.2) with (d/2 + 2)� ¤ r ¤ s. Then

|∇|�1u P C([0, T]; L2(|x|2r0 dx)).

Where the operator |∇|�1 is defined by the Fourier multiplier |ξ|�1 = (ξ2
1 + � � �+ ξ2

d)
�1/2. Next

we state some continuation principles for the (0.2) equation.

Theorem 3.4. Assume that d = 2, 3. Let u be a solution of the IVP associated to (0.2) such that
u P C([0, T]; Z2+,2(R

2)) when d = 2 and u P C([0, T]; Z3,3(R3)) when d = 3. If there exist two different
times t1, t2 P [0, T] for which

u(�, tj) P Zd/2+2,d/2+2(R
d), j = 1, 2 then pu0(0) = 0.

In Theorem 3.4, u P Z2+,2(R
2) means that u P H2+(R2) X L2(|x|4dx), where there exists a

positive number ε ! 1 such that u P H2+ε(R2).

Theorem 3.5. Suppose that d = 2, 3, r2 = 3 and r3 = 4. Let u P C([0, T]; Żrd,rd(R
d)) be a solution

of the IVP associated to (0.2). If there exist three different times t1, t2, t3 P [0, T] such that

u(�, tj) P Zd/2+3,d/2+3(R
d), j = 1, 2, 3 then u(x, t) = 0.
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It is worth pointing out that the deduction of Theorems 3.4 and 3.5 is more involved in the
odd dimension case, where the decay rates d/2+ 2 and d/2+ 3 are not integer numbers. Roughly
speaking, transferring decay to regularity in the frequency domain, on this setting one has to deal
with an extra 1/2-fractional derivative to achieve these conclusions.

We remark that similar unique continuation properties have been established for the Benjamin-
Ono equation in [29] and the dispersion generalized Benjamin-Ono equation in [28]. A difference
in the present work is that our proof of Theorems 3.4 and 3.5 incorporates an extra weight in
the frequency domain, which allows us to consider less regular solutions of (0.2) to reach these
consequences.

Remarks. (i) When d = 1, the conclusion of Theorem 3.2 coincides with the decay rates showed
for the Benjamin-Ono equation in [29, Theorem 1]. In this sense, our results can be regarded
as a generalization of those derived by the Benjamin-Ono equation (0.1). As a matter of fact,
Theorem 3.2 tells us that an increment in the dimension allows a 1/2 larger decay with respect to
the preceding setting.

(ii) The restrictions on the Sobolev regularity stated in Proposition 3.1 and Theorem 3.2 are imposed
from the results in Theorem 2.1, which assure that under such considerations the solution u(x, t)
satisfies

(3.1) u P L1([0, T); W1,8(Rd)
)
,

Since we employ energy estimates to establish LWP in Zs,r(Rd), the property (3.1) is essential to
consider lower regularity solutions for our result in this chapter.

(iii) Theorem 3.4 shows that the decay r = (d/2 + 2)� is the largest possible for arbitrary initial data.
In this regard Theorem 3.2 (i) is sharp. In addition, Theorem 3.4 shows that if u0 P Zs,r(Rd) with
d/2 + 2 ¤ r ¤ s and pu0(0) � 0, then the corresponding solution u = u(x, t) verifies

|x|(d/2+2)�u P L8([0, T]; L2(Rd)), T ¡ 0.

Although, there does not exist a non-trivial solution u corresponding to data u0 with pu0(0) � 0
with

|x|d/2+2u P L8([0, T1]; L2(Rd)), for some T1 ¡ 0.

(iv) Theorem 3.5 shows that the decay r = (d/2 + 3)� is the largest possible in the spatial L2-decay
rate. As a result, Theorem 3.4 (ii) is sharp. In addition, Theorem 3.5 tells us that there are non-
trivial solutions u = u(x, t) such that

|x|(d/2+3)�u P L8([0, T]; L2(Rd)), T ¡ 0

and it guarantees that there does not exist a non-trivial solution such that

|x|d/2+3u P L8([0, T]; L2(Rd)), for some T1 ¡ 0.

One may ask whether the assumption in Theorem 3.5 can be reduced to two different times
t1   t2. In this respect, we have the following consequences.

Theorem 3.6. Suppose that d = 2, 3, r2 = 3 and r3 = 4. Let u P C([0, T]; Żrd,rd(R
d)) be a solution

of the IVP associated to (0.2). If there exist t1, t2 P [0, T], t1 � t2, such that

u(�, tj) P Zd/2+3,d/2+3(R
d), j = 1, 2,
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and »
x1u(x, t1) dx = 0 or

»
x1u(x, t2) dx = 0,

then

u � 0.

Theorem 3.7. Suppose that d = 2, 3, r2 = 3 and r3 = 4. Let u P C([0, T]; Żs,rd(R
d)) with s ¥

d/2 + 4 be a nontrivial solution of the IVP associated to (0.2) such that

u0 P Żd/2+3,d/2+3(R
d) and

»
x1u0(x) dx � 0.

Let

t� := �
4

}u0}
2
L2

»
x1u0(x) dx.

If t� P (0, T], then

u(t�) P Żd/2+3,d/2+3(R
2).

Remarks. (i) Theorem 3.6 tells us that the three times condition in Theorem 3.5 can be reduced
to two times t1 � t2 provided that»

x1u(x, t1) dx = 0 or
»

x1u(x, t2) dx = 0.

(ii) Theorem 3.7 asserts that the condition of Theorem 3.5 in general cannot be reduced to two different
times. In this sense the result of Theorem 3.6 is optimal.

(iii) In view of Theorem 3.7, we notice that the number of times involved in Theorems 3.4 and 3.5 is the
same required to establish similar unique continuation properties for the Benjamin-Ono equation,
see [29, Theorem 1 and Theorem 2]. Therefore, our conclusions on the (0.2) equation are again
regarded as a generalization of their equivalents for the Benjamin-Ono model.

Next we introduce the main ingredient behind the proof of Proposition 3.1 and Theorem 3.2.
When dealing with energy estimates, motivated by the structure of the dispersion term in the
equation (0.2), it is reasonable to try to find a commutator relation involving the Riesz transform,
in such a way that when applied to a differential operator it redistributes the derivatives lowering
the order of the operator. In this direction, we provide a new generalization of Calderón’s first
commutator estimate [12] in the context of the Riesz transform.

PROPOSITION 3.8. Let Rl be the usual Riesz transform in the direction l = 1, . . . , d. Consider
a P C8(Rd) with Bγa P L8(Rd) for all multi-index γ, and f P S(Rd). Then for any 1   p   8, any
multi-index α with |α| ¥ 1, there exists a constant c depending on α and p such that

(3.2)
���Rl(aBα f )� aRlB

α f �
¸

1¤|β| |α|

1
β!
BβaDβ

Rl
Bα f

���
Lp
¤ cα,p

¸
|β|=|α|

}Bβa}L8} f }Lp .

The operator Dβ
Rl

is defined via its Fourier transform as

(3.3)
z
Dβ

Rl
g(ξ) = i�|β|Bβ

ξ

(
�iξl

|ξ|

) pg(ξ).
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In Proposition 3.8 the convention for the empty summation (such as
°

1¤|β| 1) is defined as
zero. Consequently, when |α| = 1 we find

}[Rl , a]Bα f }Lp . }∇a}L8 } f }Lp .

where
[Rl , a]Bα f = Rl(aBα f )� aRlB

α f .

Estimates of the form (3.2) are of interest on their own in Harmonic Analysis, see [56] for similar
results and several applications dealing with homogeneous differential operators. The result of
Proposition 3.8 may be of independent interest. Indeed, we believe that it could certainly be used
to derive other properties for the (0.2) equation.

In the present work, (3.2) is essential to transfer derivatives to some weighted functions. Ad-
ditionally, the operators Dβ

Rl
defined by (3.3) are useful to represent commutator relations between

the Riesz transform and polynomials.

We will begin by introducing some additional notation and preliminary estimates to be used in
subsequent sections. In Section 3.3 we prove Proposition 3.1, and Theorems 3.2, 3.4, 3.5, 3.6 and
3.7 will be deduced in the following Sections 3.4, 3.5, 3.6, 3.7 and 3.8 respectively. We conclude
this chapter with an appendix where we show the commutator estimate stated in Proposition 3.8.

3.2. Notation and preliminary estimates

Besides the considerations introduced in Section 1.2, we require of some additional considera-
tions. But before we state these conclusions, it is worth to recall the result of Proposition 1.11 that
implies that all the estimates involving the Riesz transform and the weights twθ

nu (see (1.20)) are
independent of n P Z+ for some appropriated values of θ.

A radial function φ P C8c (Rd), with φ(x) = 1 when |x| ¤ 1 and φ(x) = 0 if |x| ¥ 2 will appear
several times in our arguments.

Now, we introduce some notation that will be convenient in the proof of Theorem 3.4 and
Theorem 3.5. Given k = 1, . . . , d fixed, we define the operators Fk

j ’s as being:

(3.4) Fk
j (t, ξ, f ) = B

j
ξk

(
eitξ1|ξ| f (ξ)

)
for j = 1, 2, 3, 4. More precisely,

(3.5)

Fk
1 (t, ξ, f ) = Bξk

(
itξ1|ξ|

)
eitξ1|ξ| f (ξ) + eitξ1|ξ|Bξk f (ξ),

Fk
2 (t, ξ, f ) = B2

ξk

(
itξ1|ξ|

)
eitξ1|ξ| f (ξ) + Bξk

(
itξ1|ξ|

)
Fk

1 (t, ξ, f ) + Fk
1 (t, ξ, Bξk f ),

Fk
3 (t, ξ, f ) = B3

ξk

(
itξ1|ξ|

)
eitξ1|ξ| f (ξ) + 2B2

ξk

(
itξ1|ξ|

)
Fk

1 (t, ξ, f ) + Bξk(itξ1|ξ|)Fk
2 (t, ξ, f )

+ Fk
2 (t, ξ, Bξk f ),

Fk
4 (t, ξ, f ) = B4

ξk

(
itξ1|ξ|

)
eitξ1|ξ| f (ξ) + 3B3

ξk

(
itξ1|ξ|

)
Fk

1 (t, ξ, f ) + 3B2
ξk
(itξ1|ξ|)Fk

2 (t, ξ, f )

+ Bξk(itξ1|ξ|)Fk
3 (t, ξ, f ) + Fk

3 (t, ξ, Bξk f ).

Additionally, the operators rFk
j , j = 1, 2, 3, 4 are defined according to (3.5) by the relations

(3.6) rFk
j (t, ξ, f ) = e�itξ1|ξ|Fk

j (t, ξ, f ).
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The following identities will be frequently considered in our arguments:

(3.7)

Bξk

(
ξ1|ξ|

)
= δ1,k|ξ|+

ξ1ξk

|ξ|
, B2

ξk

(
ξ1|ξ|

)
= 2δ1,k

ξk

|ξ|
+

ξ1

|ξ|
�

ξ1ξ2
k

|ξ|3
,

B3
ξk

(
ξ1|ξ|

)
= 3δ1,k

1
|ξ|

� 3δ1,k
ξ2

k
|ξ|3

� 3
ξ1ξk

|ξ|3
+ 3

ξ1ξ3
k

|ξ|5
,

B4
ξk

(
ξ1|ξ|

)
= �12δ1,k

ξk

|ξ|3
+ 12δ1,k

ξ3
k

|ξ|5
� 3

ξ1

|ξ|3
+ 18

ξ1ξ2
k

|ξ|5
� 15

ξ1ξ4
k

|ξ|7
.

Next we discuss some properties of the operators Dβ
Rl

defined by (3.3). The following lemma
is useful to estimate the L2-norm of these operators.

Lemma 3.9. Let α and β be multi-indexes and f P Ḣ|α|�|β|(Rd). Then there exist constants cσ P R

such that

(3.8) Dβ
R1
(Bα f ) =

¸
σ

cσRσ(|∇||α|�|β| f ),

where the sum runs over all index σ = (σ1, . . . , σ|α|+|β|+1) with integer components such that 1 ¤ σj ¤ d,
j = 1, . . . , |α|+ |β|+ 1 and we denote by

Rσ = Rσ1 � � �Rσ|α|+|β|+1 .

For instance, when α = 0 and |β| = 1, say β = ek, one has

(3.9) Dek
R1

f = �δ1,k|∇|�1 f �R1Rk
(
|∇|�1 f

)
,

and so, letting now α = ej,

(3.10) Dek
R1
Bxj f = δ1,kRj f +R1RkRj f .

PROOF OF LEMMA 3.9 . An inductive argument yields the following identity

(3.11) Bβ

(
ξ1

|ξ|

)
=

Pβ(ξ)

|ξ|2|β|+1 , ξ � 0,

where Pβ(ξ) is a homogeneous polynomial with real coefficients of order |β|+ 1. Accordingly, we
deduce the following point-wise identity

(3.12) FDβ
R1
(Bα f )(ξ) =

�1
i|β|�|α|�1 B

β

(
ξ

|ξ|

)
ξα pf (ξ) = (�1)|α|

(
Pβ(�iξ)(�iξ)α

|ξ||α|+|β|+1

)
|ξ||α|�|β| pf (ξ).

The proof is now a consequence of the fact that the inverse Fourier transform of

Pβ(�iξ)(�iξ)α

|ξ||α|+|β|+1

can be written as a linear combination of the operators Rσ, where σ = (σ1, . . . , σ|α|+|β|+1) with
1 ¤ σj ¤ d. �
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As already mentioned, the operators Dβ
Rl

are useful to express commutator relations between
Riesz transforms and polynomials. More explicitly, for a given a multi-index |γ| ¥ 1, we shall use
the following point-wise estimate

(3.13) [Rl , xγ] f =
¸

0 β¤γ

(
γ

β

)
(�1)|β|+1Dβ

Rl
(xγ�β f ),

valid for f regular enough with appropriated decay and satisfying for instance»
xβ f (x) dx = 0, for each |β|   |γ|.

In particular, taking γ = ek, k = 1, . . . , d and recalling (3.10), we obtain

(3.14) [R1, xk]Bxj f = Dek
R1
Bxj f = δ1,kRj f +R1RkRj f .

Now we state some consequences of Theorem 1.13.

PROPOSITION 3.10. Let b P (0, 1). For any t ¡ 0

(3.15) Db(eix1|x|t) . (|t|b/2 + |t|b|x|b), x P Rd.

PROOF. This result is proved following similar arguments as in [69]. �

By implementing Theorem 1.13, we deduce the following point-wise estimate:

Lemma 3.11. Let θ P (0, 1), l = 0, 1 fixed and P(x) be a homogeneous polynomial of degree k ¥ 0 in
Rd. In addition, let g P L8(Rd) such that | � |�l g,∇g P L8(Rd). Then,

(3.16) Dθ
(
| � |�k�l P(�)g

)
(ξ) .k

(
}| � |�l g}L8 + }∇g}L8

)(
1 + |ξ|�θ

)
,

for all ξ � 0.

PROOF. Let l = 0, 1, we write

(3.17)

(
Dθ(| � |�k�l P(�)g)

)2
(ξ) =

» ��|ξ|�k�l P(ξ)g(ξ)� |ξ � η|�k�l P(ξ � η)g(ξ � η)
��2

|η|d+2θ
dη

=

»
|η|¤mint|ξ|/2,1u

(� � � ) dη +

»
|η|¡mint|ξ|/2,1u

(� � � ) dη

=: I + II .

Given that P(ξ) is a homogeneous polynomial of degree k, it is deduced

(3.18)
II . }| � |�l g}2

L8
( »

|η|¡|ξ|/2

1
|η|d+2θ

dη +

»
mint|ξ|/2,1u |η|¤|ξ|/2

1
|η|d+2θ

dη
)

. }| � |�l g}2
L8
(
1 + |ξ|�2θ

)
.
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On the other hand, when |η| ¤ min t|ξ|/2, 1u, |η � ξ| � |ξ| and so

(3.19)

���|ξ|�k�l P(ξ)g(ξ)� |ξ � η|�k�l P(ξ � η)g(ξ � η)
���

¤
���|ξ|�k�l P(ξ)

(
g(ξ)� g(ξ � η)

)���+ ���|ξ|�k�l P(ξ)� |ξ � η|�k�l P(ξ � η)
��� |g(ξ � η)|

. }∇g}L8 |ξ|
�l|η|+

k+l�1¸
j=0

|η||ξ|k+l�1�j|ξ � η|j|ξ|k

|ξ|k+l|ξ � η|k+l |g(ξ � η)|

+
k�1̧

j=0

|η||ξ|k�1�j|ξ � η|j

|ξ � η|k+l |g(ξ � η)|

.
(}∇g}L8

|ξ|l
+

��| � |�l g
��

L8

|ξ|

)
|η|.

Hence we get

(3.20)
I .

(}∇g}2
L8

|ξ|2l +

��| � |�l g
��2

L8

|ξ|2
)

�

»
|η|¤mint|ξ|/2,1u

1
|η|d�2+2θ

dη .
(
}| � |�l g}2

L8 + }∇g}2
L8
)(

1 + |ξ|�2θ
)
.

Gathering (3.18) and (3.20), we deduce (3.16). �

We are now in position to show the following result, which will be useful to deduce Theorems
3.4 and 3.5 in the three-dimensional setting.

PROPOSITION 3.12. Let g P C8c (R3) and P(x) a homogeneous polynomial of degree k ¥ 1 in R3.
Then

(3.21)
����P(�)
| � |k

f g
����

H1/2
.k,g } f }H(1/2)+ .

Furthermore, if m is an integer with 0 ¤ m   k,

(3.22)
����P(�)
| � |m

f g
����

H1/2
.k,m,g } f }H1/2 .

PROOF. Let us first prove (3.21). Consider a function g̃ P C8c (Rd) such that g̃g = g, then from
(3.16) with l = 0, we have

(3.23)

����P(�)
| � |k

f g
����

H1/2
. } f g}L2 + }D1/2(| � |�kP(�) f g

)
}L2

. } f g}L2 + }D1/2(| � |�kP(�)g̃
)

f g}L2 + }| � |�kP(�)g̃D1/2( f g)}L2

. } f g}H1/2 + }| � |�1/2 f g}L2 .

Thus, the commutator relation (1.25) with p1 = 1 and p2 = 2 yields

(3.24) } f g}H1/2 . } f g}L2 + }[D1/2, g] f }L2 + }gD1/2 f }L2 .g } f }H1/2 .

On the other hand, taking 0   ε   1, Hölder’s inequality and Sobolev’s embedding imply

(3.25) }| � |�1/2 f g}L2 . } f }L3/(1�ε)}| � |�1/2g}L6/(1+2ε) .g }D1/2+ε f }L2 ¤ } f }H1/2+ε ,



3.3. WELL-POSEDNESS IN HS(RD)X L2(ω2 DX) 46

where we have used that | � |�1 P L6/(1+2ε)
loc (R3). Thus incorporating the above estimates in (3.23),

we get (3.21). To deduce (3.22), since P(x) has degree k, there exist finite multi-indexes β1, . . . , βl

of order k�m and homogeneous polynomials Pβ1(x), . . . , Pβl (x) of order m such that

(3.26)
P(x)
|x|m

=
ļ

j=1

Pβ j(x)
|x|m

xβ j .

Therefore, since k�m ¥ 1 and xβ j g is a smooth function with compact support for each j, arguing
as in (3.23) and (3.24), we obtain����P(�)

| � |m
f g
����

H1/2
.

ļ

j=1

}|x|�mPβ j(x)xβ j f g}H1/2

.
ļ

j=1

}xβ j f g}L2 + }| � |�mPβ j(�)g̃D1/2(xβ j f g)}L2 + }D1/2(|x|�mPβ j(x)g̃
)
xβ j f g}L2

.
ļ

j=1

}xβ j f g}H1/2 + }|x|�1/2xβ j f g}L2 . } f }H1/2 .

The proof of the proposition is now completed. �

3.2.1. Approximation by smooth solutions. The results concerning local well-posedness for
the IVP (0.2) in classical Sobolev spaces Hs(Rd) are fundamental in our arguments to extend the
LWP result to the weighted domain. In this regard, part of the proof of Theorem 2.1 (see also [39,
Proposition 5.10 and Lemma 5.9]) guarantees existence of solutions of (0.2) as the strong limit of
smooth solutions in the class

C([0, T]; Hs(Rd))X L1([0, T]; W1,8(Rd)),

whose initial data are mollified versions of u0 in the sense of the Bona-Smith argument [7]. More
precisely, for a given solution u P C

(
[0, T]; Hs(Rd)

)
X L1([0, T]; W1,8(Rd)

)
provided by Theorem

2.1, there exists a sequence of smooth solutions of (0.2), uN P C([0, T]; H8(Rd)) N ¥ 1, such that

(3.27) sup
tP[0,T]

}uN(t)}Hs ¤ 2 }u0}Hs ,

and

(3.28) uN Ñ u in the sense of C
(
[0, T]; Hs(Rd))X L1([0, T]; W1,8(Rd)

)
.

Therefore, (3.28) will be useful to perform rigorously weighted energy estimates at the Hs(Rd)-
level stated in Theorem 2.1, and then taking the limit N Ñ 8 to deduce Proposition 3.1 and
Theorem 3.2.

3.3. Well-posedness in Hs(Rd)X L2(ω2 dx)

In this section we establish local well-posedness in the space Hs(Rd)X L2(ω2 dx), that is to say
we deduce Proposition 3.1. We require the following result.
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Lemma 3.13. Let ω be a smooth weight with all its first and second derivatives bounded. Define

(3.29) ωλ(x) = ω(x)e�λ|x|2 , x P Rd, λ P (0, 1).

Then, there exists a constant c ¡ 0 independent of λ, such that

}Bαωλ}8 ¤ c,

where α is a multi-index of order 1 ¤ |α| ¤ 2.

PROOF. The proof is similar to that in [18, Lemma 4.1]. �

Now, we proceed to deduce well-posedness in Hs(Rd)X L2(ω2 dx).

PROOF OF PROPOSITION 3.1. Given u0 P Hs(Rd)X L2(ω2 dx), from Theorem 2.1, there exist
T = T(}u0}Hs) ¡ 0, u P C([0, T]; Hs(Rd)) solution of (0.2) with initial datum u0 and a smooth
sequence of solutions uN P C([0, T]; H8(Rd)) with uN(0) P L2(ω2 dx), satisfying (3.27) and (3.28).
We shall prove the persistence property u P C([0, T]; L2(ω2 dx)).

We first perform energy estimates for the regularized solutions uN P C([0, T]; H8(Rd)), N ¥ 1.
Let ωλ be defined as in Lemma 3.13. Since ωλ is bounded and uN is smooth, we can multiply the
equation (0.2) associated to uN by ω2

λuN and then integrate on the spatial variable to deduce

(3.30)
d
dt

»
(ωλuN)

2(t) dx�
»

ωλR1∆uNωλuN dx +

»
ωλuNBx1 uNωλuN dx = 0.

The nonlinear term can be bounded as follows����» ωλuNBx1 uNωλuN dx
���� ¤ }∇uN}L8x }ωλuN}

2
L2

x
.

To control the factor involving the dispersion, we write
(3.31)
�ωλR1∆uN = [R1, ωλ]∆uN �R1(ωλ∆uN) = [R1, ωλ]∆uN �R1([ωλ, ∆]uN)�R1∆(ωλuN).

Since the Riesz transform R1 is an skew-symmetric operator it is seen that

�

»
R1∆(ωλuN)ωλuN dx = 0.

Thus, it remains to control the first two terms on the r.h.s of (3.31). In light of the commutator
estimate (3.2), Lemma 3.9 and (3.27), we have

}[R1, ωλ]∆uN}L2
x
.

ḑ

j=1

}[R1, ωλ]B
2
xj

uN}L2
x
.

¸
|β|=2

}Bβωλ}L8}uN}L2
x
+

ḑ

j=1

¸
|β|=1

}BβωλDβ
R1
B2

xj
uN}L2

x

. }uN}L2
x
+

ḑ

j=1

¸
|β|=1

}Bβωλ}L8}D
β
R1
B2

xj
uN}L2

x

. }uN}L8T Hs . }u0}Hs ,

where the implicit constant on the r.h.s of the above inequality is independent of λ by virtue of
Lemma 3.13. On the other hand, the identity

[ωλ, ∆] uN = (∆ωλ)uN � 2∇ωλ �∇uN
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and (3.27) yield

}R1([ωλ, ∆]uN)}L2
x
. }∆ωλ}L8 }uN}L2

x
+ }∇ωλ}L8 }∇uN}L2

x

. (}∆ωλ}L8 + }∇ωλ}L8) }u0}Hs .

Gathering all these estimates, there exist constants c0 and c1 (depending on the L8-norm of the
weight w and its derivatives, and independent of λ) such that

d
dt
}ωλuN(t)}

2
L2 ¤ c0 }u0}Hs }ωλuN(t)}L2 + c1 }∇uN}L8 }ωλuN(t)}

2
L2 .

Consequently, in view of Gronwall’s inequality we arrive at

(3.32) }ωλuN(t)}L2 ¤ (}ωλuN(0)}L2 + c0 }u0}Hs t)ec1
³t

0}∇uN(s)}L8 ds.

From (3.28) and the fact that ωλ is bounded, one can take the limit N Ñ8 in (3.32) to find

}ωλu(t)}L2 ¤ (}ωλu0}L2 + c0 }u0}Hs t)ec1
³t

0}∇u(s)}L8 ds

¤ (}ωu0}L2 + c0 }u0}Hs t)ec1
³t

0}∇u(s)}L8 ds.

The above inequality and Fatou’s lemma yield

(3.33) }ωu(t)}L2 ¤ (}ωu0}L2 + c0 }u0}Hs t)ec1
³t

0}∇u(s)}L8 ds, 0 ¤ t ¤ T.

This shows that u P L8([0, T]; L2(ω2 dx)). Let us prove that u P C([0, T]; L2(ω2 dx)). Firstly, we
claim that u : [0, T] ÞÑ L2(ω2 dxdy) is weakly continuous. Indeed, for a given g P S(Rd),

(3.34)

����» ω(u(s)� u(t))ωg dx
���� ¤ ����» ω(u(s)� u(t))(ω�ωλ)g dx

����+ ����» ω(u(s)� u(t))ωλg dx
����

. sup
tP[0,T]

}wu(t)}L2 }(ω�ωλ)g}L2 + }u(s)� u(t)}L2 } ωωλg}L2 .

Therefore, since }ωωλg}L2 ¤ }ω2g}L2   8, by using that g(ω �ωλ) Ñ 0 as λ Ñ 0 in L2(Rd) (due
to Lebesgue dominated convergence theorem), (3.33) and the fact that u P C([0, T]; Hs(Rd)) for
s ¡ 0, we can take λ Ñ 0 in (3.34) to deduce weak continuity.

On the other hand, the estimate (3.33) yields

(3.35)
}ω(u(t)� u0)}

2
L2 = }ωu(t)}2

L2 + }ωu0}
2
L2 � 2

»
ωu(t)ωu0 dx

¤ (}ωu0}L2 + c0t)2e2c1
³t

0}∇u(s)}L8 ds + }ωu0}
2
L2 � 2

»
ωu(t)ωu0 dx.

Clearly, weak continuity implies that the right-hand side of (3.35) goes to zero as t Ñ 0+. This
shows right continuity at the origin of the map u : [0, T] ÞÑ L2(ω2 dxdy). Fixing τ P (0, T) and
using that (0.2) is invariant under the transformations, (x, t) ÞÑ (x, t + τ) and (x, t) ÞÑ (�x, τ �

t), right continuity at the origin entails continuity in all the interval [0, T], in other words u P

C([0, T]; Hs(Rd)X L2(ω2 dx)).
The continuous dependence on the initial data can be deduced from its equivalent in Hs(Rd) and
employing the above arguments. The proof of Proposition 3.1 is now completed.

�
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3.4. Well-posedness in Zs,r and Żs,r

In this section, we prove Theorem 3.2. When the decay parameter r P [0, 1], the weight xxyr

satisfies the hypothesis of Proposition 3.1. Thereby, we may assume that 1   r ¤ s.
Let u P C([0, T]; Hs(Rd)) be a solution of (0.2) with initial datum u0 P Zs,r(Rd) provided by

Theorem 2.1. We shall prove that u P L8([0, T]; L2(|x|2r dx)). Once we have established this con-
clusion, the fact that u P C([0, T]; L2(|x|2r dx)) and the continuous dependence on the initial data
follows by the same reasoning in the proof of Proposition 3.1.

We begin by giving a brief sketch of the proof. Let m be a non-negative integer, 0 ¤ θ ¤ 1 and
write r = m + 1 + θ. Consider k = 1, 2 . . . , d, multiplying (0.2) by w2+2θ

n x2m
k u (where wn is given

by (1.21)) and integrating in Rd we obtain

(3.36)

1
2

d
dt

» (
w1+θ

n xm
k u
)2
(t) dx�

»
w1+θ

n xm
k R1∆uw1+θ

n xm
k u dx

+

»
w1+θ

n xm
k uBx1 uw1+θ

n xm
k u dx = 0.

Arguing recursively on the size of the parameter r = m + 1 + θ, starting with m = 0, we will de-
duce from previous cases (decay r ¤ (m� 1) + 1 + θ), that u P L8([0, T]; Zs,r�1(R

d)) and satisfies

(3.37) sup
tP[0,T]

(
}xxyr�1u(t)}L2 +

¸
1¤|β|¤m

}xxyr�|β|Bβu(t)}L2

)
¤ C1

where C1
1 depends on T, }u0}Hs , }xxyr�1u0}L2 and

³T
0 }u(τ)}W1,8(Rd) dτ. With the aim of (3.37), we

proceed to estimate the last two term on the left-hand side of (3.36) to obtain a differential inequal-
ity, which after adding for k = 1, . . . , d has the form

(3.38)
d
dt
( ḑ

k=1

}w1+θ
n xm

k u}2
L2

)
¤ K1

( ḑ

k=1

}w1+θ
n xm

k u}2
L2

)1/2
+ K2

( ḑ

k=1

}w1+θ
n xm

k u}2
L2

)
for some positive constants K1 and K2. Then Gronwall’s lemma shows

ḑ

k=1

}w1+θ
n xm

k u(t)}L2 ¤ C2

and so letting n Ñ8, one gets

(3.39) sup
rP[0,T]

}xxyru(t)}L2 . C2,

where C2 is independent of n, depends on T, }u0}Hs , }xxyru0}L2 and }u}L1
TW1,8(Rd).

Therefore, we continue in this fashion, increasing r = m + 1 + θ and deducing (3.37) in each
step to conclude the proof of Theorem 3.2 (i). This same procedure also provides a method to
deduce Theorem 3.2 (ii). However, in this case the estimates for the integral equation (3.36) require
of additional weighted bounds for derivatives of negative order, which will be deduced from the
hypothesis pu(0) = 0. This discussion encloses the scheme of the proof for Theorem 3.2.

1Since we rely on Gronwall’s lemma to attain our estimates, one may expect that C1 depends on
�
�
�xxyr�|β|Bβu0

�
�
�

L2

for each multi-index 1 ¤ |β| ¤ m. However, the interpolation inequality (1.28) shows that these expressions are
bounded by }u0}Hs and }xxyr�1u0}L2 .
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Next, we state the main considerations to get (3.37). As above, let r = m + 1 + θ with m ¥ 1,
consider a fixed integer 1 ¤ l ¤ m and a multi-index γ of order l. We use the (0.2) equation to
obtain new equations

(3.40) Bt(B
γu)�R1∆Bγu + Bγ(uux1) = 0.

After multiply (3.40) by w2+2θ
N x2m�2|γ|

k Bγu and integrate over Rd, it is deduced

(3.41)

1
2

d
dt

» (
w1+θ

n xm�|γ|
k Bγu

)2
(t) dx�

»
w1+θ

n xm�|γ|
k R1∆Bγuw1+θ

n xm�|γ|
k Bγu dx

+

»
w1+θ

n xm�|γ|
k Bγ(uBx1 u)w1+θ

n xm�|γ|
k Bγu dx = 0.

Estimating the above equivalences for all k = 1, . . . , d and each multi-index γ with |γ| = l, we will
deduce a closed differential inequality similar to (3.38), which yields L2(xxy2r�2l dx) bounds for all
derivative of order |γ| = l. Then, adding for l = 1, . . . , m, (3.37) follows.

A first step to study (3.36) and (3.41) is to reduce our arguments to bound the dispersive terms
corresponding to the second factors on the left-hand sides of these equations. Indeed, we first
consider a fixed decay parameter r = m + 1 + θ for some nonnegative integer m and θ P [0, 1].
Then, the nonlinear part of (3.36) can be controlled as follows����» w1+θ

n xm
k uBx1 uw1+θ

n xm
k u dx

���� ¤ }∇u}L8x
}w1+θ

n xm
k u}2

L2
x
.

Since our local theory in Hs(Rd) assures that u P L1((0, T); W1,8(Rd)), the above expression leads
to an appropriated bound after Gronwall’s Lemma. Now, we proceed to bound the nonlinearity
in (3.41). Here, m ¥ 1 and we shall assume from previous steps that

(3.42) sup
rP[0,T]

( ��xxyr�2u(t)
��

L2 +
¸

1¤|β|¤m�1

}xxyr�1�|β|Bβu(t)}L2

)
¤ C3,

where the constant C3 has the same dependence of C1 in (3.37), after changing r by r� 1. We write

(3.43)

»
w1+θ

n xm�|γ|
k Bγ(uBx1 u)w1+θ

n xm�|γ|
k Bγu dx

=
¸

γ1+γ2=γ

cγ1,γ2

»
w1+θ

n xm�|γ|
k Bγ1 uBγ2Bx1 uw1+θ

n xm�|γ|
k Bγu dx

=
¸

γ1+γ2=γ
|γ1|=0 or |γ1|=|γ|

(� � � ) +
¸

γ1+γ2=γ
|γ1|=1

(� � � ) +
¸

γ1+γ2=γ
2¤|γ1|¤|γ|�1

(� � � )

=: B1 + B2 + B3.

We proceed to estimate the terms Bj, j = 1, 2, 3. Formally integrating by parts in the x1 variable
gives

B1 =
1
2

»
w1+θ

n xm�|γ|
k BγuBx1 uw1+θ

n xm�|γ|
k Bγu dx�

»
Bx1

(
w1+θ

n xm�|γ|
k

)
uBγuw1+θ

n xm�|γ|
k Bγu dx.

Then, when |γ| = m, using that |∇w1+θ
n | . |wθ

n| with a constant independent of n, we find

|B1| .
(
}u}L8x

+ }∇u}L8x

)
}w1+θ

n Bγu}2
L2

x
,
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which is controlled by the local theory after Gronwall’s lemma. Now, when 1 ¤ |γ|   m, the
inequality (1.22) reveals that

|Bx1

(
w1+θ

n xm�|γ|
k

)
| . xxym+1+θ�1�|γ|,

with implicit constant independent of n, and so

|B1| . }u}L8x
}xxyr�1�|γ|Bγu}L2

x
}w1+θ

n xm�|γ|
k Bγu}L2

x
+ }∇u}L8x }w

1+θ
n xm�|γ|

k Bγu}2
L2

x
.

Since 1 ¤ |γ|   m, our assumption (3.42) shows that the above expression is controlled. This
completes the estimate for B1. Now, we consider B2, in this case |γ1| = 1, then Bγ2Bx1 has order |γ|
and so

|B2| . }∇u}L8x

¸
|β|=|γ|

}w1+θ
n xm�|γ|

k Bβu}L2
x
}w1+θ

n xm�|γ|
k Bγu}L2

x
.

Notice that the previous estimate is part of the differential inequality collected after adding (3.41)
for all multi-index of fixed order |γ|. To control the last term, we use that

w1+θ
n |xk|

m�|γ| . xxy1+θ+m�1�(|γ2|+1),

whenever γ = γ1 + γ2 and 2 ¤ |γ1|. Then Sobolev’s embedding gives,

(3.44)

|B3| .
¸

γ1+γ2=γ
2¤|γ1|¤|γ|�1

}Bγ1 u}L8x }w
1+θ
n xm�|γ|

k Bγ2Bx1 u}L2
x
}w1+θ

n xm�|γ|
k Bγu}L2

x

.
¸

γ1+γ2=γ
2¤|γ1|¤|γ|�1

}Jd/2+|γ1|+εu}L2
x
}xxyr�1�(|γ2|+1)Bγ2Bx1 u}L2

x
}w1+θ

n xm�|γ|
k Bγu}L2

x
,

for any ε ¡ 0. Since |γ1| ¤ m � 1, taking 0   ε   m + 1 + θ � |γ1| � d/2 and recalling that the
regularity s ¥ r = m + 1 + θ, we get

}Jd/2+|γ1|+εu}L2
x
. }u}Hs ,

for all |γ1| ¤ m � 1. Plugging this information in (3.44) and using (3.42), we get a controlled
estimate for B3. This completes the study of the non-linear term (3.43).

Thus matters are reduced to control the second term on the left-hand sides of (3.36) and (3.41).
Since the estimate for the latter can be obtained from the former by changing the roles of u by Bγu,
we will mainly focus on the l.h.s of (3.36). Whence we write

(3.45)

w1+θ
n xm

k R1∆u

=w1+θ
n R1(xm

k ∆u) + w1+θ
n [xm

k ,R1]∆u

=w1+θ
n R1∆(xm

k u) + w1+θ
n R1([xm

k , ∆]u) + w1+θ
n [xm

k ,R1]∆u

=R1(w1+θ
n ∆(xm

k u)) + [w1+θ
n ,R1]∆(xm

k u) + w1+θ
n R1([xm

k , ∆]u) + w1+θ
n [xm

k ,R1]∆u

=R1∆(w1+θ
n xm

k u) +R1([w1+θ
n , ∆](xm

k u)) + [w1+θ
n ,R1]∆(xm

k u) + w1+θ
n R1([xm

k , ∆]u)

+ w1+θ
n [xm

k ,R1]∆u

=:R1∆(w1+θ
n xm

k u) + Q1 + Q2 + Q3 + Q4.

To simplify our arguments, the same notation Qj will be implemented for different parameters r
previously fixed. Inserting R1∆(w1+θ

n xm
k u) in (3.36), one finds that its contribution is null since
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the Riesz transform defines a skew-symmetric operator. Accordingly, it remains to bound the
Qj-terms to deduce Theorem 3.2.

3.4.1. LWP in Zs,r(Rd) for r P [0, 3) if d = 2, and r P [0, 3] when d = 3. We divide the proof
into two main cases.

Case 1: r P [0, 2]. As discussed, when r P [0, 1], LWP is a consequence of Theorem 3.1. Suppose
that r ¥ 1, so our conclusion is obtained from (3.36) with m = 0, r = 1 + θ P [1, 2] with 0 ¤ θ ¤ 1.
Notice that we do not require to deduce weighted estimates for derivatives. Besides, Q3 = Q4 = 0
in (3.45), which reduce our arguments to handle the terms Q1 and Q2.
We write

Q1 = �R1(∆(w1+θ
n )u + 2∇w1+θ

n �∇u).

Then, the properties of the weight wn in (1.22) lead to the following estimate

(3.46) }Q1}L2
x
. }wθ

n∇u}L2
x
. }∇(wθ

nu)}L2
x
+ }∇wθ

nu}L2
x
. }∇(wθ

nu)}L2
x
+ }u}L2

x
.

The interpolation inequality (1.28) shows

(3.47) }∇(wθ
nu)}L2

x
. }J1(wθ

nu)}L2
x
. }w1+θ

n u}θ/(1+θ)
L2

x
}J1+θu}1/(1+θ)

L2
x

.

Note that this imposes the condition r = 1 + θ ¤ s. Applying in (3.47) Young’s inequality and
going back to (3.46), we bound Q1. To estimate Q2, we apply Proposition 3.8 to find

(3.48) }Q2}L2
x
¤

ḑ

j=1

}[w1+θ
n ,R1]B

2
xj

u}L2
x
.

ḑ

j=1

¸
|β|=2

}Bβw1+θ
n }L8}u}L2

x
+

¸
|β|=1

}Bβw1+θ
n Dβ

R1
B2

xj
u}L2

x
.

The second term on the r.h.s can be bounded by combining Proposition 1.11, (3.10) and (1.22) to
obtain

(3.49) }Bβw1+θ
n Dek

R1
B2

xj
u}L2

x
. δ1,k}wθ

nRjBxj u}L2
x
+ }wθ

nR1RkRjBxj u}L2
x
. }wθ

nBxj u}L2
x
,

0   2θ   2 ¤ d, which is controlled as in (3.47). Notice that the above argument fails when θ = 1
in dimension d = 2 (since w2

n does not satisfies the A2(R2) condition), instead letting β = el , we
use the identity (3.10) to write

(3.50)

wnDel
R1
B2

xj
u =δ1,lwnRjBxj u + wnR1RlRjBxj u

=δ1,l [wn,Rj]Bxj u + δ1,lRj(wnBxj u) + [wn,R1]BxjRlRju +R1([wn,Rl ]BxjRju)

+R1Rl([wn,Rj]Bxj u) +R1RlRj(wnBxj u).

Hence, the decomposition (3.50) allows us to apply Proposition 3.8 with one derivative to get

(3.51)
¸
|β|=1

}Bβw2
N Dβ

R1
B2

xj
u}L2

x
.

2̧

l=1

}wnDel
R1
B2

xj
u}L2

x
. }u}L2

x
+ }wnBxj u}L2

x
.

It is worth to notice that the above argument also establishes the bound (3.49) without the aim
of Proposition 1.11. In this manner, the right-hand side of (3.49) and (3.51) can be estimated as in
(3.47). Putting together these results in (3.48), we bound Q2 by Gronwall’s terms. Finally, inserting
the above information in (3.36) with m = 0 yield the desire conclusion.
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Case 2: r P (2, 3) if d = 2 and r P (2, 3] when d = 3. By setting m = 1 and r = 2 + θ, with
0   θ   1 if d = 2 and including θ = 1 if d = 3, our conclusions are obtained from (3.36). We first
claim that

(3.52) sup
tP[0,T]

}xxyr�1∇u(t)}L2 ¤ M,

with M depending on }u0}Hs , }xxyru0}L2 and T. This estimate is derived from (3.41) with m = 1
and γ of order 1. Hence, (3.52) is established by reapplying the same arguments in the previous
case, substituting u by Bxl u, l = 1, . . . , d in each estimate. Notice that in this case, (3.47) is given by

}J1(wθ
nBxl u)}L2

x
. }w1+θ

n Bxl u}
θ/(1+θ)
L2

x
}J1+θBxl u}

1/(1+θ)
L2

x
. }w1+θ

n Bxl u}
θ/(1+θ)
L2

x
}J2+θu}1/(1+θ)

L2
x

,

which leads to a controlled expression after Young’s inequality, since }w1+θ
n Bxl u}L2

x
is part of the

Gronwall’s term to be estimated and 2 + θ ¤ s. It remains to study the factors Qj in (3.45). To treat
Q1, we write

(3.53)
[w1+θ

n , ∆](xku) = �∆(w1+θ
n )xku� 2∇(w1+θ

n ) �∇(xku)

= �∆(w1+θ
n )xku� 2Bxk(w

1+θ
n )u� 2xk∇(w1+θ

n ) �∇u.

This expression and (1.22) imply

(3.54) }Q1}L2
x
. }xxyu}L2

x
+ }w1+θ

n ∇u}L2
x
. }xxyu}L2

x
+ }xxy1+θ∇u}L2

x
.

Notice that }xxyu}L2
x

is bounded by the preceding case and }xxy1+θ∇u}L2
x

by (3.52). To deal with
Q2, we gather Proposition 3.8, Lemma 3.9 and (1.22) to find

(3.55)
}Q2}L2

x
. }xku}L2

x
+

¸
|β|=1

}Bβw1+θ
n Dβ

R1
∆(xku)}L2

x
. }xku}L2

x
+ }wθ

nDβ
R1

∆(xku)}L2
x

. }xxyu}L2
x
+ }wθ

nxk∇u}L2
x
,

which is controlled due to (3.52). To estimate Q3 we employ the following point-wise inequality

(3.56)

|Q3| = | � 2w1+θ
n R1Bxk u| . |wθ

nR1Bxk u|+
ḑ

l=1

|wθ
nxlR1Bxk u|

. |wθ
nR1Bxk u|+

ḑ

l=1

|wθ
n[xl ,R1]Bxk u|+

ḑ

l=1

|wθ
nR1(xlBxk u)|,

which hold since w1+θ
n . wθ

n + |x|wθ
n. Thus, recalling (3.14) to handle the second term on the r.h.s

of (3.56) and using Proposition 1.11 with 0 ¤ θ   1 when d = 2, and with 0 ¤ θ ¤ 1 when d = 3,
it is deduced that

}Q3}L2
x
. }wθ

nBxk u}L2
x
+ }wθ

nu}L2
x
+ }wθ

n|x|Bxk u}L2
x
. }xxyθu}L2

x
+ }xxy1+θ∇u}L2

x

which is controlled by previous cases and (3.52). This complete the estimate for Q3.
Next, we use the identity (3.14) to write Q4 as

Q4 = w1+θ
n [xk,R1]∆u = �w1+θ

n Dek
R1

∆u.
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Using again the inequality w1+θ
n . wθ

n + |x|wθ
n, we find

}Q4}L2
x
. }wθ

nDek
R1

∆u}L2
x
+

ḑ

l=1

}wθ
nxl D

ek
R1

∆u}L2
x
.

It is not difficult to see that for all j = 1, . . . , d

xl D
ek
R1
B2

xj
u = �Del+ek

R1
B2

xj
u + Dek

R1
(xlB

2
xj

u)

= �Del+ek
R1

B2
xj

u + Dek
R1
Bxj(xlBxj u)� δj,l D

ek
R1
Bxj u.

Thus, combining the above decomposition, Lemma 3.9 and Proposition 1.11 with 0 ¤ θ   1 if
d = 2 or 0 ¤ θ ¤ 1 when d = 3, we obtain

(3.57) }Q4}L2
x
. }wθ

nu}L2
x
+ }wθ

n∇u}L2
x
+

ḑ

l=1

}wθ
nxl∇u}L2

x
.

The above expression is controlled by previous cases and (3.52). This concludes the estimates for
the factors Qj.
Finally, gathering the above information in (3.36) with m = 1 and recalling our previous discus-
sions, we have deduced Theorem 3.2 (i) when d = 2. In addition, when d = 3, we have shown
that u P C([0, T]; Zr,s(R3)) with r P [0, 3], s ¥ r.

3.4.2. LWP in Zs,r(R3), r P (3, 7/2). In this part we complete the proof of Theorem 3.2 (i)
for d = 3. To obtain our estimates, we consider the differential equation (3.36) with m = 2,
0 ¤ θ   1/2, r = 3 + θ and r ¤ s.

We start by deducing weighted estimates for derivatives of u. Considering (3.41) with m = 2
and γ of order 2, we can reapply the argument when the decay parameter r lies in the interval
(1, 2] to deduce

(3.58) sup
tP[0,T]

¸
|β|=2

}xxyr�2Bβu(t)}L2 ¤ M0,

where M0 depends on }u0}Hs , }xxyru0}L2 and T. Therefore, setting m = 2 and γ of order 1 in (3.41),
the inequality (3.58) allows us to argue exactly as in the previous subsection to deduce

(3.59) sup
tP[0,T]

}xxyr�1∇u(t)}L2 ¤ M1,

with M1 depending on }u0}Hs , }xxyru0}L2 and T. Now we can proceed to estimate the terms Qj

defined by (3.45) with m = 2.
We can deduce a similar estimate as that of (3.53) dealing with x2

k , then by employing (3.59),
we derive a bound similar as the one in (3.54) to finally control Q1. The estimate for Q2 is achieved
as in (3.55) employing Proposition 3.8, substituting xk by x2

k and controlling the resulting factor by
(3.59). The terms Q3 and Q4 can be controlled from the fact that w2+2θ

n satisfies the hypothesis of
Proposition 1.11 whenever 0 ¤ θ   1/2. Indeed, writing

(3.60) Q3 = �2w1+θ
n R1u� 4w1+θ

n R1(xkBxk u)

and employing identity (3.13) with β = 2ek,

Q4 = w1+θ
n [x2

k ,R1]∆u = w1+θ
n D2ek

R1
∆u� 2w1+θ

n Dek
R1

∆(xku) + 4w1+θ
n Dek

R1
Bxk u.
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Then Lemma 3.9 and Proposition 1.11 imply

(3.61) }Q3}L2
x
+ }Q4}L2

x
. }w1+θ

n u}L2
x
+ }w1+θ

n xk∇u}L2
x
. }xxy3/2u}L2

x
+ }xxyr�1∇u}L2

x
,

which is bounded by previous cases and (3.59). Whence inserting this bound in (3.36) yields the
proof of Theorem 3.2 (i).

3.4.3. LWP in Żs,r(R2), r P [3, 4). Here we restrict our arguments to dimension d = 2. Our
conclusions are achieved from (3.36) by setting m = 2, 0 ¤ θ   1 and so r = 3+ θ. When the initial
datum u0 P Zs,r(R2), 3 ¤ r   4 and r ¤ s, we can repeat the arguments leading to (3.58) and (3.59)
in dimension 3 to deduce

(3.62) sup
tP[0,T]

¸
1¤|γ|¤2

}xxyr�|γ|Bγu(t)}L2 ¤ M0,

where M0 depends on }u0}Hs , }xxyru0}L2 and T. On the other hand, when pu(0, t) = pu0(0) = 0 in
R2, we claim

(3.63) sup
tP[0,T]

}xxyθ|∇|�1u(t)}L2(R2) . M1

for all 0 ¤ θ   1 and M1 depending on }u0}Hs , }xxyru0}L2 and T. Indeed, let φ P C8c (Rd) with
φ � 1 when |ξ| ¤ 1 and write

(3.64) Dθ
ξ

(
|ξ|�1pu(ξ)) = Dθ

ξ

(
|ξ|�1pu(ξ)φ)+ Dθ

ξ

(
|ξ|�1pu(ξ)(1� φ)

)
.

In sight of the zero mean assumption and Sobolev’s embedding

(3.65) ||ξ|�1pu(ξ)| . }∇pu}L8ξ . }xxy
2+εu}L2

x

for all ε ¡ 0. Hence, from (1.26) and Lemma 3.11 one deduces

(3.66)

}Dθ
ξ

(
|ξ|�1pu(ξ))}L2

ξ
. }Dθ

ξ

(
|ξ|�1pu(ξ)φ)}L2

ξ
+ }|ξ|�1pu(ξ)(1� φ)}H1

ξ

. }|ξ|�1pu(ξ)φ}L2
ξ
+ }Dθ

ξ

(
|ξ|�1pu(ξ)φ)}L2

ξ
+ }pu}H1

ξ
}∇φ}L8

. }∇pu}L8ξ }φ}L2 + }Dθ
ξ

(
|ξ|�1pu(ξ))φ}L2

ξ
+ }|ξ|�1pu(ξ)Dθ

ξ φ}L2
ξ
+ }pu}H1

ξ

. }∇pu}L8ξ }φ}L2 +
(
}∇pu}L8ξ + }|ξ|�1pu}L8ξ

)(
}|ξ|�θφ}L2 + }φ}L2

)
+ }pu}H1

ξ
.

Consequently, the above estimate and (3.65) yield

(3.67) sup
tP[0,T]

}xxyθ|∇|�1u(t)}L2 . sup
tP[0,T]

}xxy2+εu(t)}L2 .

Since the right-hand side of the above inequality is bounded by previous cases whenever ε   1,
the proof of (3.63) is now completed. In this manner, with the aim of (3.62) and (3.63) we proceed
to estimate the terms Qj given by (3.45) with m = 2.

The analysis of Q1 and Q2 is obtained by implementing the same ideas leading to (3.54) and (3.55)
respectively. To estimate Q3, we write

(3.68) Q3 = �2w1+θ
n R1u� 4w1+θ

n R1(xkBxk u) = 2w1+θ
n R1u� 4w1+θ

n R1(Bxk(xku)),
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then using that w1+θ
n . wθ

n + wθ
n|x|, it is not difficult to deduce a similar estimate to (3.56) to find

}Q3}L2
x
. }xxyθ|∇|�1u}L2

x
+ }xxy1+θu}L2

x
+ }xxy2+θ∇u}L2

x
.

Now, we detail which estimate requires the negative derivative in the above expression. Arguing
as in (3.56) to study the first factor on the r.h.s of (3.68), we have

|w1+θ
n R1u| . |wθ

nR1u|+
ḑ

l=1

|wθ [xl ,R1]u|+ |wθR1(xlu)|.

Since wθ [xl ,R1]u = �wθ Del
R1
(u), Lemma 3.9 shows that this expression is bounded by }xxyθ|∇|�1u}L2

x
.

To study Q4, we consider the identity

(3.69) Q4 = w1+θ
n
[
x2

k ,R1
]

∆u = w1+θ
n D2ek

R1
∆u� 2w1+θ

n Dek
R1

∆(xku) + 4w1+θ
n Dek

R1
Bxk u.

Then using that w1+θ
n . wθ

n + wθ
n|x|, by a similar reasoning to the deduction of (3.57) we find

(3.70) }Q4}L2
x
. }xxyθ|∇|�1u}L2

x
+ }xxy1+θu}L2

x
+ }xxy2+θ∇u}L2

x
.

Once again, it is worth pointing out which expressions require to consider negative derivatives
following the ideas behind (3.57) to control Q4. Indeed, this procedure yields the identities

(3.71) xl D
2ek
R1

∆u = D2ek+el
R1

∆u + D2ek
R1

∆(xlu)� 2D2ek
R1
Bxl u

and

(3.72)
xl D

ek
R1
Bxk u = [xl , Dek

R1
]Bxk u + Dek

R1
(xlBxk u)

= �Del+ek
R1

Bxk u + Dek
R1
Bxk(xlu)� δk,l D

ek
R1

u.

Hence, we use Lemma 3.9 and Proposition 1.11 to get

}wθ
nD2ek+el

R1
∆u}L2

x
+ }wθ

nDel+ek
R1

Bxk u}L2
x
+ }Dek

R1
u}L2

x
. }wθ

n|∇|�1u}L2
x
.

Finally, from the previous conclusions we have completed the proof of Theorem 3.2 (ii) for the
2-dimensional case.

3.4.4. LWP in Żs,r(R3), r P [7/2, 9/2). Here we assume that r P [7/2, 9/2) with r ¤ s andpu0(0) = 0. As usual, letting r = 1 + m + θ, our estimates are derived from (3.36) with m = 2,
1/2 ¤ θ ¤ 1 when r P [7/2, 4], and setting m = 3, 0 ¤ θ   1/2 if r P (4, 9/2). By recurring
arguments employing (3.41) and proceedings cases, starting with the derivatives of higher order
and then descending to those of order 1, it is not difficult to observe

(3.73) sup
tP[0,T]

¸
1¤|β|¤m

}xxyr�|β|Bβu(t)}L2 ¤ M,

where M depends on }u0}Hs , }xxyru0}L2 and T. On the other hand, we claim

(3.74) sup
tP[0,T]

}xxyθ̃|∇|�1u(t)}L2 ¤ M,

for all 0 ¤ θ̃   3/2. As above, we let φ P C8c (R3) such that φ(ξ) = 1 when |ξ| ¤ 1. We decompose
according to

Dθ̃
ξ

(
|ξ|�1pu(ξ)) = Dθ̃

ξ

(
|ξ|�1pu(ξ)φ)+ Dθ̃

ξ

(
|ξ|�1pu(ξ)(1� φ)

)
.
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Given that θ̃ ¤ 2, from Sobolev’s embedding

(3.75) }Dθ̃
ξ

(
|ξ|�1pu(ξ)(1� φ)

)
}L2

ξ
. }|ξ|�1pu(ξ)(1� φ)}H2

ξ
. }pu}H2

ξ
. }xxy2u}L2

x
.

Consequently, it remains to estimate the L2-norm of Dθ̃
ξ

(
|ξ|�1pu(ξ)φ(ξ)). The assumption pu(0) = 0

along with Sobolev’s embedding yield

(3.76) ||ξ|�1pu(ξ)| . }∇pu}L8ξ
. }xxy5/2+εu}L2

x
.

Let us suppose first that 0 ¤ θ̃ ¤ 1, the above inequality then shows

}Dθ̃
ξ

(
|ξ|�1pu(ξ)φ)}L2

ξ
. }|ξ|�1pu(ξ)φ}H1

ξ
. }|ξ|�1pu(ξ)(φ +∇φ)}L2

ξ
+
��|ξ|�2puφ

��
L2

ξ
+ }|ξ|�1∇puφ}L2

ξ

. }∇pu}L8ξ

(
}φ}L2 + }∇φ}L2 + }| � |�1φ}L2

)
. }xxy5/2+εu}L2

x
,

where we have used that |ξ|�1 P L2
loc(R

3). This concludes (3.74) as soon as 0 ¤ θ̃ ¤ 1. To deduce
(3.74) when 1   θ̃   3/2, we let 0   θ�   1/2 and equivalently we shall bound the L2-norm of the
expression

(3.77)
Dθ�

ξ Bξl

(
|ξ|�1pu(ξ)φ) =�Dθ�

ξ

(
|ξ|�3ξlpu(ξ)φ)� iDθ�

ξ

(
|ξ|�1 xxlu(ξ)φ

)
+ Dθ�

ξ

(
|ξ|�1pu(ξ)Bξl φ

)
,

for all l = 1, 2, 3. Since Bξl φ is supported outside of the origin, the last term on the r.h.s of (3.77) is
bounded as in (3.75). To control the remaining parts we require a preliminary result.

Lemma 3.14. Let φ, ψ P C8c (R3) and 0   θ�   1
2 fixed, then

(3.78) }φDθ�(| � |�1ψ)}L2 .θ�,φ,ψ 1

and

(3.79) }φDθ�(| � |�1ψ)}L2 .θ�,φ,ψ 1.

PROOF. We write

}φDθ�(| � |�1ψ)(ξ)}2
L2

=

»
R3�R3

|φ(ξ)|2
��|ξ|�1ψ(ξ)� |η|�1ψ(η)

��2
|ξ � η|3+2θ�

dη dξ

.
»

R3�R3

|φ(ξ)|2

|ξ|2
|ψ(ξ)� ψ(η)|2

|ξ � η|3+2θ�
dη dξ +

»
R3�R3

|φ(ξ)|2
��|ξ|�1 � |η|�1

��2 |ψ(η)|2
|ξ � η|3+2θ�

dη dξ

= rI + �II .

From (1.27) and the fact that |ξ|�1φ(ξ) P L2(R3),

rI . }| � |�1φDθ�ψ}2
L2 .

(
}ψ}L8 + }∇ψ}L8

)2
}| � |�1φ}2

L2 .
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On the other hand, gathering together Fubinni’s theorem, Hölder’s inequality and Hardy-Littlewood-
Sobolev inequality we find

�II . »
R3�R3

|ψ(η)|2

|η|2
1

|ξ � η|3�(2�2θ�)

|φ(ξ)|2

|ξ|2
dη dξ . }|η|�2|ψ(η)|2

1
| � |3�(2�2θ�)

� || � |�1φ(�)|2(η)}L1

. }| � |�1ψ}2
L2p}| � |

�1φ}2
L2q ,

where in order to control the above expression one must assure that 1   p, q   3/2 with

1
q
=

5
3
�

1
p
�

2θ�

3
, 0   θ�   1/2.

Note that 2/3   1/q   1, if and only if, (2� 2θ�)/3   1/p   (3� 2θ�)/3, and since 2/3   1/p  
1, we get

2
3
 

1
p
 

3� 2θ�

3
.

Consequently, for fixed θ� P (0, 1
2 ), one can always find p assuming the above condition. This

establishes (3.78). To prove the last assertion of the lemma, we use the commutator estimate (1.25)
to find

}φDθ�(| � |�1ψ)}L2 . }[Dθ� , φ]| � |�1ψ}L2 + }Dθ�(φ| � |�1ψ)}L2

.
(
}| � |θ

� pφ}L1 + }Dθ�φ}L8 + }φ}L8
)
}| � |�1ψ}L2 + }φDθ�(| � |�1ψ)}L2

which is bounded by (3.78). �

Now, we can estimate the first term on the r.h.s of (3.77). In view of the zero mean assumption
and Sobolev’s embedding we get

(3.80) ||ξ|�2ξlpu(ξ)| . }∇pu}L8ξ . }xxy
5/2+εu}L2

x
,

where we have set ε ¡ 0 small to control the above expression by the result in Theorem 3.2 (i).
Thus, let φ̃ P C8c (R2) with φφ̃ = φ, combining (3.80), Lemmas 3.11 and (3.79) we get

}Dθ�

ξ

(
|ξ|�3ξlpu(ξ)φ̃(ξ)φ(ξ))}L2

ξ

. }|ξ|�3ξlpu(ξ)φ(ξ)}L2
ξ
+ }|ξ|�1φ̃Dθ�

ξ (|ξ|�2ξlpuφ)}L2
ξ
+ }|ξ|�2ξlpuφDθ�(| � |�1φ̃)}L2

ξ

.
(
}| � |�1φ}L2 + }| � |�1�θ� φ̃}L2 + }φDθ�(| � |�1φ̃)}L2

)
}∇pu}L8ξ

. }xxy5/2+εu}L2
x
.

To deal with the second term on the r.h.s of (3.77), we use Lemma 3.14 to find

}Dθ�

ξ

(
| � |�1 xxluφ

)
}L2

ξ
. }[Dθ�

ξ , xxluφ̃]| � |�1φ}L2
ξ
+ }xxluφ̃Dθ�

ξ (| � |�1φ)}L2
ξ

. }| � |θ
�

(xlu � φ̃_)}L1
x
}| � |�1φ}L2 + }xxy5/2+εu}L2

x
}φ̃Dθ�

ξ (| � |�1φ)}L2

. }|x|θ
�

xlu}L1
x
}φ̃_}L1}| � |�1φ}L2 + }xlu}L1

x
}| � |θ

�

φ̃_}L1}| � |�1φ}L2

+ }xxy5/2+εu}L2
x
}φ̃Dθ�

ξ (| � |�1φ)}L2

. }xxy5/2+θ�+εu}L2
x
,

where we have used that }xxlu}L8x
. }xxy5/2+εu}L2

x
for all ε ¡ 0. Notice that when 0   ε   1� θ�,

Theorem 3.2 (i) assures that the r.h.s of the above inequality is controlled. This shows that (3.77) is
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bounded for all l = 1, 2, 3, which establishes (3.74).

Proof of LWP in Żs,r(R3), r P [7/2, 9/2). In light of (3.73), (3.74) and Proposition 1.11 with 0 ¤ θ ¤ 1,
one can employ the same line of arguments leading to LWP in Żs,r(R2), r P [3, 4) to deduce the
same conclusion in Zs,r(R3) r P [7/2, 4], r ¤ s (the extension to r = 4 is given by the fact that w2

n

satisfies the A2(R3) condition).
Accordingly, it remains to establish LWP when the decay parameter r P (4, 9/2). This conclu-

sion is obtained from (3.36) with m = 3 and 0   θ   1/2. Under these restrictions, the estimates
for Q1, Q2 and Q3 follow from (3.73) and recurring arguments. Finally, in view of identity (3.13)
with γ = 3ek and using that w2+2θ

N satisfies the A2(R3) condition when 0   θ   1/2, it is seen that

(3.81) }Q4}L2
x
. }xxy1+θ|∇|�1u}L2

x
+ }xxy2+θu}L2

x
+ }xxyr�1∇u}L2

x
,

which is bounded by previous cases, (3.73) and (3.74). This completes the proof of the Theorem
3.2 (ii).

3.5. Unique continuation principle: two times condition

In this section we infer Theorem 3.4. We begin by introducing some notation and general
considerations independent of the dimension to be applied in the proof of Theorem 3.4. We split
Fk

3 defined by (3.4) as

(3.82) Fk
3,1(t, ξ, f ) = B3

ξk

(
itξ1|ξ|

)
eitξ1|ξ| f (ξ), and Fk

3,2(t, ξ, f ) = Fk
3 (t, ξ, f )� Fk

3,1(t, ξ, f ).

In addition, we define rFk
3,1 and rFk

3,2 as in (3.6), that is,

(3.83) rFk
3,l(t, ξ, f ) = e�itξ1|ξ|Fk

3,l(t, ξ, f ), l = 1, 2.

Without loss of generality we shall assume that t1 = 0   t2, i.e., u0 P Zd/2+2,d/2+2(R
d). Recalling

(2.5), the solution of the IVP (0.2) can be represented by Duhamel’s formula

(3.84) u(t) = U(t)u0 �

» t

0
U(t� t1)u(t1)Bx1 u(t1) dt1

or equivalently via the Fourier transform

pu(t) = eitξ1|ξ| pu0 �
i
2

» t

0
ei(t�t1)ξ1|ξ|ξ1

pu2(t1) dt1.

By means of the notation introduced in (3.4) and (3.82), we have for k = 1, 2 that

(3.85) B3
ξk
pu(t) = 2̧

m=1

Fk
3,m(t, ξ, pu0)�

i
2

» t

0
Fk

3,m(t� t1, ξ, ξ1
pu2) dt1.

Notice that B3
ξk

(
ξ1|ξ|

)
is locally integrable in R2 but not square integrable at the origin. The idea

is to use this fact to determinate that all terms in (3.85) except Fk
3,1(t, ξ, pu0) have the appropriate

decay at a later time in dimension d = 2. When d = 3, we shall use that for φ P C8c (R3) ,
D1/2

ξ (B3
ξk

(
ξ1|ξ|

)
φ)(ξ) R L2(R3) to reach the same conclusion. At the end, these facts lead to the

proof of Theorem 3.4.
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Next, we proceed to infer some estimates for Fk
3,l(t, ξ, f ) and rFk

3,l(t, ξ, f ), assuming that f is a suf-
ficiently regular function with enough decay and setting 0 ¤ t ¤ T. Let a, b P R, in view of the
identities (3.5) and (3.7), it is not difficult to deduce

(3.86)

}xξyarFk
3,2(t, ξ, f )}Hb

ξ
.T

3̧

m=0

3�m̧

j=0

}xξya(Bξk(itξ1|ξ|))
jBm

ξk
f }Hb

ξ

+
1̧

m=0

1�m̧

j=0

}xξyaB2
ξk
(itξ1|ξ|)(Bξk(itξ1|ξ|))

jBm
ξk

f }Hb
ξ
.

In particular, since our arguments in dimension d = 3 require of localization in frequency with a
function φ P C8c (R3), the same reasoning yields

(3.87)

}xξyarFk
3,2(t, ξ, f )φ}Hb

ξ
.

3̧

m=0

3�m̧

j=0

}xξya(Bξk(itξ1|ξ|))
jBm

ξk
f φ}Hb

ξ

+
1̧

m=0

1�m̧

j=0

}xξyaB2
ξk
(itξ1|ξ|)(Bξk(itξ1|ξ|))

jBm
ξk

f φ}Hb
ξ
.

On the other hand, since (3.7) implies that |Bl
ξk
(ξ1|ξ|)| . xξy2�l , l = 1, 2, one can take b = 0 in (3.86)

to find

(3.88) }xξyaFk
3,2(t, ξ, f )}L2

ξ
= }xξya F̃k

3,2(t, ξ, f )}L2
ξ
.

3̧

m=0

3�m̧

j=0

}xξya+jBm
ξk

f }L2
ξ
.

We can now return to the proof of Theorem 3.4. We divide our arguments according to the dimen-
sion.

3.5.1. Dimension d = 2. In this case, we assume that u P C([0, T]; Z2+,2(R
2)) solves (0.2) with

u0, u(t2) P Z3,3(R2) for some t2 ¡ 0. Additionally, we take k = 1, 2 fixed. Recalling (3.85), we have

Claim 3.15. The following estimate hold:

(3.89) Fk
3,2(t, ξ, pu0)�

i
2

2̧

m=1

» t

0
Fk

3,m(t� t1, ξ, ξ1
pu2) dt1 P L2(xξy�4dξ)

for all t P [0, T].

Let us suppose for the moment the conclusion of Claim 3.15, thus one has

B3
ξk
pu(t) P L2(xξy�4dξ) if and only if Fk

3,1(t, ξ, pu0) P L2(xξy�4dξ).

Let φ P C8c (R2) with φ � 1 when |ξ| ¤ 1. We divide Fk
3,1(t, ξ, pu0) as

Fk
3,1(t, ξ, pu0) =B

3
ξk
(itξ1|ξ|)(eitξ1|ξ| � 1) pu0(ξ)φ + B3

ξk
(itξ1|ξ|)( pu0(ξ)� pu0(0))φ

+ B3
ξk
(itξ1|ξ|) pu0(0)φ + B3

ξk
(itξ1|ξ|)eitξ1|ξ| pu0(ξ)(1� φ)

=:Fk
3,1,1 + Fk

3,1,2 + Fk
3,1,3 + Fk

3,1,4.
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Since |B3
ξk
(itξ1|ξ|)| . |ξ|�1, ξ � 0 and t ¤ T the mean value inequality shows that the L2-norms

of Fk
3,1,1 and Fk

3,1,4 are bounded by a constant (depending on T) times } pu0}L2 . Moreover, Sobolev’s
embedding gives

(3.90) }Fk
3,1,2}L2

ξ
. }∇ pu0}L8ξ }φ}L2 . }J2+

ξ pu0}L2
ξ
. }xxy3u0}L2

x
.

Hence, we get

B3
ξk
pu(t) P L2(xξy�4dξ) if and only if B3

ξk
(itξ1|ξ|) pu0(0)φ(ξ) P L2(xξy�4dξ).

Considering that u(t2) P Z3,3(R2), the above implication holds at t2 ¡ 0. At the same time,
|B3

ξk
(ξ1|ξ|)|

2 is not integrable at the origin, so it must be the case that pu0(0) = 0.

PROOF OF CLAIM 3.15. In view of (3.88) with a = �2 we find

(3.91) }xξy�2Fk
3,2(t, ξ, pu0)}L2

ξ
. }xξy pu0}L2

ξ
+
��Bξk

pu0
��

L2
ξ
+

3̧

m=0

}xξy�1Bm
ξk
pu0}L2

ξ
.

Noticing that the r.h.s of (3.91) is bounded by }Ju0}L2
x
+
��xxy3u0

��
L2

x
, we complete the estimate for

the homogeneous part of the integral equation. To control the integral term, replacing pu0 by {uBx1 u
in (3.91) and using (1.28), we observe that it is enough to show

(3.92) u2 P L8([0, T]; Z1,3(R
2)).

Indeed, uBx1 u P H1(R2) follows from the fact that H2(R2) is a Banach algebra. In addition, the
hypothesis u P Z2+,2(R

2) assures that there exists ε ¡ 0 such that u P H2+ε(R2), as a result (1.28)
yields

(3.93)

��xxy3u2��
L2

x
. }xxyu}L8x

��xxy2u
��

L2
x
. }J1+ε/2(xxyu)}L2

x

��xxy2u
��

L2
x

.
��xxy2u

��3/2
L2

x

��J2+εu
��1/2

L2
x

.

This establishes (3.92) and consequently the proof of Claim 3.15. �

3.5.2. Dimension d = 3. We consider u P C([0, T]; Z3,3(R3)) solution of (0.2) with u0, u(t2) P

Z7/2,7/2(R
2) for some t2 ¡ 0. Our arguments require localizing near the origin in Fourier frequen-

cies by a function φ P C8c (R3) with φ(ξ) = 1 if |ξ| ¤ 1. Thus, recalling (3.85) we have:

Claim 3.16. Let k = 1, 2, 3. Then

(3.94) Fk
3,2(t, ξ, pu0)φ(ξ)�

i
2

2̧

m=1

» t

0
Fk

3,m(t� t1, ξ, ξ1
pu2)φ(ξ) dt1 P H1/2

ξ (R3)

for all t P [0, T].

Let us suppose for the moment that Claim 3.16 holds, then

B3
ξk
pu(t)φ P H1/2

ξ (R3) if and only if Fk
3,1(t, ξ, pu0)φ P H1/2

ξ (R3).

We split Fk
3,1 as

Fk
3,1(t, ξ, pu0)φ =B3

ξk
(itξ1|ξ|)(eitξ1|ξ| � 1) pu0(ξ)φ + B3

ξk
(itξ1|ξ|)( pu0(ξ)� pu0(0))φ + B3

ξk
(itξ1|ξ|) pu0(0)φ

=:Fk
3,1,1 + Fk

3,1,2 + Fk
3,1,3.
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The mean value inequality reveals

(3.95) }Fk
3,1,1}H1/2

ξ
¤ }Fk

3,1,1}H1
ξ
. }xξy pu0φ}L2

ξ
+ }|ξ|∇ξ

( pu0φ
)
}L2

ξ
. } pu0}H1

ξ
. }xxyu0}L2

x
,

and from Sobolev’s embedding and the fact that | � |�1φ P L2(R3) one gets

(3.96) }Fk
3,1,2}H1/2

ξ
. }Fk

3,1,2}H1
ξ
.
(
}φ}H1 + }| � |�1φ}L2

)
}∇ pu0}L8ξ . }xxy

3u0}L2
x
.

Hence,

(3.97) B3
ξk
pu(t)φ P H1/2

ξ (R3) if and only if B3
ξk
(itξ1|ξ|) pu0(0)φ P H1/2

ξ (R3).

Letting k = 1 in (3.97), we claim

(3.98) D1/2
ξ

(
B3

ξ1
(ξ1|ξ|)φ

)
R L2(R3).

Consequently, since (3.97) holds for t = t2 ¡ 0, (3.98) imposes that pu0(0) = 0. We now turn to the
proof of (3.98). For a given x = (x1, x2, x3) P R3, we denote by x̃ = (x2, x3) P R2. Let

F(ξ) := B3
ξ1
(ξ1|ξ|) = 3(ξ2

2 + ξ2
3)

2/|ξ|5 = 3|ξ̃|4/|ξ|5

and the region

P :=
!

x P R3 : |x| ¤ 21/4|x̃|, |x| ¤ 1/16
)

.

When ξ P P and 4|ξ| ¤ |η| ¤ 1/2, one has |ξ � η| ¥ 3|ξ| and |ξ̃|4 ¥ |ξ|4/2, from these deductions,

|F(ξ)� F(ξ � η)| =
3

|ξ|5|ξ � η|5

���|ξ � η|5|ξ̃|4 � |ξ|5|ξ̃ � η̃|4
���

¥
3

|ξ|5|ξ � η|5
(
|ξ � η|5|ξ̃|4 � |ξ|4|ξ � η|5/3

)
& |ξ|�1.

Hence,

(3.99)

(
D1/2

ξ (B3
ξ1
(ξ1|ξ|)φ)

)2
(ξ)χP (ξ) ¥

»
4|ξ|¤|η|¤1/2

|F(ξ)� F(ξ � η)|2

|η|4
dη χP (ξ)

&
1
|ξ|2

»
4|ξ|¤|η|¤1/2

1
|η|4

dηχP (ξ) &
1
|ξ|3

χP (ξ),

where χP stands for the indicator function on the set P . Therefore, given that |ξ|�3/2χP R L2(R3),
we get D1/2

ξ (B3
ξ1
(ξ1|ξ|)φ) R L2(R3).

PROOF OF CLAIM 3.16. Letting φ̃ P C8c (R3) with φ̃φ = φ, Proposition 3.10 yields

(3.100)

}D1/2
ξ (Fk

j (t, ξ, f )φ)}L2
ξ
. }D1/2

ξ (eitξ1|ξ|)rFk
j (t, ξ, f )φ}L2

ξ
+ }D1/2

ξ (rFk
j (t, ξ, f )φ)}L2

ξ

. }D1/2
ξ (eitξ1|ξ|)φ̃}L8ξ }

rFk
j (t, ξ, f )φ}L2

ξ
+ }D1/2

ξ (rFk
j (t, ξ, f )φ)}L2

ξ

. }rFk
j (t, ξ, f )φ}H1/2

ξ
.

Analogously, we bound the H1/2
ξ -norm of Fk

3,2(t, ξ, f )φ by that of rFk
3,2(t, ξ, f )φ. Consequently the

above computation reduces our arguments to bound (3.94) for the operators rF3,m. Letting f = pu0

and b = 1/2 in (3.87), repeated applications of Proposition 3.12 show

(3.101) }rFk
3,2(t, ξ, pu0)φ}H1/2

ξ
.

3̧

m=0

}Bm
ξk
pu0φ}H1/2

ξ
+ } pu0}H(1/2)+

ξ

+ }Bξk
pu0}H(1/2)+

ξ

. }xxy3+1/2u0}L2
x
.
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On the other hand, employing (3.87) with f = ξ1
pu2 and b = 1/2, it is deduced

(3.102) }rFk
3,2(t� t1, ξ, ξ1

pu2)φ}H1/2
ξ
.

3̧

m=0

}Bm
ξk
(ξ1

pu2)φ}H1
ξ
. }xxy4u2}L2

x
.

This expression is controlled since

u2 P L8([0, T]; L2(|x|8 dx)),

which holds arguing as in (3.93) employing complex interpolation (1.28). Finally, one can follow
the ideas around (3.96) to bound }rFk

3,1(t� t1, ξ, ξ1
pu2)φ}H1

ξ
by the r.h.s of (3.102). The proof is now

completed. �

3.6. Unique continuation principle: three times condition

We first discuss the main ideas leading to the proof of Theorem 3.5. By hypothesis, there exist
three different times t1, t2 and t3 such that

(3.103) u(�, tj) P Zd/2+3,d/2+3(R
d), j = 1, 2, 3,

The equation in (0.2) yields the following identities,

(3.104)
d
dt

»
xlu(x, t) dx =

δ1,l

2
}u(t)}2

L2 =
δ1,l

2
}u0}

2
L2 , l = 1, . . . , d

and hence

(3.105)
»

xlu(x, t) dx =

»
xlu0(x) dx +

δ1,l

2
}u0}

2
L2 , l = 1, . . . , d.

If we prove that there exist t̃1 P (t1, t2) and t̃2 P (t2, t3) such that»
x1u(x, t̃j) dx = 0, for all j = 1, 2,

in view of (3.104) with l = 1, it follows that u � 0. In this manner, assuming (3.103), we just need
to show that there exists t̃1 P (t1, t2) such that»

x1u(x, t̃1) dx = 0.

Without loss of generality, we let t1 = 0   t2   t3, that is,

u0, u(tj) P Zd/2+3,d/2+3(R
d), j = 2, 3.

Next, we introduce some further notation and estimates to be used in the proof of Theorem
3.5. For a given k = 1, . . . , d, recalling (3.5), we split Fk

4 as

(3.106) Fk
4 (t, ξ, f ) = Fk

4,1(t, ξ, f ) + Fk
4,2(t, ξ, f ),

where

Fk
4,1(t, ξ, f ) = B4

ξk
(itξ1|ξ|)eitξ1|ξ| f (ξ) + 4B3

ξk
(itξ1|ξ|)eitξ1|ξ|Bξk f (ξ).

In addition, we set

(3.107) rFk
4,l(t, ξ, f ) = e�itξ1|ξ|Fk

4,l(t, ξ, f ), l = 1, 2.
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We require to estimate the following differential equation obtained from (3.84),

(3.108) B4
ξk
pu(t) = 2̧

m=1

Fk
4,m(t, ξ, pu0)�

i
2

» t

0
Fk

4,m(t� t1, ξ, ξ1
pu2) dt1,

for each k = 1, . . . , d. Now, we proceed to bound the terms Fk
j . To localize in frequency, taking

g P L8(Rd), (3.5) gives

(3.109)

}xξyarFk
4,2(t, ξ, f )g}Hb

ξ

.}xξyaB3
ξk
(itξ1|ξ|)Bξk(itξ1|ξ|) f g}Hb

ξ
+

4̧

m=0

4�m̧

j=0

}xξya(Bξk(itξ1|ξ|))
jBm

ξk
f g}Hb

ξ

+
2̧

m=0

( 2�m̧

j=0

}xξyaB2
ξk
(itξ1|ξ|)(Bξk(itξ1|ξ|))

jBm
ξk

f g}Hb
ξ

+ }xξya(B2
ξk
(itξ1|ξ|))

jBm
ξk

f g}Hb
ξ

)
.

In particular, setting b = 0, g = 1 and using that |Bl
ξk
(itξ1|ξ|)| . |ξ|2�l , l = 1, 2 and |B3

ξk
(itξ1|ξ|)| .

|ξ|�1, we have

(3.110) }xξyaFk
4,2(t, ξ, f )}L2

ξ
= }xξyarFk

4,2(t, ξ, f )}L2
ξ
.

4̧

m=0

4�m̧

j=0

}xξya+jBm
ξk

f }L2
ξ
.

Additionally, when f = pu0, we define the operators

Fk
4,1,1(t, ξ, pu0(ξ)) = B4

ξk
(itξ1|ξ|)(eitξ1|ξ| � 1) pu0(ξ),

Fk
4,1,2(t, ξ, pu0(ξ)) =

¸
|β|=2

B4
ξk
(itξ1|ξ|)Rβ( pu0, ξ)ξβφ(ξ),

Fk
4,1,3(t, ξ, pu0(ξ)) = B4

ξk
(itξ1|ξ|) pu0(ξ)(1� φ(ξ)),

Fk
4,1,4(t, ξ, pu0(ξ)) = 4B3

ξk
(itξ1|ξ|)(eitξ1|ξ| � 1)Bξk

pu0(ξ),

Fk
4,1,5(t, ξ, pu0(ξ)) = 4B3

ξk
(itξ1|ξ|)(Bξk

pu0(ξ)� Bξk
pu0(0))φ(ξ),

Fk
4,1,6(t, ξ, pu0(ξ)) = 4B3

ξk
(itξ1|ξ|)Bξk

pu0(ξ)(1� φ(ξ)),

where φ P C8c (Rd) is radial such that φ = 1 when |ξ| ¤ 1 and

Rβ( pu0, ξ) =
|β|

β!

» 1

0
(1� ν)|β|�1Bβ pu0(νξ) dν.

Consequently, when pu(0) = pu0(0) = 0, it holds

(3.111)
Fk

4,1(t, ξ, pu0(ξ)) =
6̧

j=1

Fk
4,1,j(t, ξ, pu0(ξ)) + B4

ξk
(itξ1|ξ|)∇ pu0(0) � ξφ

+ 4B3
ξk
(itξ1|ξ|)Bξk

pu0(0)φ(ξ).

Notice that (3.111) is still valid replacing pu0 by ξ1
pu2. We are now in position to prove Theorem 3.5.

We divide our arguments according to the dimension.
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3.6.1. Dimension d = 2. Suppose that u P C([0, T]; Ż3,3(R2)) with pu0, u(t2) P Z4,4(R
2). Under

these considerations we have:

Claim 3.17. We find the following estimate to hold:

(3.112)
6̧

j=1

Fk
4,1,j(t, ξ, pu0)�

i
2

» t

0
Fk

4,1,j(t� t1, ξ, ξ1
pu2) dt1 P L2(R2)

and

(3.113) Fk
4,2(t, ξ, pu0)�

i
2

» t

0
Fk

4,2(t� t1, ξ, ξ1
pu2) dt1 P L2(xξy�8dξ)

for all t P [0, T].

PROOF. We first prove (3.112). The mean value inequality shows that Fk
4,1,j(t, ξ, pu0(ξ)) is bounded

by the L2-norm of u0 for all j � 2, 5. We use Sobolev’s embedding to find

(3.114)

}Fk
4,1,2(t, ξ, pu0)}L2

ξ
.

¸
|β|=2

}

» 1

0
(1� ν)Bβ pu0(νξ)φ dν}L2

ξ

.
¸
|β|=2

» 1

0
(1� ν)}Bβ pu0(νξ)}L4

ξ
}φ}L4 dν

.
¸
|β|=2

(

» 1

0
(1� ν)ν�1/2 dν)}Bβ pu0}L4

ξ
}φ}L4

.
¸
|β|=2

}D1/2
ξ Bβ pu0}L2

ξ
. }xxy2+1/2u0}L2

x
.

This argument provides the same bound for Fk
4,1,5, since one can write

Fk
4,1,5(t, ξ, pu0(ξ)) = 4B3

ξk
(itξ1|ξ|)

» 1

0
∇Bξk

pu0(νξ) � ξ φ dν.

On the other hand, given that u P C([0, T]; Ż3,3(R2)), it is possible to argue as in the deduction of
(3.93) to find

(3.115) uBx1 u P L8([0, T]; L2(|x|5 dx)) and u2 P L8([0, T]; L2(|x|8 dx)).

Thus, replacing pu0 by ξ1
pu2 in the preceding discussions and employing (3.115), we conclude

(3.112).

Next we deduce (3.113). To estimate the homogeneous part, we employ (3.110) with a = �4
and f = pu0 to deduce

(3.116) }xξy�4Fk
4,2(t, ξ, pu0(ξ))}L2

ξ
. } pu0}L2

ξ
+

4̧

m=0

}xξy�1Bm
ξk
pu0}L2

ξ
,

and so the above inequality is controlled after Plancherel’s theorem by }xxy4u0}L2
x
. Finally, re-

placing pu0 by ξ1
pu2 in (3.116), one can control the resulting expression by (3.115) and the fact

uBx1 u P H3(R3). This completes the deduction of (3.113). �



3.6. UNIQUE CONTINUATION PRINCIPLE: THREE TIMES CONDITION 66

Summing up we get

(3.117)

B4
ξk
pu(t) P L2(xξy�8dξ), if and only if

tB4
ξk
(ξ1|ξ|)∇ pu0(0) � ξφ(ξ)�

i
2

» t

0
(t� t1)B4

ξk
(ξ1|ξ|)∇

(
ξ1

pu2
)
(0, t1) � ξφ(ξ) dt1

+ 4tB3
ξk
(ξ1|ξ|)Bξk

pu0(0)φ(ξ)� 4
i
2

» t

0
(t� t1)B3

ξk
(ξ1|ξ|)Bξk

(
ξ1

pu2
)
(0, t1)φ(ξ) dt1

P L2(xξy�8dξ),

for fixed t ¥ 0. Let us denote by

(3.118) Cl(t) := tBξl
pu0(0)�

i
2

» t

0
(t� t1)Bξl

(
ξ1

pu2
)
(0, t1) dt1, l = 1, 2.

The hypothesis at t = t2, the fact that xξy � 1 on the support of φ and (3.117) imply

(3.119)
2̧

l=1

Cl(t2)B
4
ξk
(ξ1|ξ|)ξlφ(ξ) + 4Ck(t2)B

3
ξk
(ξ1|ξ|)φ(ξ) P L2(R2).

From this, we claim that

(3.120) C1(t2) = C2(t2) = 0.

Let us first write C1(t) in a more convenient way for our arguments. We have

Bξl
pu0(0) = �zixlu0(0) = �i

»
xlu0(x)dx

and by (3.104),

(3.121)
Bξl

(
(iξ1/2) pu2

)
(0, t1) = {�ixluBx1 u(0, t1) = �i

»
xluBx1 u(x, t1) dx

= i
δ1,l

2

��u(t1)��2
L2 = iδ1,l

d
dt

»
xlu(x, t) dx.

Integration by parts then gives

(3.122)

Cl(t) =tBξl
pu0(0)�

i
2

» t

0
(t� t1)Bξl

(
ξ1

pu2
)
(0, t1) dt1

=� it
»

xlu0(x) dx� iδ1,l

» t

0
(t� t1)

d
dt1
( »

xlu(x, t1) dx
)
dt1

=� it(1� δ1,l)

»
xlu0(x) dx� iδ1,l

» t

0

»
xlu(x, t1) dx dt1.

Let us suppose for the moment that (3.120) holds, as a result the equation (3.122) shows

0 = C1(t2) = �i
» t2

0

»
x1u(x, τ) dx dτ.

In this manner, the continuity of the application τ ÞÑ
³

x1u(x, τ) dx assures that there exists a time
t̃1 P (0, t2) at which this map vanishes. According to our reasoning at the beginning of this section,
this concludes the proof of Theorem 3.5 when d = 2.
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We can now return to deduce (3.120). We set

G(ξ) :=
2̧

l=1

iCl(t2)B
4
ξk
(ξ1|ξ|)ξl + 4iCk(t2)B

3
ξk
(ξ1|ξ|).

Given that G(νξ) = ν�1G(ξ), ξ � 0, ν ¡ 0, by changing to polar coordinates and recalling that φ

is radial, we find

(3.123) }G(ξ)φ(ξ)}2
L2 �

( »
S1
|G(x)|2 dS(x)

) » 8
0
|ν|�1|φ(ν)|2 dν.

Since |v|�1φ(ν) is not integrable, (3.119) implies that G � 0. However, the functions B4
ξk
(ξ1|ξ|)ξ1,

B4
ξk
(ξ1|ξ|)ξ2 and B3

ξk
(ξ1|ξ|) are linear independent (on R), so it must be the case that C1(t2) =

C2(t2) = 0, which is (3.120).

3.6.2. Dimension d = 3. Here we assume that u P C([0, T]; Ż4,4(R
3)) with u0, u(t2) P Z9/2,9/2(R

3).
Recalling the notation (3.111), we state:

Claim 3.18. One has:

(3.124)
6̧

j=1

Fk
4,1,j(t, ξ, pu0)�

i
2

» t

0
Fk

4,1,j(t� t1, ξ, ξ1
pu2)φ(ξ) dt1 P H1

ξ (R
3).

and

(3.125) xξy�2Fk
4,2(t, ξ, pu0)�

i
2

» t

0
xξy�2Fk

4,2(t� t1, ξ, ξ1
pu2) dt1 P H1/2

ξ (R3).

for all t P [0, T].

PROOF. We first establish (3.124). The mean value inequality, the fact that |ξ|�1 P L2
loc(R

3) and
a similar reasoning to (3.95) and (3.96) establish

(3.126) }Fk
4,1,j(t, ξ, pu0(ξ))}H1

ξ
. }xxy2u0}L2

x
+ }u0}H2

x

for all j = 1, 3, 4, 6. An analogous argument to (3.114), making a change of variables and using
Sobolev’s embedding provides

(3.127)

}Fk
4,1,2(t, ξ, pu0(ξ))}H1

ξ
.

¸
|β|=2

(
}| � |�1φ}L2 + }φ}H1

)
}Rβ( pu0, ξ)}L8ξ + }∇Rβ( pu0, ξ)φ}L2

ξ

.
¸
|β|=2

}Bβ pu0}L8ξ +
¸
|β|=2

(

» 1

0
(1� ν) dν)}∇Bβ pu0}L3

ξ
}φ}L6

. }xxy4u0}L2
x
+

¸
|β|=2

}D1/2
ξ ∇Bβ pu0}L2

ξ
. }xxy4u0}L2

x
.

The estimate Fk
4,1,5(t, ξ, pu0(ξ)) is obtained in a similar fashion to Fk

4,1,2(t, ξ, pu0(ξ)). This concludes
the considerations for the homogeneous part in (3.124). On the other hand, given that

u P C([0, T]; Ż4,4(R
3)),

by a similar reasoning to (3.93) one has

(3.128) uBx1 u P L8([0, T]; Ż3,9/2(R
3)).
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This enables us to change the roles of pu0 by ξ1
pu2 in the above estimates to conclude (3.124).

Let us now establish (3.125). The inequality (1.26) and Proposition 3.10 imply

(3.129)
}xξy�2Fk

4,2(t, ξ, pu0)}H1/2
ξ
.}xξy�3/2rFk

4,2(t, ξ, pu0)}L2
ξ
+ }xξy�2rFk

4,2(t, ξ, pu0)φ}H1/2
ξ

+ }xξy�2rFk
4,2(t, ξ, pu0)(1� φ)}H1/2

ξ
.

We proceed then to estimate each term on the r.h.s of (3.129). From (3.110) with a = �3/2 we find

(3.130)

}xξy�3/2rFk
4,2(t, ξ, pu0)}L2

ξ

.
4̧

m=0

4�m̧

j=0

}xξy�3/2+jBm
ξk
pu0}L2

ξ

.
2̧

m=0

1̧

j=0

(� � � ) +
4̧

m=3

4�m̧

j=0

(� � � ) +
2̧

m=1

4�m̧

j=2

(� � � ) +
4̧

j=2

}xξy�3/2+j pu0}L2

. }J4
ξ pu0}L2

ξ
+

2̧

m=1

4�m̧

j=2

}xξy�3/2+jBm
ξk
pu0}L2

ξ
+ }xξy5/2 pu0}L2

ξ
.

In view of the inequality }xξy�3/2+jBm
ξk
pu0}L2

ξ
. }Bm

ξk

(
xξyj�3/2 pu0

)
}L2

ξ
+ }[xξyj�3/2, Bm

ξk
] pu0}L2

ξ
and com-

plex interpolation,

(3.131)

2̧

m=1

4�m̧

j=2

}xξy�3/2+jBm
ξk
pu0}L2

ξ

.
2̧

m=1

4�m̧

j=2

}Jm
ξ

(
xξyj�3/2 pu0

)
}L2

ξ
+ }xξy5/2 pu0}L2

ξ

.
2̧

m=1

4�m̧

j=2

}xξy5/2 pu0}
(2j�3)/5
L2

ξ

}J5m/(8�2j)
ξ

pu0}
(8�2j)/5
L2

ξ

+ }xξy5/2 pu0}L2
ξ

. }J5/2
ξ

pu0}L2
ξ
+ }xξy5/2 pu0}L2

ξ
.

Plugging the above conclusion in (3.130) gives

(3.132) }xξy�3/2rFk
4,2(t, ξ, pu0)}L2

ξ
. }J4

ξ pu0}L2
ξ
+ }xξy5/2 pu0}L2

ξ
. }xxy4u0}L2

x
+ }J5/2u0}L2

x
.

To treat the second term on the r.h.s of (3.129), in view of Proposition 1.14 with h = xξy�2, we
shall estimate the H1/2

ξ (R3)-norm of rFk
4,2(t, ξ, pu0)φ. Therefore, setting a = 0, g = φ and b = 1/2 in

(3.109), after repeated applications of Proposition 3.12 we find

(3.133) } ˜Fk
4,2(t, ξ, pu0)φ}H1/2

ξ
.

4̧

l=0

}Bl
ξk
pu0}H1/2

ξ
+

2̧

m=0

}Bl
ξk
pu0}H(1/2)+

ξ

.
���xxy9/2u0

���
L2

x

.

Next we deal with the remaining term on the r.h.s of (3.129). Let us first deduce some additional
inequalities. Let P(ξ) be a homogeneous polynomial of degree k with 1 ¤ k ¤ 4, l an integer
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number such that 0 ¤ l ¤ k and f a sufficiently regular function. Then if k� l ¤ 2, from (1.27) we
get

(3.134)
}D1/2

ξ

(
xξy�2 P(ξ)

|ξ|l
f (1� φ)

)
}L2 .}D1/2

ξ

(
xξy�2 P(ξ)

|ξ|l
(1� φ)

)
}L8} f }L2

+ }xξy�2 P(ξ)
|ξ|l

(1� φ)}L8}D1/2
ξ f }L2 . } f }H1/2

ξ
,

and when k� l ¡ 2,

(3.135)

}D1/2
ξ

(
xξy�2 P(ξ)

|ξ|l
f (1� φ)

)
}L2 .}D1/2

ξ

(
xξyl�k P(ξ)

|ξ|m
(1� φ)

)
}L8}xξy

k�l�2 f }L2

+ }xξyl�k P(ξ)
|ξ|l

(1� φ)}L8}D1/2
ξ

(
xξyk�l�2 f

)
}L2

.}xξyk�l�2 f }H1/2
ξ

.

In consequence, letting g = 1� φ, a = �2 and b = 1/2 in (3.109), after applying (3.134), (3.135)
and (1.28) to the resulting inequality one has

(3.136) }xξy�2 ˜Fk
4,2(t, ξ, pu0)(1� φ)}H1/2

ξ
. }xξy5/2 pu0}L2

ξ
+ }J9/2

ξ
pu0}L2

ξ
� }xxy9/2u0}L2

x
+ }J5/2u0}L2

x
.

Finally, collecting (3.132), (3.133) and (3.136), we complete the analysis of the homogeneous part
in (3.125). The estimate for the integral term is achieved by the same estimates applied to ξ1

pu2 in
view of (3.128).

�

Summing up, we can conclude that

(3.137)

B4
ξk
pu(t) P H1/2

ξ (R3) implies

xξy�2B4
ξk
pu(t) P H1/2

ξ (R3), which holds if and only if

3̧

l=1

Cl(t2)xξy
�2B4

ξk
(ξ1|ξ|)ξlφ(ξ) + 4Ck(t2)xξy

�2B3
ξk
(ξ1|ξ|)φ(ξ) P H1/2

ξ (R3),

for fixed t ¥ 0, where we have defined Cl(t) exactly as in (3.118) extending to l = 1, 2, 3.
We now focus on (3.137) when k = 1. Given ξ = (ξ1, ξ2, ξ3) P R3, we denoted by ξ̃ = (ξ2, ξ3) P R2

and

G(ξ) : =
3̧

l=1

iCl(t2)B
4
ξ1
(ξ1|ξ|)ξlxξy

�2 + 4iC1(t2)B
3
ξ1
(ξ1|ξ|)xξy

�2

= |ξ|�5|ξ̃|4xξy�2

(
�15

3̧

l=1

iCl(t)|ξ|�2ξ1ξl + 12iC1(t)

)
.

Whenever C1(t) � 0 for some t ¡ 0 fixed, we claim that

(3.138) D1/2
ξ

(
G(�)φ

)
R L2(R3).

Since (3.137) is valid at t2 ¡ 0 and k = 1, once we have established (3.138), it must follow that

(3.139) C1(t2) = 0.
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This in turn allows us to proceed as in the previous subsection to infer Theorem 3.5 in the three-
dimensional case. In this manner, it remains to prove claim (3.138). Suppose that for some t ¡ 0,
C1(t) � 0, we choose then a fixed constant K satisfying

0   K ¤ min
"

1
15

,
|C1(t)|

15|C2(t)|
,
|C1(t)|

15|C3(t)|

*
and we define

(3.140) PK :=
!

x P R3 : |x| ¤ (1� K2)�1/2|x̃|
)

.

Notice that when x P PK, one has that |x1| ¤ K|x| and so

��15
3̧

l=1

Cl(t)|x|�2x1xl
�� ¤ 15

3̧

l=1

|Cl(t)||x|�1|x1| ¤ 3|C1(t)|.

In addition, let us consider

(3.141) ξ P PK X t|ξ| ¤ 1/16u ,

and for fixed ξ satisfying the above conditions, we take

(3.142) η P PK X t4|ξ| ¤ |η| ¤ 1/2u .

Therefore, for such ξ and η, one gets the following lower bound

9xξy�2|C1(t)|
|ξ̃|4

|ξ|5
¤ |G(ξ)|,

and since |ξ1 � η1| ¤ 2K|ξ � η|,

|G(ξ � η)| ¤ 18|C1(t)|
|ξ̃ � η̃|4

|ξ � η|5
.

Consequently, collecting the above estimates and using that 3|ξ|, 3|η|/4 ¤ |ξ � η| and (8/9)2 ¤

xξy�2 ¤ 1, whenever (3.141) and (3.142) hold, we arrive at

(3.143)
|G(ξ)� G(ξ � η)| ¥

9|C1(t)|
|ξ|5|ξ � η|5

(
(8/9)2|ξ � η|5|ξ̃|4 � 2|ξ̃ � η̃|4|ξ|5

)
¥

6|C1(t)|
|ξ|5

(
25

33 |ξ̃|
4 � |ξ|4

)
&K,|C1|

1
|ξ|

.

Then, (3.143) and the fact that φ � 1 when |ξ| ¤ 1 yield(
D1/2

ξ (G(�)φ)
)2
(ξ)χPKXt|ξ|¤1/16u(ξ) ¥

»
ηPPkXt4|ξ|¤|η|¤1/2u

|G(ξ)� G(ξ � η)|2

|η|4
dη χPKXt|ξ|¤1/16u(ξ)

&
1
|ξ|2

»
ηPPkXt4|ξ|¤|η|¤1/2u

1
|η|4

dη χPKXt|ξ|¤1/16u(ξ)

&
1
|ξ|3

χPKXt|ξ|¤1/6u(ξ).

Considering that 1
|ξ|3/2 χPKXt|ξ|¤1/16u R L2(R3), the last inequality establishes (3.138). The proof is

now completed.
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3.7. Reduction to two times condition

In this section we deduce Theorem 3.6. Without loss of generality we may assume that

(3.144) t1 = 0 and
»

x1u0(x) dx = 0.

Let us treat first the two-dimensional case. Collecting (3.117), (3.122) and (3.105), we have for
t2 � 0 that

(3.145)

B4
ξk
pu(�, t2) P L2(R2) implies

B4
ξk
pu(�, t2) P L2(xξy�4dξ), this holds if and only if

0 =

» t2

0

»
x1u(x, t1) dx dt1 =

1
2

» t2

0
t1
��u(t1)��2

L2 dt1 =
t2
2
4
}u0}

2
L2 ,

whenever k = 1, 2. A similar conclusion can be drawn for the three-dimensional case after gather-
ing together (3.137), (3.139) and (3.105) to deduce

(3.146)

B4
ξ1
pu(�, t2) P H1/2(R3) implies

xξy�2B4
ξ1
pu(�, t2) P H1/2(R3), which holds if and only if

0 =

» t2

0

»
x1u(x, t1) dx dt1 =

1
2

» t2

0
t1
��u(t1)��2

L2 dt1 =
t2
2
4
}u0}

2
L2 .

3.8. Sharpness three times condition

This part concerns the proof of Theorem 3.7. Whenever u P C([0, T]; Żs,rd(R
d)) with r2 = 3,

r3 = 4 and s ¥ d/2 + 4 one has

(3.147) uBx1 u P L8([0, T]; Zd/2+3,d/2+3(R
d)).

Setting d = 2, we can employ (3.147) to replace all the L2(xξy�8 dξ) estimates provided in the proof
of Theorem 3.5 by their equivalents in the space L2(R2). This in turn yields

(3.148)

B4
ξk
pu(�, t) P L2(R2), if and only if

0 =

» t

0

»
x1u(x, t1) dx dt1 =

» t

0

»
x1u0(x) dx +

t1

2
}u0}

2
L2 dt1 = 0, if and only if

t
(»

x1u0(x) dx +
t
4
}u0}

2
L2

)
= 0,

for each k = 1, 2. On the other hand, when d = 3, (3.147) establishes that all the estimates exhibited
in the proof of Theorem 3.5 can be achieved directly in the space H1/2

ξ (R3) without the aim of the
weight xξy�2. Consequently,

(3.149)

B4
ξk
pu(�, t) P H1/2(R3), if and only if» t

0

»
x1u(x, t1) dx dt1 = 0, if and only if

0 =

» t

0

»
x1u(x, t1) dx dt1 =

» t

0

»
x1u0(x) dx +

t1

2
}u0}

2
L2 dt1 = 0, if and only if

t
(»

x1u0(x) dx +
t
4
}u0}

2
L2

)
= 0,
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This completes the proof of the theorem.

3.9. Appendix: Commutator estimate for Riesz transform operators

This section is devoted to establishing Proposition 3.8.

PROOF OF PROPOSITION 3.8. Without loss of generality we shall deduce (3.2) for R1. By ap-
plying Bony’s paraproduct decomposition we write

R1(aBα f )� aR1B
α f �

¸
1¤|β| |α|

1
β!
BβaDβ

R1
Bα f

=
¸

N¡0

R1(P N/2aPNB
α f )� P N/2aPNB

αR1 f �
¸

1¤|β| |α|

1
β!
BβP N/2aPN Dβ

R1
Bα f

+
¸

N¡0

(
R1(PNaP N/2B

α f + PNarPNB
α f )� (PNaP N/2B

αR1 f + PNarPNB
αR1 f )

�
¸

1¤|β| |α|

1
β!
(BβPNaP N/2Dβ

R1
Bα f + BβPNarPN Dβ

R1
Bα f )

)
=: π(lh) + π(hl + hh).

Here π(lh) corresponds to the lower-higher frequencies and π(hl + hh) combines the higher-lower
and higher-higher iterations. We first estimate π(lh). The Littlewood-Paley inequality asserts

}π(lh)( f , g)}Lp �
���(PMπ(lh)( f , g)

)
l2

���
Lp

.

Then by support considerations,

PMπ(lh) =
¸

N�M

�

»
i|α|+1ηα

 ξ1 + η1

|ξ + η|
�

η1

|η|
�

¸
1¤|β| |α|

1
β!
Bβ

(
η1

|η|

)
ξβ


� ψM(ξ + η)ψ N/2(ξ)ψN(η)pa(ξ) pf (η)eix�(ξ+η)dξdη

=
¸

N�M

¸
|β|=|α|

σβ,N(D)(P N/2B
βa, PN f ),

Where, by the Taylor’s expansion of the function |x|�1x1, we have defined for each multi-index β

the bilinear operator σβ,N(D) as in (1.18) with associated symbol

σβ,N(ξ, η) = �
i|β|
β!

ηα

(» 1

0
(1� ν)|β|�1B

β
x

(
x1

|x|

)
(η + νξ) dν

)
ψM(ξ + η)φ0

 N/2(ξ)φ
1
N(η),

for some suitable bump functions satisfy: φ0
 N/2(�) = φ0(23N�1�), φ1

N(�) = φ(N�1�) with φ0ψ0 =

ψ0, φ1ψ = ψ, dist(supp(φ1), 0) ¡ 0 and such that φ0
 N/2(ξ)φ

1
N(η) is supported in the region

|ξ| ! |η|. 2.
Consequently, one can verify that σβ,N P C8(Rd �Rd) is compact supported outside of the

origin in the region |ξ| ! |η| and it satisfies (1.17) uniformly on ν P [0, 1], for each N � M. Indeed,

2For instance one can take φ0 supported on B(0, 2 + ε) with φ0 � 1 on B(0, 1) and φ1 supported on
tx : 1/2� ε ¤ |x| ¤ 2 + εu with φ1 � 1 for 1/2 ¤ |ξ| ¤ 1. Thus, for ε ¡ 0 sufficiently small ( ε   2/7 is enough),
φ1
 N/2(ξ)φ

2
N(η) is supported in the region |ξ| ! |η|.
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since σβ,N is supported in the region |ξ| ! |η| with |η| � N, we have |η + tξ| � |η| uniformly on
0 ¤ t ¤ 1, which implies that σβ,N is smooth. To establish the decay property for the derivatives
of the symbol, we denote by

(3.150) g(ξ, η) :=
» 1

0
(1� ν)|β|�1B

β
x

(
x1

|x|

)
(η + νξ) dν,

and let γ1, γ2 be arbitrary multi-indexes. Since |ξ + η| � |η| and Bγ1
ξ B

γ2
β σβ,N(ξ, η) is a linear combi-

nation of terms of the form

(3.151) B
γ2,1
η (ηα)B

γ1,1
ξ B

γ2,2
η (g(ξ, η))B

γ1,2
ξ (φ0

 N/2(ξ))B
γ2,3
η (φ1

N(η))

where γ1,1 + γ1,2 = γ1 and γ2,1 + γ2,2 + γ2,3 = γ2 with |γ2,1| ¤ |α|, we are reduced to show

|(3.151)| . |η|�|γ1|�|γ2|.

To obtain this estimate, we use that

|B
γ2,1
η (ηα)| . |η||α|�|γ2,1|,

for all η � 0, given that |γ2,1| ¤ |α|. Hence, since
��Bγ
(
x1|x|�1)�� . |x|�|γ|, we find

|B
γ1,1
ξ B

γ2,2
η g(ξ, η)| . |η|�|α|�|γ1,1|�|γ2,2|

uniformly on 0 ¤ t ¤ 1. Thus gathering these results we arrive at

|(3.151)| . |η|�|γ1,1|�|γ2,1|�|γ2,2|N�|γ1,2|N�|γ2,3||(B
γ1,2
ξ φ0) N/2(ξ)(B

γ2,3
η φ1)N(η)|

. |η|�|γ1|�|γ2||(| � ||γ1,2|+|γ2,3|B
γ2,3
η φ1)(η/N)|

. |η|�|γ1|�|γ2|.

Thus σβ,N satisfies (1.17). These facts allow us to use the Fourier decomposition on a cube in
Rd �Rd of side length CN for C large to deduce

σβ,N(ξ, η) =
¸

n1,n2PZd

cn1,n2,Nei(n1�ξ+n2�η)/CN

where the Fourier coefficients tcn1,n2,Nu are rapidly decreasing. After this we get

σβ,N(D)(P N/2B
βa, PN f )(x) =

¸
n1,n2PZd

cn1,n2,N P N/2B
βa(x� n1/CN)PN f (x� n2/CN),

and so we arrive at

|PMπ(lh)(x)|

.
¸

N�M

¸
|β|=|α|

¸
n1,n2PZd

|cn1,n2,N||P NB
βa(x� n1/CN)PN f (x� n2/CN)|.

To control the above expression, we use Lemma 1.8 to find

|P N/2B
βa(x� n1/CN)| . (1 + |n1|)

dM(Bβa)(x),

and writing ψN = φ1
NψN ,

|PN f (x� n2/CN)| . (1 + |n2|)
dM(PN f )(x).
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Gathering the above estimates with the decay of the coefficients tcn1,n2,Nu yield

|PMπ(lh)(x)| .
¸

N�M

¸
|β|=|α|

M(Bβa)(x)M(PN f )(x).

In this manner, the above display, Lemma 1.7 and the Littlewood-Paley inequality show

}π(lh)( f , g)}Lp .
¸

|β|=|α|

}M(Bβa)
(
M(PM f )

)
L2

M(Z)}Lp .
¸

|β|=|α|

}Bβa}L8} f }Lp .

It remains to derive a bound for π(hl + hh). Notice that our previous considerations cannot be
adapted to this case, since the support in frequency of π(hl + hh) lies in the region |η| . |ξ|, where
the line segment η + νξ can pass through the origin. Instead, we estimate separately each term in
π(hl + hh).
Using that D2|α| =

°
|γ|=|α| cγB

γBγ for some constants cγ P R, we can write

π(hl + hh) =
¸

N¡0

¸
|γ|=|α|

cγR1
(
(D�2|α|BγPNB

γa)(P¤2NB
α f )
)
� cγ(D�2|α|BγPNB

γa)(P¤2NB
αR1 f )

� cγ

¸
1¤|β| |α|

1
β!
(
Bβ(D�2|α|BγPNB

γa)(P¤2N Dβ
R1
Bα f )

)
=:

¸
|γ|=|α|

cγR1σ�1,γ(D)(Bγa, f ) + cγσ�1,γ(D)(Bγa,R1 f ) + cγσ�2,γ(D)(Bγa, f )

where we have employed P N/2 + rPN = P¤2N and the operators σ�1,γ(D) are defined through the
symbols

σ�1,γ(ξ, η) =
¸

N¡0

i|γ|+|α|
ξγ

|ξ|2|α|
ηαψN(ξ)ψ¤2N(η),

and

σ�2,γ(D)(Bγa, f ) =
¸

N¡0

¸
1¤|β| |α|

»
(�1)|α|+1i

β!
Bβ

(
η1

|η|

)
ξβξγ

|ξ|2|α|
ηαψN(ξ)ψ¤2N(η)yBγa(ξ) pf (η) dξdη,

for each |γ| = |α|. Using that σ�1,γ(ξ, η) is supported in the region |η| . |ξ|, we can argue exactly
as in the analysis of σ�β,N above to prove that this operator satisfies the hypothesis of Proposition
1.6. Consequently, the Lp boundedness of the Riesz transform yields���R1σ�1,γ(D)(Bγa, f ) + σ�1,γ(D)(Bγa,R1 f )

���
Lp
. }Bγa}L8 } f }Lp ,

for all |γ| = |α|. On the other hand, we divide the operator σ�2,γ(D) by choosing (fixed) multi-
indexes α(k) with 1 ¤ k   |α| satisfying, α(k) ¤ α and |α(k)| = k. Then we write

σ�2,γ(D)(Bγa, f ) =
¸

1¤|β| |α|

σ�2,γ,β(D)(Bγa, Tβ f ),

where for each |β| = k, k = 1, . . . , |α| � 1 we have set

σ�2,γ,β(ξ, η) =
¸

N¡0

(�1)|α|+1i
β!

ξβξγ

|ξ|2|α|
ηα�α(k)ψN(ξ)ψ¤2N(η)

and the operators

Tβ( f )(x) =
»

ηα(k)Bβ

(
η1

|η|

) pf (η)eix�η dη.
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One can verify that σ�2,γ,β(ξ, η) satisfies the hypothesis of Proposition 1.6 for each 1 ¤ |β|   |α|.
Additionally, the classical Mikhlin multiplier theorem establishes that Tβ defines a bounded oper-
ator from Lp(Rd) to Lp(Rd), whenever 1   p   8. Notice that this same fact can also be proved
directly by observing that ηα(k)Bβ

(
η1
|η|

)
can be written as a linear combination of compositions of

Riesz transform operators. Summarizing we conclude:

}σ�2,γ(D)(Bγa, f )}Lp .
¸

1¤|β| α

}σ�2,γ,β(B
γa, Tβ f )}Lp .

¸
1¤|β| α

}Bγa}L8
��Tβ f

��
Lp

. }Bγa}L8 } f }Lp .

This completes the estimate for π(hl + hh) and in consequence the proof of Proposition 1.6.
�



Chapter 4
Study of a model arising from
capillary-gravity wave flows

This chapter is aimed to prove various well-posedness results in real, periodic and anisotropic
weighted Sobolev spaces for the IVP (0.4) that arise in the study of capillary-gravity wave flows.
To achieve these conclusions a key ingredient is the deduction of a fractional commutator estimate
for the Hilbert transform (see Proposition 4.2 below). Additionally, in this chapter, we determinate
some unique continuation principles that characterize the spatial behavior of solutions of (0.4). As
a further consequence of our results, we derive new well-posedness conclusions for the Shrira
equation that appears in the context of waves in shear flows. The contents of this chapter are also
presented in [75].

4.1. Statement of results

Since some of our estimates depend on the direction of the variables, for now on we will
denote the spatial variables by (x, y) P R2. In this chapter, we will mainly work on the IVP (0.4)
without distinguishing between the signs of the term �HxB

2
yu. Firstly, to justify the quantity (0.8),

we consider the spaces Xs(R2) defined by all the tempered distributions such that

(4.1) } f }Xs = }Js
x f }L2

xy
+ }D�1/2

x f }L2
xy
+ }D�1/2

x By f }L2
xy
  8.

Our first conclusion establishes local well-posedness in the spaces Hs(R2) and Xs(R2).

Theorem 4.1. Let s ¡ 3/2 and let Xs(R2) be any of the spaces Hs(R2) and Xs(R2). Then for any
u0 P Xs(R2), there exist a time T = T(}u0}Xs) and a unique solution u to the IVP (0.4) in the class

(4.2) C([0, T]; Hs(R2))X L1([0, T]; W1,8(R2))

if u0 P Hs(R2), or in

(4.3) C([0, T]; Xs(R2))X L1([0, T]; W1,8
x (R2))

if u0 P Xs(R2). Moreover, the flow map u0 ÞÑ u(t) is continuous from Xs(R2) to Xs(R2).

76



4.1. STATEMENT OF RESULTS 77

The proof of Theorem 4.1 is adapted from the short-time Strichartz linear approach imple-
mented by Kenig [50], and Linares, Pilod and Saut [59]. A novelty in the present work is the
study of the operators D�1/2

x and D�1/2
x By which yields additional difficulties in contrast with the

operator B�1
x By considered in the previous references. Among them, we required to deduce the

following commutator relation:

PROPOSITION 4.2. Let 1   p   8 and 0 ¤ α, β ¤ 1, β ¡ 0 with α + β = 1, then

(4.4) }Dα
x [Hx, g]Dβ

x f }Lp(R) .p,α.β }Bxg}L8(R)} f }Lp(R).

Proposition 4.2 can be regarded as a non-local version of Calderon’s first commutator estimate
deduced in [19, Lemma 3.1] and its extension to the BMO spaces in [56, Proposition 3.8] (see
Proposition 1.5). This commutator is useful to perform energy estimates involving the operator
D�1/2

x By and the nonlinearity in the equation in (0.4).
We remark that Theorem 4.1 improves the conclusion in [21] lowering the regularity in the

Sobolev scale to s ¡ 3/2 and obtaining well-posedness conclusion in spaces well-adapted to (0.8).
Furthermore, we believe that these results could certainly be used to study existence and stability
of solitary wave solutions, where one employs the quantity E(u) (see for instance [24]).

Next, we present our result in the periodic setting.

Theorem 4.3. Let s ¡ 3/2. Then for any u0 P Hs(T2), there exist T = T(}u0}Hs) and a unique
solution u of the IVP (0.4) that belongs to

C([0, T]; Hs(T2))X Fs(T)X Bs(T).

Moreover, for any 0   T1   T, there exists a neighborhood U of u0 in Hs(T2) such that the flow map
data-solution,

v P U ÞÑ v P C([0, T1]; Hs(T2))

is continuous.

The function spaces Fs(T) and Bs(T) are defined in Section 4.4 below. Theorem 4.3 is proved
by means of the short-time Fourier restriction norm method developed by Ionescu, Kenig and
Tataru [44], see also [77, 90]. Mainly, this technique consists of an energy method combined with
linear and nonlinear estimates in the short-time Bourgain’s spaces Fs(T) and their dual N s(T)
(see Section 4.4), where the former spaces enjoy the Xs,b structure with localization in small time
intervals whose length is of order 2�j, j P Z+ Y t0u. We emphasize that up to our knowledge
Theorem 4.3 seems to be the first non-standard result dealing with the periodic equation (0.4).

Regarding the quantity E(u) in the periodic setting, we consider the Sobolev spaces

(4.5) Xs(T2) = t f P Hs(T2) : pf (0, n) = 0, for all n P Zu

equipped with the norm } f }Xs(T2) = } f }Hs(T2). Then, since Xs(T2) is a closed subspace of Hs(T2),
by replacing the spaces Hs(T2) by Xs(T2) in Section 4.4 below, the same proof of Theorem 4.3
yields:

Corollary 4.4. Let s ¡ 3/2. Then the IVP (0.4) is locally well-posed in Xs(T2).
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Remarks. (i) Our local theory is still not sufficient to reach the energy spaces X1(K2), K P

tR, Tu determined by (0.8). Thus we cannot implement the invariant E(u) to obtain global solu-
tions.

(ii) For the one-dimensional Benjamin-Ono equation (0.1), many authors, see [43, 64, 85] for instance,
have applied the gauge transformation to establish local and global results. Unfortunately, we do
not know if there exists such a gauge transformation for (0.4). Additionally, we do not know if
there is a maximal norm estimate avalaible for solutions of the IVP (0.4), which would allow us to
argue as in [51] to improve the results in Theorem 4.1.

(iii) Concerning R2 solutions of the IVP (0.4), we do not have a standard approach to derive bilinear
estimates in the spaces Fs(T) and Ns(T). As a consequence, the short-time Fourier restriction
norm method applied to this case leads the same regularity attained in Theorem 4.1. For this
reason, we have proved Theorem 4.1 employing the short-time linear Strichartz approach instead,
which also provides solutions in the class L1([0, T]; W1,8(R2)). The advantage of using this
consequence lies in its application to methods based on energy estimates as the one we employ here
to deduce well-posedness in weighted spaces.

Next, we study LWP issues in the anisotropic weighted Sobolev spaces defined by (1.3) and
(1.4).

To motivate our results, we observe that x(Hxu �HxB
2
y) f P L2(R2) requires the condition³

f (x, y)eiyη dxdy = 0 for almost every η. Thus, formally transferring this idea to the equation
in (0.4), we do not expect that in general solutions of this model propagate weights of arbitrary
order in the x-variable. Indeed, the first weight we contemplate to propagate without any further
assumption should be of order |x|α for some 0   α   1. Therefore, answering this question we
have the following theorem:

Theorem 4.5. (i) If r1 P [0, 1/2) and r2 ¥ 0 with s ¥ maxt(3/2)+, r2u, then the IVP associ-
ated to (0.4) is locally well-posed in Zs,r1,r2(R

2).
(ii) Let r2 ¥ 0, s ¥ maxt(3/2)+, r2u. Then the IVP (0.4) is locally well-posed in the space

(4.6) ZHs,1/2,r2(R
2) = t f P Zs,1/2,r2(R

2) : } f }Zs,1/2,r2
+ }|x|1/2Hx f }L2

xy
  8u.

(iii) If r1 P (1/2, 3/2) and r2 ¥ 0 with s ¥ maxt(3/2)+, r2u, then the IVP associated to (0.4) is
locally well-posed in Żs,r1,r2(R

2).

In particular, Theorem 4.5 shows that solutions of the IVP (0.4) admits weights of arbitrary
order in the y-variables. The proof of these results follows the ideas of Fonseca, Linares and Ponce
[27, 28, 29]. We emphasize that our conclusions involve further difficulties, since here we deal
with anisotropic spaces in two spatial variables, and the x-spatial decay allowed by solutions
of (0.4) does not even reach an integer number for arbitrary initial data. In this regard, in [29,
Theorem 1], it was established that for general initial data, solutions of the Benjamin-Ono equation
(0.1) propagate weights of order between [0, 5/2), while solutions of (0.4) allow weights of order
[0, 1/2) in the x-variable. Finally, we remark that Theorem 4.5 improves the range of weights
determined in the work of [21], and we do not require the assumption B�1

x u P Hs(R2).
Next, we state some unique continuation principles for solutions of the IVP (0.4).
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Theorem 4.6. Let r1 P (1/4, 1/2), r2 ¥ r1 and s ¥ maxt 2r1
(4r1�1)� , r2u. Let u be a solution of the IVP

(0.4) such that u P C([0, T]; Zs,r1,r2(R
2))X L1([0, T]; W8

1,x(R
2)). If there exist two different times t1   t2

in [0, T] for which
u(�, t1) P Zs,(1/2)+,r2

(R2) and u(�, t2) P Zs,1/2,r2(R
2),

then pu(0, η, t) = 0 for all t P [t1, T] and almost every η.

Theorem 4.7. r2 ¥ r1 = (3/2)� and s ¡ maxt3, r2u. Let u be a solution of the IVP (0.4) such that
u P C([0, T]; Żs,r1,r2(R

2)). If there exist two different times t1   t2 in [0, T] for which

u(�, t1) P Zs,(3/2)+,r2
(R2) and u(�, t2) P Zs,3/2,r2(R

2),

Then the following identity holds true

(4.7) 2i sin((1	 η2)(t2 � t1))Bξ pu(0, η, t1) = �

» t2

t1

sin((1	 η2)(t2 � t1)) pu2(0, η, t1) dt1,

for almost every η P R. In particular, if u(�, t1) P Zs,2+,2+(R
2) it holds

(4.8) 2 sin(t2 � t1)

»
xu(x, y, t1) dxdy = (cos(t2 � t1)� 1)

»
u2

0(x, y) dxdy.

Remarks. (i) Since the weight |x| does not satisfy the A2 condition (see [20, 84]) the assump-
tion Hxu0 P L2(|x| dxdy) subscribed in the space ZHs,1/2,r2(R

2) is necessary in our arguments.
Moreover, for a function u0 P Zs,1/2,r2(R

2) the condition pu0(0, η) = 0 does not make sense in
general. Besides by inspecting our arguments in Lemma 4.47 below and employing [88, Theorem
4.3], the hypothesis Hxu0 P L2(|x| dxdy) can be replaced by the assumption that for a.e. η, the
map ξ ÞÑ pu0(ξ, η) belongs to the L2(R)-closure of the space of square integrable continuous odd
functions.

(ii) Theorem 4.6 establishes that for arbitrary initial data in Zs,r1,r2(R
2) with r2 ¥ r1 and r1 � 1/2,

(1/2)� is the largest possible decay for solutions of the equation in (0.4) on the x-spatial variable.
Consequently, for this regimen of indexes r1, r2, Theorem 4.5 (i) is sharp. However, it still remains
an open problem to derive a similar conclusion for the cases 0 ¤ r2   r1. Moreover, Theorem 4.6
shows that if u0 P Zs,r1,r2(R

2) with r2 ¥ r1 = (1/2)+, s ¥ maxt 2r1
(4r1�1)� , r2u and pu0(0, η) � 0

for almost every η, then the corresponding solution u = u(x, t) of the IVP (0.4) satisfies

|x|(1/2)�u P L8([0, T]; L2(R2)), T ¡ 0.

Although, there does not exist a non-trivial solution u corresponding to data u0 with pu0(0, η) � 0
a.e. with

|x|1/2u P L8([0, T1]; L2(R2)), for some T1 ¡ 0.

(iii) The condition u(�, t1) P Zs,2+,2+(R
2) in Theorem 4.7 can be relaxed assuming for instance

u(�, t1) P Zs,(3/2)+,r2
(R2) and xu(x, y, t1) P L1(R2).

In addition, (4.8) provides some unique continuation principles for solutions of the IVP (0.4).
Indeed, if (t2 � t1) = kπ for some positive odd integer number k, then it must be the case that
u � 0. Besides, if there exists three times t1   t2   t3 such that u(�, t1) P Zs,2+,2+(R

2),
u(�, tj) P Zs,3/2,r2(R

2), j = 2, 3 and

sin(t2 � t1)(1� cos(t3 � t1)) � sin(t3 � t1)(1� cos(t2 � t1)),
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then u � 0. Accordingly, Theorem 4.7 establishes that for any initial data u0 P Zs,r1,r2(R
2),

r2 ¥ r1 ¡ 2 (or u0 P Zs,(3/2)+,r2
(R2) with xu0 P L1(R2)), s ¥ maxt3, r2u the decay (3/2)�

is the largest possible in the x-spatial variable. More precisely, if u0 P Zs,r1,r2(R
2), r2 ¥ r1 ¡ 2,

s ¥ maxt3, r2u, then the corresponding solution u = u(x, t) of the IVP (0.4) satisfies

|x|(3/2)�u P L8([0, T]; L2(R2)), T ¡ 0

and there does not exist a non-trivial solution with initial data u0 such that

|x|3/2u P L8([0, T1]; L2(R2)), for some T1 ¡ 0.

All of the previous well-posedness conclusions were addressed by compactness method. As
a matter of fact, we have that the local Cauchy problem for the equation (0.4) cannot be solved
for initial data in any isotropic or anisotropic spaces by a direct contraction principle based on its
integral formulation.

PROPOSITION 4.8. Let s1, s2 P R (resp. s P R). Then there does not exist a time T ¡ 0 such
that the Cauchy problem (0.4) admits a unique solution on the interval [0, T] and such that the flow-map
data-solution u0 ÞÑ u(t) is C2-differentiable from Hs1,s2(R2) to Hs1,s2(R2) (resp. from Xs(R2) to Xs(R2)).

We remark that a similar conclusion was derived before for the IVP (0.6) in [23]. Finally, we
present our conclusions on the Shrira equation:

Theorem 4.9. Let s ¡ 3/2, then the IVP (0.6) is LWP in Hs(K2), K P tR, Tu and in the spacerXs(R2) determining by the norm

} f }rXs = }Js
x f }L2

xy
+ }D�1/2

x By f }L2
xy

.

In addition, the results of Theorems 4.5 and 4.6 hold for the IVP (0.6). Moreover, the conclusion of Theorem
4.7 is also valid considering

(4.9) 2i sin(η2(t2 � t1))Bξ pu(0, η, t1) = �

» t2

t1

sin(η2(t2 � t1)) pu2(0, η, t1) dt1

instead of (4.7). In particular, if Bξ pu(0, η, t1) = 0 for a.e. η, then u � 0.

Consequently, Theorem 4.9 determines new well-posedness conclusion in the spaces rXs(R2)

where the energy (0.9) makes sense. Besides, in the periodic setting, we obtain the same well-
posedness result stated for the two-dimensional case in the work of Schippa [81, Theorem 1.2],
that is, we deduced that (0.6) is LWP in Hs(T2), s ¡ 3/2. We remark that our results are provided
by rather different considerations than those given in [81], where the author employed the setting
of the periodic Up-/Vp-spaces ([36, 37]) combined with key short-time bilinear Strichartz estimates
(see Section 3 of the aforementioned reference). Certainly, we believe that these considerations can
be adapted to (0.4).

Regarding weighted spaces, our conclusions extend the results in [61], since here we deal with
less regular solutions, and we improve the x-spatial decay allowed by (4.9) to the interval [0, 3/2).
Actually, by increasing the required regularity, it is not difficult to adapt our result to solutions in
anisotropic spaces Hs1,s2(R2). We remark that our proof of well-posedness in Zs,r1,r2(R

2) is applied
directly to solutions in the space Hs(R2), in contrast, in [61] the author first derive well-posedness
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in weighted spaces for solutions with the additional property B�1
x u P Hs(R2).

We will begin by introducing some notation and preliminaries. Sections 4.3 and 4.4 are devoted
to prove Theorem 4.1 and Theorem 4.3 respectively. Theorems 4.5, 4.6 and 4.7 will be deduced
Section 4.5. Section 4.7 is aimed to prove Theorem 4.9. The ill-posedness result of Proposition
4.8 is deduced in Section 4.6. We conclude this chapter with an appendix where we show the
commutator estimate in Proposition 4.2.

4.2. Notation

The Fourier variables of (x, y, t) are denoted by (ξ, µ, τ) and in the periodic case by (m, n, τ).
Recalling the function ψ0 satisfying (1.6) for d = 1, and the functions ψN , we define the projector
operators in L2(R2) by the relations

(4.10)
F (Px

N(u))(ξ, η) = ψN(ξ)F (u)(ξ, η),

F (Px
¤N(u))(ξ, η) = ψ¤N(ξ)F (u)(ξ, η),

We will also employ the projectors (1.7) for R2. We set

(4.11) ω(ξ, η) = sign(ξ) + sign(ξ)ξ2 	 sign(ξ)η2,

and define the resonant function by

(4.12) Ω(ξ1, η1, ξ2, η2) := ω(ξ1 + ξ2, η1 + η2)�ω(ξ1, η1)�ω(ξ2, η2).

4.3. Well-posedness in Hs(R2) and Xs(R2)

This section is devoted to establish Theorem 4.1 in which we derive LWP for the IVP (0.4) in
the spaces Hs(R2) and Xs(R2).

4.3.1. Preliminary estimates.
4.3.1.1. Linear estimates. This part is aimed to deduce some key linear estimates for the prob-

lem:

(4.13)

$&%Btu +Hxu�HxB
2
xu�HxB

2
yu = 0, (x, y) P R2, t P R,

u(x, 0) = u0,

where the solutions are given by

(4.14) S(t)u0(x, y) =
»

eitω(ξ,η)+ixξ+iyη pu0(ξ, η) dξdη

and ω(ξ, η) as in (4.11). We have the following decay estimates:

Lemma 4.10. Let 1 ¤ p ¤ 2, then it holds

(4.15) }S(t) f }Lp1 . |t|�(2�p)/p } f }Lp .

PROOF. Let us prove first the case p = 1. We write

(4.16) S(t) f (x, y) = I(�, �, t) � f (x, y),
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where the semi-convergent integral is to be understood as

(4.17) I(x, y, t) :=
1

2π
lim

N,MÑ8

»
R2

eitω(ξ,η)+ixξ+iyξψ0(ξ/N)ψ0(η/M) dξdη,

and the limit is considered in the distributional sense. Employing the identity

(4.18) F (eiδx2
)(ξ, η) =

π1/2

|δ|1/2 e�iξ2/4δei π
4 sign(δ),

which is valid for any real number δ � 0, and the fact that ψ0 is an even function, we obtain

(4.19)

lim
MÑ8

»
R2

eitω(ξ,η)+ixξ+iyξψ0(ξ/N)ψ0(η/M) dξdη

=
π1/2

|t|1/2

» 8
0

eit+itξ2�
iy2

t 	
π
4 i sign(t)+ixξψ0(ξ/N) dξ

+
π1/2

|t|1/2

» 0

�8
e�it�itξ2	

iy2
t �

π
4 i sign(t)+ixξψ0(ξ/N) dξ

=
2π1/2

|t|1/2 <
( » 8

0
eit+itξ2�

iy2
t 	

π
4 i sign(t)+ixξψ0(ξ/N) dξ

)
.

Now, since the phase function φ(ξ) = t + tξ2 �
y2

t 	
π
4 sign(t) + xξ satisfies, φ2(ξ) = 2t, Van der

Corput lemma (see Chapter VIII in [82]) yields

(4.20)
�� » 8

0
eit+itξ2�

iy2
t 	

π
4 i sign(t)+ixξψ0(ξ/N)

�� . |t|�1/2,

uniformly on N ¡ 1. Then gathering (4.19) and (4.20), we find |I(x, y, t)| . |t|�1. This result
and (4.16) establish (4.15) when p = 1. Therefore, the preceding conclusion and the fact that
}S(t) f }L2 = } f }L2 allows us to use the Riesz-Thorin interpolation theorem to deduce (4.15), when-
ever 1 ¤ p ¤ 2. �

By means of Lemma 4.10 and the Stein-Tomas argument, we deduce the following space-time
norms for solutions of (4.13).

Lemma 4.11. The following estimate holds

(4.21) }S(t) f }Lq
t Lp

xy
. } f }L2 ,

whenever 2 ¤ p, q ¤ 8, q ¡ 2 and 1
p +

1
q = 1

2 .

Notice that the endpoint Strichartz estimate corresponding to (q, p) = (2,8) is not stated in
the preceding lemma, as a consequence we need to lose a little bit of regularity in order to control
this norm.

Corollary 4.12. For each T ¡ 0 and δ ¡ 0, there exists κδ P (0, 1/2) such that

(4.22) }S(t) f }L2
T L8xy
. Tκδ

���Jδ f
���

L2

where the implicit constant depends on δ.
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PROOF. Taking p sufficiently large such that δ ¡ 2/p, Sobolev embedding and (4.11) yield

(4.23) }S(t) f }L2
T L8 .δ T

q�2
2q

���S(t)Jδ f
���

Lq
T Lp

xy
.δ T

q�2
2q

���Jδ f
���

L2
xy

.

This completes the proof. �

In addition, we require the following refined Strichartz estimate, which has been proved in a
different context (see [11, 50, 59]).

Lemma 4.13. Let 0   δ ¤ 1 and T ¡ 0. Then there exist κδ P ( 1
2 , 1) and δ ¡ 0 such that

(4.24)

}v}L1
T L8xy
.δ Tκδ

(
sup
[0,T]

}J1/2+2δ
x v(t)}L2

xy
+ sup

[0,T]
}J1/2+δ

x Dδ
yv(t)}L2

xy

+

» T

0
(}J�1/2+2δ

x F(�, t1)}L2
xy
+ }J�1/2+δ

x Dδ
yF(�, t1)}L2

xy
)dt1
)
,

whenever v solves

(4.25) Btv +Hxv�HxB
2
xv�HxB

2
yv = F.

PROOF. In view of Corollary 4.12, (4.24) is deduced following the same reasoning in the proof
of Lemma 2.7 (see also, [59, Lemma 4.11] and [50, Lemma 1.7]). �

4.3.1.2. Energy estimates. Denoting by X8(R2) =
�

s¥0 Xs(R2), we have:

Lemma 4.14. Let s ¡ 0. Consider T ¡ 0 and u P C([0, T]; H8(Rd)) be a solution of the IVP (0.4).
Then, there exists a positive constant c0 such that

(4.26) }u}2
L8T Hs ¤ }u0}

2
Hs + c0 }∇u}L1

T L8x
}u}2

L8T Hs .

Moreover, if u P C([0, T]; X8(Rd)) solves the IVP (0.4), then there exists a constant rc0 ¡ 0 such that

(4.27) }u}2
L8T Xs ¤ }u0}

2
Xs + rc0(}u}L1

T L8xy
+ }Bxu}L1

T L8xy
) }u}2

L8T Xs .

PROOF. The estimates of the norms }Js(�)}L2
xy

and }Js
x(�)}L2

xy
are deduced applying the standard

energy method implementing Lemma 1.1. This procedure was done in Lemma 2.8. However, we
also invite the reader to see [11, Lemma 4.1] for the former norm and [50, Lemma 1.3] for the latter.
This establishes (4.26).

Now, to deal with the component }D�1/2
x (�)}L2

xy
in the Xs(R2)-norm, we apply D�1/2

x to the

equation in (0.4), we multiply then by D�1/2
x u and integrate in space to deduce

(4.28)
1
2

d
dt
}D�1

x u(t)}2
L2 = �

1
2

»
D�1/2

x Bx(u2)D�1/2
x u dxdy,

where we have used that the operator Hx �HxB
2
x �HxB

2
y is skew-symmetric. To estimate the

integral term above, we write Bx = �HxDx to find

(4.29)

����» D�1/2
x Bx(u2)D�1/2

x u dxdy
���� = ����» Hx(u2)u dxdy

���� = ����» u2Hxu dxdy
����

. }u}L8xy
}u}2

L2
xy

,
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Going back to (4.28), the last display shows

(4.30)
d
dt
}D�1

x u(t)}2
L2

xy
. }u}L8xy

}u}2
Xs .

To control the norm }D�1/2
x By(�)}L2

xy
, we apply DxB

�1/2
y to the equation in (0.4), multiplying the

resulting expression by D�1/2
x Byu and integrating in space, we deduce

(4.31)
1
2

d
dt

���D�1
x Byu(t)

���2

L2
= �

1
2

»
D�1/2

x ByBx(u2)D�1/2
x Byu dxdy.

Once again, decomposing Bx = �HxDx and using that Hx is skew-symmetric, we get

(4.32)

»
D�1/2

x ByBx(u2)D�1/2
x Byu dxdy = �

»
HxBy(u2)Byu dxdy

= �

»
([Hx, u]Byu)Byu dxdy

=

»
(D1/2

x [Hx, u]D1/2
x (D�1/2

x Byu))D�1/2
x Byu dxdy.

Then the Cauchy-Schwarz inequality and Proposition 4.2 yield

(4.33)

����» (D1/2
x [Hx, u]D1/2

x (D�1/2
x Byu))D�1/2

x Byu dxdy
����

. }}D1/2
x [Hx, u]D1/2

x (D�1/2
x Byu)}L2

x
}L2

y
}D�1/2

x Byu}L2
xy

. (}u}L8xy
+ }Bxu}L8xy

)}D�1/2
x Byu}2

L2
xy

,

and so we arrive at

(4.34) d
dt
}D�1

x Byu(t)}2
L2

xy
. (}u}L8 + }Bxu}L8)}D�1/2

x Byu}2
L2

xy
.

Gathering all the above estimates for the components of the Xs(R2)-norm completes the proof. �

Next, we derive a priori estimates for the norms }u}L1
T L8xy

and }∇u}L1
T L8xy

in Hs(R2), s ¡ 3/2,

and }u}L1
T L8xy

and }Bxu}L1
T L8xy

in Xs(R2), s ¡ 3/2.

Lemma 4.15. Let s ¡ 3/2 fixed.

(i) Consider u P C([0, T]; H8(R2)) solution of the IVP (0.4). Then, there exist κδ P ( 1
2 , 1) and

cs ¡ 0 such that

(4.35) h1(T) := }u}L1
T L8xy

+ }∇u}L1
T L8xy

.

satisfies

(4.36) h1(T) ¤ csTκδ(1 + h1(T)) }u}L8T Hs .

(ii) Assume that u P C([0, T]; X8(R2)) solves the IVP (0.4). Then, there exist κδ P ( 1
2 , 1) and cs ¡ 0

such that

(4.37) h2(T) := }u}L1
T L8xy

+ }Bxu}L1
T L8xy

.

satisfies

(4.38) h2(T) ¤ csTκδ(1 + h2(T)) }u}L8T Xs .
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PROOF. Let us first deduce (i). In this case, we assume that u P C([0, T]; H8(R2)) solves the
IVP (0.4). We begin with the norm }∇u}L1

T L8x
. Taking F = �∇(uBxu) = � 1

2Bx∇(u2) in (4.25) and
using Lemma 4.13, we deduce

(4.39) }∇u}L1
T L8xy
.δ Tκδ

(
sup
[0,T]

}J3/2+2δu(t)}L2 +

» T

0
}J1/2+2δ(u∇u)(t1)}L2 dt1

)
,

where 0   δ   s/2� 3/4. Our choice of δ implies that the first term on the right-hand side of
(4.39) satisfies

(4.40) sup
tP[0,T]

}J3/2+2δu(t)}L2
xy
¤ }u}L8T Hs .

On the other hand, applying Lemma 1.2 we find

(4.41)

}J1/2+2δ(u∇u)}L2
xy

. }J1/2+2δ(uBxu)}L2
xy
+ }J1/2+2δ(uByu)}L2

xy

. }u}L8xy

(
}J1/2+2δBxu}L2

xy
+ }J1/2+2δByu}L2

xy

)
+
(
}Bxu}L8xy

+ }Byu}L8xy
)}J1/2+2δu}L2

xy

.
(
}u}L8xy

+ }∇u}L8xy

)
}u}L8T Hs .

Plugging (4.40) and (4.41) in (4.39), we arrive at

(4.42) }∇u}L1
T L8x
. Tκδ(1 + h1(T)) }u}L8T Hs ,

for some κδ P ( 1
2 , 1). Setting F = �uBxu in (4.25) and applying (4.24) and Lemma 1.11, the estimate

for }u}L1
T L8xy

is obtained in a similar fashion as above. It is worth to notice that the resulting bound
for this case can be controlled by the norm }u}L8T Hs�1 . This completes the deduction of (4.36).

Next, we proceed to deduce (ii) following the arguments in [50] and [59]. Here we assume that
u P C([0, T], X8(R2)). In view of Lemma 4.13 with F = �Bx(uBxu), we find

(4.43)

}Bxu}L1
T L8xy
.δ Tκδ

(
sup
[0,T]

}J3/2+2δ
x u(t)}L2

xy
+ sup

[0,T]
}J3/2+δ

x Dδ
yu(t)}L2

xy

+

» T

0
(}J1/2+2δ

x (uBxu)(t1)}L2
xy
+ }J1/2+δ

x Dδ
y(uBxu)(t1)}L2

xy
) dt1

)
.

We will derive bounds for each factor on the right-hand side of the above equation. Taking δ ¡ 0
small such that 3

2

( 1+δ
1�δ

)
  s, Young’s inequality yields

(4.44) (1 + |ξ|)3/2+δ|η|δ .
(
(1 + |ξ|)3/2+δ|ξ|δ/2)1/(1�δ)

+ |η||ξ|�1/2 . (1 + |ξ|)s + |η||ξ|�1/2.

By taking the same δ ¡ 0 as above, the previous inequality and Plancherel’s identity show

(4.45)

sup
[0,T]

(
}J3/2+2δ

x u(t)}L2
xy
+ }J3/2+δ

x Dδ
yu(t)}L2

xy

)
. sup

[0,T]

(
}Js

xu(t)}L2
xy
+ }D�1/2

x Byu(t)}L2
xy

)
. }u}L8T Xs .
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This completes the estimate for the first two terms on the right-hand side of (4.43). Next we deal
with the third factor on the r.h.s of (4.43). An application of (1.11) allow us to deduce

(4.46)

}J1/2+2δ
x (uBxu)}L2

xy
= }}J1/2+2δ

x (uBxu)}L2
x
}L2

y

. }}u}L8x }J1/2+2δ
x Bxu}L2

x
+ }Bxu}L8x }J1/2+2δ

x u}L2
x
}L2

y

. (}u}L8xy
+ }Bxu}L8xy

)}Js
xu}L8T L2

xy
,

which holds for 0   δ   mint1/2, s/2� 3/4u. Using that }Js
xu}L8T L2

xy
¤ }u}L8T Xs , integrating (4.46)

between [0, T] completes the analysis of
³T

0 }J1/2+2δ
x (uBxu)(t1)}L2

xy
dt1. Next we decompose the last

term on the r.h.s of (4.43) as follows

(4.47)

» T

0
}J1/2+δ

x Dδ
y(uBxu)(t1)}L2

xy
dt1

.
» T

0
}Dδ

y(uBxu)(t1)}L2
xy

dt1 +
» T

0
}D1/2+δ

x Dδ
y(uBxu)(t1)}L2

xy
dt1

=: I + II .

The fractional Leibniz’s rule (1.10) shows

(4.48)
I =

» T

0
}}Dδ

y(uBxu)(t1)}L2
y(R)}L2

x(R)

.
» T

0
(}u(t1)}L8xy

}Dδ
yBxu(t1)}L2

xy
+ }Bxu(t1)}L8xy

}Dδ
yu(t1)}L2

xy
) dt1.

Therefore, from the point-wise estimate

(4.49) |ξ|l|η|δ = |ξ|l+δ/2(|ξ|�1/2|η|)δ . (1 + |ξ|)
2l+δ

2(1�δ) + |ξ|�1/2|η|,

valid for l = 0, 1 and 0   δ   1 small satisfying 2l+δ
2(1�δ)

  s, we can apply Plancherel’s identity to
find

(4.50)
I .

( » T

0
}u(t1)}L8xy

+ }Bxu(t1)}L8xy
dt1
)
(}Js

xu}L8T L2
xy
+ }D�1/2

x Byu}L8T L2
xy
)

.
( » T

0
}u(t1)}L8xy

+ }Bxu(t1)}L8xy
dt1
)
}u}L8T Xs .

On the other hand, employing Lemma 1.3, we further decompose II as follows

(4.51)

II .
» T

0
}u(t1)}L8xy

}D3/2+δ
x Dδ

yu(t1)}L2
xy

dt1 +
» T

0
}Bxu(t1)}L8xy

}D1/2+δ
x Dδ

yu(t1)}L2
xy

dt1

+

» T

0
}D1/2+δ

x u(t1)}L8xy
}BxDδ

yu(t1)}L2
xy

dt1 +
» T

0
}BxD1/2+δ

x u(t1)}Lq1
xy
}Dδ

yu(t1)}Lp1
xy

dt1

= II1 + II2 + II3 + II4,

where 1
p1

+ 1
q1

= 1
2 . Since the norms }D3/2+δ

x Dδ
yu}L2

xy
, }D1/2+δ

x Dδ
yu}L2

xy
¤ }J3/2+δ

x Dδ
yu}L2

xy
, we use

(4.44) with 3
2

( 1+δ
1�δ

)
  s and Plancherel’s identity to infer

II1 + II2 .
( » T

0
}u(t1)}L8xy

+ }Bxu(t1)}L8xy
dt1
)
}u}L8T Xs .
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To deal with II3, we let 0   δ   1/2 small satisfying l+δ
2(1�δ)

  s, then we employ (1.13) to control

the norm }D1/2+δ
x u}L8xy

. The estimate for }BxDδ
yu}L2

xy
is a consequence of Plancherel’s identity and

(4.49) with l = 1. Summarizing, it follows

II3 .
( » T

0
}u(t1)}L8xy

+ }Bxu(t1)}L8xy
dt1
)
}u}L8T Xs .

Next, by employing (1.14), (1.15) in Lemma 1.4, it is seen that

II4 . }BxD1/2+δ
x u}Ls1

T Lq1
xy
}Dδ

yu}Lr1
T Lp1

xy

. }Bxu}θ
L1

T L8xy
}J3/2+δ0

x u}1�θ
L8T L2

xy
}u}1�θ

L1
T L8xy

(
}D1/2

y u}L8T L2
xy
+ }u}L8T L2

xy

)θ ,

for some 0   δ ! 1 and 0   δ0   s� 3/2 fixed. Given that

|η|1/2 = |ξ|1/4(|ξ|�1/2|η|)1/2 . |ξ|1/2 + |ξ|�1/2|η| . (1 + |ξ|)s + |ξ|�1/2|η|,

Plancherel’s identity yields

(4.52) }D1/2
y u}L8T L2

xy
+ }u}L8T L2

xy
. }u}L8T Xs .

From this we get

II4 .
( » T

0
}u(t1)}L8xy

+ }Bxu(t1)}L8xy
dt1
)
}u}L8T Xs .

According to (4.51), this completes the estimate of II . Collecting the bounds derived for I and
II , we obtain

}Bxu}L1
T L8xy
. Tκδ(1 + h2(T))}u}L8T Xs .

To deal with }u}L1
T L8xy

, we apply Lemma 4.13 with F = �uBxu = �1
2Bx(u2) to get

}u}L1
T L8xy
.δ Tκδ

(
sup
[0,T]

}J1/2+2δ
x u(t)}L2

xy
+ sup

[0,T]
}J1/2+δ

x Dδ
yu(t)}L2

xy

+

» T

0
(}J1/2+2δ

x (u2)(t1)}L2
xy
+ }J1/2+δ

x Dδ
y(u

2)(t1)}L2
xy
) dt1

)
.

From (4.45) it is deduced

(4.53) sup
[0,T]

(
}J1/2+δ

x u(t)}L2
xy
+ }J1/2+δ

x Dδ
yu(t)}L2

xy

)
. }u}L8T Xs .

On the other hand, applying (1.11) we find» T

0
(}J1/2+2δ

x (u2)(t1)}L2
xy
+ }J1/2+δ

x Dδ
y(u

2)(t1)}L2
xy
) dt1

)
.

» T

0
}J1/2+2δ(u2)(t1)}L2

xy
dt1

.
» T

0
}u(t1)}L8}J1/2+2δu(t1)}L2

xy
dt1.

Taking 0   δ   1/16, Young’s inequality establishes

(4.54) |η|1/2+2δ = |ξ|(1+4δ)/4(|ξ|�1/2|η|)(1+4δ)/2 . (1 + |ξ|)
1+4δ

2(1�4δ) + |ξ|�1/2|η|,
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thus an application of Plancherel’s identity reveals

(4.55)

» T

0
}u(t1)}L8}J1/2+2δu(t1)}L2

xy
dt1

.
» T

0
}u(t1)}L8

(
}J1/2+2δ

x u(t1)}L2
xy
+ }u(t1)}L2

xy
+ }D1/2+2δ

y u(t1)}L2
xy

)
dt1

. (

» T

0
}u(t1)}L8 dt1) }u}L8T Xs .

Therefore, estimates (4.53) and (4.55) show that

}u}L1
T L8xy
.δ Tκδ(1 + h2(T))}u}L8T Xs .

The proof is completed. �

Additionally, we require to control the norm }B2
xu}L1

T L8xy
. This estimate will be useful to close

the argument in the proof of Theorem 4.1 for space Xs(R2)

Lemma 4.16. Let T ¡ 0 and u P C([0, T]; X8(R2)) be a solution of the IVP (0.4). Then for all
s ¡ 3/2, there exist κδ P ( 1

2 , 1) and cs such that

}B2
xu}L1

T L8xy
¤ csTκs(1 + h2(T))}u}L8T Xs+1 + csTκs}B2

xu}L1
T L8xy

}u}L8T Xs ,

where h2(T) is given as (4.37).

PROOF. Applying Lemma 4.13 with F = �Bx
(
BxuBxu + uB2

xu
)
, the proof of Lemma 4.16 fol-

lows the same arguments in the deduction of Lemma 4.15 (ii). �

4.3.2. LWP in Hs(R2) and Xs(R2), s ¡ 3/2. This subsection concerns the deduction of Theo-
rem 4.1. We begin by obtaining some a priori estimates.

4.3.2.1. A priori estimates. In this part we determine some key a priori estimates for smooth
solutions. Our result relay on existence of smooth solutions for the IVP (0.4). To achieve this
conclusion in the spaces Xs(R2), we require the following lemma.

Lemma 4.17. Let s ¥ 4. Then it holds

(}u}L8xy
+ }Bxu}L8xy

) . }u}Xs ,(4.56) ����» D�1/2
x Bl

y(uBxu)D�1/2
x Bl

yu dxdy
���� . (}u}L8xy

+ }Bxu}L8xy
)}D�1/2

x Bl
yu}2

L2
xy

,(4.57)

for every l = 0, 1.

PROOF. We first notice that (4.57) is deduced by applying the same reasoning in (4.32) and
(4.33), which relays on Proposition 4.2. Next, to deduce (4.56), we use Sobolev embedding in the
variables x and y to get

}Bxu}L8xy
. }J1/2+ε

x J1/2+ε
y Bxu}L2

xy
. }J3/2+ε

x u}L2
xy
+ }J3/2+ε

x D1/2+ε
y u}L2

xy
. }u}Xs ,

for any 0   ε ! 1 and s ¥ 4, where we have used a similar estimate as in (4.54) and Plancherel’s
identity to estimate }J3/2+ε

x D1/2+ε
y u}L2 . Since this same reasoning also applies to }u}L8xy

, we obtain
(4.56). The proof is completed. �



4.3. WELL-POSEDNESS IN HS(R2) AND XS(R2) 89

Whenever s ¡ 2, local well-posedness for the IVP (0.4) in Hs(R2) follows from a parabolic
regularization. This procedure was applied in [21] for the IVP (0.4) establishing LWP in Hs(R2)

for all s ¡ 2.
Furthermore, by employing Lemma 4.17, it is possible to apply a parabolic regularization argu-

ment adapting the ideas in [21], [60, Chapter 10] or [47, Section 6.2] to obtain local well-posedness
for the IVP (0.4) in Xs(R2), s ¥ 4. Summarizing the preceding discussion we have:

Lemma 4.18. Let s ¥ 4 and Xs(R2) be any of the spaces Hs(R2) and Xs(R2). Then for any u0 P

Xs(R2), there exist T = T(}u0}Xs) ¡ 0 and a unique solution u P C([0, T];Xs(Rd)) of the IVP (0.4). In
addition, the flow-map u0 ÞÑ u(t) is continuous in the Xs-norm.

As in the case of Proposition 2.11, the proof of Lemma 4.18 also provides existence of smooth
solutions and a blow-up criterion. More precisely, let u0 P X8(R2), where X8(R2) is any of the
spaces H8(R2) and X8(R2), then there exists a solution u P C([0, T�);X8(R2)) to (0.4), where
T� is the maximal time of existence of u satisfying T� ¡ T(}u}X4) ¡ 0 and the following blow-up
alternative holds true

(4.58) lim
tÑT�

}u(t)}X4 = 8,

if T�   8.
Next, we state some key a priori estimates.

Lemma 4.19. Let s P (3/2, 4].

(i) Then there exists As ¡ 0, such that for all u0 P H8(R2), there is a solution

u P C([0, T�); H8(R2))

of the IVP (0.4) where T� = T�(}u0}H4) ¡ (1+ As }u0}Hs)�2. Moreover, there exists a constant
K0 ¡ 0 such that

}u}L8T Hs ¤ 2 }u0}Hs ,

and
h1(T) = }u}L1

T L8xy
+ }∇u}L1

T L8xy
¤ K0,

whenever T ¤ (1 + As }u0}Hs)�2.
(ii) Additionally, there exists As ¡ 0, such that for all u0 P X8(R2), there is a solution u P

C([0, T�); X8(R2)) of the IVP (0.4) where T� = T�(}u0}X4) ¡ (1 + As }u0}Xs)�2. Moreover,
there exists a constant K0 ¡ 0 such that

}u}L8T Xs ¤ 2 }u0}Xs ,

and
h2(T) = }u}L1

T L8xy
+ }Bxu}L1

T L8xy
¤ K0,

whenever T ¤ (1 + As }u0}Xs)�2.

PROOF. In view of Lemmas 4.14, 4.15, 4.18 and the blow-up criteria (4.58) applied to the H4-
norm or the X4-norm respectively, the proof is obtained by the same reasoning in the deduction
of Lemma 2.12, we also refer to [59, Lemma 5.3]. �

Now we can prove the existence of solutions.
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4.3.2.2. Existence of solution. This part is devoted to establish the existence part of Theorem
4.1. We will employ the Bona-Smith argument [7]. Recalling the notation introduced in (1.7) and
(4.10), we have:

Lemma 4.20. Let 0 ¤ σ ¤ s and M, N P D = t2l : l P Z+ Y t0uu such that M ¥ N. Assume that
u0 P Hs(R2), then

(4.59) Nσ
��Js�σ(P¤Nu0 � P¤Mu0)

��
L2

xy
Ñ

NÑ8
0,

for all 0 ¤ σ ¤ s. Moreover, if u0 P Xs(R2), then

(4.60) Nσ
��Js�σ

x (Px
¤Nu0 � Px

¤Mu0)
��

L2
xy

Ñ
NÑ8

0

and

(4.61)
���D�1/2

x By(Px
¤Nu0 � Px

¤Mu0)
���

L2
xy

Ñ
NÑ8

0,

for each 0 ¤ σ ¤ s.

PROOF. By support considerations we observe

|x(ξ, η)ys�σ(ψ0(|(ξ, η)|/N)� ψ0(|(ξ, η)|/M))pu0(ξ, η)|2 . N�2(s�σ)|x(ξ, η)yspu0(ξ, η)|2,

and
|xξys�σ(ψ0(ξ/N)� ψ0(ξ/M))pu0(ξ, η)|2 . N�2(s�σ)|xξyspu0(ξ, η)|2.

Integrating the above expression, using Plancherel’s identity and Lebesgue dominated conver-
gence theorem when σ = s, we have that (4.59), (4.60) hold true. A closely similar argument
provides (4.61). �

Now, we consider s P (3/2, 4] fixed. We have the following conclusions according to the spaces
Hs(R2) and Xs(R2).

Initial data u0 P Hs(R2). For each dyadic number N P D, Lemma 4.19 assures the existence of
a time

(4.62) T = (1 + As }u0}Hs)�2

(for some constant As ¡ 0), independent of N and solutions uN P C([0, T]; H8(R2)) of (0.4) with
initial data P¤Nu0, such that

(4.63) }uN}L8t Hs ¤ 2 }u0}Hs

and

(4.64) K := sup
NPD

!
}uN}L1

T L8xy
+ }∇uN}L1

T L8xy

)
  8.

Let M, N P D, M ¥ N, we set wN,M := uN � uM, hence wN,M solves the equation

(4.65) BtwN,M +HxwN,M �HxB
2
xwN,M �HxB

2
ywN,M +

1
2
Bx((uN + uM)wN,M) = 0,

with initial condition wN,M(0) = P¤Nu0 � P¤Mu0. Therefore standard energy estimates, (4.64) and
(4.60) reveal

Ns }wN,M}L8T L2
xy
. ecK(Ns }PNu0 � PMu0}L2) Ñ

NÑ8
0.
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Thus, interpolating the last result with (4.59) yields

(4.66) Ns�σ }JσwN,M}L8T L2
xy
¤ Ns�σ }JswN,M}

σ/s
L8T L2

xy
}wN,M}

1�σ/s
L8T L2

xy
Ñ

NÑ8
0,

whenever 0 ¤ σ   s.
Initial data u0 P Xs(R2). For each dyadic number N P D, Lemma 4.19 assures existence of a

time T = (1 + Ãs }u0}Xs)�2 (for some constant Ãs ¡ 0) independent of N and smooth solutions
vN P C([0, T]; X8(R2)) of (0.4) with initial data Px

¤Nu0 such that

(4.67) }vN}L8T Xs ¤ 2 }u0}Xs

and

(4.68) K1 := sup
NPD

!
}vN}L1

T L8xy
+ }BxvN}L1

T L8xy

)
  8.

Additionally, we combine Lemma 4.16, (4.67) and (4.68) to infer

(4.69) }B2
xvN}L1

T L8xy
. }vN}L8T Xs+1

provided that As is chosen large enough. Now, let M, N P D, since rwN,M = vN � vM satisfies
(4.65), employing similar energy estimates leading to (4.27) together with (4.60), we deduce

(4.70) Ns�σ }Jσ
x (vN � vM)}L8T L2

xy
Ñ

NÑ8
0,

whenever 0 ¤ σ   s.
According to the preceding discussions, when u0 P Hs(R2), we shall prove that tuNuNPD is a

Cauchy sequence in C([0, T]; Hs(R2))X L1([0, T], W1,8(R2)).
Additionally, in the case u0 P Xs(R2), we will establish that tvNuNPD is a Cauchy sequence in

C([0, T]; Xs(R2))X L1([0, T], W1,8
x (R2)). We first obtain some estimates for tuNu and tvNu in the

} � }L1
TW1,8 and } � }L1

TW1,8
x

norms respectively.

Lemma 4.21. Let M, N P D, M ¥ N.

(i) If u0 P Hs(R2), s P (3/2, 4], then

(4.71) N}uN � uM}L1
T L8xy

+ }∇(uN � uM)}L1
T L8xy

Ñ
NÑ8

0,

provided that T = T(}u0}Hs) ¡ 0 in (4.62) is chosen sufficiently small.
(ii) If u0 P Xs(R2), s P (3/2, 4], then

(4.72) }vN � vM}L1
T L8xy

=
NÑ8

o(N�1) + O(N�1}D�1/2
x By(vN � vM)}L8T L2

xy
)

and

(4.73) }Bx(vN � vM)}L1
T L8xy

=
NÑ8

o(1) + O(}D�1/2
x By(vN � vM)}L8T L2

xy
),

for a time T = (1 + rA}u0}Xs)�2 sufficiently small.

PROOF. We first prove (4.71). Since wN,M = uN � uM satisfies (4.65), we employ Lemma 4.13
with F = �1

2 (uN + uM)wN,M to get

(4.74) }uN � uM}L1
T L8xy
. T1/2

(
}J1/2+2δwN,M}L8T L2

xy
+

» T

0
}J1/2+2δ((uN + uM)wN,M)(t1)}L2

xy
dt1
)

,
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where 0   δ   s/2� 3/4 is fixed. It follows from (4.68) and our choice of δ,

(4.75) N}J1/2+2δwN,M}L8T L2
xy
Ñ 0,

as N Ñ8. Now, applying (1.11), we estimate the second term on the r.h.s of (4.74) as

(4.76)

T1/2
» T

0
}J1/2+2δ((uN + uM)wN,M)(t1)}L2

xy
dt1

. T1/2
» T

0
}J1/2+2δ(uN + uM)(t1)}L2

xy
}wN,M(t1)}L8xy

+ }(uN + uM)(t1)}L8xy
}J1/2+2δwN,M(t1)}L2

xy
dt1

. T1/2
(
}uN}L8T Hs + }uM}L8T Hs

)
}wN,M}L1

T L8xy

+ T1/2
(
}uN}L1

T L8xy
+ }uM}L1

T L8xy

)
}J1/2+2δwN,M}L8T L2

xy
.

In virtue of (4.64) and (4.75), the second term on the right-hand side of (4.76) satisfies the required
decay as N Ñ 8. Now taking T sufficiently small such that T1/2}u0}Hs ! 1 with respect to the
implicit constant in (4.76) (which is independent of N and depends on s), we can absorb the first
term on the r.h.s of (4.76) by the first term on the left-hand side of (4.74). This establishes

N}uN � uM}L1
T L8xy

=
NÑ8

0

On the other hand, using Lemma 4.13 with F = �1
2∇((uN + uM)wN,M), it is seen that

(4.77)
}∇(uN � uM)}L1

T L8xy
. T1/2

(
}J3/2+2δwN,M}L8T L2

xy

+

» T

0
}J1/2+2δBx((uN + uM)wN,M)(t1)}L2

xy
dt1
)

,

where 0   δ   s/2� 3/4. Clearly, (4.66) and our choice of δ ¡ 0 implies that }J3/2+2δwN,M}L8T L2
xy
Ñ

0 as N Ñ 8. In virtue of (1.11) and arguing as in (4.76), we estimate the second term on the r.h.s
of (4.77) as follows

(4.78)

» T

0
}J1/2+2δBx((uN + uM)wN,M)(t1)}L2

xy
dt1

.
(
}uN}L8T Hs + }uM}L8T Hs

)
}wN,M}L1

T L8xy

+
(
}uN}L1

T L8xy
+ }uM}L1

T L8xy

)
}J3/2+2δwN,M}L8T L2

xy
.

The last display, (4.63) and the fact that }uN � uM}L1
T L8xy

, }J3/2+2δwN,M}L8T L2
xy
Ñ 0 as N Ñ 8 com-

plete the deduction of (4.75).
Next, we proceed to estimate (4.72) and (4.73). Since both of these estimates are inferred as

in the proof of Lemma 4.15, we will only deduce (4.72). Let us denote by rwN,M = vN � vM,
then rwN,M satisfies (4.65) with rwN,M(0) = Px

¤Nu0 � Px
¤Mu0. Applying Lemma 4.13 with F =
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�1
2Bx((vN + vM) rwN,M)) we get

(4.79)

}vN�vM}L1
T L8xy

.δ T1/2( sup
[0,T]

}J1/2+2δ
x rw(t)}L2

xy
+ sup

[0,T]
}J1/2+δ

x Dδ
y rw(t)}L2

xy

+

» T

0
(}J1/2+2δ

x ((vN + vM) rwN,M)(t1)}L2
xy
+ }J1/2+δ

x Dδ
y((vN + vM) rwN,M)(t1)}L2

xy
) dt1

)
=: T1/2(I1 + I2 + I3 + I4),

for some 0   δ   δ0 with δ0 to be determined during the proof. Now we estimate each of the
factors Ij.

In view of (4.70), it follows

N I1 Ñ
NÑ8

0,

whenever 0   δ   δ0   s/2� 3/4. To study I2, we employ Young’s inequality to derive

(4.80) (1 + |ξ|)1/2+δ|η|δ . N
δ

1�δ (1 + |ξ|)
1+3δ

2(1�δ) + N�1|η||ξ|�1/2.

Plancherel’s identity shows

(4.81) I2 . N
δ

1�δ }J
1+3δ

2(1�δ)
x rwN,M}L8T L2

xy
+ N�1}D�1/2

x By rwN,M}L8T L2
xy

.

Therefore, choosing 0   δ   δ0   1, where δ0 is small satisfying 1+5δ0
2(1�δ0)

  s � 1, we have from
(4.70) and (4.81) that

I2 =
NÑ8

o(N�1) + O(N�1}D�1/2
x By rwN,M}L8T L2

xy
).

Next, we follow the arguments in (4.46) employing (1.11) to deduce

I3 .(}J1/2+2δ
x vN}L8T L2

xy
+ }J1/2+2δ

x vM}L8T L2
xy
)}vN � vM}L1

T L8xy

+ (}vN}L1
T L8xy

+ }vM}L1
T L8xy

)}J1/2+2δ
x (vN � vM)}L8T L2

xy
.

Then the above inequality, (4.67), (4.68) and (4.70) show

I3 =
NÑ8

O(}u0}Xs}vN � vM}L1
T L8xy

) + o(N�1),

for all 0   δ   δ0, where δ0   s/2� 3/4. Now, we divide the remaining term I4 as follows

I4 .
» T

0
}Dδ

y((vN + vM) rwN,M)(t1)}L2
xy

dt1 +
» T

0
}D1/2+δ

x Dδ
y((vN + vM) rwN,M)(t1)}L2

xy
dt1

=: I4,1 + I4,2.

By employing the fractional Leibniz’s rule (1.10) in the y-variable we get

I4,1 .(}Dδ
yvN}L8T L2

xy
+ }Dδ

yvM}L8T L2
xy
)}vN � vM}L1

T L8xy

(}vN}L1
T L8xy

+ }vM}L1
T L8xy

)}Dδ
y(vN � vM)}L8T L2

xy
.

Consequently, choosing 0   δ   δ0   1 such that 3δ0
2(1�δ0)

  s, we use (4.67) and a similar argument
to (4.80) to find

I4,1 =
NÑ8

O(}u0}Xs}vN � vM}L1
T L8xy

) + o(N�1) + O(N�1}D�1/2
x By(vN � vM)}L8T L2

xy
).
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On the other hand, from Lemma 1.3 it is deduced

I4,2 .(}vN}L1
T L8xy

+ }vM}L1
T L8xy

)}D1/2+δ
x Dδ

y(vN � vM)}L8T L2
xy

+ (}D1/2+δ
x Dδ

yvN}L8T L2
xy
+ }D1/2+δ

x Dδ
yvM}L8T L2

xy
)}vN � vM}L1

T L8xy

+ (}D1/2+δ
x vN}L1

T L8xy
+ }D1/2+δ

x vM}L1
T L8xy

)}Dδ
y(vN � vM)}L8T L2

xy

+ (}Dδ
yvN}Lr1

T Lp1
xy
+ }Dδ

yvM}Lr1
T Lp1

xy
)}D1/2+δ

x (vN � vM)}Ls1
T Lq1

xy

=: I4,2,1 + I4,2,2 + I4,2,3 + I4,2,4,

where 1   r1, s1   8 and 2   p1, q1   8 satisfy the conditions of Lemma 1.4 (ii). An application
of (4.80) shows

I4,2,1 =
NÑ8

o(N�1) + O(N�1}D�1/2
x By(vN � vM)}L8T L2

xy
),

for each 0   δ   δ0   1, where δ0 is small satisfying 1+5δ0
2(1�δ0)

  s� 1. Now, we combine estimate
(4.45) and (4.67) to derive

I4,2,2 . }u0}Xs}vN � vM}L1
T L8xy

.

Additionally, by employing (1.13) and identity (4.49) with l = 0, it is not difficult to see

I4,2,3 =
NÑ8

o(N�1) + O(N�1}D�1/2
x By(vN � vM)}L8T L2

xy
),

for all 0   δ   δ0   1 and δ0
2(1�δ0)

  s. Finally, gathering together estimates (1.14), (1.15), (4.67) and
(4.68) we deduce

II4,2,4 . K1�θ}u0}
θ
Xs}vN � vM}

θ
L1

T L8xy
}J1/2+δ0

x (vN � vM)}1�θ
L1

T L8xy
,

so that Young’s inequality and (4.70) yield

I4,2,4 =
NÑ8

o(N�1) + O(}u0}Xs}vN � vM}L1
T L8xy

),

for all 0   δ ¤ δ0 and 0   δ0 ! 1 given by Lemma 1.4. Collecting all of the preceding estimates

I4 =
NÑ8

o(N�1) + O(}u0}Xs}vN � vM}L1
T L8xy

) + O(N�1}D�1/2
x By(vN � vM)}L8T L2

xy
).

Plugging the previous estimates for the terms Ij, j = 1, . . . , 4 in (4.79), we obtain

}vN � vM}L1
T L8xy

=
NÑ8

o(N�1) + O(T1/2}u0}Xs}vN � vM}L1
T L8xy

) + O(N�1}D�1/2
x By(vN � vM)}L8T L2

xy
).

This completes the deduction of (4.72) provided that T = (1 + rA}u0}Xs)�2 is chosen sufficiently
small. �

Next, we shall prove that tuNu is a Cauchy sequence in C([0, T]; Hs(R2)) and tvNu is a Cauchy
sequence in C([0, T]; Xs(R2)).

PROPOSITION 4.22. Let M, N P D, M ¥ N.

(i) If u0 P Hs(R2), s P (3/2, 4], then

(4.82) }uN � uM}L8T Hs Ñ
NÑ8

0.

(ii) If u0 P Xs(R2), s P (3/2, 4], then

(4.83) }Js
x(vN � vM)}L8T L2

xy
+ }D�1/2

x (vN � vM)}L8T L2
xy
+ }D�1/2

x By(vN � vM)}L8T L2
xy

Ñ
NÑ8

0.
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PROOF. Let us first deduce (4.82). We apply Js to (4.65), rewriting the nonlinearity as

1
2
Bx((uN + uM)wN,M) = uMBxwN,M + BxuNwN,M.

and then multiplying by JswN,M and integrating the resulting expression in space, we have

1
2

d
dt
}Js(uN � uM)(t)}2

L2
xy
=�

»
Js(uMBxwN,M)JswN,M dxdy�

»
Js(BxuNwN,M)JswN,M dxdy

=:� (I + II).

Integrating by parts,

I =

»
[Js, uM]BxwN,M JswN,M dxdy�

1
2

»
BxuM(JswN,M)2 dxdy,

this implies together with Lemma 1.1 ,

(4.84)
|I | . }[Js, uM]BxwN,M}L2

xy
}JswN,M}L2

xy
+ }∇uM}L2

xy
}JswN,M}

2
L2

xy

. }JsuM}L2
xy
}∇wN,M}L8xy

}JswN,M}L2
xy
+ }∇uM}L8xy

}JswN,M}
2
L2

xy
.

On the other hand,

II =

»
[Js, wN,M]BxuN JswN,M dxdy +

»
wN,M(Bx JsuN)JswN,M dxdy,

then Lemma 1.1 gives

(4.85)

|II | .}[Js, wN,M]BxuN}L2
xy
}JswN,M}L2

xy
+ }wN,M}L8xy

}Js+1uN}L2
xy
}JswN,M}L2

xy

.}∇wN,M}L8xy
}JsuN}L2

xy
}JswN,M}L2

xy
+ }∇uN}L8xy

}JswN,M}
2
L2

xy

+ }wN,M}L8xy
}Js+1uN}L2

xy
}JswN,M}L2

xy
.

To control }Js+1uN}L2 , we employ the fact that uN solves the IVP (0.4) and standard energy esti-
mates relaying on Lemma 1.1 to find

(4.86) }Js+1uN(t)}L2
xy
¤ e

c}∇uN}L1
T L8xy }Js+1P¤Nu0}L2

xy
. NecK}Jsu0}L2

xy
,

where we have also used Gronwall’s inequality and (4.64). Therefore, gathering (4.84)-(4.86), (4.63)
and (4.64), we find

}Js(uN(t)� uM)}L8T L2
xy
. ecK(}Js(P¤Nu0 � P¤Mu0)}L2

xy
+ }∇wN,M}L1

T L8xy
+ N}wN,M}L1

T L8xy

)
Ñ

NÑ8
0,

which holds in virtue of (4.71). This completes the deduction of (4.82).

Next, we prove (4.83). Replacing Js by Js
x and ∇ by Bx and using (4.67), (4.68) and the inequal-

ity

(4.87) }Js+1
x vN}L8T L2

xy
. }Js+1

x Px
¤Nu0}L2

xy
. N}Js

xu0}L2
xy

,

the estimate for the norm }Js
x(vN(t)� vM)(t)}L2

xy
follows the same arguments in the deduction of

(4.68). Now, setting rwN,M = vN � vM, we have that rwN,M solves the equation (4.65) with initial
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condition rwN,M(0) = Px
¤Nu0 � Px

¤Mu0. Applying D�1/2
x to this equation and then multiplying by

D�1/2
x rwN,M and integrating in space, we have

1
2

d
dt
}D�1/2

x rwN,M(t)}2
L2

xy
= �

»
D�1/2

x Bx((vN + vM) rwN,M)D�1/2
x rwN,M dxdy

= �

»
D�1

x Bx((vN + vM) rwN,M) rwN,M dxdy.

Writing Bx = �HxDx and using that Hx determines a skew-symmetric operator, it is seen»
D�1

x Bx((vN + vM) rwN,M) rwN,M dxdy

=
1
2

»
[Hx, vN + vM] rwN,M rwN,M dxdy

=
1
2

»
(D1/2

x [Hx, vN + vM]D1/2
x (D�1/2

x rwN,M))D�1/2
x rwN,M dxdy,

so that Proposition 4.2 applied to the x-variable gives

1
2

d
dt
}D�1/2

x rwN,M(t)}2
L2

xy
. }D1/2

x [Hx, vN + vM]D1/2
x (D�1/2

x rwN,M)}L2
xy
}D�1/2

x rwN,M}L2
xy

. (}vN + vM}L8xy
+ }Bx(vN + vM)}L8xy

)}D�1/2
x rwN,M}

2
L2

xy
.

Therefore, the preceding estimate, Gronwall’s inequality and (4.68) imply

}D�1/2
x (vN � vM)}L8T L2

xy
. ecK1}D�1/2

x (Px
¤Nu0 � Px

¤Mu0)}L2
xy

Ñ
NÑ8

0.

Finally, we proceed to estimate the norm }D�1/2
x By(vN � vM)}L8T L2

xy
. Since rwN,M = vN � vM solves

(4.65), we apply D�1/2
x By to this equation multiplying by D�1/2

x By rwN,M, then integrating in space
it follows

(4.88)

1
2

d
dt
}D�1/2

x By rwN,M(t)}2
L2

xy

= �

»
D�1/2

x ByBx((vN + vM) rwN,M)D�1/2
x By rwN,M dxdy

=

»
Hx((vN + vM)By rwN,M)By rwN,M dxdy +

»
Hx(By(vN + vM) rwN,M)By rwN,M dxdy

=: I + II,

where we have employed the decomposition Bx = �HxDx. Since Hx is a skew-symmetric opera-
tor, we have

I =
1
2

»
[Hx, vN + vM]By rwN,MBy rwN,M dx

=
1
2

»
(D1/2

x [Hx, vN + vM]D1/2
x (D�1/2

x By rwN,M))(D�1/2
x By rwN,M) dx,

then in view of Proposition 4.2 it follows

(4.89)
|I| . }D1/2

x [Hx, vN + vM]D1/2
x (D�1/2

x By rwN,M)}L2
xy
}D�1/2

x By rwN,M}L2
xy

. (}vN + vM}L8xy
+ }Bx(vN � vM)}L8xy

)}D�1/2
x By rwN,M}

2
L2

xy
.
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On the other hand, we use Hölder’s inequality to find

(4.90) |II| . } rwN,M}L8xy
}By rwN,M}

2
L2

xy
+ }ByvN}L2

xy
} rwN,M}L8xy

}By rwN,M}L2
xy

.

According to the above estimate, we are led to bound the norms }ByvN}L2
xy

and }By rwN,M}L2
xy

. Thus,
given that vN satisfies the equation in (0.4), integrating by parts it follows that

1
2

d
dt
}ByvN(t)}2

L2
xy
= �

»
By(vNBxvN)ByvN dxdy = �

1
2

»
BxvN(ByvN)

2 dxdy.

Then Gronwall’s inequality and (4.68) yield

}ByvN(t)}L2
xy
¤ ecK1}ByPx

¤Nu0}L2
xy

,

since }ByPx
¤Nu0}L2

xy
. N1/2}D�1/2

x Byu0}L2
xy

, we have

(4.91) }ByvN}L8T L2
xy
. N1/2.

On the other hand, from the fact that rwN,M solves (4.65) and integrating by parts, we find

(4.92)

1
2

d
dt
}By rwN,M}

2
L2

xy
=�

1
2

»
BxBy((vN + vM)wN,M)BywN,M dxdy

=�

»
BxByvNwN,MBywN,M dxdy�

»
ByvNBxwN,MBywN,M dxdy

�
1
2

»
BxvM(BywN,M)2 dxdy

=:III1 + III2 + III3.

To estimate III1, we employ that vN solves the equation in (0.4) to get

1
2

d
dt
}ByBxvN(t)}2

L2
xy
= �

3
2

»
BxvN(ByBxvN)

2 dxdy�
»
B2

xvNByvNByBxvN dxdy.

From this estimate and (4.91), it is seen

1
2

d
dt
}ByBxvN(t)}2

L2
xy
. }BxvN}L8xy

}ByBxvN}
2
L2

xy
+ }B2

xvN}L8xy
}ByvN}L2

xy
}ByBxvN}L2

xy
.

Then, in view of (4.67)-(4.69), (4.87), (4.91) and Gronwall’s inequality

}ByBxvN}L8T L2
xy
. ecK1

(
}ByBxPx

¤Nu0}L2
xy
+ N1/2}B2

xvN}L1
T L8xy

)
. N3/2,

where we used that }ByBxPx
¤Nu0}L2

xy
. N3/2}D�1/2

x Byu0}L2
xy

. Consequently, the previous estimate
allows us to deduce

III1 . N3/2} rwN,M}L8xy
}By rwN,M}L2

xy
.

Now, by using (4.91) and Hölder’s inequality,

III2 + III3 . N1/2(}BxvN}L8xy
+ }BxvM}L8xy

)}By rwN,M}L2
xy
+ }BxvM}L8xy

}By rwN,M}
2
L2

xy
.

Thus, inserting the above estimates in (4.92), applying Gronwall’s inequality together with (4.67),
(4.68) and (4.72) reveal

(4.93)
}By rwN,M}L8T L2

xy
. ecK1

(
}By(Px

¤Nu0 � Px
¤Mu0)}L2

xy
+ N3/2} rwN,M}L1

T L8xy

+ N1/2(}BxvN}L1
T L8xy

+ }BxvM}L1
T L8xy

)
)
. N1/2 + N3/2} rwN,M}L1

T L8xy
.
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Going back to II, we plug (4.91) and (4.93) in (4.90) to obtain

(4.94) |II| . N} rwN,M}L8xy
+ N2} rwN,M}L1

T L8xy
} rwN,M}L8xy

.

Now, collecting (4.89), (4.94) in (4.88),

1
2

d
dt
}D�1/2

x By rwN,M(t)}2
L2

xy
.(}vN + vM}L8xy

+ }By(vN + vM)}L8xy
)}D�1/2

x By rwN,M}
2
L2

xy

+ N} rwN,M}L8xy
+ N2} rwN,M}L1

T L8xy
} rwN,M}L8xy

.

Then, applying Gronwall’s inequality to the last display, together with (4.67), (4.68) and (4.72)
(provided that T = (1 + rAs}u0}Xs)�2 is chosen sufficiently small) yield

}D�1/2
x By rwN,M}L8T L2

xy
. ecK1

(
}D�1/2

x By(Px
¤Nu0 � Px

¤Mu0)}L2
xy
+ o(1)

)
Ñ

NÑ8
0.

This completes the proof of (4.83). �

We deduce from part (i) in Lemma 4.21 and Proposition 4.22 that tuNu has a limit u in the class

C([0, T]; Hs(R2))X L1([0, T]; W1,8(R2)).

Then, since uN solves the integral equation

(4.95) uN(t) = S(t)P¤Nu0 �
1
2

» t

0
S(t� t1)Bx(uN(t1))2 dt1,

taking the limit when N Ñ8, we find that u satisfies the integral equation in C([0, T]; Hs�1(R2)).
This establish that u solves the IVP (0.4). On the other hand, from part (ii) in Lemma 4.21 and
Proposition 4.22, we find that tvNu has a limit v in the class

C([0, T]; Xs(R2))X L1([0, T]; W1,8
x (R2)).

Thus, implementing the integral equation (4.95) and taking the limit in the class C([0, T]; J2Xs(R2)),
where J2Xs(R2) = t f P S1(R2) : J�2 f P Xsu with norm } f }J2Xs = }J�2 f }Xs , we can argue as above
to deduce that v solves the IVP (0.4). This completes the existence part of Theorem 4.1.

4.3.2.3. Uniqueness and continuous dependence. Let us first establish uniqueness when the
initial data lies in Hs(R2), i.e., in the class C([0, T]; Hs(R2)X L1([0, T]; W1,8(R2)). Let u1 and u2

be two solutions of the IVP (0.4) with initial data u1(0) = u1,0 and u2(0) = u2,0. We define

K := maxt}∇u1}L1
T L8xy

, }∇u2}L1
T L8xy

u.

We have that w = u1 � u2 solves

(4.96) Btw +Hxw�HxB
2
xw�HxB

2
yw +

1
2
Bx((u1 + u2)w) = 0,

with initial condition w(0) = u1,0 � u2,0. We multiply (4.96) by w and integrate by part to obtain

1
2

d
dt
}w(t)}2

L2
xy
= �

1
4

»
Bx(u1 � u2)w2 dxdy.

Then, Gronwall’s inequality shows

}u1 � u2}L2
xy
¤ exp

(
c(}Bxu1}L1

T L8xy
+ }Bxu2}L1

T L8xy
)
)
}u1,0 � u2,0}L2

xy
¤ ecK}u1,0 � u2,0}L2

xy
.

This inequality yields the uniqueness result when u1,0 = u2,0. Implementing the same argument
above, we deduce uniqueness in the class C([0, T]; Xs(R2)X L1([0, T]; W1,8

x (R2)).
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Continuous dependence in Hs(R2) is arguing as in the proof of Theorem 2.1. Analogously, con-
tinuous dependence in Xs(R2) is proved by this same property in Lemma 4.18 and the ideas in
[59].

4.4. Study of the equation in Hs(T2)

4.4.1. Functions spaces and additional notation. We will follow the notation in [44] (see also,
[77, 79, 80, 90]). Recalling that D =

 
2l : l P Z+ Y t0u

(
, for a given N1, N2 P D, we define N1 _

N2 = max(N1, N2) and N1 ^ N2 = min(N1, N2).
Now, for each N P Dz t1u we set

IN =
 

m P Z+ : N/2 ¤ |m|   N
(

and I1 = t0u. For the sake of simplicity, we will employ the same symbols in (1.7) to define their
periodic equivalents. However, this convection will be limited to this section. Thus, we define the
projector operators in L2(T2 �R) by the relation

(4.97) F (PN(u))(m, n, τ) = 1IN (|(m, n)|)F (u)(m, n, τ),

for all m, n P Z and τ P R.
Given a dyadic number N, we define the operator P¤Nu by the Fourier multiplier 1I¤N (|(m, n)|),

where I¤N =
�

M¤N IM with M dyadic. We also set P¡Mu = (I � P¤M)u.
Since we do not require to divide the lower modulations terms, recalling the function ψ0 defin-

ing (1.7) for d = 1 and the functions ψN , we will denote by ϕ1 = ψ0, ϕN = ψN for all N dyadic
with N ¡ 1. For a time T0 P (0, 1), let N0 P D be the greatest dyadic number such that N0 ¤ 1/T0.
Let N P D and b P [0, 1/2], we define the dyadic Xs,b-type normed spaces

(4.98)

Xb
N = Xb

N(Z
2 �R) = t f P L2(Z2�R) : 1IN (|(m, n)|) f = f and

} f }Xb
N
= Nb

0}ϕ¤N0(τ �ω(m, n)) � f }L2
m,n,τ

+
¸

L¡N0

Lb }ϕL(τ �ω(m, n)) � f }L2
m,n,τ

  8u.

We will denote by XN the space X1/2
N . Next, we introduce the spaces Fb

N according to Xb
N uniformly

on time intervals of size N�1:

(4.99) Fb
N := t f P C(R; L2(T2)) : PN f = f , } f }Fb

N
:= sup

tNPR

}F (ϕ1(N(� � tN)) f )}Xb
N
  8u

and

(4.100)
NN := t f P C(R; L2(T2)) : PN f = f ,

} f }NN := sup
tNPR

}|τ + ω(m, n) + iN|�1F (ϕ1(N(� � tN)) f )}XNu.

Let T P (0, T0] and YN be any of the spaces Fb
N or NN , we set

YN(T) := t f P C([0, T]; L2(T2)) : } f }YN(T)   8u

equipped with the norm:

} f }YN(T) := inft}rf }YN : rf P YN , rf � f on [0, T]u.
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Then for a given s ¥ 0, we define the spaces Fs,b(T) and N s(T) from their frequency localized
version Fb

N(T) and N (T) by using the Littlewood-Paley decomposition in the following manner

(4.101) Fs,b(T) := t f P C([0, T]; Hs(T2)), } f }2
Fs,b(T) =

¸
NPD

(N2s + N2s
0 )}PN f }2

Fb
N(T)

  8u

and

(4.102) N s(T) := t f P C([0, T]; Hs(T2)), } f }2
N s(T) =

¸
NPD

(N2s + N2s
0 )}PN f }2

NN(T)   8u.

Next, we define the associated energy spaces Bs(T) endowed with the norm

(4.103)
Bs(T) := t f P C([0, T]; Hs(T2)), } f }2

Bs(T) = }P¤N0 f (0)}2
Hs

+
¸

N¡N0

sup
tNP[0,T]

}PN f (tN)}
2
Hs   8u.

In the subsequent considerations FN and Fs(T) will denote the spaces above with parameter b =

1/2.
4.4.1.1. Basic properties. Now we collect some basic properties of the spaces Xb

N and Fb
N(T).

These results have been deduced in different contexts in [35, 44, 79, 78, 90].

Lemma 4.23. Let N P D and b P (0, 1/2]. Then

} fN}L2
m,n Lq

τ
. } fN}Xb

N

where q = 2/(1 + 2b), fN P Xb
N and the implicit constant is independent of N0 ¥ 1.

PROOF. We decompose fN according to its modulations to derive

(4.104)

} fN}L2
m,n Lq

τ
¤

¸
L¡N0

}ϕL(τ �ω(m, n)) fN}L2
m,n Lq

τ
+ }ϕL¤N0(τ �ω(m, n)) fN}L2

m,n Lq
τ

.
¸

L¡N0

Lb}rϕL(τ �ω(m, n))xτ �ω(m, n)y�b ϕL(τ �ω(m, n)) fN}L2
m,n Lq

τ

+ Nb
0}rϕ¤N0(τ �ω(m, n))xτ �ω(m, n)y�b ϕ¤N0(τ �ω(m, n)) fN}L2

m,n Lq
τ
,

where rϕL and rϕ¤N0 are two adapted functions to the support of ϕL and ϕ¤N0 respectively. Now,
since 1/q = 1/2 + b, we apply Cauchy-Schwarz in the time variable to obtain

(4.105)

} fN}L2
m,n Lq

t τ

.
¸

L¡N0

Lb}}rϕL(τ �ω(m, n))xτ �ω(m, n)y�b}L1/b
τ
}ϕL(τ �ω(m, n)) fN}L2

τ
}L2

m,n

+ Nb
0}}rϕ¤N0(τ �ω(m, n))xτ �ω(m, n)y�b}L1/b

τ
}ϕL(τ �ω(m, n)) fN}L2

τ
}L2

m,n

. } fN}Xb
N

,

where we have used that }rϕLxτy
�b}L1/b

τ
, }rϕ¤N0xτy

�b}L1/b
τ
.b 1 with involved constant independent

of L. �

Lemma 4.24. Let N P D, b P (0, 1/2], fN P Xb
N and h P L2(R) satisfying

|ph(τ)| . xτy�4.
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Then for any �N0 P D, �N0 ¥ N0 and t0 P R,

(4.106) �N0
b ���ϕ

¤�N0
(τ �ω(m, n))F (h(�N0(t� t0))F�1( fN))

���
L2

m,n,τ

. } fN}Xb
N

,

and

(4.107)
¸

L¡�N0

Lb
���ϕL(τ �ω(m, n))F (h(�N0(t� t0))F�1( fN))

���
L2

m,n,τ

. } fN}Xb
N

.

The implicit constants above are independent of N0 ¥ 1.

PROOF. We first deduce (4.106). From Hölder’s inequality and Young’s inequality it is seen

�N0
b
}ϕ

¤�N0
(τ �ω(m, n))F (h(N0(t� t0))F�1( fN))}L2

m,n,τ

. �N0
b�1

}ϕ
¤�N0

}Lp1

���}eiτ1t0ph(�N0
�1

τ1) �τ ( fN)}Lp2
τ

���
L2

m,n

. �N0
b�1

}ϕ¤N0}Lp1 }ph(�N0
�1

τ)}Lq1
τ
} fN}L2

m,n Lq
τ

,

where 1
q = 1

2 + b,

(4.108)
1
2
=

1
p1

+
1
p2

, and
1
p2

=
1
q1

+
1
q
� 1 =

1
q1

+ b�
1
2

.

It is not difficult to see that for fixed b P (0, 1/2], one can always find indexes 2 ¤ p1, p2 ¤ 8,
1 ¤ q1 ¤ 8 assuming the conditions displayed above. Therefore, given that 1 = 1

p1
+ 1

q1
+ b and

that }ϕ
¤�N0

}Lp1 � �N0
1/p1 and }ph(�N0

�1
τ)}Lq1

τ
� �N0

1/q1 , we deduce

�N0
b
}ϕ

¤�N0
(τ �ω(m, n))F (h(�N0(t� t0))F�1( fN))}L2

m,n,τ
. } fN}L2

m,n Lq
τ

.

The estimate above and Lemma 4.23 complete the deduction of (4.106). Let us treat (4.107). De-
composing fN by modulations, it follows¸

L¡�N0

Lb
���ϕL(τ �ω(m, n))F (h(�N0(t� t0))F�1( fN))

���
L2

m,n,τ

.
¸

L¡�N0

¸
L1¥N0

Lb�N0
�1 ���ϕL(τ �ω(m, n))(etτ1t0ph(�N0

�1
τ)) �τ (ηL1(τ �ω(m, n)) fN)

���
L2

m,n,τ

=:
¸

L¡�N0

¸
N0¤L1 L/10

(� � � ) +
¸

L¡�N0

¸
L1¥(N0_(L/10))

(� � � ) =: I + II ,

where we set ηN0(τ) = ϕ¤N0(τ) and ηL1(τ) = ϕL1(τ) for L1 ¡ N0. To estimate I , we notice that
|τ� τ1| � L, since |τ�ω(m, n)| � L and |τ1�ω(m, n)| . L1 ¤ L/10 in the support of each integral
in the summation. Consequently, this fact, Hölder’s inequality and Young’s inequality imply

I .
¸

L¡�N0

¸
N0¤L1 L/10

Lb�3/2�N0
�1
}}ϕL(τ �ω(m, n))

(
|| � |3/2ph(�N0

�1
τ)|)

�τ (|ηL1(τ �ω(m, n)) fN|
)
}L2

τ
}L2

m,n

.
¸

L¡�N0

¸
N0¤L1 L/10

Lb�3/2�N0
�1
}ϕL}Lp1

τ
} | � |3/2ph(�N0

�1
�)}Lq1

τ
}ηL1(τ �ω(m, n)) fN}L2

m,n Lq
τ
,
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where the indexes p1, q1, q satisfy the relations (4.108) and 1
q = 1

2 + b. Now since }ϕL}Lp1
τ
� L1/p1 ,

} | � |3/2ph(�N0
�1
�)}Lq1

τ
� �N0

3/2+1/q1 and 1/p1 + b� 3/2 ¤ �1/2, we can sum over L to get

I .
¸

L¡�N0

¸
N0¤L1 L/10

L1/p1+b�3/2�N0
1/2+1/q1

}ηL1(τ �ω(m, n)) fN}L2
m,n Lq

τ

. �N0
�1+1/p1+1/q1+b(

}ϕ¤N0(τ �ω(m, n)) fN}L2
m,n Lq

τ
+

¸
L1¡N0

}ϕL1(τ �ω(m, n)) fN}L2
m,n Lq

τ

)
,

which is controlled as in (4.104) and (4.105), since �1 + 1/p1 + 1/q1 + b = 0. The remaining term
is controlled by Young’s inequality in the following manner

(4.109)

II .
¸

L1¥(N0_(�N0/10))

Lb
1
�N0

�1
}}|ph(�N0

�1
τ1)| �τ |ηL1(τ �ω(m, n)) fN|}L2

τ
}L2

m,n

.
¸

L1¥N0

Lb
1
�N0

�1
}ph(�N0

�1
�)}L1}ηL1(τ �ω(m, n)) fN}L2

m,n,τ . } fN}Xb
N

.

This estimate completes the proof of the lemma. �

Additionally, we require the next result.

Lemma 4.25. Let N P D, b P (0, 1/2] and I � R a bounded interval. Then

sup
LPD

Lb}ϕL(τ �ω(m, n))F (1I(t) f )}L2 . }F ( f )}Xb
N

for all f whose Fourier transform is in Xb
N and the implicit constant is independent of N0 ¥ 1.

PROOF. We decompose pf by modulations according to

Lb}ϕL(τ �ω(m, n))F (1I f )}L2 .
¸

L1¥N0

Lb }ϕL(τ �ω(m, n))F (1I) � |ηL1(τ �ω(m, n))F ( f )|}L2
m,n,τ

=:
¸

N0¤L1 L/10

(� � � ) +
¸

L1¥(N0_(L/10))

(� � � ) =: I + II ,

where we set ηN0(τ) = ϕ¤N0(τ) and ηL1(τ) = ϕL1(τ) for L1 ¡ N0. When L   L/10, we have
|τ � τ1| � L, thus applying Hölder inequality and then Young’s inequality it is seen

(4.110) I .
¸

N0¤L1 L/10

Lb�m}ϕL}Lp1 }| � |
m p1I}Lq1 }ηL1(τ �ω(m, n))F ( f )}L2

m,n Lq
τ

where 1
q = 1

2 + b, 0   m ¤ 1 and p1, p2, q1 satisfy (4.108). If b = 1/2, we take m = 1, p1 = q = 2
and q1 = 8, and when 0   b   1/2, we set m = b, p1 = b�1 and q1 = (1� 2b)�1. Notice that
under any of these restrictions, }| � |m p1I}Lq1   8, since | p1I(τ)| . xτy�1. Consequently,

I .
¸

N0¤L1 L/10

Lb
1}ηL1(τ �ω(m, n))F ( f )}L2

m,n Lq
τ
.

Arguing as in (4.105), the last display yields to the desired bound. The estimate for II is obtained
following a similar reasoning as in (4.109). The proof is completed. �

We will require the following lemma to obtain time factors in the energy estimates.
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Lemma 4.26. Let T P (0, T0) and 0 ¤ b   1/2. Then for any f P FN(T),

} f }Fb
N(T)
. T(1/2�b)�} f }FN(T)

where the implicit constant is independent of N, N0 and T0.

PROOF. The proof follows the same arguments in [35, Lemma 3.4]. �

Next, we recall the embedding Fs(T) ãÑ C([0, T]; Hs(T2)), s ¡ 0, T P (0, T0] established in
[90, 44].

Lemma 4.27. Let T P (0, T0], then

sup
tP[0,T]

}u(t)}Hs . }u}Fs(T),

whenever u P Fs(T) and the implicit constant is independent of N0 ¥ 1,

We also need the following linear estimate which is deduced from the arguments in [44, Propo-
sition 3.2] (see also [90, Proposition 6.2]).

PROPOSITION 4.28. Assume that T P (0, T0], s ¥ 0 and u, v P C([0, T]; H8(T2)) with

Btu +Hxu�HxB
2
xu�HxB

2
yu = v, on T2 � [0, T).

Then

(4.111) }u}Fs(T) . }u}Bs(T) + }v}N s(T),

where the implicit constant is independent of T0.

To obtain a priori estimates for smooth solutions we need the following lemma.

Lemma 4.29. Let s ¥ 0, v P C([0, T0]; H8(T2)). Then the mapping T Ñ }v}N s(T) is increasing and
continuous on [0, T0] and

(4.112) lim
TÑ0

}v}N s(T) Ñ 0.

PROOF. The proof follows the same line of arguments in [90, Lemma 6.3]. �

4.4.2. L2 Bilinear estimates. Next, we obtain the crucial L2 bilinear estimates, which will be
applied to obtain both the short time estimates and energy estimates in the subsequent subsec-
tions.

Let N, L P D, we define

DN,L =
 
(m, n, τ) P Z2 �R : |(m, n)| P IN and |τ �ω(m, n)| ¤ L

(
PROPOSITION 4.30. Assume that Ni, Li P D and fi : Z2 �R Ñ R+ functions supported in DNi ,Li

for i = 1, 2, 3.

(1) It holds that

(4.113)
»

Z2�R

( f1 � f2) � f3 . NminL1/2
min } f1}L2 } f2}L2 } f3}L2 .
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(2) Suppose that Nmin ! Nmax. If (Ni, Li) = (Nmin, Lmax) for some i P t1, 2, 3u, then

(4.114)
»

Z2�R

( f1 � f2) � f3 . N�1/2
max N1/2

min L1/2
max(N1/2

max _ L1/2
min) } f1}L2 } f2}L2 } f3}L2 ,

otherwise

(4.115)
»

Z2�R

( f1 � f2) � f3 . N�1/2
max N1/2

min L1/2
med(N1/2

max _ L1/2
min) } f1}L2 } f2}L2 } f3}L2 .

(3) If Nmin � Nmax,

(4.116)
»

Z2�R

( f1 � f2) � f3 . L1/2
max(N1/2

max _ L1/2
med) } f1}L2 } f2}L2 } f3}L2 .

Before proving Proposition 4.30, we require the following elementary result (see [79]).

Lemma 4.31. Let I, J be two intervals in R, and ϕ : J Ñ R a C1 function with infxPJ |ϕ
1(x)| ¡ 0.

Suppose that tn P J XZ, ϕ(n) P Iu � H. Then

#tn P J XZ, ϕ(n) P Iu . 1 +
|I|

infxPJ |ϕ1(x)|
.

PROOF OF PROPOSITION 4.30. We notice that

(4.117)
»

Z2�R

( f1 � f2) � f3 =

»
Z2�R

( rf1 � f3) � f2 =

»
Z2�R

( rf2 � f3) � f1 =: I .

Lest us first establish (1). In view of the above display we can assume that L1 = Lmin. Let
f #
i (m, n, τ) = fi(m, n, τ + ω(m, n)), then f #

i is supported in

D#
Ni ,Li

=
 
(m, n, τ) P R3 : |(m, n)| P INi and |τ| ¤ Li

(
,

and } f #
i }L2 = } fi}L2 , i = 1, 2, 3, we find

(4.118)

I =

»
Z2�R

( f1 � f2) � f3

=
¸

m1,n1,m2,n2

»
f #
1 (m1, n1, τ1) f #

2 (m2, n2, τ2)

� f #
3 (m1 + m2, n1 + n2, τ1 + τ2 + Ω(m1, n1, m2, n2)) dτ1dτ2.

Thus applying the Cauchy-Schwarz inequality in the τ2 variable and then in τ1 reveals

(4.119)

I ¤
¸

m1,n1,m2,n2

»
| f #

1 (m1, n1, τ1)|
�� f #

2 (m2, n2, �)
��

L2
τ

�� f #
3 (m1 + m2, n1 + n2, �)

��
L2

τ
dτ1

¤ L1/2
1

¸
m1,n1,m2,n2

�� f #
1 (m1, n1, �)

��
L2

τ

�� f #
2 (m2, n2, �)

��
L2

τ

�� f #
3 (m1 + m2, n1 + n2, �)

��
L2

τ
.

In this manner, the same procedure displayed above applied to the spatial variables on the r.h.s of
(4.119) yields (4.113).
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Next we deduce part (2). By (4.117), we shall assume that Nmin � N2 and L1 ¥ L3, that is
N2 ! N1 � N3. Let us consider the domains:

(4.120)

A1 = (Z4 �R2)z
4¤

j=2

Aj,

A2 =
!
(m1, n1, m2, n2, τ1, τ2) P Z4 �R2 : m1m2   0 and |m1| ¡ |m2|

)
,

A3 =
!
(m1, n1, m2, n2, τ1, τ2) P Z4 �R2 : m1m2   0 and |m1| = |m2|

)
,

A4 =
!
(m1, n1, m2, n2, τ1, τ2) P Z4 �R2 : m1 = 0 or m2 = 0

)
.

Accordingly, we divide I given by (4.118) as

(4.121) I =
4̧

j=1

I j,

where I j corresponds to the restriction of I to the domain Aj. Notice that the regions A3 and A4

consist of the cases where at least one of the variables m1, m2 or m1 + m2 is null. We divide our
arguments according to the partitions I j.

Estimate for I1. By support considerations it must follows that m2(m1 + m2) ¡ 0, or equivalently,
sign(m2) = sign(m1 + m2). Thus the resonant function is given by

(4.122)
Ω(m1, n1, m2, n2) = sign(m2)(m2

1 + 2m1m2)	 sign(m2)(n2
1 + 2n1n2)

� sign(m1)� sign(m1)m2
1 � sign(m1)n2

1.

In this manner, we divide A1 = A1,1 Y A1,2, where A1,1 consists of the elements A1 satisfying that
m2 ¡ 0 and A1,2 for which m2   0. Thus, we find

(4.123)
�� B

Bm2
Ω(m1, n1, m2, n2)

�� � |m1| and
�� B
Bn2

Ω(m1, n1, m2, n2)
�� � |n1|

in each of the regions A1,1 and A1,2. Now, since |(m1, n1)| � N1 in the support of I1, we further
divide the region of integration according to the cases where | B

Bm2
Ω(m1, n1, m2, n2)| � N1 and

| BBn2
Ω(m1, n1, m2, n2)| � N1, namely

(4.124) I1 =
2̧

k=1

»
A1,kXt|m1|�N1u

( f1 � f2) � f3 +

»
A1,kXt|m1|!N1, |n1|�N1u

( f1 � f2) � f3.
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To estimate the first sum on the r.h.s of (4.124), we use that |τ1 + τ2 + Ω(m1, n1, m2, n2)| ¤ L3,
(4.123) and Lemma 4.31, together with the Cauchy-Schwarz inequality in the m2 variable to find

(4.125)

2̧

k=1

»
A1,kXt|m1|�N1u

( f1 � f2) � f3

.
¸

|m1|�N1,n1,n2

(1 + L1/2
3 /N1/2

1 )

»
| f #

1 (m1, n1, τ1)|

� } f #
2 (m2, n2, τ2) f #

3 (m1 + m2, n1 + n2, τ1 + τ2 + Ω(m1, n1, m2, n2))}L2
m2

dτ1dτ2

.
¸
n2

(1 + L1/2
3 /N1/2

1 )

»
} f #

1 }L2} f #
3 }L2} f #

2 (�, n2, τ2)}L2
m

dτ2

. L1/2
2 N1/2

2 (1 + L1/2
3 /N1/2

1 )} f #
1 }L2} f #

2 }L2} f #
3 }L2 ,

where the penultimate estimate follows from Cauchy-Schwarz in m1, n1, τ1, and the last line is ob-
tained by the Cauchy-Schwarz inequality in n2, τ2. The estimate for the second sum on the r.h.s of
(4.124) is deduced changing the roles of m2 and n2 in the preceding argument. This completes the
study of I1.

Estimate for I2. In this case sign(m1) = � sign(m2) and m1(m1 + m2) ¡ 0, in other words
sign(m1) = sign(m1 + m2). From these restrictions we get

Ω(m1, n1, m2, n2) = sign(m1)(2m1m2 + 2m2
2)	 sign(m1)(2n1n2 + 2n2

2) + sign(m1).

We write A2 = A2,1 Y A2,2, where A2,1 is the set of all the elements in A2 for which m1 ¡ 0, and
A2,2 consists of those with m1   0. Consequently, in each of the sets A2,1, A2,2 it holds

(4.126)
�� B

Bm2
Ω(m1, n1, m2, n2)

�� � |2m1 + 4m2| and
�� B
Bn2

Ω(m1, n1, m2, n2)
�� � |2n1 + 4n2|.

Now, since |(m1, n1)| � N1, |(m2, n2)| � N2 with N2 ! N1, (4.126) establishes that in each of the
regions defined by I2 restricted to A2,1, A2,2, either

|
B

Bm2
Ω(m1, n1, m2, n2)| � N1 or |

B

Bn2
Ω(m1, n1, m2, n2)| � N1.

In consequence, we can further divide I2 as in (4.124) to apply a similar argument to (4.125), which
ultimately leads to the desired estimate for I2.

Estimate for I3 and I4. In these cases both regions of integration can be bounded directly by
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means of the Cauchy-Schwarz inequality without any further consideration on the resonant func-
tion. Indeed, in the support of I3, we have that m2 = �m1 and so

(4.127)

I3 =
¸

m1�0,n1,n2

»
f #
1 (m1, n1, τ1) f #

2 (�m1, n2, τ2)

� f #
3 (0, n1 + n2, τ1 + τ2 + Ω(m1,�m1, n1, n2)) dτ1dτ2

.
¸

n1,n2

»
} f #

1 (�, n1, τ1)}L2
m
} f #

2 (�, n2, τ2)}L2
m

� | f #
3 (0, n1 + n2, τ1 + τ2 + Ω(m1,�m1, n1, n2))| dτ1dτ2

.
¸
n2

»
} f #

2 (�, n2, τ2)}L2
m
} f #

1 }L2} f #
3 } dτ2

. L1/2
2 N1/2

2 } f #
2 (�, n2, τ2)}L2

m
} f #

1 }L2} f #
3 } dτ2,

where we have employed the embedding L2(Z2) � L8(Z2), together with consecutive applica-
tions of the Cauchy-Schwarz inequality starting with m1, then with n1, τ1 and finally with n2, τ2.
This completes the estimate for I3. On the other hand, we can divide the support of I4 in two
parts for which at least one of the variables among m1 and m2 is not considered in the summation.
This in turn allows us to perform some simple modifications to the previous argument to bound
I4 by the r.h.s of (4.127).

Collecting the estimates for I j, j = 1, 2, 3.4, we complete the deduction of (2). Now we proceed
to infer (3). In virtue of (4.117), we shall assume that L2 = Lmin and L3 = Lmax. We write

I =
4̧

j=1

rI j,

where rI j corresponds to the restriction of I (given by (4.118)) to the domain Aj determined by
(4.120). The estimate for rI1 is obtained by employing the reasoning in I1. Indeed, by using that
L3 = Lmax and L2 = Lmin and |(m1, n1)| � N1 � Nmax, it is deducedrI1 . N1/2

maxL1/2
min(1 + L1/2

max/N1/2
max)} f #

1 }L2} f #
2 }L2} f #

3 }L2 .

The estimates for rI3 and rI4 can be controlled in a similar fashion as (4.127) without considering
the behavior of the resonant function and employing only the Cauchy-Schwarz inequality to findrI3 + rI4 . N1/2

maxL1/2
max} f #

1 }L2} f #
2 }L2} f #

3 }L2 .

In the case of rI2, the derivatives in the m2 and n2 directions of Ω could vanish in the support of
the integral. Instead, we will employ the remaining directions to deduce the desired estimates.
Indeed, splitting A2 = A2,1 Y A2,2, where A2,1 = A2 X tm1 ¡ 0u, A2,1 = A2 X tm1   0u, we get

(4.128)
�� B

Bm1
Ω(m1, n1, m2, n2)

�� � |m2| and
�� B
Bn1

Ω(m1, n1, m2, n2)
�� � |n2|,

in each of the regions A2,1 and A2,2. Employing (4.128) and similar considerations to (4.125) for
the variables m1 and m2 we deducerI2 . N1/2

maxL1/2
med(1 + L1/2

max/N1/2
max)} f #

1 }L2} f #
2 }L2} f #

3 }L2 .
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This completes the deduction of (3). �

By duality and Proposition 4.30, we obtain the following L2 bilinear estimates.

Corollary 4.32. Let N1, N2, N3, L1, L2, L3 P D be dyadic numbers and fi : R3 Ñ R+ supported in
DNi ,Li for i = 1, 2.

(1) It holds that

(4.129) }1DN3,L3
( f1 � f2)}L2 . NminL1/2

min } f1}L2 } f2}L2 .

(2) Suppose that Nmin ! Nmax. If (Ni, Li) = (Nmin, Lmax) for some i P t1, 2, 3u, then

(4.130) }1DN3,L3
( f1 � f2)}L2 . N�1/2

max N1/2
min L1/2

max(N1/2
max _ L1/2

min) } f1}L2 } f2}L2 ,

otherwise

(4.131) }1DN3,L3
( f1 � f2)}L2 . N�1/2

max N1/2
min L1/2

med(N1/2
max _ L1/2

min) } f1}L2 } f2}L2 .

(3) If Nmin � Nmax,

(4.132) }1DN3,L3
( f1 � f2)}L2 . L1/2

max(N1/2
max _ L1/2

med) } f1}L2 } f2}L2 .

4.4.3. Short time bilinear estimates. In this subsection, we derive the bilinear estimates for
the equation and the difference of solutions.

PROPOSITION 4.33. Let s ¥ s0 ¥ 1, T P (0, T0], then

}Bx(uv)}N s(T) . T1/4
0

(
}u}Fs0 (T)}v}Fs(T) + }v}Fs0 (T)}u}Fs(T)

)
,(4.133)

}Bx(uv)}N 0(T) . T1/4
0 }u}F0(T)}v}Fs0 (T),(4.134)

for all u, v P Fs(T) and where the implicit constants are independent of T0.

We split the proof of Proposition 4.33 in the following technical lemmas.

Lemma 4.34 (Low� High Ñ High). Let N, N1, N2 P D satisfying N1 ! N � N2. Then,

(4.135) }PN(Bx(uN1 vN2))}NN . N1/2
1 }uN1}FN1

}vN2}FN2
,

whenever uN1 P FN1 and vN2 P FN2 .

PROOF. We use the definition of the space NN to find

}PN(Bx(uN1 vN2))}NN . sup
tNPR

}|τ + ω(m, n) + iN|�1N1t|(m,n)|�Nu fN1 � gN2}XN

where

(4.136)
fN1 = |F (ϕ1(N(� � tN))uN1)|,

gN2 = |F (rϕ1(N(� � tN))vN2)|,

with rϕ1 ϕ1 = ϕ1. Now we define

(4.137)
fN1,(N_N0) = ϕ¤(N_N0)(τ �ω(m, n)) fN1(m, n, τ),

fN1,L = ϕL(τ �ω(m, n)) fN1(m, n, τ),
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for L ¡ (N _ N0), and we set similarly gN2,(N_N0) and gN2,L. Therefore, from the definition of the
spaces XN , (4.130) and (4.131), we find

(4.138)

}PN(Bx(uN1 vN2))}NN

. sup
tNPR

¸
L,L1,L2¥(N_N0)

NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2

. sup
tNPR

¸
L,L1,L2¥(N_N0), L1=Lmax

NL�1/2N�1/2N1/2
1 L1/2

1 L1/2
min} fN1,L1}L2}gN2,L2}L2

+ sup
tNPR

¸
L,L1,L2¥(N_N0), L1 Lmax

NL�1/2N�1/2N1/2
1 L1/2

medL1/2
min} fN1,L1}L2}gN2,L2}L2

. sup
tNPR

N1/2
1

¸
L¥N

(N/L)1/2( ¸
L1¥(N_N0)

L1/2
1 } fN1,L1}L2

)( ¸
L2¥(N_N0)

L1/2
2 }gN2,L2}L2

)
,

where, since |τ + ω(m, n) + iN|�1 ¤ N�1, the sum over N0 ¤ L   (N _ N0) on the left-hand
of (4.138) can be controlled by the right-hand side of this inequality. In this manner the above
expression and Lemma 4.24 complete the deduction of the lemma. �

Lemma 4.35 (High� High Ñ High). Let N, N1, N2 P D satisfying N � N1 � N2 " 1. Then,

(4.139) }PN(Bx(uN1 vN2))}NN . N(1/2)+}uN1}FN1
}vN2}FN2

,

whenever uN1 P FN1 and vN2 P FN2 .

PROOF. Following the same arguments and notation in the proof of Lemma 4.34, we write

(4.140)

}PN(Bx(uN1 vN2))}NN . sup
tNPR

¸
L,L1,L2¥(N_N0)

NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2

= sup
tNPR

( ¸
L,L1,L2¥(N_N0)

L¤(L1^L2)

NL�1/2(� � � ) +
¸

L,L1,L2¥(N_N0)
L¡(L1^L2)

NL�1/2(� � � )
)
.

To estimate the first term on the right-hand side of (4.140), we employ (4.132) and the restrictions
(N _ N0) ¤ L ¤ (L1 ^ L2) to find

(4.141) NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2 . N1/2(N/L)�1/2(L1/2
1 } fN1,L1}L2)(L1/2

2 }gN2,L2}L2).

Thus, we add the above expression over L, L1, L2 ¥ (N _ N0) with L ¤ (L1 ^ L2) and then we
apply Lemma 4.24 to the resulting expression to obtain the desired bound. Next we deal with the
second sum on the right-hand side of (4.140). Interpolating (4.129) and (4.132) it is seen

(4.142)
NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2

. N2�θ L�1/2L(1�θ)/2
min Lθ/2

maxLθ/2
medL�1/2

1 L�1/2
2 (L1/2

1 } fN1,L1}L2)(L1/2
2 }gN2,L2}L2),

for all θ P [0, 1] and L ¡ (L1 ^ L2). Under these considerations, either L1 = Lmin or L2 = Lmin,
which implies

L�1/2L(1�θ)/2
min Lθ/2

maxLθ/2
medL�1/2

1 L�1/2
2 ¤ L�θ/2

min L�1/2+θ/2
max L�1/2+θ/2

med .



4.4. STUDY OF THE EQUATION IN HS(T2) 110

Then, plugging the last display in (4.142) and recalling that N ¤ Li, N ¤ L, we get

(4.143)
NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2

. N1�θ/2(N/L)1/2�θ/2(L1/2
1 } fN1,L1}L2)(L1/2

2 }gN2,L2}L2).

Therefore, taking θ sufficiently close to 1, we sum (4.143) over L, L1, L2 ¥ (N _ N0) with L ¥

(L1 ^ L2) and then we apply Lemma 4.24 to control the second term on the r.h.s of (4.140). This
completes the proof of the lemma. �

Lemma 4.36 (High� High Ñ Low). Let N, N1, N2 P D satisfying N ! N1 � N2. Then,

(4.144) }PN(Bx(uN1 vN2))}NN . N(1/2)+ log(Nmax)}uN1}FN1
}vN2}FN2

,

whenever uN1 P FN1 and vN2 P FN2 .

PROOF. Following the same notation employed in the proof of Lemma 4.34, we have

(4.145)

}PN(Bx(uN1 vN2))}NN

. sup
tNPR

¸
L,L1,L2¥(N_N0)

NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2

= sup
tNPR

( ¸
L,L1,L2¥(N_N0), L=Lmax

NL�1/2(� � � ) +
¸

L,L1,L2¥(N_N0), L Lmax

NL�1/2(� � � )
)
.

To estimate the first term on the r.h.s of (4.145), we use (4.130) to deduce

(4.146) NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2 . N3/2N�1/2
1 (N1/2

1 _ L1/2
min)} fN1,L1}L2}gN2,L2}L2 ,

where L, L1, L2 ¥ (N _ N0), L = Lmax. These restrictions imply, N�1/2
1 (N1/2

1 _ L1/2
min)L�1/2

1 L�1/2
2 .

N�1/2L�1/2
med , then when Lmed � L = Lmax, we have

(4.147)
N3/2N�1/2

1 (N1/2
1 _ L1/2

min)} fN1,L1}L2}gN2,L2}L2

. N1/2(N/L)1/2(L1/2
1 } fN1,L1}L2)(L1/2

2 }gN2,L2}L2).

Now, when Lmed ! L, we use the bound,

(4.148)
N3/2N�1/2

1 (N1/2
1 _ L1/2

min)} fN1,L1}L2}gN2,L2}L2

. N1/2(L1/2
1 } fN1,L1}L2)(L1/2

2 }gN2,L2}L2).

By support considerations it must follows that L � |Ω| . N2
1 , whenever Lmed ! L, this implies that

summing over L in (4.148) yields a factor of order log(N1). This remark completes the estimate
for the first sum in (4.145). The remaining sum in (4.145) is bounded directly by (4.131) in the
following manner

NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2

. N3/2L�1/2N�1/2
1 L1/2

med(N1/2
1 _ L1/2

min)} fN1,L1}L2)(L1/2
2 }gN2,L2}L2)

. N1/2(N/L)1/2(L1/2
1 } fN1,L1}L2)(L1/2

2 }gN2,L2}L2),

where we used that N�1/2
1 (N1/2

1 _ L1/2
min) ¤ N�1/2L1/2

min, for L1, L2, L3 ¥ (N _ N0) and L   Lmax.
The proof of the lemma is now completed. �
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Lemma 4.37 (Low� Low Ñ Low). Let N, N1, N2 P D satisfying N, N1, N2 ! 1. Then,

(4.149) }PN(Bx(uN1 vN2))}NN . }uN1}FN1
}vN2}FN2

,

whenever uN1 P FN1 and vN2 P FN2 .

PROOF. Following a similar reasoning as in the proof of Lemma 4.34, we notice that it is
enough to establish

(4.150) NL�1/2}1DN,L � ( fN1,L1 � gN2,L2)}L2 . L�1/2(L1/2
1 } fN1,L1}L2)(L1/2

2 }gN2,L2}L2),

for L, L1, L2 ¥ N0, where we define fN1,N0 = ϕ¤N0(τ �ω(m, n)) fN1(m, n, τ) and fN1,L1 = ϕL1(τ �

ω(m, n)) fN1(m, n, τ) L1 ¡ N0 with fN1 as in (4.136) and similarly we set gN2,L2 with L2 ¥ N0. In this
manner, we have that (4.150) is a direct consequence of (4.129) and the fact that N, N1, N2 . 1. �

We are in conditions to prove Proposition 4.33.

PROOF OF PROPOSITION 4.33. We will only deduce (4.133), since (4.134) is obtained by the
same reasoning. For each N1, N2 P D, we choose extensions uN1 , vN2 of PN1 u and PN2 v satisfying
}uN1}Fs ¤ 2}PN1 u}Fs

N1
(T) and }vN2}Fs ¤ 2}PN2 v}Fs

N2
(T). By the definition of the space N s(T) and

Minkowski inequality we have

}Bx(uv)}NN(T) .
5̧

j=1

( ¸
N¥1

(N2s + N2s
0 )
( ¸

(N1,N2)PAj

}PN(Bx(uN1 vN2))}NN

)2)1/2
=:

5̧

j=1

Sj,

where
A1 = t(N1, N2) P D2 : N1 ! N � N2u,

A2 = t(N1, N2) P D2 : N2 ! N � N1u,

A3 = t(N1, N2) P D2 : N � N1 � N2 " 1u,

A4 = t(N1, N2) P D2 : N ! N1 � N2u,

A5 = t(N1, N2) P D2 : N � N1 � N2 . 1u.

To estimate S1, we use Lemma 4.34, the fact that N1/2+ε
1 . T1/4

0 (N3/4+ε
1 + N3/4+ε

0 ) for ε ¡ 0 small
enough and the definition of Fs(T) to derive

S1 . T1/4
0

( ¸
N¥1

(N2s + N2s
0 )
( ¸

N1!N

N�ε
1 (N3/4+ε

1 + N3/4+ε
0 )}uN1}FN1

}vN}FN

)2)1/2

. T1/4
0 }u}Fs0 (T)}v}Fs(T).

The estimate for S2 is obtained symmetrically as above. Next, we use Lemma 4.35 and that
N(1/2)+ . T1/4

0 (N(3/4)+ + N(3/4)+
0 ) to obtain

S3 . T1/4
0

( ¸
N¥1

(N2s + N2s
0 )(N(3/4)+ + N(3/4)+

0 )}uN}
2
FN
}vN}

2
FN

)1/2
. T1/4

0 }u}Fs0 (T)}v}Fs(T).

Let 0   ε ! 1 fixed, then Lemma 4.36 and the Cauchy-Schwarz inequality yield

S4 . T1/4
0

( ¸
N¥1

N�ε
( ¸

N!N1,N2

N�ε/2
1 N�ε/2

2 (Ns + Ns
0)(N3/4+4ε

max + N3/4+4ε
0 )}uN1}FN1

}vN2}FN2

)2)1/2

. T1/4
0 }u}Fs0 (T)}v}Fs(T),
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which holds given that N1/2+2ε log(Nmax) . T1/4
0 N�ε/2

1 N�ε/2
2 (N3/4+4ε

max + N3/4+4ε
0 ). The estimate

for S5 follows from Lemma 4.37 and similar considerations as above. This concludes the deduction
of (4.133). �

4.4.4. Energy estimates. This subsection is devoted to derive all the estimates required to
control the Bs-norm of regular solutions and the difference of solutions.

Lemma 4.38. Let s0 ¡ 1/2, then there exists ν ¡ 0 small enough such that for T P (0, T0] it holds
that

(4.151)

�����
»

T2�[0,T]
u1u2u3

����� . TνNs0
min

3¹
i=1

}ui}FNi (T)
,

for each function ui P FNi(T), i = 1, 2, 3.

PROOF. In view of (4.117) we will assume that N1 ¤ N2 ¤ N3. Let rui P FNi extensions of ui to
R such that }rui}FNi

¤ 2}ui}FNi (T)
, i = 1, 2, 3. Now let h : R Ñ R be a smooth function supported in

[�1, 1] such that ¸
kPZ

h3(x� k) = 1, @x P R.

Then, we write

(4.152)

�����
»

T2�[0,T]
u1u2u3

����� . ¸
|k|.N3

»
Z2�R

|F (h(N3t� k)1[0,T]ru3)|

�
(
|F (h(N3t� k)1[0,T]ru1)|

)
� (|F (h(N3t� k)1[0,T]ru2)|

)
=:

¸
A
(� � � ) +

¸
B
(� � � ),

where
A = tk P Z : h(N3t� k)1[0,T] = h(N3t� k)u,

B = tk P Z : h(N3t� k)1[0,T] � h(N3t� k) and h(N3t� k)1[0,T] � 0u.

Let us estimate first the sum over A in (4.152). Recalling the dyadic number N0 defining the spaces
Xb

N , we denote by
f k
Ni ,N3_N0

= ϕ¤(N3_N0)(τ �ω)|F (h(N3t� k)ru3)|,

f k
Ni ,L = ϕL3(τ �ω)|F (h(N3t� k)ru3)|,

for each i = 1, 2, 3, L ¡ (N3 _ N0) and k P A. Now since there are at most N3T integers in A, we
employ (4.114) and (4.115) when N1 ! N3, or (4.116) if N1 � N3 to deduce that

(4.153)

IA .
¸
|k|PA

¸
L1,L2,L3¥(N3_N0)

»
Z2�R

( f k
N1,L1

� f k
N2,L2

) � f k
N3,L3

. N1/2
1 T sup

kPA

3¹
i=1

¸
Li¥(N3_N0)

L1/2
i } f k

Ni ,Li
}L2 . N1/2

1 T
3¹

i=1

}rui}FNi
,

where the last line above follows from (4.106) and (4.107).
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Next we deal with the sum over B in (4.152). We consider b P (0, 1/2) fixed and let

gk
Ni ,L := ϕLi(τ �ω)|F (h(N3t� k)1[0,T]rui|,

for each i = 1, 2, 3, L P D and k P B. We treat first the case N1 ! N3. Since #B . 1, we have

IB . sup
kPB

¸
L1,L2,L3¥1

»
Z2�R

(gk
N1,L1

� gk
N2,L2

) � gk
N3,L3

. sup
kPB

( ¸
L2,L3¤L1

»
Z2�R

(� � � ) +
¸

L1,L2,L3, L1 Lmax

»
Z2�R

(� � � )
)
=: sup

kPB

(
I1,k
B + I2,k

B
)
.

From (4.114) and the fact that N�1/2
3 (N1/2

3 _ L1/2
min)L�1/2

min ¤ (N�1/2
3 _ L�1/2

min ) ¤ 1, we get

(4.154)

I1,k
B .

¸
L2,L3¤L1

N�1/2
3 N1/2

1 L1/2
max(N1/2

3 _ L1/2
min)}g

k
N1,L1

}L2}gk
N2,L2

}L2}gk
N3,L3

}L2

.
¸

L2,L3¤L1

N1/2
1 L1/2

maxL1/2
min}g

k
N1,L1

}L2}gk
N2,L2

}L2}gk
N3,L3

}L2 .

In the regions where Lmed � Lmax, we use Lemmas 4.25 and 4.26, together with the fact that
}rui}FNi

¤ 2}ui}FNi (T)
to deduce

(4.155)

sup
kPB

¸
L2,L3¤L1,
Lmed�Lmax

N1/2
1 L�b

medL1/2
maxLb

medL1/2
min}g

k
N1,L1

}L2}gk
N2,L2

}L2}gk
N3,L3

}L2

. N1/2
1

( ¸
L1,L2,L3

L�b
max
)
T(1/2�b)�

3¹
i=1

}ui}FNi (T)
.

Now we deal with the case Lmed ! Lmax. Interpolating the right-hand side of (4.154) with the
bound derived for I1,k

B using (4.113) instead of (4.114), we find for all θ P [0, 1) that

(4.156)

sup
kPB

¸
L2,L3¤L1,
Lmed!Lmax

N1�θ/2
1 Lθ/2

maxL1/2
min}g

k
N1,L1

}L2}gk
N2,L2

}L2}gk
N3,L3

}L2

= sup
kPB

¸
L1=Lmax ,

Lmed!Lmax

N1�θ/2
1 L�b

medL�(1�θ)/2
max L1/2

maxLb
medL1/2

min}g
k
N1,L1

}L2}gk
N2,L2

}L2}gk
N3,L3

}L2

. N1�θ/2
1

( ¸
L1,L2,L2

L�(1�θ)/2
max L�b

med

)
T(1/2�b)�

3¹
i=1

}ui}FNi (T)
.

Therefore, the estimate for supkPB I1,k
B is now a consequence of (4.155) and (4.156). On the other

hand, we can implement (4.115) and the same ideas dealing with (4.155) to derive the following
bound

sup
kPB

I2,k
B . sup

kPB

¸
L1,L2,L3,L1 Lmax

N1/2
1 L�b

maxLb
maxL1/2

medL1/2
min}g

k
N1,L1

}L2}gk
N2,L2

}L2}gk
N3,L3

}L2

. N1/2
1

( ¸
L1,L2,L2

L�b
max
)
T(1/2�b)�

3¹
i=1

}ui}FNi (T)
.
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This completes the analysis of IB in the region N1 ! N3. Next we treat the case N1 � N2. Interpo-
lating (4.113) and (4.116), we obtain for all θ P [0, 1] that

(4.157)

IB . sup
kPB

¸
L1,L2,L3

(
L�θ/2

max (N1/2
1 _ L1/2

med)
1�θ Nθ

1 L�1/2
med Lθ/2�b

min

)
L1/2

maxL1/2
medLb

min

� }gk
N1,L1

}L2}gk
N2,L2

}L2}gk
N3,L3

}L2

. sup
kPB

N1/2+θ/2
1

¸
L1,L2,L3

L�θ/2
max

(
L�θ/2

med Lθ/2�b
min

)
L1/2

maxL1/2
medLb

min}g
k
N1,L1

}L2}gk
N2,L2

}L2}gk
N3,L3

}L2 .

Therefore, taking θ sufficiently small and employing a similar reasoning to (4.156), the estimate
for IB when N1 � N3 is a consequence of (4.157). Gathering all the previous results we obtain
(4.151) for ν = 1/2� b. �

Lemma 4.39. Assume that s0 ¡ 3/2, N1 ! N, then there exists ν ¡ 0 such that for T P (0, 1],����»
T2�R

PN(BxuPN1 v)PNu dxdydt
���� .s0 TµNs0

min}v}FN1 (T)

¸
N2�N

}u}2
FN2 (T)

,

whenever v P FN1(T) and u P FN2(T).

PROOF. We divide the integral expression in the following manner

(4.158)

»
T2�R

PN(BxuPN1 v)PNu dxdydt

=

»
T2�R

BxPNuPN1 vPNu +

»
T2�R

PN(BxuPN1 v)PNu� BxPNuPN1 vPNu

= I + II .

Integrating by parts and using (4.151), the first term on the right-hand side of the above expression
satisfies

(4.159) I . TνN(3/2)+

1 }v}FN1 (T)
}u}2

FN(T).

The estimate for II is deduced arguing as in [44, Lemma 6.1], for completeness we shall show
this procedure. We consider extensions ru and rv of u and v respectively such that }ru}FN ¤ 2}u}FN(T)

and }rv}FN1
¤ 2}v}FN , then we write

(4.160) II =
¸
kPZ

»
T2�R

(
PN(BxrukPN1

rvk)� BxPNrukPN1
rvk)PNruk,

where ruk = 1[0,T]h(Nt� k)ru and rvk = 1[0,T]h(Nt� k)rv with h defined as in the proof of Lemma
4.38. In addition, we consider smooth partitions rPN defined by F

(rPNφ
)
(m, n) = ηN(m, n)pφ(m, n)

with ηN : R2 Ñ R smooth compact supported in t|(ξ, η)| � Nuwith the property that rPN PN = PN .
Then we have

(4.161)
F
(
[PN(BxrukPN1

rvk)� BxPNrukPN1
rvk])(m, n)

=
¸

m1,n1

K(m, n, m1, n1)F (ruk)(m�m1, n� n1)F (|∇|PN1
rvk)(m1, n1)
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where using that |(m�m1, n� n1)| � N, we set

K(m, n,m1, n1)

= (m�m1)

"
ηN(m, n)� ηN(m�m1, n� n1)

|(m1, n1)|

* rηN1(m1, n1)
¸

N2�N

ηN2(m�m1, n� n1)

with rηN1 ηN1 = ηN1 . Since

|K(m, n, m1, n1)| . rηN1(m1, n1)
¸

N2�N

rηN2(m�m1, n� n1),

we can combine the last inequality, (4.161) and (4.160), to employ the same arguments leading to
(4.151) to obtain the desired estimate for II . This completes the proof of the lemma. �

PROPOSITION 4.40. Let T P (0, T0] and s ¥ s0 ¡ 3/2. Then for any u P C([0, T]; H8(T2))

solution of the IVP (0.4) on [0, T],

(4.162) }u}2
Bs(T) . }u0}

2
Hs + Tν}u}Fs0 (T)}u}

2
Fs(T).

PROOF. According to the definition of the spaces Bs(T) and the fact that u solves the IVP (0.4),
it is enough to derive a bound for the following expression

(4.163) N2s}PNu(tN)}
2
L2 . N2s}PNu0}

2
L2 + N2s

�����
»

T2�[0,T]
PN(uBxu)PNu dxdydt

����� ,
for N ¥ N0. Now we split the estimate of the integral term above according to the following
iterations: High� Low Ñ High,

(4.164)
»

T2�[0,T]
PN(BxuPN1 u)PNu dxdydt, where N1 ! N,

Low� High Ñ High,

(4.165)
»

T2�[0,T]
PN(BxPN1 uPN2 u)PNu dxdydt, where N1 ! N2 � N,

High� High Ñ High,

(4.166)
»

T2�[0,T]
PN(BxPN1 uPN2 u)PNu dxdydt, where N � N1 � N2,

and High� High Ñ Low,

(4.167)
»

T2�[0,T]
PN(BxPN1 uPN2 u)PNu dxdydt, where N ! N1 � N2.

In view of Lemma 4.39, the High� Low Ñ High iteration satisfies

(4.168) (4.164) . TνN(3/2)+

1 }PN1 u}FN1 (T)

¸
N2�N

}PN2 u}2
FN2 (T)

.

Summing the above expression over N and N1 ! N, we can modify the power of N(3/2)+

1 by an
small factor to apply the Cauchy-Schwarz inequality in the sum over N1. Next, we apply the same
inequality for the sum over N1, obtaining (4.162) for this case. Recalling (4.159) in the proof of
Lemma 4.39, we notice that the Low � High Ñ High iteration satisfies the same estimate on the
r.h.s of (4.168).
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Next we apply (4.151) to control the High� High Ñ High iterations as follows

(4.169) (4.166) . TνN(3/2)+}PNu}FN(T)}PN1 u}FN1 (T)
}PN2 u}FN2 (T)

.

Since N � N1 � N2, we can increase the power in N(3/2)+ by a small factor to apply the Cauchy-
Schwarz inequality separately in each of the sums N, N1, N2 to derive the desired result. The
estimate for High � High Ñ Low is obtained by (4.151) and a similar reasoning to the iteration
High� High Ñ High. This completes the estimate for the r.h.s of (4.163) and thus the deduction
of (4.162). �

We also require the following result to deal with the difference of solutions.

PROPOSITION 4.41. Let T P (0, T0], s ¥ s0 ¡ 3/2. Consider u, v P C([0, T]; H8(T2)) solutions of
the IVP (0.4) with initial data u0, v0 P H8(T2) respectively, then

(4.170) }u� v}2
B0(T) . }u0 � v0}

2
L2 + Tν

(
}u� v}Fs0 (T)}u� v}2

F0(T) + }v}Fs0 (T)}u� v}2
F0(T)

)
,

and

(4.171)
}u� v}2

Bs(T) . }u0 � v0}
2
Hs + Tν

(
}v}Fs0 (T)}u� v}2

Fs(T) + }u� v}Fs0 (T)}u� v}Fs(T)}v}Fs(T)

+ }v}F(s+3/2)+ (T)}u� v}Fs(T)}u� v}F0(T)
)
,

where the implicit constants are independent of T0.

PROOF. We shall employ a similar reasoning to the proof of Proposition 4.40. Letting w =

u� v, we find that w solves the equation:

(4.172)

$&%Btw +Hxw�HxB
2
xw�HxB

2
yw + 1

2Bx((u + v)w) = 0,

w(x, 0) = u0 � v0.

Let rs P t0, su. The definition of the Brs(T)-norm and the fact that w solves (4.172) yield

(4.173)

}w}2
Brs(T) . }P¤N0 w(0)}2

Hrs +
¸

N¡N0

sup
tN

Nrs}PNw(tN)}
2
L2

. }w(0)}Hrs +
¸

N¡N0

N2rs
�����
»

T2�[0,T]
PN(wBxw + vBxw + Bxvw)PNw dxdydt

����� .
Then, we are reduced to estimate the integral term on the right-hand side of the last inequality.
Arguing as in the proof of Proposition 4.40, applying Lemmas 4.38 and 4.39, we obtain

(4.174)

¸
N¡N0

�����
»

T2�[0,T]
PN(wBxw + vBxw)PNw dxdydt

�����
. Tν

(
}w}F(3/2)+ (T)}w}

2
F0(T) + }v}F(3/2)+ (T)}w}

2
F0(T)

)
and

(4.175)

¸
N¡N0

N2s

�����
»

T2�[0,T]
PN(wBxw + vBxw)PNw dxdydt

�����
. Tν

(
}v}F(3/2)+ (T)}w}

2
Fs(T) + }w}F(3/2)+ (T)}w}Fs(T)}v}Fs(T)

)
,
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where we emphasize that the last term on the right-hand side of (4.175) appears from the estimate
dealing with the Low� High Ñ High iteration and Lemma 4.38 since in this case

N2rs
�����
»

T2�[0,T]
PN(BxPN1 wPN2 v)PNw dxdydt

����� . TνN(3/2)+

1 N2rs}PN1 w}FN1 (T)
}PN2 v}FN2 (T)

}PNw}FN(T),

with N1 ! N � N2. It remains to estimate the integral involving vBxw in (4.173). We divide our
considerations as in the proof of Proposition 4.40 according to the iterations: High� Low Ñ High,
Low� High Ñ High, High� High Ñ High and High� High Ñ Low. Notice that in this case we
cannot apply Lemma 4.39 to control the High � Low Ñ High iteration. We use instead Lemma
4.38 to find for N1 ! N that

(4.176)

N2rs
��� »

T2�[0,T]
PN(BxvPN1 w)PNw dxdydt

���
. Tν

¸
N2�N

N(1/2)+

1 N2N2rs}PN1 w}FN1 (T)
}PN2 v}FN2 (T)

}PNw}FN(T).

Summing (4.176) over N and N1 ! N, we use that N(1/2)+

1 N2N2rs . N(3/2)++rs
2 NrsN�ε

1 for 0   ε ! 1
to apply the Cauchy-Schwarz inequality on the sum over N1 and then on N to control the resulting
expression by (4.170) if rs = 0, or (4.171) if rs = s. The other iterations are treated as in the proof
of Proposition 4.40, and their resulting bounds are the same displayed on the right-hand sides
of (4.174) and (4.175) when rs = 0 and rs = s respectively. The proof of the proposition is now
completed.

�

4.4.5. LWP in Hs(T2), s ¡ 3/2. Here we prove Theorem 4.3. We shall implement similar con-
siderations as in [44, 90] to prove Theorem 4.3. We begin by recalling the local well-posedness
result for smooth initial data, which can be deduced applying the parabolic regularization argu-
ment (see [46, Theorem 2.1]) with the periodic Kato-Ponce estimate in [42].

Theorem 4.42. Let u0 P H8(T2). Then there exist T ¡ 0 and a unique u P C([0, T]; H3(T2))

solution of the IVP (0.4). Moreover, the existence time T = T(}u0}H3) is a non-increasing function of
}u0}H3 and the flow-map is continuous.

We divide the proof of Theorem 4.3 in the following main parts.

4.4.5.1. A priori estimates for smooth solutions.

PROPOSITION 4.43. Let s ¡ 3/2 and R ¡ 0. Then there exists T = T(R) ¡ 0, such that for all
u0 P H8(T2) satisfying }u0}Hs ¤ R, then the corresponding solution u of the IVP (0.4) given by Theorem
4.42 is in the space C([0, T]; H8(T2)) and satisfies

(4.177) sup
tP[0,T]

}u(t)}Hs . }u0}Hs .

PROOF. We consider s ¡ 3/2 fixed and u0 as in the statement of the proposition. In virtue of
Theorem 4.42, there exist T1 = T1(}u0}H3) P (0, 1] and u P C([0, T1]; H8(T2)) solution of the IVP
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(0.4) with initial data u0. Then for a given T0 P (0, 1] to be chosen later, we collect the estimates
(4.111), (4.133) and (4.162) to find for each s1 ¥ s ¥ s0 ¡ 3/2 that

(4.178)

$''&''%
}u}Fs1 (T) . }u}Bs1 (T) + }Bx(u2)}N s1 (T)

}Bx(u2)}N s1 (T) . T1/4
0 }u}Fs0 (T)}u}Fs1 (T),

}u}Bs1 (T) . }u0}Hs1 + Tν
0 }u}

1/2
Fs0 (T)}u}Fs1 (T),

where 0   T ¤ (T1^ T0). We emphasize that our arguments indicate that the implicit constants in
(4.178) and ν ¡ 0 are independent of T0 P (0, 1] and in consequence of the definition of the spaces
involved (which depend on N0 ¤ T�1

0 ). Letting s1 = s = s0 and Γs(T) = }u}Bs(T) + }Bx(u2)}N s(T),
(4.178) yields

(4.179) Γs(T) . }u0}Hs + T1/4
0 Γs(T)2 + Tν

0 Γs(T)3/2.

Considering now s1 = 3, s0 = s in (4.178), we also find

(4.180) }u}F3(T) . }u0}H3 + T1/4
0 Γs(T)}u}F3(T) + Tν

0 Γs(T)1/2}u}F3(T).

Since the mapping T ÞÑ }u}Bs(T) is decreasing and continuous with limTÑ0 }u}Bs(T) . }u}Hs , from
(4.112) it follows that

(4.181) lim
TÑ0

Γs(T) . }u0}Hs ,

where the implicit constant is independent of T0 and the definition of the spaces involved. Thus,
we can choose T0 = T0(R) ¡ 0 sufficiently small, such that T1/4

0 R + Tν
0 R1/2 ! 1 (according to the

constants in (4.179) and (4.181)). Then, for this time and the associated spaces Fs(T),N s(T), Bs(T),
we can apply a bootstrap argument relaying on (4.179), (4.181) and the continuity of Γs(T) to
obtain Γs(T) . }u0}Hs , for any 0   T ¤ T0. Consequently, Lemma 4.27 reveals

sup
tP[0,(T1^T0)]

}u(t)}Hs . }u0}Hs .

Therefore, up to choosing T0 smaller at the beginning of the argument, from (4.180) we infer

sup
tP[0,(T1^T0)]

}u(t)}H3 . }u0}H3 .

In this manner, the last display and Theorem 4.42 allow us to extend u, if necessary, to the whole
interval [0, T0(R)]. This completes the proof of the proposition. �

4.4.5.2. L2-Lipschitz bounds and uniqueness. Let u, v P C([0, T1]; Hs(T2)) be two solutions
of the IVP (0.4) defined on [0, T1] with initial data u0, v0 P Hs(T2) such that u, v P Fs(T, T1) X
N s(T, T1), where we denote by Fs(T, T1) and Bs(T, T1) the spaces defined at time T1 and 0   T ¤

T1. Notice that this implies that u, v P Fs(T, T0)XN s(T, T0), whenever 0   T ¤ T0 ¤ T1. We collect
(4.111), (4.134) and (4.170) to get

(4.182)

$''&''%
}u� v}F0(T,T0) . }u� v}B0(T,T0) + }Bx((u + v)(u� v))}N 0(T,T0),

}Bx((u + v)(u� v))}N 0(T,T0) . T1/4
0 (}u}Fs(T,T0) + }v}Fs(T,T0))}u� v}F0(T,T0),

}u� v}B0(T,T0) . }u0 � v0}L2 + Tν
0 (}u}Fs(T,T0) + }v}Fs(T,T0))

1/2}u� v}F0(T,T0).
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Let R ¡ 0, satisfying suptP[0,T1](}u(t)}Hs + }v(t)}Hs) ¤ R. Following a similar reasoning as in the

proof of Proposition 4.43, there exists a time T0 = T0(R) ¡ 0 sufficiently small, for which T1/4
0 R +

Tν
0 R1/2 ! 1 with respect to the constants in (4.182) and }u}Fs(T,T0), }v}Fs(T,T0) . R. Consequently,

(4.182) and Lemma 4.27 yield

sup
tP[0,T]

}u(t)� v(t)}L2 . }u� v}F0(T,T0) . }u0 � v0}L2 ,

for any 0   T ¤ T0. Thus, if u0 = v0, the last equation reveals that u = v on [0, T0]. Since T0

depends on R = R(suptP[0,T1](}u(t)}Hs + }v(t)}Hs)), we can employ the same spaces to repeat this
procedure a finite number of times obtaining uniqueness in the whole interval [0, T1].

4.4.5.3. Existence. Let R ¡ 0 and 3/2   s   3 fixed. For a given u0 P Hs(T2) with }u0}Hs ¤ R,
we consider a sequence (u0,n) � H8(T2) converging to u0 in Hs(T2), such that }u0,n}Hs ¤ R.
We denote by Φ(u0,n) the solution of the IVP (0.4) with initial data u0,n determined by The-
orem 4.42. Therefore, according to Proposition 4.43, there exists T1 = T1(R) ¡ 0, such that
Φ(u0,n) P C([0, T1]; H8(T2)) and (4.177) holds. We shall prove that (Φ(u0,n)) defines a Cauchy
sequence in C([0, T]; Hs(T2)) for some 0   T ¤ T1. To this aim, we will proceed as in [44, 90].

For a fixed M ¡ 0 and n, l ¥ 0 integers, we have

(4.183)

sup
tP[0,T]

}Φ(u0,n)(t)�Φ(u0,l)(t)}Hs ¤ sup
tP[0,T]

(
}Φ(u0,n)(t)�Φ(P¤Mu0,n)(t)}Hs

+ }Φ(P¤Mu0,n)(t)�Φ(P¤Mu0,l)(t)}Hs

+ }Φ(u0,l)(t)�Φ(P¤Mu0,l)(t)}Hs
)
,

for all 0   T   T1. Using Sobolev embedding and (4.177), we get

}Bx
(
Φ(P¤Mu0,n) + Φ(P¤Mu0,l)

)
(t)}L8x . }Φ(P¤Mu0,n)(t)}H3 + }Φ(P¤Mu0,l)(t)}H3

. }P¤Mu0,n}H3 + }P¤Mu0,l}H3 .

Then, the standard energy method and the above inequality show that the second term on the
right-hand side of (4.183) is controlled as follows

(4.184) sup
tP[0,T]

}Φ(P¤Mu0,n)(t)�Φ(P¤Mu0,l)(t)}Hs ¤ C(M)}u0,n � v0,l}Hs ,

for each 0   T   T1 and some constant C(M) ¡ 0 depending on M. Therefore, it remains to
estimate the first and last term in (4.183). By symmetry of the argument, we will restrict our
considerations to study the former term. To simplify notation, let us denote by u := Φ(u0,n),
v := Φ(P¤Mu0,n) and w = u� v, then taking T0 P (0, T1], we gather (4.111), (4.133) and (4.171) to
find

(4.185)

$'''&'''%
}w}Fs(T) . }w}Bs(T) + }Bx((u + v)w)}N s(T),

}Bx((u + v)w)}N s(T) . T1/4
0 (}u + v}Fs(T)}w}Fs(T)),

}w}Bs(T) . }u0,n � P¤Mu0,n}Hs + Tν
0 (}v}

1/2
Fs(T)}w}Fs(T) + }v}1/2

Fs1 (T)
}w}1/2

Fs(T)}w}
1/2
F0(T)),
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for all 0   T ¤ T0, and where s + 3/2   s1   2s is fixed. The above set of inequalities reveal

(4.186)
}w}Fs(T) . }u0,n � P¤Mu0,n}Hs + (T1/2

0 (}u}Fs(T) + }v}Fs(T)) + Tν
0 }v}

1/2
Fs(T))}w}Fs(T)

+ Tν
0 }w}

1/2
Fs(T)}v}

1/2
Fs1 (T)

}w}1/2
F0(T).

Repeating the arguments in the proof of Proposition 4.43, using (4.178) with s1 = s1 and s0 = s, we
choose T0 = T0(R)   T1 small so that

}v}Fs1 (T) . }P¤Mu0,n}Hs1 , 0   T ¤ T0,

and such that, employing (4.182) and similar considerations in the uniqueness part above,

}w}F0(T) . }u0,n � P¤Mu0,n}L2 , 0   T ¤ T0.

Furthermore, we can choose T0 smaller, if necessary, to assure that T1/2
0 R + Tν

0 R1/2 ! 1 with
respect to the implicit constant in (4.186). Then gathering these estimates in (4.186), we get

}w}Fs(T) . }u0,n � P¤Mu0,n}Hs + }P¤Mu0,n}
1/2
Hs1 }u0,n � P¤Mu0,n}

1/2
L2

. }P¥Mu0,n}Hs + Ms1�2s}P¡Mu0,n}
1/2
Hs }P¡Mu0,n}

1/2
Hs ,

where, given that s   s1   2s, we have used that }P¤Mu0,n}Hs1 . Ms1�s}P¤Mu0,n}Hs . From the
above inequality and Lemma 4.27, we arrive at

(4.187) sup
tP[0,T]

}Φ(u0,n)(t)�Φ(P¤Mu0,n)(t)}Hs . (1 + }P¡Mu0,n}
1/2
Hs )}P¡Mu0,n}

1/2
Hs ,

where 0   T ¤ T0. Therefore, according to our previous discussion, this completes the esti-
mate for the first and third terms on the r.h.s of (4.183). Noticing that for n, l large, }P¡Mu0,n}Hs ,
}P¡Mu0,l}Hs ¤ 2}P¡Mu0}Hs , we can take M large in (4.187), and then n, l large in (4.184), obtaining
that (Φ(u0,n)) is a Cauchy sequence in C([0, T]; Hs(T2)) for a fixed time 0   T ¤ T0.

Since each of the elements in the sequence (Φ(u0,n)) solve the integral equation associated to
(0.4) in C([0, T]; Hs�1(T2)), we find that the limit of this sequence is in fact a solution of the IVP
(0.4) with initial data u0. This completes the existence part.

4.4.5.4. Continuity of the flow-map. It is not difficult to obtain the continuity of the flow-map
from the same property for smooth solutions in Theorem 4.42 and the preceding arguments. We
refer to [90] for a more detailed discussion.

4.5. Well-posedness results in weighted spaces

This section is aimed to establish Theorem 4.5. We will start by introducing some preliminary
results.

4.5.1. Notation and additional results. We shall employ the notation introduced in Section
1.2. We consider the approximations twnu defined in (1.20) for d = 1. To explicitly show the
dependence on the spatial variables x, y in our estimates, we will denote by wn,x(x) = wn(x) and
wn,y(y) = wn(y).
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Since we are interested in performing energy estimates with the weights wn and then taking
the limit n Ñ 8, we must assure that all the computations involving the Hilbert transform and
the aforementioned weights are independent of the parameter n. In this direction we have:

PROPOSITION 4.44. For any θ P (�1, 1) and any n P Z+, the Hilbert transform is bounded in
L2(wθ

n(x) dx) with a constant depending on θ but independent of n.

Proposition 4.44 was stated before in [29, Proposition 1]. We require the identity

(4.188) [Hx, x] f = 0 if and only if
»

R

f (x) dx = 0.

We will employ the characterization of the spaces Lp
s (R

d) = J�sLp(Rd) determined in Theorem
1.13. Additionally, its consequences (1.26), (1.27) and Lemma 1.15 will be constantly employed in
our considerations.

Additionally, we require the following result which is proved in much the same way as in [69].

PROPOSITION 4.45. Let p P (1,8). If f P Lp(R) such that there exists x0 P R for which f (x+0 ),
f (x�0 ) are defined and f (x+0 ) � f (x�0 ), then for any δ ¡ 0, D1/p f R Lp

loc(B(x0, δ)) and consequently
f R Lp

1/p(R).

Proposition 4.45 is useful to determine our unique continuation conclusions in Theorems 4.6
and 4.7.

PROPOSITION 4.46. Let b P (0, 1). For any t ¡ 0

(4.189) Db(eix|x|t) . (|t|b/2 + |t|b|x|b), x P R

and

(4.190) Db(ei sign(x)t	i sign(x)η2t) . |x|�b, x P Rzt0u,

for all η P R.

PROOF. Estimate (4.189) follows from the same arguments in [69]. On the other hand, since
|ei sign(x)t	i sign(x)η2t � ei sign(y)t	i sign(y)η2t| = 0 whenever sign(y) = sign(x), we perform a change of
variables to find

Db(ei sign(x)t	i sign(x)η2t) =
( »

R

|ei sign(x)t	i sign(x)η2t � ei sign(y)t	i sign(y)η2t|2

|x� y|1+2b dy
)1/2

.
( »

y¥|x|

1
|y|1+2b dy

)1/2
� |x|�b.

This completes the deduction of (4.190). �

The following result will be useful to study the behavior of solutions of (0.4) in L2(|x|2r dxdy),
whenever r P (1/2, 1].

Lemma 4.47. Let 1/2   s ¤ 1 and f P Hs(R) such that f (0) = 0. Then, } sign(ξ) f }Hs . } f }Hs .
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PROOF. Since the case s = 1 can be easily verified, we will restrict our considerations to the
case 1/2   s   1. We first notice that the same argument in the deduction of (4.190) establishes

Ds(sign(x)) � |x|�s.

Thus, an application of (1.27) and the previous result reduces our analysis to prove

(4.191) }| � |�s f }L2 . } f }Hs .

However, the preceding estimate is a consequence of [88, Proposition 3.2] and the assumption
f (0) = 0. �

Now we are in the condition to prove Theorem 4.5

4.5.2. Well-posedness in Zs,r1,r2 and Żs,r1,r2 . This part is dedicated to prove Theorem 4.5. In
view of Theorem 4.1, for a given u0 P Zr1,r2,s(R2) = Hs(R2)X L2((|x|2r1 + |y|2r2) dxdy) there exist
T = T(}u0}Hs) ¡ 0 and

u P C([0, T]; Hs(R2))X L1([0, T]; W1,8(R2))

solution of the IVP (0.4). Let 0 ¤ K   8 defined by

(4.192) K = }u}L8T Hs + }u}L1
T L8xy

+ }∇u}L1
T L8xy

.

In what follows, we will assume that u is sufficiently regular to perform all the computations
required in this section. Indeed, the proof of Theorem 4.1 establishes that there exists a smooth
sequence of solutions uN P C([0, T]; H8(R2)) with uN(0) P H8(R2) X L2((|x|2r1 + |y|2r2) dxdy),
satisfying uN(0) Ñ u0 in the Zr1,r2,s(R2) topology, and such that (4.63) and (4.64) hold. Thus,
applying our arguments to the sequence uN and then taking the limit N Ñ 8 yield the required
assumption on u.

4.5.2.1. LWP in Zs,r1,r2 , r1 P [0, 1/2), r2 ¥ 0. Here we deduce Theorem 4.5 (i). Let us first prove
the persistence property u P C([0, T]; L2((|x|2r1 + |y|2r2) dxdy)). We begin by deriving some esti-
mates in the spaces L2(|x|2r1 dxdy) and L2(|y|2r2 dxdy).

Estimate for L2(|x|2r1 dxdy). Here, 0   r1   1/2 fixed. We apply Hx to the equation in (0.4)
to find

(4.193) BtHxu� u + B2
xu	 B2

yu +Hx(uBxu) = 0,

multiplying then by Hxu w2r1
n,x and integrating in space, we infer

(4.194)

1
2

d
dt
}Hxu(t)wr1

n,x}
2
L2

xy
�

»
uHxu w2r1

n,x dxdy +

»
B2

xuHxu w2r1
n,x dxdy

	

»
B2

yuHxu w2r1
n,x dxdy +

»
Hx(uBxu)Hxu w2r1

n,x dxdy = 0.

Multiplying the equation in (0.4) by uw2r1
N,x and then integrating in space, it is seen that

(4.195)

1
2

d
dt
}u(t)wr1

n,x}
2
L2

xy
+

»
Hxuuw2r1

n,x dxdy�
»
HxB

2
xuuw2r1

n,x dxdy

�

»
HxB

2
yuw2r1

n,x dxdy +

»
uBxuuw2r1

n,x dxdy = 0.
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Adding the differential inequalities (4.194) and (4.195), after integrating by parts in the y variable
we deduce

(4.196)

1
2

d
dt
(
}u(t)wr1

n,x}
2
L2

xy
+ }Hxu(t)wr1

n,x}
2
L2

xy

)
=

»
(HxB

2
xuu� B2

xuHxu)w2r1
n,x dxdy

�

»
(uBxuu +Hx(uBxu)Hxu)w2r1

n,x dxdy

= : Q1 + Q2.

Now, since 0   r1   1/2, |Bxw2r1
n,x| . wr1

n,x with implicit constant independent of n, integrating by
parts and using the Cauchy-Schwarz inequality we find

|Q1| =
��� » BxHxuuBxw2r1

n,x dxdy�
»
BxuHxu Bxw2r1

n,x dxdy
���

. }Bxu}L8T L2
xy
}uwr1

n,x}L2
xy
+ }Bxu}L8T L2

xy
}Hxu wr1

n,x}L2
xy

.

Notice that the norm }Bxu}L8T L2
xy

is controlled by (4.192). Next, since 0   r1   1/2, Proposition 4.44
shows

}Hx(uBxu)wr1
n,x}L2

xy
= }}Hx(uBxu)wr1

n,x}L2
x
}L2

y
. }uBxu wr1

n,x}L2
xy
. }Bxu}L8xy

}u wr1
n,x}L2

xy
.

Hence, we employ Hölder’s inequality to get

|Q2| ¤ }Bxu}L8xy
}uwr1

n,x}
2
L2

xy
+ }Hx(uBxu)wr1

n,x}L2
xy
}Hxu wr1

n,x}L2
xy

. }Bxu}L8xy
}uwr1

n,x}
2
L2

xy
+ }Bxu}L8xy

}uwr1
n,x}L2

xy
}Hxu wr1

n,x}L2
xy

.

Thus, gathering the previous estimates,

(4.197)

1
2

d
dt
(
}u(t)wr1

n,x}
2
L2

xy
+ }Hxu(t)wr1

n,x}
2
L2

xy

)
.
(
}uwr1

n,x}
2
L2

xy
+ }Hxuwr1

n,x}
2
L2

xy

)1/2
+ }Bxu}L8xy

(
}uwr1

n,x}
2
L2

xy
+ }Hxuwr1

n,x}
2
L2

xy

)
.

Estimate for the L2(|y|2r2 dxdy). In this case, r2 ¡ 0 is arbitrary. Multiplying the equation in (0.4)
by uwr2

n,y and integrating in space yield

(4.198)

1
2

d
dt
}u(t)wr2

n,y}
2
L2

xy
=�

»
Hxuwr2

n,yuwr2
n,y dxdy +

»
HxB

2
xuwr2

n,yuwr2
n,y dxdy

	

»
HxB

2
yuwr2

n,yuwr2
n,y dxdy�

»
uBxuwr2

n,yuwr2
n,y dxdy

=:A1 + A2 + A3 + A4.

Since the weight function wr2
n,y = wr2

n,y(y) does not depend on x, writing Hxuwr2
n,y = Hx(uwr2

n,y) and
using that Hx determines a skew-symmetric operator, we have that A1 = 0. Similarly, integrating
by parts on the x variable and writing HxBxuwr2

n,y = Hx(Bxuwr2
n,y), it follows that A2 = 0.

Now, integrating by parts and using that Hx is skew-symmetric, it is not difficult to see that

(4.199) |A3| =
���2 » HxByuBywr2

n,yuwr2
n,y dxdy

��� . }ByuBywr2
n,y}L2

xy
}uwr2

n,y}L2
xy

.
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From the fact that |Bl
ywr2

n,y| . wr2�l
n,y , l = 1, 2 with a constant independent of n and (4.192), it follows

(4.200) }ByuBywr2
n,y}L2

xy
. }Byu}L8T L2

xy
. K,

whenever 0   r2 ¤ 1. Now, if r2 ¡ 1, the identity ByuBywr2
n,y = By(uBywr2

n,y)� uB2
ywr2

n,y shows

(4.201) }ByuBywr2
n,y}L2

x,y
. }Jy(uwr2�1

n,y )}L2
xy
+ }uB2

ywr2
n,y}L2

xy
. }Jy(uwr2�1

n,y )}L2
xy
+ }uwr2

n,y}L2
xy

.

To estimate the last expression, choosing r = r�1
2 , a = b = r2 in (1.28) and applying Young’s

inequality

(4.202)
}Jy(uwr2�1

n,y )}L2
xy
= }}Jy(uwr2�1

n,y )}L2
y
}L2

x
. }}uwr2

n,y}
(r2�1)/r2
L2

y
}Jr2

y u}1/r2
L2

y
}L2

x

. }uwr2
n,y}L2

xy
+ }Jr2 u}L2

xy
.

Thus, choosing s ¡ maxt3/2, r2u, (4.200)-(4.202) and (4.192) imply

|A3| . }uwr2
n,y}L2

xy
+ }uwr2

n,y}
2
L2

xy
.

Finally,
|A4| . }Bxu}L8xy

}uwr2
n,y}

2
L2

xy
.

Plugging the estimates for Aj, j = 1, . . . , 4 in (4.198) yields

(4.203)
1
2

d
dt
}u(t)wr2

n,y}
2
L2

xy
. }uwr2

n,y}L2
xy
+ (1 + }Bxu}L8xy

)}uwr2
n,y}

2
L2

xy
.

This completes the analyze for the L2(|y|2r2 dxdy)-norm;

Now, we collect the estimates derived for the norms L2(|x|2r1 dxdy) and L2(|y|2r2 dxdy) to conclude
Theorem 4.5 (i). Letting

g(t) = }u(t)wr1
n,x}

2
L2

xy
+ }Hxu(t)wr1

n,x}
2
L2

xy
+ }u(t)wr2

n,y}
2
L2

xy
,

the inequalities (4.197) and (4.203) assure that there exists some constant c0 independent of n such
that

d
dt

g(t) ¤ c0g(t)1/2 + c0(1 + }Bxu}L8xy
)g(t).

Then, Gronwall’s inequality reveals

}u(t)wr1
n,x}

2
L2

xy
+ }Hxu(t)wr1

n,x}
2
L2

xy
+ }u(t)wr2

n,y}
2
L2

xy

¤
(
(}u0wr1

n,x}
2
L2

xy
+ }Hxu0wr1

n,x}
2
L2

xy
+ }u0wr2

n,y}
2
L2

xy
)1/2 + c0t/2

)2e
c0t+c0

³t
0 }∇u(s)}L8xy

ds

¤
(
(}u0xxyr1}2

L2
xy
+ }Hxu0xxyr1}2

L2
xy
+ }u0xyyr2}2

L2
xy
)1/2 + c0/2

)2e
c0t+c0

³t
0 }∇u(s)}L8xy

ds
.

Thus, taking n Ñ8 in the previous estimate yields

(4.204)
}u(t)xxyr1}2

L2
xy
+ }Hxu(t)xxyr1}2

L2
xy
+ }u(t)xyyr2}2

L2
xy

¤
(
(}u0xxyr1}2

L2
xy
+ }Hxu0xxyr1}2

L2
xy
+ }u0xyyr2}2

L2
xy
)1/2 + c0t/2

)2e
c0t+c0

³t
0 }∇u(s)}L8xy

ds
.

This shows that u P L8([0, T]; L2(|x|2r1 + |y|2r2 dxdy)). Now, we shall prove that

u P C([0, T]; L2(|x|2r1 + |y|2r2 dxdy)).
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Firstly, since u P C([0, T]; Hs(R2)), it is not difficult to see that u : [0, T] ÞÑ L2(|x|2r1 + |y|2r2 dxdy)
is weakly continuous. The same is true for the map Hxu(t) on L2(|x|2r1 dxdy). On the other hand,
(4.204) implies

(4.205)

}(u(t)�u0)xxyr1}2
L2

xy
+ }Hx(u(t)� u0)xxyr1}2

L2
xy
+ }(u(t)� u0)xyyr2}2

L2
xy

=}u(t)xxyr1}2
L2

xy
+ }Hxu(t)xxyr1}2

L2
xy
+ }u(t)xyyr2}2

L2
xy
+ }u0xxyr1}2

L2
xy
+ }Hxu0xxyr1}2

L2
xy

+ }u0xyyr2}2
L2

xy
� 2

»
u(t)u0xxy2r1 dxdy� 2

»
Hxu(t)Hxu0xxy2r1 dxdy

� 2
»

u(t)u0xyy2r2 dxdy

¤
(
(}u0xxyr1}2

L2
xy
+ }Hxu0xxyr1}2

L2
xy
+ }u0xyyr2}2

L2
xy
)1/2 + c0t/2

)2e
c0t+c0

³t
0 }∇u(s)}L8xy

ds

+ }u0xxyr1}2
L2

xy
+ }Hxu0xxyr1}2

L2
xy
+ }u0xyyr2}2

L2
xy
� 2

»
u(t)u0xxy2r1 dxdy

� 2
»
Hxu(t)Hxu0xxy2r1 dxdy� 2

»
u(t)u0xyy2r2 dxdy.

Clearly, weak continuity implies that the right-hand side of (4.205) goes to zero as t Ñ 0+. This
shows right continuity at the origin of the map u : [0, T] ÞÑ L2(|x|2r1 + |y|2r2 dxdy). Taking any
τ P (0, T) and using that the equation in (0.4) is invariant under the transformations: (x, y, t) ÞÑ
(x, y, t + τ) and (x, y, t) ÞÑ (�x,�y, τ � t), right continuity at the origin yields continuity to the
whole interval [0, T], in other words, u P C([0, T]; L2(|x|2r1 + |y|2r2 dxdy)).

The continuous dependence on the initial data follows from this property in Hs(R2) and the
same reasoning above. This completes the proof of Theorem 4.5 (i).

4.5.2.2. Persistence property and LWP in Żs,r1,r2 , r1 P [1/2, 3/2) r2 ¥ 0. Here it is estab-
lished Theorem 4.5 parts (ii) and (iii). Let u P C([0, T]; Hs(R2)) X L1([0, T]; W1,8(R2)) solution
of the IVP (0.4) with initial data u0 satisfying the hypothesis of Theorem 4.5 (ii) or (iii) pro-
vided by Theorem 4.1. Since we have already established that solutions of the IVP (0.4) pre-
serve arbitrary polynomial decay in the y-variable, we will restrict our considerations to deduce
u,Hxu P L8([0, T]; L2(|x|2r1 dxdy)), r1 ¥ 1/2. Once this has been done, following the arguments
in (4.205), we will have that u,Hxu P C([0, T]; L2(|x|2r1 dxdy)). Moreover, the continuous depen-
dence on the spaces ZHs,1/2,r2(R

2) and Żs,r1,r2(R
2), r1 ¡ 1/2 follows by applying the same energy

estimates for the difference of solutions.

To assure the persistence property in Żs,r1,r2(R
2) for Theorem 4.5 (iii), we require the following

claim:

Claim 4.48. Let r1 P (1/2, 3/2), s ¡ 3/2 fixed and

u P C([0, T], Hs(R2))X L1([0, T]; W1,8
x (R2))X L8([0, T]; L2(|x|2r1 dxdy))

be a solution of the IVP (0.4). Assume that pu(0, η) = pu0(0, η) = 0 for a.e η. Then, pu(0, η, t) = 0 for every
t P [0, T] and almost every η P R.
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PROOF. Since u solves the integral equation associated to (0.4), taking its Fourier transform
we find

(4.206) pu(ξ, η, t) = eiω(ξ,η)t pu0(ξ, η)�
iξ
2

» t

0
eiω(ξ,η)(t�t1) pu2(ξ, η, t1) dt1,

where ω(ξ, η) is defined by (4.11). Now, the assumptions imposed on the solution show

u2 P L1([0, T]; L2(|x|2r1 dxdy)).

Hence, the above conclusion, Fubini’s theorem and Sobolev’s embedding on the ξ-variable deter-
mines pu(ξ, η, t) and

³t
0 eiω(ξ,η)(t�t1) pu2(ξ, η, t1) dt1 are continuous on ξ for every t P [0, T] and almost

every η. From this, (4.206) yields the desired result. �

We begin by considering the case 1/2 ¤ r1 ¤ 1. We employ the differential equation (4.196)
with the present restrictions on r1. This reduces our considerations to bound the terms Q1 and Q2

defined in (4.196) for this case. Thus, integrating by parts yields

|Q1| =
���� »

BxHxuuBxw2r1
n,x dxdy +

»
BxuHxu Bxw2r1

n,x dxdy
���

. }Bxu}L2
xy
}uwr1

n,x}L2
xy
+ }Bxu}L2

xy
}Hxuwr1

n,x}L2
xy

,

where, given that 1/2 ¤ r1 ¤ 1, we have used |Bxw2r1
n,x| . |w

r1
n,x|. On the other hand,

Q2 = �

»
u2Bxuw2r1

n,x �
1
2

»
Hx(Bxu2)Hxuw2r1

n,x dxdy

= �

»
u2Bxuw2r1

n,x �
1
2

»
[wr1

n,x,Hx]Bxu2Hxuwr1
n,x dxdy�

1
2

»
Hx(Bxu2wr1

n,x)Hxuwr1
n,x dxdy.

Hence, Proposition 1.5 and Hölder’s inequality allow us to deduce

|Q2| .}Bxu}L8xy
}uwr1

n,x}
2
L2

xy
+ }Bxwr1

n,x}L8xy
}u}L8xy

}u}L2
xy
}Hxuwr1

n,x}L2
xy

+ }Bxu}L8xy
}uwr1

n,x}L2
xy
}Hxuwr1

n,x}L2
xy

.

Combining the estimates for Q1 and Q2, we will obtain the same differential inequality (4.197)
adapted for this case. Consequently, this estimate, Gronwall’s inequality and the assumption
Hu0 P L2(|x| dxdy) imply u,Hxu P L8([0, T]; L2(|x| dxdy)). The proof of Theorem 4.5 (ii) is com-
pleted.

On the other hand, under the hypothesis of Theorem 4.5 (iii), the fact that pu0(0, η) = 0 a.e η

and Lemma 4.47 assure that Hxu0 P L2(|x|2r1 dxdy) for 1/2   r1 ¤ 1. Then Gronwall’s inequal-
ity and the differential inequality (4.197) for this case yield u P L8([0, T]; L2(|x|2r1 dxdy)), when-
ever 1/2   r1 ¤ 1. This consequence and Claim 4.48 complete the LWP results in Żs,r1,r2(R

2),
1/2   r1 ¤ 1.

Now, we assume that 1   r1   3/2. We write r1 = 1 + θ with 0   θ   1/2. By the previous
step, the fact that pu(0, η, t) = 0 for all t P [0, T] and almost every η P R and identity (4.188), we
have that u,Hxu P C([0, T]; L2(|x|2 dxdy)). Thus, we multiply the equation in (0.4) by ux2w2θ

n,x and



4.5. WELL-POSEDNESS RESULTS IN WEIGHTED SPACES 127

(4.193) by Hxux2w2θ
n,x, then integrating in space and adding the resulting expressions reveal

(4.207)

1
2

d
dt
(
}u(t)xwθ

n,x}
2
L2

xy
+ }Hxu(t) xwθ

n,x}
2
L2

xy

)
=

»
(HxB

2
xuu� B2

xuHxu)x2w2r1
n,x dxdy

�

»
(uBxuu +Hx(uBxu)Hxu)x2w2r1

n,x dxdy

= : rQ1 + rQ2.

Integrating by parts on the x-variable,

rQ1 =� 2
( »

HxBxuu xw2θ
n,x dxdy�

»
BxuHxu xw2θ

n,x dxdy
)

�
( »

HxBxuux2Bxw2θ
n,x dxdy�

»
BxuHxux2Bxw2θ

n,x dxdy
)
=: rQ1,1 + rQ1,2.

The Cauchy-Schwarz inequality and Proposition 4.44 determine

(4.208)
| rQ1,1| . }HxBxuwθ

n,x}L2
xy
}u xwθ

n,x}L2
xy
+ }Bxuwθ

n,x}L2
xy
}Hxu xwθ

n,x}L2
xy

. (}Jx(uwθ
n,x)}L2

xy
+ }u}L2

xy
)(}u xwθ

n,x}L2
xy
+ }Hxu xwθ

n,x}L2
xy
).

By complex interpolation (1.28) with r = 1/(1 + θ), we argue as in (4.202), using that |w1+θ
n,x | .

wθ
n,x + |x|wθ

n,x to deduce }Jx(uwθ
n,x)}L2

xy
. }uwθ

n,x}L2
xy
+ }uxwθ

n,x}L2
xy
+ }J1+θu}L2

xy
. This last estimate,

the fact that u P C([0, T]; L2(|x|2r dxdy)), 0 ¤ r ¤ 1 and (4.208) complete the study of rQ1,1.

On the other hand, since |x2Bxw2θ
n,x| . w1+2θ

n,x with implicit constant independent of n, the estimate
for rQ1,2 follows the same ideas employed to estimate rQ1,1.

Finally, identity (4.188) and Proposition 4.44 show

| rQ2| . }Bxu}L8xy
}u xwθ

n,x}
2
L2

xy
+ }Bxu}L8xy

}u xwθ
n,x}L2

xy
}Hxu xwθ

n,x}L2
xy

.

Noticing that (4.188) implies Hxu0 xwm,x = Hx(xu0)wθ
n,x P L2(R2). Thus, we can employ recur-

rent arguments combining the previous estimates for rQ1, rQ2, (4.207) and Gronwall’s inequality to
conclude u P L8(|x|2r1 dxdy), whenever 1   r1   3/2. The proof of Theorem 4.5 (iii) is completed.

4.5.3. Two times condition in Zs,r1,r2 . Here we establish Theorem 4.6. Without loss of gener-
ality we shall assume that t1 = 0, i.e., u0 P Zs,(1/2)+,r2

(R2) and u(t2) P Zs,1/2,r2(R
2). So that u P

C([0, T]; Zs,r1,r2(R
2))X L1([0, T]; W8

1,x(R
2)), where r1 P (1/4, 1/2), r2 ¥ r1 and s ¥ maxt 2r1

(4r1�1)� , r2u.
The solution of the IVP (0.4) can be represented by Duhamel’s formula

(4.209) u(t) = S(t)u0 �

» t

0
S(t� t1)uBxu(t1) dt1.

Since our arguments require localizing near the origin, we consider a function φ P C8c (R) such
that φ(ξ) = 1 when |ξ| ¤ 1. Then taking the Fourier transform to the integral equation (4.209), we
have

(4.210) pu(ξ, η, t)φ(ξ) = eiω(ξ,η)t pu0(ξ, η)φ(ξ)�

» t

0
eiω(ξ,η)(t�t1)yuux(ξ, η, t1)φ(ξ) dt1,

where, recalling (4.11), ω(ξ, η) = sign(ξ) + sign(ξ)ξ2 	 sign(ξ)η2.
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Claim 4.49. Let 0   ε ! 1 Then it holds

(4.211) J1/2+ε
ξ

( » t

0
eiω(ξ,η)(t�t1)yuux(ξ, η, t1)φ(ξ) dt1

)
P L8([0, T]; L2(R2)).

Let us assume for the moment that Claim 4.49 holds, then

(4.212) J1/2
ξ

(pu(ξ, η, t)φ(ξ)
)
P L2(R2) if and only if J1/2

ξ

(
eiω(ξ,η)t pu0(ξ, η)φ(ξ)

)
P L2(R2).

We first notice that since u0 P L2(|x|1
+

dxdy), Fubini’s theorem and Sobolev embedding on the
ξ-variable determines that pu0(ξ, η) is continuous in ξ for almost every η P R. Therefore, given that
(4.212) holds at t = t2, Fubini’s theorem shows that J1/2

ξ

(
eiω(ξ,η)t2 pu0(ξ, η)φ(ξ)

)
P L2(R) for almost

every η P R, then an application of Proposition 4.45 imposes that pu0(0, η, t) = 0 for almost every
η. From this fact, the integral equation (4.210) and Claim 4.49, we deduce that pu(0, η, t) = 0 for all
t ¥ 0 and almost every η.

PROOF OF CLAIM 4.49. In virtue of Theorem 1.13,

(4.213)
}J1/2+ε

ξ

( » t

0
eiω(ξ,η)(t�t1)yuux(ξ, η, t1)φ(ξ) dt1

)
}L2

ξη

.
» T

0
}φ}L8ξ }yuux(t1)}L2

ξη
dt1 +

» T

0
}D1/2+ε

ξ

(
eiω(ξ,η)(t�t1)yuux(t1)φ(ξ)

)
}L2

ξη
dt1.

To estimate the r.h.s of the last inequality, we decompose ω(ξ, η) = ω1(ξ, η) + ω2(ξ, η) where
ω1(ξ, η) := sign(ξ)	 sign(ξ)η2. Then, writing yuux(ξ) = iξ pu2(ξ) and using (1.26) and Proposition
4.46,

(4.214)

}D1/2+ε
ξ

(
eiω(ξ,η)(t�t1)yuux(ξ, η, t)φ(ξ)

)
}L2

ξη

. }D1/2+ε
ξ (eiω1(ξ,η)(t�t1))yuuxφ(ξ)}L2

ξη
+ }D1/2+ε

ξ (eiω2(ξ,η)(t�t1))yuuxφ(ξ)}L2
ξη

+ }D1/2+ε
ξ (yuuxφ(ξ))}L2

ξη

.T
(
}|ξ|�1/2�εyuux}L2

ξη
+ }yuux}L2

ξη
+ }|ξ|1/2+εyuux}L2

ξη

)
}φ}L8ξ + }D1/2+ε

ξ (ξφ) pu2}L2
ξη

+ }ξφD1/2+ε
ξ ( pu2)}L2

ξη

.T }J1/2�ε
x (u2)}L2

xy
+ }uux}L2

xy
+ }J1/2+ε

x (uux)}L2
xy
+ }xxy1/2+εu2}L2

xy

.T (}u}L8xy
+ }Bxu}L8xy

)}J3/2+ε
x u}L2

xy
+ }xxy1/4+ε/2u}2

L4
xy

,

where the last line is obtained by (1.11). We employ complex interpolation (1.28) to deduce

(4.215)
}xxy1/4+ε/2u}L4

xy
. }x(x, y)y1/4+ε/2u}L4

xy
. }J1/2(x(x, y)y1/4+ε/2u

)
}L2

xy

. }x(x, y)yr1 u}(1+2ε)/4r1
L2

xy
}Jsu}(4r1�1�2ε)/4r1

L2
xy

,

where s ¥ maxt 2r1
(4r1�1)� , r2u. Hence, (4.213), (4.214) and (4.215) yield

}J1/2+ε
ξ

( » t

0
eiω(ξ,η)(t�t1)yuux(ξ, η, t1) φ(ξ)dt1

)
}L2

ξη

.T (1 + }u}L1
T L8xy

+ }Bxu}L1
T L8xy

)(1 + }u}L8T Hs + }x(x, y)yr1 u}L8xy L2
xy
)2.

This completes the proof of Claim 4.49. �
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4.5.4. Three times condition in Żs,r1,r2 . This part concerns the deduction of Theorem 4.7. Here
we assume that u P C([0, T]; Zs,r1,r2(R

2)), s ¡ maxt3, r2u, r2 ¥ r1 = 3/2� ε, where 0   ε   3/20.
Without loss of generality, we let t1 = 0   t2, that is, u0 P Zs,(3/2)+,r2

(R2) and u(�, t2) P Zs,3/2,r2(R
2).

Taking the Fourier transform in (4.209) and differentiating on the ξ variable yield

(4.216)

B

Bξ
pu(ξ, η, t) =2it|ξ|eiω(ξ,η)t pu0(ξ, η) + eiω(ξ,η)tBξ pu0(ξ, η)

� 2i
» t

0
eiω(ξ,η)(t�t1)(t� t1)|ξ|yuux(ξ, η, t1) dt1 �

i
2

» t

0
eiω(ξ,η)(t�t1) pu2(ξ, η, t1) dt1

�
i
2

» t

0
eiω(ξ,η)(t�t1)ξ Bξ

pu2(ξ, η, t1) dt1,

where ω(ξ, η) = sign(ξ) + sign(ξ)ξ2 	 sign(ξ)η2 and we have used that pu0(0, η) = yuux(0, η) = 0
together with the identity

Bξeiω(ξ,η)t = 2i sin((1	 η2)t)δξ
0 + 2it|ξ|eiω(ξ,η)t,

setting (δξ
0φ)(ξ, η) = φ(0, η).

Claim 4.50. It holds that

J1/2
ξ

(
t|ξ|eiω(ξ,η)t pu0(ξ, η)�

» t

0
eiω(ξ,η)(t�t1)(t� t1)|ξ|yuux(ξ, η, t1) dt1

�
1
4

» t

0
eiω(ξ,η)(t�t1)ξ Bξ

pu2(ξ, η, t1) dt1
)
P L8([0, T]; L2(R2)).

PROOF. We first deal with the term provided by the homogeneous part of the integral equa-
tion. We use Theorem 1.13, (1.26) and Proposition 4.46 to find

(4.217)
}J1/2

ξ (|ξ|eiω(ξ,η)t pu0)}L2
ξη
. }|ξ| pu0}L2

ξη
+ }D1/2

ξ (|ξ|eiω(ξ,η)t pu0)}L2
ξη

. }|ξ| pu0}L2
ξη
+ }|ξ|1/2 pu0}L2

ξη
+ }D1/2

ξ (|ξ| pu0)}L2
ξη

.

To estimate the last term on the r.h.s of the above expression, we use (1.26), (1.27), Plancherel’s
identity and Young’s inequality to find

(4.218)

}D1/2
ξ (|ξ| pu0)}L2

ξη
= }D1/2

ξ (
|ξ|

xξy
xξy pu0)}L2

ξη
. }}J1/2

ξ (xξy pu0)}L2
ξ
}L2

η

. }}xξy3/2 pu0}
2/3
L2

ξ

}J3/2
ξ

pu0}
1/3
L2

ξ

}L2
η

. }J3/2
x u0}L2

xy
+ }xxy3/2u0}L2

xy
,

where we have also used (1.28) with r = 1/3, a = b = 3/2. Collecting (4.217) and (4.218), we
complete the analysis of }J1/2

ξ (|ξ|eiω(ξ,η)t pu0)}L2
ξη

. Next, we shall prove that

(4.219) uux P L8([0, T]; H3/2
x (R2))X L8([0, T]; L2(|x|3dxdy)).

where Hs
x(R

2) is defined by the norm } f }Hs
x
= }Js

x f }L2 . Once this has been established, according
to the reasoning in (4.217) and (4.218) it will follow

J1/2
ξ

( » t

0
eiω(ξ,η)(t�t1)(t� t1)|ξ|yuux(ξ, η, t1) dt1

)
P L8([0, T]; L2(R2)).
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Indeed, (1.11) and Sobolev’s embedding show }uux}H3/2
x
. }u}2

Hs , whenever s ¥ 5/2. Now, com-
plex interpolation (1.28), Young’s inequality and Sobolev’s embedding determine

(4.220)

}xxy3/2uux}L2
xy
. }xxy1/2u2}L2

xy
+ }Jx(xxy3/2u2)}L2

xy

. }u}L8xy
}xxy1/2u}L2

xy
+ }}xxy9/4u2}2/3

L2
x
}J3

x(u
2)}1/3

L2
x
}L2

y

. }J3u}L2}xxy1/2u}L2
xy
+ }xxy9/4u2}L2

xy
+ }J3

x(u
2)}L2

xy
.

Since H3(R2) is a Banach algebra, }J3
x(u2)}L2

xy
. }J3(u2)}L2

xy
. }u}2

H3 , so it remains to derive a
bound for the second term on the right hand side of equation (4.220). Let 0   ε   3/20, applying
Sobolev’s embedding and complex interpolation we find

(4.221)
}xxy9/4u2}L2

xy
. }x(x, y)y9/8u}2

L4
xy
. }J1/2(x(x, y)y9/8u)}2

L2
xy

. }x(x, y)y3/2�εu}
18

12�8ε

L2
xy

}J
6�4ε
3�8ε u}

6�16ε
12�8ε

L2
xy

.

Notice that since 0   ε   3/20, }J
6�4ε
3�8ε u}L2

xy
¤ }J3u}L2

xy
. Plugging (4.221) in (4.220), we complete the

deduction of (4.219). To prove the remaining estimate, i.e.,

J1/2
ξ

( » t

0
eiω(ξ,η)(t�t1)ξ Bξ

pu2(ξ, η, t1) dt1
)
P L8([0, T]; L2(R2)),

we write B
Bξ

pu2 = {�ixu2, then according to (4.217) and (4.218), it is enough to show

(4.222) xu2 P L8([0, T]; H3/2
x (R2))X L8([0, T]; L2(|x|3dxdy)).

To this aim, after some computations applying Theorem 1.13 and property (1.26), we employ
complex interpolation and Young’s inequality to show

}J1/2
x (xu2)}L2

xy
. }xu2}L2

xy
+ }J1/2

x (u2)}L2
xy
+ }J3/2

x (xxyu2)}L2
xy

. }u}L8xy
}xxyu}L2

xy
+ }u}L8xy

}J1/2
x u}L2

xy
+ }}xxy9/4u2}4/9

L2
x
}J27/10

x (u2)}5/9
L2

x
}L2

y

. }J3u}L2
xy
}xxyu}L2

xy
+ }J3u}2

L2
xy
+ }xxy9/4u2}L2

xy
.

Recalling (4.221), we conclude that xu2 P L8([0, T]; H3/2
x (R2)). Finally, since u P C([0, T]; Hs(R2)),

s ¡ maxt3, r2u, there exists some 0   δ   1 such that 3 + δ   s, then we have

(4.223)
}xxy3/2xu2}L2

xy
. }xxy5/4u}2

L4
xy
. }J1/2(x(x, y)y5/4u)}2

L2
xy

. }x(x, y)y3/2�εu}
10

6�4ε

L2
xy
}J

3�2ε
1�4ε u}

2�8ε
6�4ε

L2
xy

.

Now, taking 0   ε ! 1 such that 3�2ε
1�4ε ¤ 3+ δ   s, (4.223) shows that xu2 P L8([0, T]; L2(|x|3dxdy)).

This in turn verifies (4.222). �

Consequently, from (4.216) and Claim 4.50, it follows:

(4.224)
J1/2
ξ Bξ pu(ξ, η, t) PL2(R2) if and only if

J1/2
ξ

(
eiω(ξ,η)tBξ pu0(ξ, η)�

i
2

» t

0
eiω(ξ,η)(t�t1) pu2(ξ, η, t1) dt1

)
P L2(R2).

Now, since (4.223) establishes that pu2 P H1+(R2), Sobolev’s embedding determines that pu2 can be
regarded as a continuous function on the ξ and η variables. Additionally, since Bξ pu0 P H(1/2)+

ξ (R2),
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Fubinni’s theorem and Sobolev’s embedding shows that Bξ pu0(ξ, η) is continuous in ξ for almost
every η P R. Thus, given that (4.224) holds at t = t2, we gather the preceding discussions and
Proposition 4.45 to get

ei(1	η2)t2Bξ pu0(0, η)�
i
2

» t2

0
ei(1	η2)(t2�t1) pu2(0, η, t1) dt1

= e�i(1	η2)t2Bξ pu0(0, η)�
i
2

» t2

0
e�i(1	η2)(t2�t1) pu2(0, η, t1) dt1

so that

(4.225) 2i sin((1	 η2)t2)Bξ pu0(0, η) = �

» t2

0
sin((1	 η2)(t2 � t1)) pu2(0, η, t1) dt1,

for almost every η P R. This completes the deduction of identity (4.7). Now, recalling that the
quantity M(u) = }u(t)}L2 is invariant for solution of the equation in (0.4), and that η ÞÑ pu2(0, η, t)
determines a continuous map, we take η Ñ 0 in (4.225) to find

(4.226)
J1/2
ξ Bξ pu(ξ, η, t2) P L2(R2) and η ÞÑ Bξ pu0(0, η) continuous at the origin imply

2i sin(t2)Bξ pu0(0, 0) = (cos(t2)� 1)}u0}
2
L2

xy
.

Therefore, in the case that u0 P Zs,2+,2+(R
2), (4.226) yield identity (4.8).

4.6. Lack of C2-regularity flow-map data solution

Here we prove that the flow-map data solution determined by the IVP (0.4) is not of class C2

at the origin of the spaces Hs1,s2(R2) and Xs(R2). We will consider the former case since the same
considerations also work for Xs(R2) instead. Following the reasoning in [66], [23] and [39], it is
enough to establish that����» t

0
S(t� t1)Bx

(
(S(t1)φ1)(S(t1)φ2)

)
dt1

����
Hs1,s2

. }φ1}Hs1,s2 }φ2}Hs1,s2

does not hold for arbitrary φ1, φ2 P Hs1,s2(R2), s1, s2 P R and 0   t   T. Indeed, we will construct
two sequences of functions, φ1,N and φ2,N , such that

(4.227) }φ1,N}Hs1,s2 , }φ2,N}Hs1,s2 ¤ C

and

(4.228) lim
NÑ8

��S(t� t1)Bx
(
S(t1)φ1,N)(S(t1)φ2,N)

)
dt1

��
Hs1,s2 = 8.

We define φ1,N and φ2,N via their Fourier transforms as#yφ1,N(ξ) = γ�3/4N�s1 χA1(ξ), with A1 = [N, N + γ]� [γ1/2/2, γ1/2],yφ2,N(ξ) = γ�3/4χA2(ξ), with A2 = [�4γ,�3γ]� [γ1/2/2, γ1/2]
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where N " 1, γ = N�(1+ε) and 0   ε   1/3. Notice that φ1,N and φ2,N satisfy (4.227). To estimate
the integral term, we take the Fourier transform with respect to the space variable to find

(4.229)

xIN(ξ, η, t) :=
"» t

0
S(t� t1)Bx

(
S(t1)φ1,N)(S(t1)φ2,N)

)
dt1

*^
(ξ, η)

= �

»
K(ξ,η)

ξeitω(ξ,η) e�iΩ(ξ1,η1,ξ2,η2)t � 1
Ω(ξ1, η1, ξ2, η2)

yφ1,N(ξ � ξ1, η � η1)yφ2,N(ξ1, η1) dξ1dη1

where we employed the notation introduced in (4.11) and (4.12) with (ξ, η) = (ξ1 + ξ2, η1 + η2)

and
K(ξ,η) :=

 
η P R2 : (ξ � ξ1, η � η1) P A1, (ξ1, η1) P A2

(
.

When (ξ � ξ1, η � η1) P A1, (ξ1, η1) P A2, we have that pIN(ξ, η) is supported in

A3 = [N � 4γ, N � 2γ]� [γ1/2, 2γ1/2].

Then one has

(4.230) Ω(ξ1, η1, ξ2, η2) = 1 + 2ξξ1 	 2ηη1.

and so, since ξξ1   0, |ξξ1| � γN and |ηη1| � γ,

(4.231) Ω(ξ1, η1, ξ1, η2) � (1� γN) � 1.

From this we get

(4.232)
<
(

1� eiΩ(ξ1,η1,ξ2,η2)t

Ω(ξ1, η1, ξ2, η2)

)
=

1� cos(Ω(ξ1, η1, ξ2, η2)t)
Ω(ξ1, η1, ξ2, η2)

&
» t/2

0
sin(w) dw

= |1� cos(t/2)|,

where 0   t   1 and N is large such that 1/2 ¤ Ω(ξ1, η1, ξ2, η2). From (4.232) and |K(ξ,η)| � γ3/2,
we infer

|xIN(ξ, η, t)|χA3(ξ) &
Nγ3/2

Ns1 γ3/2 |1� cos(t/2)|χA3(ξ),

which yields
}IN(t)}Hs1,s2 & Nγ3/4|1� cos(t/2)| = N1/4�3ε/4|1� cos(t/2)|,

for 0   t   1, above we used that (1 + |η|2)s2 � 1 with involved constants independent of s2 P R.
Given that 0   ε   1/3, the above display shows that (4.228) holds. The proof is now completed.

4.7. Results on the Shrira equation

This section is aimed to briefly indicate the modifications needed to prove Theorem 4.9. We
first recall that (0.6) is LWP in the space Hs(R2), s ¡ 3/2 by the results established in [11]. To
prove well-posedness in the space rXs(R2) determined by the norm

} f }rXs = }Js
x f }L2

xy
+ }D�1/2

x By f }L2
xy

,

the key ingredient is the refined Strichartz estimate deduced in [11]:

Lemma 4.51. The results of Lemma 4.13 hold for solutions of the IVP (0.6).
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Once the above lemma has been established, the proof of LWP in rXs(R2) follows the same
line of arguments leading to the conclusion of Theorem 4.1. Actually, this case does not require
to estimate the norm }D�1/2

x u}L2
xy

, which slightly simplifies our arguments. We emphasize that

Lemma 4.17 assure existence of solutions of the IVP (0.6) in the space rX8(R2) =
�

s¥0
rXs(R2).

Consequently, it follows that (0.6) is LWP in rXs(R2), s ¡ 3/2.
On the other hand, setting

rω(ξ, η) = sign(ξ)ξ2 + sign(ξ)η2,

the resonant function determined by the equation in (0.6) is given byrΩ(ξ1, η1, ξ2, η2) = rω(ξ1 + ξ2, η1 + η2)� rω(ξ1, η2)� rω(ξ2, η2).

Then, it is not difficult to see:

PROPOSITION 4.52. The results in Proposition 4.30 are valid replacing the set DN,L byrDN,L =
 
(m, n, τ) P Z2 �R : |(m, n)| P IN and |τ � rω(m, n)| ¤ L

(
,

whenever N, L P D.

This in turn allow us to follow the same reasoning leading to the deduction of Theorem 4.3 to
conclude that the IVP (0.6) is LWP in Hs(T2), s ¡ 3/2.

Concerning well-posedness in weighted spaces, here we replace equation (4.193) by

BtHxu + B2
xu + B2

yu +Hx(uBxu) = 0.

Then, by employing the identity above, we can adapt the arguments in the proof of Theorem 4.5 to
obtain the same well-posedness conclusion in anisotropic spaces for the equation in (0.6). Besides,
the arguments in Proposition 4.46 show

Db(ei sign(x)η2t) . |x|�b, x P Rzt0u,

whenever b P (0, 1) fixed and for all η P R. Thus, the previous estimate allows us to deduce
Theorems 4.6 and 4.7 in a similar fashion. However, instead of (4.7) we get

2i sin(η2(t2 � t1))Bξ pu(0, η, t1) = �

» t2

t1

sin(η2(t2 � t1)) pu2(0, η, t1) dt1,

for almost η P R. This encloses the discussion leading Theorem 4.9.

4.8. Appendix: Fractional commutator estimate for the Hilbert transform

In this part we deduce the estimate (4.4).

PROOF OF PROPOSITION 4.2. When β = 1, by writing Dx = HxBx and using that Hx deter-
mines a bounded operator in Lp, we have that (4.4) follows from Proposition 1.5.

We will assume that 0   α, β   1 with α + β = 1. We write

(4.233)
Dα

x [Hx, g]Dβ
x f (x)

= �i
»
|ξ1 + ξ2|

α|ξ2|
β
(

sign(ξ1 + ξ2)� sign(ξ2)
)pg(ξ1) pf (ξ2)eix�(ξ1+ξ2) dξ1dξ2,
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then neglecting the null measure sets where ξ1 + ξ2 = 0 or ξ2 = 0, we observe that the integral in
(4.233) is not null only when (ξ1 + ξ2)ξ2   0, in order words, when |ξ2|   |ξ1|. Thus, by Bony’s
paraproduct decomposition we find

(4.234)

Dα
x [Hx, g]Dβ

x f =Hx
( ¸

N¡0

Dα(Px
N gPx

!N Dβ
x f )
)
�

¸
N¡0

Dα(Px
N gPx

!NHxDβ
x f )

+Hx
( ¸

N¡0

Dα(Px
N grPx

N Dβ
x f )
)
�

¸
N¡0

Dα(Px
N grPx

NHxDβ
x f )

=:A1 +A2 +A3 +A4,

where Px
!N f =

°
M!N Px

M f and rPx
N f =

°
M�N Px

M f . We proceed to estimate each of the factors Aj,
j = 1, . . . , 4. Since α + β = 1, β ¡ 0, and the Hilbert transform determines a bounded operator in
Lp, by the Littlewood-Paley inequality and support considerations we have

(4.235)

}A1}Lp .
���(Px

M(
¸

N¡0

Dα(Px
N gPx

!N Dβ
x f ))

)
l2
M

���
Lp
.

���( ¸
N�M

DαPx
M(Px

N gPx
!N Dβ

x f
)

l2
M

���
Lp

.
¸
L�1

���(Px
LN(Px

NBxgN�βPx
!N Dβ

x f
)

l2
N

���
Lp

,

for some adapted projections Px
N supported in frequency on the set |ξ| � N, and with L � 1

dyadic. Now, by employing Lemma 1.8, we deduce

(4.236) |Px
LN(Px

NBxgN�βPx
!N Dβ

x f )(x)| .M(Px
NBxgN�βPx

!N Dβ
x f )(x).

Inserting the above expression on the r.h.s of (4.235), applying Lemmas 1.7 and 1.8, we get

(4.237)
}A1}Lp . }(Px

NBxgN�βPx
!N Dβ

x f )l2
N
}Lp . }M(Bxg)(N�βPx

!N Dβ
x f )l2

N
}Lp

. }Bxg}L8}(N�βPx
!N Dβ

x f )l2
N
}Lp .

To estimate the preceding inequality, we write Px
N = Px

N Px
N , then employing Lemma 1.8, it follows

|N�βPx
!N Dβ

x f (x)| ¤ N�β
¸

M!N

���MβPx
M f (x)

��� . ¸
1!L

L�βM(Px
N/L f )(x),

so that

(4.238) (N�βPx
!N Dβ

x f )l2
N
. (M(Px

N f ))l2
N

.

Hence, plugging (4.238) in (4.237), by Fefferman-Stein inequality and Littlewood-Paley inequality,
we conclude

(4.239) }A1}Lp . }Bxg}L8} f }Lp .

Now, replacing f by Hx f in the arguments above, we derive the same estimate in (4.239) for the
term A2.

A similar reasoning yields the desired estimate for A3. Indeed, since α + β = 1, α ¡ 0, by
Littlewood-Paley inequality

(4.240) }A3}Lp .
���( ¸

N&M

MαN�αPx
M(Px

NBxgrPx

N
rPx

N f )
)

l2
M

���
Lp

.
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Then Lemma 1.8 shows

(4.241)

( ¸
N&M

MαN�αPx
M(Px

NBxgrPx

N
rPx

N f )
)

l2
M
.
(¸

L&1

L�αM(Px
LMBxgrPx

LM
rPx

LM f )
)

l2
M

.
(
M(Px

NBxgrPx

N
rPx

N f )
)

l2
N

.

Thus, the preceding estimates and Lemma 1.7 reveal

(4.242) }A3}Lp . }M(Bxg)(M(Px
N f )l2

N
)}Lp . }Bxg}L8} f }Lp .

The estimate for A4 follows from the same arguments employed to analyse A3. The proof of
Proposition 4.2 is completed. �
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