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Abstract

This thesis is intended to study the initial value problem associated to some higher dimen-
sional versions of the Benjamin-Ono equation. Firstly, we consider a mathematical extension to
R of a two-dimensional model implemented to describe internal waves in stratified fluids. For
the initial value problem associated to this equation, we will determine some well-posedness and
ill-posedness results in classical Sobolev spaces H*(IRY), and we will discuss some properties of
the generalized equation derived by varying the nonlinear term. We also study some unique
continuation properties of solutions to a large class of nonlinear dispersive equations. Addition-
ally, by establishing sharp well-posedness and unique continuation principles in weighted spaces,
we will characterize the spatial behavior of solutions of this model. A key ingredient in our ar-
guments is the deduction of a new commutator estimate for the Riesz transform that could be
applied for different problems. We continue our analysis studying the initial value problem asso-
ciated to a model arising in the study of capillary-gravity wave flows. Initially, we will prove local
well-posedness in H*(IR?) and in some spaces adapted to time-invariant energy of the equation.
The essential part to achieve these well-posedness conclusions is the deduction of a commutator
estimate concerning the Hilbert transform operator and fractional derivatives. Next, by employ-
ing the short-time Fourier restriction norm method, we shall establish local well-posedness in
bi-periodic Sobolev spaces H*(T?). We follow by deducing local well-posedness in anisotropic
weighted spaces and some unique continuation principles that characterize the polynomial type
decay on the first variable of this model. Finally, by applying the preceding techniques, we will
derive new well-posedness results for the Shrira equation that appears in the context of waves in
shear flows.



Resumo

Essa tese pretende estudar o problema de valor inicial associado a algumas versdes de maior
dimensao da equacdo de Benjamin-Ono. Primeiramente, consideramos uma extensdo matematica
para RY de um modelo bidimensional implementado para descrever ondas internas em fluidos
estratificados. Para o problema de valor inicial associado a essa equagdo, determinaremos alguns
resultados de boa e mé colocacdo em espacos classicos de Sobolev H*(R?) e discutiremos algu-
mas propriedades dos modelos gerados pela variagdo do termo nao linear da equacdo descrita
acima. Também estudamos alguns principios de continuag¢do tinica de solugdes para uma classe
de equagdes dispersivas nao lineares. Além disso, ao estabelecer principios de boa colocagédo lo-
cal e de continuacdo tnica em espagos com peso, caracterizaremos o comportamento espacial
das solugdes desse modelo. Um ingrediente chave em nossos argumentos é a dedugdo de uma
nova estimativa de comutador para a transformada de Riesz, que produz uma ferramenta que
pode ser utilizada em outros problemas. Continuaremos nossa analise estudando o problema
de valor inicial determinado por um modelo que surge no estudo dos fluxos de ondas de gravi-
dade capilar. Primeiro, provaremos a boa colocagéo local em H*(R?) e em alguns espagos adap-
tados a energia invariante no tempo da equagdo. A parte essencial para se chegar a essas con-
clusdes é a deducgdo de uma estimativa do comutador do operador da transformada de Hilbert e
derivadas fracionarias. Em seguida, empregando o método “short-time Fourier restriction norm”,
estabeleceremos boa colocagao local nos espacos bi-periodicos de Sobolev H*(T?). Seguidamente
deduziremos a boa colocagdo local em espagos com pesos anisotrépicos e alguns principios de
continuagdo tnica que caracterizam o decaimento do tipo polinomial na primeira varidvel deste
modelo. Finalmente, aplicando os métodos precedentes poderemos obter novos resultados de boa
colocagdo para a equagdo de Shrira que aparece no contexto de ondas em fluxos de cisalhamento.



Introduction

This work is aimed to establish several well-posedness conclusions for different models that
can be regarded, at least from a mathematical point of view, as a generalization to a several vari-
ables setting of the well-known Benjamin-Ono equation (see[1, 29, 43, 63, 64, 74, 85] and the refer-
ences therein):

(0.1) O — H0%u + udu =0,

where H, denotes the Hilbert transform defined by

Hog(x) = Tpa [ LEL e = 1 (—isign(@(0)) (),

for ¢ € S(R) and p.v. denotes the Cauchy principal value.
We begin our analysis studying the initial value problem (IVP) for a higher dimensional ver-
sion of the Benjamin-Ono equation (HBO):

(0.2)

O —RiAu+udu=0, xeRY teR,
u(x,0) = up,

where d > 2, A stands for the Laplace operator in the spatial variables x € RY and R denotes the
Riesz transform with respect to the first coordinate defined by

Riplx) = capao. [ LZEE) g = o1 (21 ),
|x — 2| 9
¢ € S(R?) and ¢y = 1/(7tV,;_1), where V,_; is the volume of the unit (d — 1)-ball.

When d = 1, the Riesz transform coincides with the Hilbert transform, and so we recover
the Benjamin-Ono equation (0.1). When d = 2, equation (0.2) preserves its physical relevance,
it describes the dynamics of three-dimensional slightly nonlinear disturbances in boundary-layer
shear flows, without the assumption that the scale of the disturbance being smaller along than
across the flow, see for instance [2, 71, 87]. We emphasize that the existence and decay rate of
solitary-wave solutions in this case were studied in [62].

Some recent works have been devoted to establish that the IVP associated to (0.2) is locally
well-posed (LWP) in the space H*(R?), s € R and d > 2. Here we adopt Kato’s notion of well-
posedness, which consists of existence, uniqueness, persistence property (i.e., if the data ug € X
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a function space, then the corresponding solution u(-) describes a continuous curve in X, u €
C([0,T};X),T > 0), and continuous dependence of the map data-solution. Regarding the IVP
(0.2), in [39] LWP in H*(R?) was deduced for s > 5/3 when d = 2 and for s > (d + 1)/2 when
d > 3. In [80], LWP was improved to the range s > 3/2 in the case d = 2. To the best of our
knowledge there are no results concerning global well-posedness (GWP) in the current literature.
It is worthwhile to mention that local well-posedness issues have been addressed by compactness
methods, since one cannot solve the IVP related to (0.2) by a Picard iterative method implemented
on its integral formulation for any initial data in the Sobolev space H*(R?), d > 2 and s € R. This
is a consequence of the results deduced in [39] (see Theorem 2.2 below), where it was established
that the flow map data-solution uy ~— u for (0.2) is not of class C? at the origin from H*(IR%) to
HY(RY) d > 2.

Regarding some invariants of the equation, we notice that if u solves (0.2), then so does the scaled
version u, defined by

up(x, 1) == Au(Ax, A%t),

for any positive A. Thus, one can calculate that

Hu)t("t)HHS = A\l-4/24s HM(', /\Zt)

Hs
As a consequence, the scale-invariant regularity for (0.2) is s = d/2 — 1. In particular, the d = 2
problem is L2-critical.

Real solutions of (0.2) formally satisfy at least three conservation laws (time invariant quanti-
ties)

I(u) = Ju(x,t) dx,
(0.3) M(u) = Juz(x,t) dx,
Hw) = [|(-8)"*u(x 1 g %Lﬁ(x,t) dx.

It should be mentioned that we do not know of any other conservation law available for (0.2), what
is more, it still remains an open question to determinate if this model is completely integrable. By
way of comparison, it is known that the BO equation (0.1) is a completely integrable Hamiltonian
system. For further information on this regard, we refer to [13, 49] and references therein.

Additionally, this manuscript concerns the initial value problem (IVP)

0.4) O+ Htt — Hodqu + Hygu +udyu =0, (x,y) € R* (or (x,y) € T?), t€ R,
' u(x,y,0) = up,

where H, denotes the Hilbert transform in the x-directions defined by F(Hx¢(x,y))(C, ) =
—isign(&)¢(&, 1) for ¢ € S(R?), and its periodic equivalent

7-[ J—

Hep(x,y) = ;Tp.v.f cot (%)cp(z,y) dz = F 1(—isign(m)p(m,n))(x,y),

—7T
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for all ¢ € C*(T?). This model was derived in [3] as an approximation to the equations for deep
water gravity-capillary waves. Numerical results determining existence of line solitary waves
(solutions of the form u(x,y,t) = ¢(x —ct,y), c > 0 and ¢ real valuable with suitable decay at
infinity) as well as wavepacket lump solitary waves were also presented in [3].

Alternatively, the equation (0.4) can be considered as a two-dimensional extension of the so
called Burgers-Hilbert equation (see, [5, 40]):

(0.5) ot + Hyu + udu = 0.

We are also interested in studying the IVP associated to the Shrira equation:

06) Ot — HyO3u — HeOgu +udyu =0,  (x,y) e R*(or (x,y) € T?), te R,
' u(x,y,0) = up.

This equation was deduced as a simplified model to describe a two-dimensional weakly nonlinear
long-wave perturbation on the background of a boundary-layer type plane-parallel shear flow (see
[72]). Existence and asymptotic behavior of solitary-wave solutions were studied in [24].

Concerning well-posedness for the IVP (0.4), LWP in H*(R?) and Y*(IR?) = {f € H* : | f|y: =
I fllms + |05 fllms < o0} s > 2, were inferred in [21]. These results were provided by implementing
a parabolic regularization argument in the spirit of [45]. It was also showed in the same reference
that (0.4) is LWP in weighted Sobolev spaces Y*(IR?) n L?(|x|*" + |y|* dxdy),0 < r < 1land s > 2.

With respect to (0.6), by adapting the short-time linear Strichartz estimate approach employed
in [50, 59], LWP in H*(IR?) s > 3/2 was deduced in [11]. In [10], inspired by the work of [41, 57],
LWP was established in H*(T?) s > 7/4 assuming that the initial data satisfies, S(z]n up(x,y)dx =0
for almost every y. Recently, in [81], by employing short-time bilinear Strichartz estimates the
conclusion on the periodic setting was improved to regularity s > 3/2 without any assumption on
the initial data. Furthermore, in [61], LWP was deduced in the spaces H**2(R?) n L?(|x|*® dxdy)
s1 = 2, where 0 < 6 < 1/2 for arbitrary initial data, and 1/2 < 6 < 1 assuming that #1(0,77) = 0
for almost every 7. Besides, it was also determined LWP in the spaces H*"*>(R?) n L?(|y|* dxdy),
So =T

It is worth pointing out that (0.4) does not enjoy of scale invariance. In contrast, if u solves
(0.6), up(x,y,t) = Au(Ax, Ay, A?t) solves (0.6) whenever A > 0, and so

Hu)x('/ r t)HH° =A° HM(', /)\Zt)‘ Hs*

Thus (0.6) is L2-critical. On the other hand, real solutions of (0.4) formally satisfy the following
conserved quantities (time invariant):

0) M(w) = [ 12(x,,) ddy,

1 _ e 1
(08) E(u) = E f |D}C/2u(x/y/ t)|2 + |Dx 1/2”(xr% t)|2 + |Dx Uzay”(x/yz t)|2 - g”s(x/y/ t) dxdy/
and real solutions of (0.6) preserve the quantity M(u) and

(0.9) E(u) = % J|D}C/2u(x, Y, t)|2 + |D;1/28yu(x,y, 1f)|2 — %uS(x,y,t) dxdy,
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where D¥1/2 is the fractional derivative operator in the x variable defined by its Fourier transform
as F(DEY2u) (&, 1) = |¢|F1/2i(E, 7). As far as we know, it has not been determined whether (0.4)
and (0.6) are completely integrable.

This thesis is intended to obtain well-posedness conclusions for the model (0.2) in the spaces
H*(R?) and in weighted spaces. Concerning (0.4) and (0.6), we deduce well-posedness result
in the spaces H*(K?), K € {R, T} and in some spaces adapted to (0.8) and (0.9). Additionally,
we obtain some well-posedness conclusion for the models (0.4) and (0.6) in anisotropic weighted
Sobolev spaces. In consequence, we will study the spatial behavior of solutions of the previous
equations, determining that in general arbitrary polynomial type decay in the x-spatial variable is
not preserved by the flow of these equations. To achieve this conclusion, we shall establish some
unique continuation principles, as well as some commutator estimates for the Riesz and Hilbert
transforms (see Propositions 3.8 and 4.2 respectively) that may be of independent interest and are
of interest on their own in harmonic analysis.

This document is organized as follows: In Chapter 1 we set up some general notation and
preliminaries that will be implemented to analyze all the previous models. Next, in Chapter 2, we
proceed to study well-posedness and ill-posedness issues in H*(IR?) for equation (0.2). In this part,
we also compile some remarks for a generalized version of this equation, and we determine some
local unique continuation principles for a large class of dispersive equations. Chapter 3 concerns
the study of (0.2) in weighted Sobolev spaces. More precisely, we determine LWP and unique
continuation principles in weighted spaces that characterize the spatial behavior of solutions of
(0.2). A key ingredient in our arguments is the deduction of Proposition 3.8, where we find a new
commutator estimate involving Riesz transform operators. Subsequently, Chapter 4 is devoted to
provide different well-posedness conclusions for the equations (0.4) and (0.6). We first prove local
well-posedness in H*(R?) and in some spaces adapted to the energy (0.8). Then we determine
well-posedness in the periodic Sobolev spaces H*(T?). We follow by establishing well-posedness
in anisotropic weighted spaces and some unique continuation principles. We conclude with an
appendix where we prove the fractional commutator estimate for the Hilbert transform stated in
Proposition 4.2.



Chapter

Preliminaries and notation

We will employ the standard multi-index notation, &« = (a1,...,ay4) € N4, 0% = Oyl - 8§‘j,
la| = 27:1 wj, ! = ay!---agland o < Bifaj < Bjforallj =1,...,d. As usual ¢, € R? will denote
the standard canonical vector in the k direction.

For any two positive quantities a and b, a2 S b means that there exists C > 0 independent of
a and b (and in our computations of any parameter involving approximations) such that a < Cb.
Similarly, we define a 2 b, and a ~ b states thata < band b 2 a. [A, B] denotes the commutator
between the operators A and B, that is

[A,B] = AB — BA.

Given p € [1, 0], the Lebesgue spaces L”(K) are defined in the usual manner, the norm will be
denoted by | f|Lr = | fllLr (k) (the set K will be easily identified according to the context). In the two
dimensional case, to emphasize the dependence on the variables, we will denote by | f|r» = || f| I,

We denote by CZ(IR?) the spaces of smooth functions of compact support and S(IR?) the space of
Schwartz functions. The Fourier transform is defined as

f@) = 7A@ = | e ifxax

As usual, the operator J* = (1 — A)*/? is defined by the Fourier multiplier with symbol (&) =
(1+|&[>)*/2, s € R. The norm in the Sobolev space H*(R?) is given by

~

|l = 1Pz = 1K6° £ (E)] 2
where (-) = (1 + | - |?)!/2. Similarly, the homogeneous Sobolev space H*(RR?) is determined by its

norm, | [ = [1§1°f (&) 2
The Sobolev space W' (IR?) is defined as usual with norm ||y = |[flLe + |V f|r=, and

Wi (R?) is defined according to | f lyre = | fll= + [OxflLz . We are also interested in studying
well-posedness issues in weighted spaces

(1.1) Zs,(R?) = HS(R?) n L?(|x[* dx), s,reR
and

(1.2) Zor(RY) = {f e HS(RY)  L2(Jx[* dx) : f(0) = o}, sreR.

7
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To analyze the spatial asymptotics of (0.4) and (0.6), we consider the following anisotropic weighted
Sobolev spaces:

13) Zorra(R?) = HE(R)  I(WP + |y dxdy), s, € R
and
(4 Znn(R) = {f € H(R?) 0 L + |y dudy) : fO) =0}, s,mmaeR

Now, if A denotes a functional space (for instance any of the spaces introduced above), we define
the spaces L;A and L} A according to the norms

(15) [fleza = WFC Ol o) and [flpa = I1FC Dl

respectively, forall 1 < p < .

The variable N is presumed to be dyadic, i.e., N € {21 : | € Z}. To study the IVP (0.4), we will
mostly use the dyadic numbers N > 1, then we set D = {2/ : I € Z* U {0}}. Let o € C(R?)
radial such that
(1.6) <o <1, ¢o(g) =1for[f] <1, o(¢) = Ofor|Z] =2,
and set (&) = o(&) — o (2¢) which is supported on 1/2 < |&| < 2. For any f € S(R?) and N
dyadic, we define the Littlewood-Paley projection operators

PNF(E) = $(E/N)F (D),
Ponf(§) = %(§/N)f(§), CeR

and Py = Y,_n Pum (for our considerations, 3, n Pu = 2.jl<2 Poin)- Then by support consid-
erations, Py, Py, = 0 when N; > 2N,. Next, we recall Bony’s paraproduct decomposition (see for

(1.7)

instance [68]) for a pair of functions f, ¢ given by

(1.8) fg=> PnfPng + > PNfPonja8 + Y Pany2fPng
N>0 N>0 j

1.1. Commutators, interpolation and some additional estimates

To obtain estimates for the nonlinear terms, the following Leibniz rules for fractional deriva-
tives will be implemented in our arguments.

Lemma 1.1. Ifs > 0and 1 < p < oo, then
(1.9) 1, F18 0 rey SNV Fllpoe rey 17 8 e rey =+ 1T F Lo ey 18] 20 (me)
where
%, flg = T°(f8) — fI’s-

Lemma 1.1 was proved by Kato and Ponce in [48]. We also need the following lemma whose
proof can be find in [34].
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Lemma 1.2. Givend € Z* and s > 0, it holds that
(1.10) ID*(£2) l2mey S 10" Fluos ey 181 ey + 1 ety 1D e ey
(1.11) 172wy S I Flle ey 181 (rey + 1 N ez ey 1T°8 o2 (e -
with P% + ql] = %, 1< P1,P2,91,92 < 0.

Lemma 1.3. Let o, € (0,1), then

IDIDY (f&)] 2r2y SIflm ey IDIDYE | w2y + IDIDY fllrm ey 18] o2 ()

(1.12) ; ;
+ | Dy fllers w2y D381 s (r2y + D% fllra(r2) | Dy & lloa 2y
where pl]_ + ql] = %, 1<pjqi<o,j=123/4

Lemma 1.3 was deduced by Muscalu, Pipher, Tao and Thiele in [67].

In addition, we require the following set of inequalities, which were deduced in the proof of [50,
Lemma 2.1] (see equations (2.5), (2.6) and (2.7) in this reference). See also [59, Lemma 4.6].

Lemma 1.4. (1) Let 0 < 6 < 1/2, then
(1.13) IDY**uliy, < uleg + oxul g

xy N

(ii) If 9 is a positive constant chosen small enough, then the following holds true. There exist

2<pi,q1 <o , 1 1 1 1 1
with —+—=-, —+—=1,
1<7r,8 <0 @ 2 s
0<0<1and0 < 61 = 61(60,0) « 1such that
(114) 10DY> 0l s, S 0wty 122 0ul S
and
1-0 0
(1.15) IDSul iy, S (i)' (1D 2z, + luliers,)

forall 0 <6 < 6.
The following result will be useful to implement energy estimates for the equation (0.4).
PROPOSITION 1.5. Let 1 < p <ooandl,me Z* v {0}, +m > 1 then

(1.16) |04 [ H s 8108 Flin(r) Spam 105 ™ glre oy L f e ()-

The estimate (1.16) was established in [19, Lemma 3.1] and it was extended to the BMO spaces
in [56, Proposition 3.8].

Our arguments require the following proposition due to Coifman-Meyer (see [14, 15] and [33]).
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PROPOSITION 1.6. Let 0(&,7) € CP(RY x R%\(0,0)) satisfying

(1.17) 070720 (&) S (18] + P~ (712D
for all multi-index 1,y and for all (&,17) # (0,0). Define
(1.18) o(D)(f,8)(x) = | & E (g, 7) F(§)2(n)dcdy.

Then forany 1 < p < o,
le(D)(f, &)y S If o 1811 -

We shall use the following Fefferman-Stein inequality.

Lemma 1.7. ([26]) Let f = ( fi)i21 be a sequence of locally integrable functions in RY Let1 < p < 0.
Then

, < \(f
H(Mf])lfz [ H<f]>]]2 Lp
where M f is the usual Hardy-Littlewood maximal function.

Denoting by S’ (IR?) the space of tempered distributions, we have:

Lemma 1.8. Let b e C®(R?) such that supp(¢) < {|¢| < R} for some R > 0. Consider the operator
P?f determined by P‘Pf( ) = ¢(&)F(Z). Then

|P?f(x —2)|
(1.19) sup ——————r < M(f)(x).
P A+ Ry~ MO
PROOF. See for instance [56, Lemma 2.3]. O

1.2. Preliminaries weighted spaces

For a given n € Z", we introduce the truncated weights @, : R — R satisfying

{<x>, if |x| <n

1.20 Wy(x) =
(1.20) (%) 2n, if |x| = 3n

in such a way that @, (x) is smooth and non-decreasing in |x| with @;,(x) < 1 for all x > 0 and
there exists a constant ¢ independent of N from which |@/(x)| < cd*(x). We then define the
d-dimensional weights by the relation

(1.21) wy(x) = @ (|x]), where [x] = 4/x3 + -+ x3.

We require some point-wise bounds for the product between powers of the weight w,, and a poly-
nomial with variables in R?. More specifically, for a given 6 € (0,2] and multi-indexes « and 8
with 1 < |a| < 2, by the definition of wy one finds

(1.22) |a“wg(x)x,5| < wzﬂﬁl—\w\(x)’
where the implicit constant is independent of n and 6. In particular, when 6 < |a| and § = 0,
|0*wd] < 1.

The definition of the A p(IRd) condition is essential in our analysis. For a more detailed discus-
sion on this regard, we refer to [20, 82].
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Definition 1.9. A non-negative function w € L}, (IR?) satisfies the A,(IR?) inequality with 1 < p <
o if there exists a constant C independent of the cube Q, such that

(1.23) sup <|Q| J w(x) dx> (IlQI Jw(x)lpldx> . =Qp(w) <C

where the supremum runs over cubes in R and 1/p +1/p' = 1.

For instance we have
x|’ € A,(R?), whenever —d <6 <d(p—1).

Since we are concerned with weighted energy estimates, we require some continuity properties of
Riesz transforms in weighted spaces (we refer to [83] for further information).

Theorem 1.10. ([73]) For 1 < p < woand ] = 1,...,d there exists a constant ¢ depending on
p and d so that for all weights w € Ap(]Rd) the Riesz transforms as operators in weighted space R :
LP(w(x) dx) — LP(w(x) dx) satisfies

124) ([ Rrpet) " <copor ([ 1rra)

where Q,(w) is defined by (1.23), r = max{1, p’/ p}. Moreover, this result is sharp.

One can Verify that for fixed 0 € (—d,d), w%(x), n € Z™, satisfies the A,(R?) inequality with a
constant Q,(w?) independent of n. From this fact and Theorem 1.10, we infer:

PROPOSITION 1.11. For any 0 € (—d,d) and any n € Z+, wi(x) satisfies the A>(R?) inequality
(1.23).

Moreover, the Riesz transform is bounded in L?(w9(x) dx) with a constant depending on 6 but inde-
pendent of n € Z*.

Proposition 1.11 is helpful to show that our computations in the proof of Theorem 3.2 are
independent of the parameter n defining the weight w,,. We also require the following commutator
relation.

PROPOSITION 1.12. Let 6 € (0,1) and 1 < py, p2 < oo such that 3 + —. Then

1,1
p1 p2°

(1.25) 1%, &1f e S - 178 ot | Fll oz
The following characterization of the spaces L] (R?) = J=°LP(IR") is fundamental in our con-
siderations.
Theorem 1.13. ([84]) Let be (0,1) and 2d/(d + 2b) < p < 0. Then f € L} (R) if and only if
(i) f e LP(R),
. 2 \1/2
(i) D'f(x) = (S LA dy) e L (RY),
with
1P flr = 11 = 8)"2 e ~ | fler + 1D fle ~ | f e + 1D £l
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Above we have introduced the notation D% = (—A)*/2,

Next, we proceed to show several consequences of Theorem 1.13. When p = 2 and b € (0,1)
one can deduce that

(1.26) ID* ()12 S 1 fD"8lz + 18D 2
and
(1.27) |Dhl|> S (ke + [ Vh|-).

The estimates (1.26) and (1.27) yield:
PROPOSITION 1.14. Let h € L®(R?) with Vh € L®(R?). Then
1nfllene S (Wele + IV Rl ) 1f e
As a further consequence of Theorem 1.13 one has the following interpolation inequality.

Lemma 1.15. Let a,b > 0. Assume that J*f = (1 —A)*2f € L2(RY) and (x)'f = (1 + |x|?)?/%f ¢
L%(RY). Then for any ¢ € (0,1),

(1.28)

PG| | S IO AL 1AL
Moreover, the inequality (1.28) is still valid with w,(x) instead of {x) with a constant c independent of n.

PROOF. The proof follows the ideas in [29, Lemma 1]. ]



Chapter

Study of the HBO equation in H®(IRY)

In this chapter, we study local well-posedness in H*(IRY) for the initial value problem (0.2).
Additionally, we determine some ill-posedness conclusions for this model and we review some
results for the generalized equation determined by (0.2). We conclude by showing some unique
continuation principles for a family of dispersive equations that includes the equation (0.2). The
main results in this chapter are contained in [39].

2.1. Statement of results

To motive our conclusions, we combine the Kato-Ponce commutator estimate [48] with Gron-
wall’s inequality to obtain that any smooth solution of (0.2) defined on an interval [0, T| satisfies

T

2.1) sup [u(t)]ns < [1(0) s exp (cf [Vu(t) 1- dt).
t€[0,T] 0

Thus, if we could control the norm |Vu| LiLy of the exponential function by the H*(R%)-norm, we

could argue by compactness in order to establish existence of solutions with less regularity. If this

were to be done by using the Sobolev embedding H*(R?) — W*(IR?) with order of regularity

s > d/2+ 1, we would not take into account the dispersive effect of the equation (0.2).

Instead, we follow the short-time Strichartz linear approach introduced by Koch and Tzvetkov
[54] implemented to study the local well-posedness of the one-dimensional Benjamin-Ono equa-
tion. Roughly this consists of determining a refined Strichartz estimate (see Lemma 2.7 below)
that allows us to control the L'([0, T]; W"*(R?))-norm of smooth solutions without relying on
Sobolev’s embeddings. Extensions of this method were given by Kenig and Kénig [51], and in
two dimensions by Kenig [50], and Linares, Pilod and Saut [59].

Let us now state our results. Our first conclusion improves the standard well-posedness results
provided by a parabolic regularization argument on (0.2) (see Lemma 2.10 below).

Theorem 2.1. Let s > s; where sy := d/2+1/2 for d > 3 and s, := 5/3. Then, for any ug €
H?(RY), there exist a time T = T (|uo|| s ) and a unique solution u to (0.2) that belongs to

C([0,T); H*(R%)) n L1 ([0, T); W"*(RY)).
Moreover, the flow map ug +— u(t) is continuous from H*(RY) to H*(IRY).

13
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To the best of our knowledge, the previous theorem determines the first non-standard result
regarding local well-posedness for equation (0.2). In [80], by means of the short-time Fourier
restriction norm method developed by Ionescu, Kenig and Tataru [44], the result of Theorem 2.1
was improved to regularity s > 3/2 for d = 2. However, our well-posedness conclusions are the
best known for (0.2) for dimension d > 3.

Remarks. (i) Concerning the Benjamin-Ono equation (0.1), Tao [85] introduced a gauge trans-
formation which allowed him to establish local and global results in H'(R?). Moreover, it was
possible to go all the way to L?(IR?) by using this gauge transformation; see [43, 64]. However,
we do not know if there is such a gauge transformation for the equation (0.2). Additionally, we do
not know of a maximal estimate function for (0.2) that would help us to adapt the arquments in
[51] to improve our conclusion in Theorem 2.1.

(i) Our well-posedness results require too much reqularity to take advantage of H(u) in (0.3). As
a matter of fact, we do not know of any result concerning global well-posedness for the equation
(0.2).

Next, we will show that the flow map u > u(t) is not of class C? for any s € R. In particular,
this implies that (0.2) cannot be solved by using the Duhamel formulation combined with the
contraction mapping principle in H*(IRY).

Theorem 2.2. Let s € R. Then (0.2) does not admit a solution u such that the flow map ug — u(t) is
C2-differentiable from H*(R?) to H*(R?).

With d = 2, we use the existence of solitary wave solutions [62] to show that the flow map
cannot be uniformly continuous in L?(IR?).

PROPOSITION 2.3. Let d = 2. Then (0.2) does not admit a solution u such that the flow map
ug — u(t) is uniformly continuous from L2(IR?) to L?(IR?).

Additionally, we are interested in study ill-posedness issues for the following generalized
equation associated to (0.2),

(2.2) ur — RiAu +ufuy, =0 (x,t) e R4

with k > 2 integer. To motivate our result, we notice that if u solves (2.2) with initial data uo,
then u, (x,t) = AV*u(Ax, A%t) also solves (2.2) with initial condition u, (x,0) = A*uy(Ax) for all
A > 0. Consequently, since

(2.3) [ur(,0) s = A 425 Jlug| g,

we deduce that the scale-invariant Sobolev space to study (2.2) is Hit® (RY) where s (k) =
d/2 —1/k. Thus, the natural spaces H*(IR?) to address well-posedness issues are those with regu-
larity s = Seip (k)

The next result establishes that below the critical index s, the flow-map data solution as-
sociated to (2.2) fails to be of class Ck*1. In particular, this implies that (2.2) cannot be solved in
H*(R), s < scyis(x) employing a contraction argument. This type of ill-posedness result can be view
as an extension of those deduced in [65] for the generalized Benjamin-Ono equation.
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PROPOSITION 2.4. Let k > 2 integer and s < d/2 —1/k. Then for any T > 0, the flow-map uy — u
(if it exists) is not of class C*1 from H*(R?) to C([—T, T]; H*(R?)) at the origin.

We follow by presenting some known facts concerning the stability of solitary wave solutions
for the equation (0.2). Finally, we conclude this chapter establishing some unique continuation
properties of solutions to a large class of nonlinear dispersive equations.

This chapter is organized as follows: we begin by showing some linear and energy estimates.
Theorem 2.1 is deduced in the following subsection. Next we prove the ill-posedness conclusions
of Theorem 2.2 and Proposition 2.3 in Section 2.4. In Section 2.5, we deduce Proposition 2.4 and we
discuss some aspects regarding stability and instability of solitary wave solutions. Finally, Section
2.6 is aimed to deduce some local unique continuation principles.

2.2. Preliminary estimates
2.2.1. Linear estimates. This subsection is devoted to deduce some estimates for the linear
equation determined by (0.2):
U —RiAu=0 xeRY, t>0,
(2.4)
u(x,0) = up(x),

whose solution are defined trough the unitary group

2.5) U (E)uo(x) = Je@llélfﬂx@ﬁo(g) d,

t € R. We begin by recalling the following Strichartz estimates for the group {U(#)}cr established
in [39].

PROPOSITION 2.5. The following estimates hold

(26) U f s S 1 e
and
t
—254 oy NPT < ,
27) = Lu(t NG| <clGl
for q < oo with
E—FE\S and 5, = —g—g, ifd =
q ¥ q T
1 1 1 ~ 1 1, 2
4+ <= =d(=—--)-= >
R 2 and Sy d(z 6]) , ifd>=3
Remarks. (i) Actually, the conclusions in [39] determined that (2.6) is sharp with respect to the

reqularity and the Lebesgue exponents.
(if) We will only work on the Sharp lines of indexes determined by Proposition 2.5. More precisely,

\q<oosatzsfym —O+E 5and s, = —, zfd—2
12/5<r<w gq
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and

nd Sy =

2<g<®
zfd

satisfyin —1—1 1
2<r< o 972

Since the endpoint Strichartz estimate corresponding to (r,q) = (2, %) is not known, we need
to lose a little bit of regularity to control this norm.

Corollary 2.6. Let s > s; —3/2, where s; = d/2+1/2 ford > 3 and s, = 5/3. Then for each
T>0and0<0d <s—sy+3/2, there exist k5 € (0,1/2) such that

(2.8) [UE) fllrare < T flae

PROOF. We take r sufficiently large to assure that § > % and the conditions in Proposition 2.5
are satisfied. Then, Sobolev’s embedding and (2.6) yield

r=2 r=2 _
(2.9) Ut fllizry < T WUE flgs < T 7 [J225f 2

Therefore, setting ks := %, ks € (1/12,1/2) ford = 2, and k; € (0,1/2) for d > 3, the proof is
completed. O

A key ingredient for our arguments is the following refined Strichartz estimate. This estimate
has been deduced in different context for other dispersive models, see for instance [50, 59].

Lemma 2.7. Let s > s; — 1 where sy :== d/2+41/2 for d > 3 and s, := 5/3. Then there exists
ks € (1/2,1) and & > O such that
Hs 1 )

210) o Mg 5T sup lwC, Dy + [ |Gt
te[0,T]

whenever T < 1 and w is a solution to
(2.11) 0w — R1Aw = F.

PROOF. We will follow the arguments in [51]. We write [0, T] = |J;,_; Im such that I,, =
[am, bw| and by, —a, = T/N. Recalling the projectors (1.7), we apply the triangle inequality to
obtain

N

lwlpiy < [Pawlppe + 2 IPnwlp1pe < [Pawllppe + Z 2 HPNwHL}mL‘f

(2‘12) N>1 N>1m=1

N
S IPawlyy + ) D (T/N) 2 Pyl s 1y,
N>1m=1
where the last line is obtained by Hdélder’s inequality. Now, we proceed to estimate each term
on the rand-hand side of the above inequality. Let us deal first with the low frequency term. Let
0 < < (s—s4—1)/2, then since P<;w solves the integral equation

t

(2.13) Poywo(t) = U(t) Poyo(0) + f U(t — )Py (- ¢) d,
0
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we deduce from Holder’s inequality in time and Corollary 2.6 that

T
IPareoliyy S TV (IUOPaw(O) gy + | U= OPAFCH )y, dF)
(2.14) 0

~ T N
S TV (|40 (0) |z + f 2R )2 ),
0
for some %5 € (0,1/2) and where we have employed that
[J°P<1F(t) |2 =[] PP F() 12 Ss 177 (1)) 2

This estimate completes the analysis of the first term on the r.h.s of (2.12). On the other hand, by
employing Duhamel’s formula on each I, it is seen

(2.15) Pyw(t) = U(t — ap)Pnw(-, am) + f U(t—t)PyF(t')at

forall t € I, and each N > 1, thus Corollary 2.6 yields

N
Z Z (T/N)l/z HPNwHLZTL;{»‘

N>1m=1
N
(2.16) S ¥ TVEENTVR( D) (S Pto(an) g+ [ SRR d)
N>1 m=1 I
~ T
STV(S N (sup [ a0l + | TR ).
N>1 te[0,T] 0
Plugging the previous estimates in (2.12) completes the proof. O

2.2.2. Energy estimates. By means of the Kato-Ponce commutator estimate Lemma 1.1, we
deduce the following a priori estimate.

Lemma 2.8. Let T > 0and u € C([0, T]; H*(IR?)) be the solution of the IVP (0.2). Then there exists
a positive constant co such that

2 2 2
(2.17) g < a0l + o [Vl e el
forany s > 0.

PROOF. Applying J° to the equation in (0.2), multiplying by J°*u and integrating in space yields
to

1d s 2 . oo s S
ZdtJ]Rd(] u)~dx = —JRdU U] Ox u] udx fle ul? oy ul*udx,

where it is not difficult to see that the factor concerning the dispersive term in (0.2) is zero, since
R1 defines a skew-symmetric operator. The first term on the right-hand side (r.h.s) of the equality
above is bounded by using Holder’s inequality and Lemma 1.1, while the second is controlled by
integrating by parts and using Holder inequality again. Summarizing

d
218) 1Pl S IVl | Pulte.

Integrating on time the inequality above yields the proof of the lemma. O
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Now we derive some energy estimates for the Strichartz norm. More precisely, we estab-
lish a priori estimates for the norms |u| iy and HVuHLlT L. Our arguments relay on the refined
Strichartz estimate deduced in Lemma 2.7.

Lemma 2.9. Lets € (sy,d + 1] wheres; =d/2+1/2ford > 3andsy, =5/3ford =2. For T <1,
let

(2.19) f(T) = Vulppe + lulpy -
Then there exists a constant and c¢s > 0 such that

(2.20) F(T) < T (1 £(T) Julg e
whenever u € C([0, T]; H® (R?)) solves the IVP (0.2).

PROOF. We first estimate HVuHUT Lz- Let

1
(F,...,Fy) = ((—8x1(ué’x1u),...,—ﬁxd(uéxlu)) = —E&’le(uz),

by considering the corresponding equations determined after setting F = F; in (2.11) for each
j=1,...,d, Lemma 2.7 reveals that

d
HV”HL}L;ﬁ ~ 2 Hax]-“HUTL;f
j=1

T
@21) S T2 (sup |11 Va(t) ]z + | 112V () () )
[0,T] 0

T
< T2 ((sup | Fu(t)]; + jo 702 ()2 dr').

[0,T]

To estimate the r.h.s of the above inequality, we apply Lemma 1.2 to find
(2.22) 1752 ()2 S N ()] e | Fou ()] 2
Gathering together (2.21) and (2.22), we find

(223) IVl e S T2+ Jul il e

On the other hand, Lemmas 2.7 and 1.2 yield

T
Ielugay < TV2(F olie + 172w ) ()12

2.24 _ T _
229 STV woliz + | )l 1w | )

STV2(1+ et 1 g ) a] s

This estimate completes the proof of the lemma. O
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2.3. LWP in H*(RY), s > s;, wheres; = d/2+1/2ford > 3and s, = 5/3

This section is devoted to proving Theorem 2.1. Considering that this result relays on a com-
pactness method, we will obtain solutions in low-regularity spaces as a certain limit of smooth
solutions.

Accordingly, we require to assure existence of smooth solutions for the initial value problem
(0.2). But first, we notice that for s > d/2 41, Theorem 2.1 is obtained by implementing a parabolic
regularization argument in the spirit of [45, 47, 60]. Roughly speaking, an additional term —uAu
is added to the equation, after which the limit 4 — 0 is taken. The precise consequence of this
technique is stated in the following lemma:

Lemma 2.10. Let d > 2 integer and s > d/2 + 1. Then for any ug € H*(RY), there exist T =
T(|uo|ggs) > 0 and a unique solution u € C([0, T]; H*(RY)) of the IVP (0.2). Furthermore, the flow-map
ug — u(t) is continuous in the H%-norm and there exists a function p € C([0, T|; [0, 00)) such that

|u(®)|m: < p(t), tel0,T].
Moreover, the existence time does not depend on s, in the sense that u can be extended, if necessary, to the
interval [0, T(|[uo] = )], if s = so > d/2 + 1, with ug viewed as an element of H* (R?).
Lemma 2.10 allow us to deduce existence of smooth solutions and a blow-up criterion.

PROPOSITION 2.11. Let d > 2 and ug € H®(R?). Then there exists u € C([0, T*); H*(R%))
solution of (0.2) with initial data ug, where T* is the maximal time of existence of u such that T* >
T(||uto]|gga+1 ). Moreover, it follows

(2.25) tlgr; [t (t)| ppa+1 = 400 if T* < 0.

Consequently, in virtue of Lemma 2.10, we will restrict our considerations to prove the case
sy <s<d+1,wheres; =d/2+1/2ford >3 ands, =5/3.

2.3.1. A priori estimates. We first prove that the smooth solutions determined by Proposition
2.11 exist long enough for our purposes. We then provide some additional a priori estimates whose
prove follow closely the arguments in [59].

Lemma 2.12. Let s € (sy,d + 1] where s; = d/2+1/2 for d > 3 and sy = 5/3. Then there exists
a constant As > 0 such that for all ug € H*1(RY) there is a solution u € C([0, T*(H**1(R%)))) of (0.2)
with T* > (1 + As|uo| gs) ™2 Moreover there exists a constant Kq such that

(2.26) |l pas < 2[uioll s, and f(T) < Ko,
whenever T < (1 + Ag|uo|ngs) 2.
PROOF. We define
Ty = sup {Te (0,T%) : Julf - < 4uolh |

Since u € C([0, T*); H*)), we have that Ty is well-defined. Arguing by contradiction, let us sup-
pose that 0 < Ty < (1 + Agl|uo|gs) 2. Then continuity yields HuH%% s < 4|uo)?:, and Lemma 2.9
0

determines
F(To) < 26T/ (1 + £(To)) o s -
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Thus, if we choose As = 8(1 + ¢g)cs, where ¢ and ¢, are defined as in Lemmas 2.8 and 2.9 respec-

tively, we find
1

f(TO) < 37(:0

This result and Lemma 2.8 show
3
2 2 2 2
I ¢ o < S By, and el e < ol

In view of the blow-up alternative in Proposition 2.11, the former estimate implies that Ty <
T*. On the other hand, the latter estimate and continuity establish that for some Top < T < T¥,
HuH%T, s < 3|, which in turn contradicts the definition of Ty. The proof is completed. O

2.3.2. Uniqueness. Let 17 and u; be two solutions of equation (0.2) in the class
C([o, T}, H*(R")) n L' ([0, T], W (R7))
with respective initial data u;(-,0) = @1 and u»(-,0) = ¢,. By setting v := u — v, we find that
1
00 — R1Av + Eaxl ((ug +up)v) =0.

Then, multiplying the previous equation by v and integrating in space, it follows that
1d » 1 ’
T J}Rd vodx = ~1 de Ox, (111 + up)v” dx,
where the factor concerning the dispersion is zero since R is a skew-symmetric operator, and the
right-hand side of the above expression is obtained by two integration by parts. Thus Hoélder’s
inequality determines
1d

5 712 S (Vi (Bl + [Vua(t) i) [o (1) -
An application of Gronwall’s inequality (see for example [86, Theorem 1.12]) gives
(2.27) sup u1(t) — u2(t)] 2 < eXlg1 — @212
te[0,T]

where K = |[Vuy || Ly + | Vs 111z Uniqueness is now a consequence of (2.27).

2.3.3. Existence. We shall implement the Bona-Smith argument [7]. We state some properties
of the projectors defined in (1.7).

Lemma2.13. Let o > 0and Ne D = {2F: ke ZT} U {1}. Then,
(2.28) | P<nT* uo|r2 S N|Juol 2.
Moreover, let M, N € D with M > N and 0 < 0 < s, then
(2.29) I~ (P<nto — P<mio)|| 2 N o(N77).

PROOF. The estimate (2.28) follows directly from the properties of the projectors P<y. On the
other hand, by support considerations

(2.30) [KEY T (Pp<n (&) — Pp<m(£))1i0(E) P S N 2 |p<n(8) — (&) PE) 00 (E) 2

and so if o < s the result follows by Plancherel’s identity. For o = s, an application of Lebesgue
dominated convergence theorem yields the result. O
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Lets € (sq,d + 1] wheres; = d/2+1/2 ford > 3 and d, = 5/3. For each dyadic N € D, we
consider the solutions uy € C([0, T]; H*(IR%)) of (0.2) emanating from P<yp:
6tuN—R1AuN+uN8xluN =0, xe]Rd, te (0, T],
(2.31)
un(x,0) = P<nuo,
where in virtue of Lemma 2.12 we can find a time
(2.32) 0<T<(1+ As|uo|ps)™>

(for some constant A; > 0) independent of N, such that

(2.33) lun] Lz ms < 2[uo]|ms

and

(2.34) K= sup {HMNHL;FL;( + HVuNHLlTL;,,} < .
>

Now, given M > N > 1 dyadic numbers, we set vy 1 := un — up so that vy satisfies
(2.35) 6tvN,M — RlAl)N’M + uNé’xluN — uM&’xluM =0,

with initial datum oy u(+,0) = P<nug — P<prido.
Arguing as in the deduction of (2.27) and applying (2.29) we find

(2.36) lonmliz iz < e |Pentto = Pemiof 2 = o(N7%)
and so interpolating with (2.33), we get

(2.37) I17onmlpry < IFonmleps lonmlpzps = o(N~6=9)
forall0 <o <.

Below we will show that {vy 1} determines a Cauchy sequence in C([0, T]; H*(IR%)), but first
we prove that the sequence is a Cauchy sequence in L'([0, T]; W*(R)). In fact, we prove a

stronger result that will be helpful later

Lemma2.14. Let M,NeDD = {2 : ke ZT L {0}}, M > N > 1. Then,

(2.38) HUN,MHUTL;L =o(N)
and
(2.39) IVon Mgy =0(1)

provided that T as in (2.32) is chosen sufficiently small (that is, As large enough).
PROOF. We first deduce (2.38). Since v, ,, solves equation (2.35), we apply Lemma 2.7 with
F = — 20 (i + um(on )
to deduce
lon .l S T2 (H]SWHJUN,MHL?@ + JOT 1547242005, (e + uan)onm) (F) |12 dt')

= TY2(A; + Ap),

(2.40)
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where 0 < 6 < (s —s4),54 =d/2+41/2 and s, = 5/3. Our choice of § and (2.37) imply
(2.41) Ay o o(Nh).
To estimate A,, we combine (1.11) and (2.37) to find
(2.42)
A2 S JOT 17507 (- 1aaa) (#) |2l 0w pa () e 4+ aaa) (#) o= [T Con m () |2

|1 on mll e 12

S (lunlepns + lumlizas) lonmliy e + (lunliage + lumli )
1
= O([luollmslonmlpr e ) +0(N77).

Therefore, gathering (2.40)-(2.42) we have

1
(2.43) lonmliie = o(NT) +O(T2|uol|onml e )-

¥ N-—oo

Then taking T sufficiently small in (2.32) with respect to the implicit constant above (which does
not depend on N), we conclude (2.38).

On the other hand, (2.39) is deduced by a similar reasoning as above. Indeed, we apply Lemma
2.7 with F = =3V 0y, (un + um(vn,m)) and (1.11) to deduce

T
IVonmlpye S T (||]Sd+(st,MHLT%L2 + L |54 420,, ((un + um)onm) (F) 12 dt')

1/2 o
(2.44) S TV2(I7 0Nl ere + (liwliers + lumlie ) [onmll oy e

]Sd+5

+ (e + liadlly )T 0Nl 2 ).

Hence, our choice of ¢, (2.37) and the preceding estimate for ||on um|| 111 determine

)
(2.45) IVoxmliye =, OUF ™ onmlizi) +O(onmlyy) = o(1).

The proof is completed. O
PROPOSITION 2.15. Let N,M € D with M > N. Then,

(246) ”UN,MHHS — 0.
n—00

PROOF. Applying the operator J° to (2.35), multiply then by [*vy u, integrating in space we
deduce

d
au Fonm(t)]? = -2 fw JP (unOx N — UpOx, tipt) JPON, M

(2:47) =-2 J]Rd J* (umOx, (un — upm)) JPon,m — 2 J1Rd JP((un — tp) Ox un) JPoN M

=: —Z(Al —+ Az).

Integrating by parts we obtain

1
(2.48) Ay = J}Rd [J°, um)Ox, ONMIPONM — 5 JIR" O i (TN ).



2.3. LWP IN H5(RP), S > Sp, WHERE Sp = D/2+1/2 FOR D >3 AND S, =5/3 23

Then from Lemma 1.1, Holder’s inequality and (2.33) it follows

|Ax| S IVum(t) | 1Ponm(8) 72 + |0 onm ()| [T uaa (8) | 2| T on,m (F) [ 2

(2.49) ) S ! .
S IVupm ()= 1Fonm ()72 + [Vonm(t) | ol s
On the other hand,
(2.50) Ay = J}Rd [J°, on M) Ox UNT ON M + J]Rd onNM (P 0x, uN) P ON M-

Hence Lemma 1.1, Holder’s inequality and (2.33) yield

251) [A2] S IVonm ()= | Fun (D 21 onm ()] 2 + lona () [eo 17 un () 2| Fon (8] 2.
To control the norm ||J5*1uy/(t)||;2, we employ energy estimates and Lemma 1.1 to observe

a
dt
so that Gronwall’s inequality and (2.28) yield

(2.52) I un (D172 < VN ()= 1 un (872,

(2.53) [P un ()12 < e Pantto]l 2 S N o 1,

where K is defined as in (2.34). Thus in view of (2.33)

(2.54) |A2| S (IVonm(B)llLe + Nloxm(t) o) luols-
Summing up our estimates for A; and Ap, we find that

d
(2.55) T IFonm(B)L < a®)| o)L +b(t)

where
a(t) == Co(IVun (D)lle + [ Vum(B)li- ),

b(t) =C

/N

Nl (D)lls + V0N () = ) ol

Now, if g(t) solves

—
oQ
—

~~
N2

I

Q
—

—
~—
0Q
—~

~
~—

T

S
—~

<

then
TP oxm()1R — (1)) < a(t) (IFon ()R — 5(1)

with initial condition, ||J*vn,m(0)[7, — g(0) = 0. Then by an application of Gronwall’s inequality,
we find that || J*on,m(t)|7, < g(t) for all > 0. Now, since g(t) has the explicit form

t
30) = SO 4 | om0 i
0
if follows
IFona()1E e S e (1Pentio = Penatiolys + ol (Nlowmliyey + IVormliiz)) =, O

where we have employed Lemmas 2.13 and 2.14. The proof is completed. O
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We deduce from Proposition 2.15 and Lemma 2.14 that uy has a limit u in
C([0, T); H*(RY)) ~ L}([0, T]; WM (R?)).

Now, recalling that

t
(2.56) un(t) = U(t)P<nug — ;L U(t— )0y, (un(t))?dt,

and the estimate

Jt U(E— )an (un (F)? — u(t')?) dt
0

t
< [ (2 = ue e ar
Hs—1 0

< Lt Jun(t') 4+ u(t)|

we see that u also solves the integral formulation of (0.2) in the C([0, T]; H*~!(R%)) sense. This
completes the existence part of Theorem 2.1.

un () —u(t')]

!/
Hs Hs dt ’

2.3.4. Continuity of the flow map data-solution. Lets € (s;,d 4+ 1] wheres; = d/2+1/2 for
d > 3and s, = 5/3. Let ug € H°(IRY) fixed. By the existence and uniqueness parts above, we
know that there exist a positive time T = T(||uo||gs) and a unique solution u € C([0, T]; H*(R%)) n
L([0, T]; WY*(R?)) to (0.2). Now, since T is a nonincreasing function of its argument, for any
0 < T' < T there exists 4 > 0 such that for all

v0 € Bj(up) 1= {vo e H'(RY) : Jug — voll < 5}

the corresponding solution v of (0.2) is defined at least on the time interval [0, T'].
We require to prove that for all € > 0, there exists § > 0 with 0 < § < & such that for any initial
data vy € B;s(uo), the solution v € C([0, T']; H*(R?)) emanating from vy satisfies

(2.57) |u— UHL;L/,Hs <e.

Therefore, for any N € ID, let uy, vy € C([0, T']; H°(R?)) be the smooth solutions of (0.2) with
regularized initial data P<nyuo and P<nvg respectively. Then we have

(2.58) lu —olgne < lu—unlrgns + lun —onligme + o —onligwe-
The proof of existence assures that for some dyadic number Ny > 1 large,

(2.59) lu —unlLghs + v —onlLghs < 2e/3,

for all dyadic N > Ny. On the other hand,

(2.60) | P<nytto — Panyvol g S NG 756 ug — voll s S NG+ %6

Then, by using the continuity of the flow map for smooth solutions, we can choose § > 0 small
enough (according to (2.60)) such that

(2-61) HuNo - UNOHL}‘,'HS < HuNo - vNoHL;’-,Hd+1 <e€/3.

Consequently, (2.57) follows by combining (2.59) and (2.61).
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2.4. Lack of C2-regularity and uniformly continuity for the flow-map data solution

Here we prove that (0.2) cannot be solved in H*(IR?) by a Picard iterative scheme based on the
Duhamel formula. This result can be viewed as an extension of [66], where the C? ill-posedness in
H*(R) is established for the Benjamin-Ono equation.

PROOF OF THEOREM 2.2. Suppose that there exists T > 0 such that (0.2) is locally well-posed
in H*(R?) on the time interval [0, T) and such that the flow map

O(t) : H*(RY) - H(RY), ug— u(t)

is C? differentiable at the origin. When ¢ € H*(IRY), we have that ®(-)¢ is a solution of (0.2) with
initial data ¢, so by Duhamel’s principle ®(t)¢ must satisfy the integral equation

1 t
()p = U~ 5 [ Ult= )0, (@(F)¢) ar.
0
We compute the Fréchet derivative of ®(t) at p with direction ¢4,

(2.62) dy® (1) (1) = U(t)gy — f u( (@) pdy®(¥)(¢r)) &

Supposing that (0.2) is well-posed, uniqueness implies that ®(¢)(0) = 0, so that do®(t)(¢1) =
U(t)¢1. Differentiating again we find that

) (@1,92) = 5 (7 (D))

r=0

. jo Ut — )2y, (g () ($2) gy (1) (1)) dF
- fo U(E — )0, (D) (12)d2, D(8) (g1, 42)) dt

which implies
30(0) (1, 2) =~ [ Ut~ 1), (U0 (U(E)

Now, if the flow map were C? then d3®(t) would be bounded from H* x H* to H, i.e.,

Sl as 2] s
HS

[ ute-pan (i) ar

We will prove that this does not hold in general, following the arguments in [66].
Indeed, we will construct two sequences of functions, ¢; n and ¢, n, such that

(2.63) |1 NN, [p2,n]ms < C

and

(2.64) I\llim Ju (£ =)o, (UE)prN)(UE ) poN) ] dE| = oo
—00 Hs
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We define ¢ y and ¢ n via their Fourier transforms as
PIN(E) = AT N XA (@), with Ay = [N, N+ 4] x [\1/4/72, 14,
PN@) =N (@), with A= [31,42] x [\ /2, A1)

where N » 1, A = N1t and 0 < € < 1/(2d —1). First, we observe that ¢; y and ¢, y sat-
isfy (2.63).
On the other hand, taking the Fourier transform with respect to the space variable,

fﬂao:{fua—w%«uwwwxmwmwnw}<@

(2.65) Z@nt 1

— [ geral P () 2N (E— 1) dy

Kz Z(é/ 17)

where the resonant function is given by

Z(& ) := =Gulel+ (G =m)IE =l +mly]

and
Kg:= {iyele : 176441,6—176./42}.

When 77 € A; and ¢ — 5 € A, we claim that
(2.66) 1Z(& )| ~ AN.
Indeed, using that Iy () is supported on

Az = [N +3A, N +5A] x [A1/9,241/d)4-1
we easily obtain
(2.67) (G1=m)Ig =] ~ ALV
Moreover, from the inequality

1/2
g1 < ((N+50)2 +4@d-1)A%") " < N+62

which holds for N large, A = N~(1+¢) with 0 < € < 1/(2d — 1), we have

(2.68) (N +3A)? < &¢ < (N +6A)2
Analogously, we get
(2.69) N? <y < (N +21)%

Then, (2.66) follows from (2.67), (2.68) and (2.69).
Now, since AN = N~€and |Z(¢,77)| ~ AN it follows

eZEmt _q 1
Al o L).

Z(&m)
From (2.70) and |Kg| ~ Ad-1)/d e infer that

. NAd-1)/d
[In(S B)Ixa;(8) 2 W|t|?€A3(C)~

(2.70)
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Therefore we arrive at

HIN(t)HHS z N/\(del)/Zd|t| — Nl/dee((del)/Zd)|t|.

Since 0 < € < 1/(2d — 1), we deduce (2.64), which completes the proof. O

The following corollary (of the proof) shows that it is not possible to solve (0.2) in H*(RY) via
the usual contraction argument.

Corollary 2.16. Let s € Rand T > 0. Then there does not exist a space Xt continuously embedded in
C([0, T); H*(R%)) such that

(2.71) IU®)elx, < Clo|n

and

(2.72) ﬂ U(t—t")(F(-, t")0 F(-, 1)) dt’

2
< CIF( 8, -
Xr

PROOF. We write F = F; + F, and note that

| Ltu(f—f’HF@xlF(-,t’)] ar| =

=

Jt U(t —t")ox, (FE(- 1)) dtf
0

XT XT

Jt U(t—t")(Fioxg Fi(-, 1)) dt’ f U(t—t') (Fa0x, B (-, 1)) dt’
0 0

Xr Xr
Now taking Fy (-, t') := U(t)¢1 N and F2(-, ') := U(#')¢o,n, by (2.71) and (2.63), we have
[Elxr, 1F e, B2l < €.

Thus, if (2.72) holds, we would find that

Jot U(t —t') 0, (U(H)pr,N)U( )pon)) dt’

Xt
is uniformly bounded in N, contradicting (2.64). O

Next we prove that the flow map could not be uniformly continuous in L?(IR?). We recall that
Maris [62] proved that there exist solitary wave solutions of the form u.(x1, x2,t) = ¢(x1 — ct, x2)
with ¢ > 0. That is, ¢, is a solution of the equation

(2.73) —cp— (=M)?¢ + %q)z =0
where ¢, € H*(R?) for all s > 0, and where (—A)'/2 = D is defined by the Fourier symbol
F((=8)29)(2) = F(DP)(§) = RIP(S) = /& + -+ + EF(O)-

PROOF OF PROPOSITION 2.3. Let ¢.(x1,x2) := c@1(cx1, cx2) where ¢q solves (2.73) with ¢ = 1.
Then ¢, solves (2.73) with ¢ > 0 and we consider solutions

uc(x1,x2,t) :=cey(cxy — c’t, cxp)

to (0.2). In particular we will consider solutions u., and u., with ¢1 # c».
By a change of variables it is easy to see that, for all t > 0,

[, ()12 = allz = lues (5 E) 12
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so that
2
(2'74) HuCl ('/ t) — Ug, ('/ t) HL2 =2 Hq)l H%Z - 2<u61 ('/ t), U, ('/ t>>L2'
Changing variables by cx1 — c%t — x71 and cyxp; — X3, we see that
C [
<1/lc1 (-, t)/ Mcz(-, t)>L2 - é J(pl (%(xl — Cz(Cl - Cz)t), %XZ) 1 (x) dx.

Therefore, taking ¢c; = n+ 1, co = n, from the Lebesgue dominated convergence theorem, it
follows that, for all t > 0,

¢ C
<uc1(., t), tc, (-, t)>L2 = cljgpl(é(xl —nt, xz))gol(x) dx - 0 as n — o0,

while
<u61('/0)/ ucz('/ 0)>L2 g HgﬂlHiz as n — .

Thus, in view of (2.74), we deduce
|te, (+,0) —1e,(+,0)[ ;2 = 0 as n — oo,
while on the other hand, for all £ > 0,
Jtiey (- 8) = 1ty (- 8) ] 12 = 212 |12 as m — oo,

completing the proof. O

2.5. Some remarks on the generalized equation
2.5.1. Ill-posedness conclusions. This part is aimed to prove Proposition 2.4.

PROOF OF PROPOSITION 2.4. We consider the flow map ¢ — u(x, t; ¢) and define w1 by

ak+1u

(2.75) Upy1 = ———
+ 5k+1q)

(hn, ..., hN)
¢=0

where the sequence iy will be constructed below. Uniqueness yields u(-,-;0) =0, and so by some
simple calculations

(2.76) g1 = (k+1)! jo U(t = t)ox, (U(t)hn) ) dt'.

Then, the assumption that ¢ — u(x, ;) is of class C*! at the origin assures that there exists a
positive constant ¢ > 0 such that

(2.77) sup [ugyr ()]s < ol
te[—T,T]

In the sequel, we will show that (2.77) fails for a suitable sequence of functions (hy). Let A and B
be positive real numbers (which will be chosen later) such that A < B. Consider the real-valued
function hy defined via its Fourier transform by

(2.78) I (€) = N~®/2 (y (&/N) +p_(E/N)),

where ¢ € RY, N » 1 and P is a smooth nonnegative function supported in the d—cube [A, B]d
and such that

(2.79) P+(@) =1, VielA+(B—A)/4B—(B-A)/4),
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and ¢_ (&) = Y4 (—¢). Note that forallse Rand N > 1,
[Nl ~ 1.

On the other hand, by Fubini’s theorem we compute

i1 (&) = fot & BIRLE (U ()] (€) dt

— Nk @s+d) /24 it

Y (H 1) fo U E(UE)F ) U F ).

p=0 N F

(2.80)

Since the Fourier transform of (U (#)F 1, ) 1=P(U(#') F ~1¢_)P is supported in the d-cube
[(k+1)AN — pN(A + B), (k+1)BN — pN(A + B)%,
for all t € [T, T], we choose A and B such that A > kB/(k + 2) to obtain
1S/ ) X[(k+1) AN, (k+1)BN) (6)
= N ()@t 24 il Jt e MERLE (U(F)F T, FH)
0

; k
(2.81) _ N () @std) 2 it eHCEn ) — 1
Rk G(g 771/ . /ﬂk)

e (S58) v (T L) e () ot

k—1

G(& 1Y, 1% = —(&le] — (& —mDIE =1l = Y.} — u ) =Y = k1),

=1

where

Notice that on the support of the integral on the right hand side (2.81), we have
dV2AIN? < (& = nD)IE =1L (rf = D = 0 it < 4/2BANR,
forallj =1,...k — 1. Moreover, & € [(k+ 1) AN, (k + 1) BN]? determines
dV2(k +1)2A2N? < &|E] < dV?(k +1)*B>N>.
Then, combining the above estimates we arrive at

d'"2(k+1)N*A*((k+1) = (B/A)?) <|G(&y", ..., 1)l
(282 <d2(k+1)B*N*((k+1) — (A/B)?).

By choosing A close enough to B (which is compatible with A > kB) and

N2
d/2(k+1)A%2((k+1)— (B/A)?)’

IN =

29
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it follows that

|25+1 (8, ) [ X(k1) AN, (k1) BN
Z N—(k+1)(25+d)/2N—2|€1 |

_ 4l k-1 _ k k
xfww (C - )w (’7N'7) v, (}Z) ant ... dnk.

|15+1 (8, ) [X[(k1) AN, (k1) BN
> N (k1) (2s+d)/2 -1 (

In view of (2.79),

X[aNpNJd * * - % X[aN,bN]"’)(g)f
where
a=A+(B—A)/4, b=B-(B—A)/4

Now, recalling that

) =2 ﬁ o—ila+o)Ng28((a — )NE;/2)

Xian,on) (6 Gj ,
=1 :
we find
X[aNoN)d * % X[an,onJe (X)
. . k+1
(2.83) — od(k+1) HJ oi%iGj=i(k+1) (a+b)NE; /2 (Sm((a — b)Ngj/2)> d;.
=1k {:j

Hence, changing variables

, k+1
= 24(1=F) (B — Ak NKd (J cos(4r/(B—A)) (sn;}w) dw)d.
R

(2.84)

This proves by continuity that for r > 0 small enough, there exists ¢ > 0 which does not depend
on N, such that

|01 (8 E) X[ (k1) (A B)N /2N, (k1) (A B)N /247N
= CN*(kH)(ZHd)/ZN*ldeX[(kH)(A+B)N/zer,(k+1)(A+B)N/z+rN}d
so that
[t (8) | e 2 NTRSHRE27

from which (for fixed T > 0)

(2.85) im = sup i1 (8)] s = 400,
N=0 e T 17

assoonass < d/2—1/k. This yield a contradiction to (2.77). The proof is completed. O
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2.5.2. Solitary wave solutions. This subsection is devoted to present a survey of known result
regarding the existence of solitary-wave solutions for the equations,

(2.86) U+ oR1Au+ufu,, =0, (xt)€ R,

with v # 0. Motivated by the two-dimensional model (see [2, 71, 87]), we are interested in study
solitary-wave solutions of the form u(x,t) = @(x; — ct, %), where ¥ € R?"!, and ¢ denotes the
speed of propagation. Substituting ¢(x1 — ct, ¥) into (2.86), integrating once with respect to the
variable z = x; — ct, and assuming that ¢ has an appropriated decay for suitably large values of
|z|, we observe that ¢ satisfies
1/2 1
(2.87) —cp+o(—=A)Y (p+p+1q)’”+ =0.
We will assume that the power p = k/m, where k and m are relatively prime and m is odd.

1/m

Consequently, we can define a branch of the map r — r'/™ real on the real axis.

Next, we establish a non-existence result for solutions of (2.87).

PROPOSITION 2.17. Equation (2.87) cannot have a smooth non-trivial solitary-wave solution unless
either

() v<0,c>0p< %,

(i) v>0c<0,p< 2,

(iii) n>0,c>0,p>d%1,or

(iv) p<0,c<0,p> 2.

By ”“smooth”, we mean that the functions have sufficient regularity to justify the following
computations. We emphasize that only the case (i) with p = 1 is of physical relevance. Ad-
ditionally, cases (ii) and (iii) are the same as (i) and (iv) respectively except that the sign of the
nonlinearity is reversed.

PROOF. We will deduce some Pohozaev-type identities to derive the desired conclusion. Mul-
tiplying (2.86) by ¢ and integrating on R it is seen

(2.88) J—cqo2—|—n( M V29p + —— P2 dx = 0.

p-l-l

On the other hand, we claim

289) [ (0 2g)xi0m dx = =3 [(-8) 7290 + () 128 gg dx

forallj=1,...,d. Indeed, by Plancherel’s identity and integration by parts it follows that

[ 2opondr = - [lp@ 5 Ea0) a2

- [lep@ P dc - [ eleie) @ de
(2.90) ¢

— - [ENo@ P+ [lEGa@rds + [ ICI;C_(@(?(C)W(C) ac

== [0 ppdx = (=) 18 g+ [((=8)29)x;s dx.
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This establishes (2.89). Now, multiplying (2.87) by x;¢.; and using (2.89), we get

Jc¢2—( 8)'2pp —o(=8)"12 99 -

which leads after summing overj=1,...,d to

2 (d-1 1/2 2 2 g0
(2.91) JC([) D( y >( A) e — <p+1)(p+2)q)”+ dx = 0.

Finally, substituting (2.88) into (2.91) we have
JC(I’Z_U((EI_;LP_Z)K )1/4(P|2 dx = 0.
The above identity yields the proof of Proposition 2.17. O

2
P2 ax =0
prnpr2?

Concerning the cases (i) and (ii) of Proposition 2.17, existence of solitary waves was established
in [62] for the two-dimensional problem with p = 1. For arbitrary dimensions, existence can be
deduced as a particular case of the results proved by Frank, Lenzmann and Silvestre in [31] (see
also [30]) for the class of nonlocal equations:

(2.92) Y+ (—A)Y — [¥]'¥ =0, inRRY,
withd > 1,5€ (0,1) and 0 < r < r.(d,s) where

o dgs forO0<s<d/2,
+o0  fors>=d/2.

Let us now state some of the results derived in [31] concerning (2.92). To establish the existence
of solutions, one can use the Weinstein classical approach which consists of determining the best
constant Cyp; in the Gagliardo-Nirenberg inequality

dr/4s (r+2)/2—dr/4s
(2.93) J |u| 2 dx < Copt (J [(—A)*2ul? dx) <J |uf? dx) ,

so that C,; is obtained by minimizing the functional
A)s/2u|2 dx)dr/4s (S |u|2 dx) (r42)/2—dr/4s

Il 2 dx

(2.94) ) = 8IC

defined for u € H*(IRY) with u # 0. Indeed, by methods of variational calculus (see Appendix D

in [31]), it is seen that Coplt =

that any minimizer ¥ € H*(IRY) satisfy equation (2.92) after a suitable rescaling ¥ +» c;¥(c-) for

inf,0 J(u) is attained. Moreover, by computing J'(u), it easily seen

some constants c; and ¢. Finally, the inequality J(|u|) < J(u) implies that the minimizer ¥ can be
chosen to be nonnegative.

On the other hand, uniqueness issues have been addressed in [31] for the class of nonlocal
equations (2.92). They consider ground state solutions according to the following definition.

Definition 2.18. Assume that ¥ € H*(IR?) is a real-valued solution of equation (2.92). Let L denote
the corresponding linearized operator given by

(2.95) Ly =(-A)F°+1—(o+1)¥)
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acting on L2(R%). We say that ¥ > 0 with ¥ # 0 is a ground state solution of equation (2.92) if L has
Morse index equal to 1; i.e., L has exactly one strictly negative eigenvalue (counting multiplicity).

It is worth pointing out that if ¥ > 0 is a (local) minimizer of the functional J(u), then L
has Morse index equal to 1 (see the comments after Definition 3.2 in [31]). In particular, any
nonnegative minimizer ¥ of J(u) is a ground state in the sense of the above definition (cf. [30]).
Summarizing the result in [31], we have:

Theorem 2.19. Letd > 1,s € (0,1) and 0 < r < r.(d,s). Then

(i) Existence: There exists a minimizer ¥ € H®(IR?) for J(u), which can be chosen a nonnegative
function ¥ = 0 that solves equation (2.92).

(ii) Symmetry, regularity, and decay: If ¥ € H*(RY) with ¥ > 0 and ¥ # 0 solves (2.92),
then there exists some xo € RY such that ¥ (- — xq) is radial, positive, and strictly decreasing in
|x — xo|. Moreover, the function ¥ belongs to H*+1(IRY) n C®(RY) and it satisfies

C1 CZ

— <Y (x) £ ———: e RY
1 |x|i+2s (x) <5 + |xfA2s for x

with some constants C, = Cy > 0 depending on s, d,r and Y.
(iii) Uniqueness. The ground state solution ¥ € H*(IRY) for equation (2.92) is unique up to transla-
tion.

Consequently, Theorem 2.19 establishes existence of solutions for (2.87) under the restrictions
(i) and (ii) of Proposition 2.17. Indeed, considering the conditions (i) for simplicity, it can be as-
sumed that (2.87) has the normalized form

1
2.96 —o—(=A 1/2 4+ P+1:0,
(2.96) g (=8 Te+ e
which follows by scaling the variables as
(2.97) u(x,t) = av(bx,dt),

where a = |o|'/?, b = |o|""/2 and d = 1/c. Then, letting ¢(-) = (p + 1)/P¥(-), where ¥ > 0
is given by Theorem 2.19 for r = p < 2/(d — 1), we find that ¢ solves (2.96). In conclusion, we
deduce:

Corollary 2.20. Letd > 2,vc < 0,and p = X < 2/(d — 1), where m is an odd positive integer and
m and k are relative prime. Then equation (2.87) admits a non-trivial solution in H'/2(IR%) that satisfies
the properties stated in part (ii) of Theorem 2.19.

Regarding stability, by scaling, we will restrict our attention to the case c > 0 and v = —1in
(2.87). We require the following quantities for our discussions

2

S dx,
(p+1)(p+2)

2.98) £(u) = 5 [ 1(-8)4up -
1

(2.99) M(u) = 5 Juz dx.
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In virtue of the embedding H'/?2(R?) — LP*2(IRY) valid for all p < 2/(d — 1), we have that
H'2(R%) is a natural space to define £(-) and M (-). Now, we introduce the following function

(2.100) o(c) := E(@c) +cM(ec),
where ¢, solves (2.87) for c > 0 and v = —1. In particular, we notice that
(2.101) pc(-) = cPoi(c),

where ¢ solves (2.96). It is well-known that the function d(-) is employed to study stability and
instability of solitary waves (see for instance [6, Theorem 2.3], [8, Theorem 3.1 and Theorem 4.1],
[22, Theorem 3.2] and [25]). It is expected that the solitary wave ¢, is stable when ?”(c) > 0 and
unstable if 9”(c) < 0. In our case, multiplying (2.87) with v = —1 by ¢, yields

(2.102) E'@e) + M'(pc) =0
so that changing variables and employing (2.101)

, C2/p—d
(2.103) '(c) = M(¢c) = 5 M(¢1).
From this we infer
" 1(2—pd 2/p—d—1

Therefore it is seen
(i) ¥"(c) > Oifand only if p < 2/d,
(i) ”(c) < Oif and only if 2/d < p < 2/(d —1). (The condition p < 2/(d — 1) assures
existence).

Remark 2.1. Unfortunately, the physically relevant case p = 1 and d = 2 satisfies 3" (c) = 0, and so
it still remains an open problem to determinate stability or instability. Additionally, the range of indexes p
covered by the previous approach does not include an integer number.

Based on the previous remark, we decided not to proceed into any more aspects concerning
orbital stability /instability. However, after establishing a local well-posedness theory for (2.86),
one can adapt the ideas in [4, 6, 22, 25, 58, 70] for instance, to obtain stability of solitary wave
solutions for the case p < 2/d, and instability whenever2/d < p <2/(d —1).

2.6. A note on local unique continuation principles

This section is aimed to present some unique continuation principles for a family of general-
ized dispersive equations that incorporate the model (0.2). More precisely, the idea is to prove that
if u1(x,t),uz(x,t) are two suitable solutions of a dispersive equation for (x,t) € R? x [0, T], such
that there exists some non-empty open set ) = R? x [0, T] for which

ur(x,t) = ua(x,t), (x,t)eq,

Then it follows uq(x,t) = ua(x,t) forall (x,t) € RY x [0, T].

Our analysis on this subject is inspired by the recent results deduced by Kenig, Pilod, Ponce,
and Vega in [52]. We remark that some other unique continuation principles for (0.2) are estab-
lished in Chapter 3.
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In this section, we are interested in examine the unique continuation principle stated above
for the family of equations:

Onit — 0, D"u +uuy, =0, (x,t) e R, ae (-1,2)\{0}

(2.105) {u(x,O) (),

where the dimension d > 2, D?f = (—A)%?2f is defined by the Fourier symbol: |& |“f(§), Ig] =
ACE -+ Cﬁ. The case a = 1 coincides with (0.2), and a = 2 with the widely studied Zakharov-
Kuznetsov equation (see [55, 89]). The equation (2.105) for 1 < a4 < 2 can be regarded as a
mathematical model to measure the effects of dispersion on all the variables between the physical
relevant models a = 1 and a = 2. The cases a € (—1,1)\{0} can be implemented as a mathemat-
ical equation to measure the effects of weak dispersion and nonlinearity in a higher dimensional
model. We emphasized that 2 = —1 yields the equation:

(2.106) ot + Riu +uuy =0,

which can be seen as a mathematical extension of the Burgers-Hilbert equation (0.5).
Formally, real solutions of (2.105) satisfy three conservation laws:

I(u) = Ju(x, t) dx,

(2.107) M, (u) = JuZ(x,t) dx,
H,(u) = J‘D“/zu(x,t)‘z - %Lﬁ(x,t) dx.

Reffering to well-posedness for (2.105), the best known local well-posedness conclusion for 1 <
a < 2 were established in [80], it was proved that (2.105) is LWP in H*(R%) s > d/2+3/2—a
whenever 1 < a < 2. Concerning the initial value problem for the Zakharov-Kuznetsov a = 2, in
[53], it was shown LWP in H%(IR?) s > —1/4 and Global well-posedness (GWP) in L?(IR?), in [38]
it was determined LWP in H*(R%) s > (d —4)/2 for d > 3,and GWP in L?(IR?). As far as we know
there are non-standard results addressing well-posedness issues for the dispersions —1 < a2 < 1
with a # 0.
Our main result is the following:

Theorem 2.21. Let a € (—1,2)\{0}. Let uy, up be two real solutions of the IVP (2.105) such that
(2.108) uy, u € C([0, T); H*(RY))  C'([0, T); HY (RY)),

with s > max{a +1,d/2+ 1}, s/ > min{s — (a 4+ 1),s — 1}. If there exists a non-empty open set
Q c R? x [0, T] such that
ur(x,t) = ua(x,t), (x,t)eq,

then, u1(x,t) = up(x,t) forall (x,t) e R? x [0, T).
The existence of solutions for (2.105) in the class (2.108) can be obtained by applying a parabolic

regularization argument in the spirit of [45, 47] or [60, Chapter 10]. Notice that this technique does
not consider the effects of dispersion to establish the existence of solutions.
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We remark that some unique continuation properties of solutions to the Zakharov-Kuznetsov
equation (¢« = 2 in (2.105)) for dimensions d = 2,3 have been studied in [9, 16, 17]. Roughly,
in these references it was established that for two sufficiently regular solutions uy, up, if u; — us
decays fast enough at two distinct times, it follows 1 = u5.

A key argument in the proof of Theorem 2.21 is the following global uniqueness results for
fractional Schrodinger equation established in [32, Theorem 1.2].

Theorem 2.22. Leta e (0,2) and f € H*(IRY) for some s € R. If there exists an open (non-empty) set
O such that

(2.109) (=8)"2f(x) = f(x) =0, in D'(©),
then f = 0in H°(R?).

In the last theorem, D’(®) denotes the space of distributions on ©, i.e., the space of continuous
linear functional on CX(©).

Remark 2.2. The statement of Theorem 2.22 clearly extends to a € (0,00)\2Z. Indeed, writing a =
2k + b, where k € Z+ U {0}, b (0,2) and g := (—A)Xf, by using that (—A)¥ is a local operator we have

g(x) = (=0)*f(x) = (-A)"f(x) = (-1)"?g(x) = 0, in D'(O).

Thus, Theorem 2.22 establishes that ¢ = 0 in H*2F(R?), and so f = 0 in H*(R?).

Additionally, the conclusion of Theorem 2.22 holds for a € (—d/2,0)\2Z assuming that f € H*(R?)
for some s = 0 such that |s| > |a|/2. To see this, we first notice that by Hardy-Littlewood-Sobolev
inequality (—N)*%f is a well-defined function in LP(R?), where 1/p = 1/2 +a/d. Then, we let ¢ :=
(=A)1+2/2 £ 50 since (—A)15) is a local operator the desired conclusion follows by the previous result for
positive fractional derivatives and by observing that

g(x) = (=M (=A)"2f(x) = (=AMl (x) = (—=A)V2g(x) = 0, in D'(O).
PROOF OF THEOREM 2.21. We define w(x, t) := uq(x,t) — up(x,t), then
(2.110) Oy — Oy, D"w + Oy ugw + updy,w =0, (x,t) € RY x [0, T].

Since u1, up are in the class (2.108), the equation (2.110) is satisfied in He (R?) and in consequence
it is valid for almost every (x,t) € R? x [0, T]. Then it follows

(2.111) Ox, D'w(x,t) =0, ae. (x,t)eQ.

We emphasize that by Hardy-Littlewood-Sobolev inequality D*w(-, t) is a well-defined function
in LP(RY) with p = 2ifa € (0,2),and in1 < p < o with1/p = 1/2+a/d,ifa e (—1,0).

According to (2.111) there exist tp and ® = R open non-empty such that ® x {t;} = Q and
Ox, D*w(x,ty) = 0 for a.e. x € O.

Therefore, Theorem 2.22, Remark 2.2 and the fact that oy, w(+, t9) is a continuous function yield
Ox,w(x,tp) = 0 forall x € RY, that is, w(x1, X, tg) depends only on the variables x' = (xp,...,x,).
However, Fubini’s Theorem implies that w(-, x, to) € L?(R) for almost every x’ € R so it must
follows that w(x, ty) = 0 for all x € R?. This completes the proof. O
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Remark 2.3. The previous reasoning in the proof of Theorem 2.21 extends to the equation in (2.105)
with a more general non-linearity. As a matter of fact, Theorem 2.21 applies to any pair of appropriate
solutions uy, uy of the IVP associated to the equation

(2.112) Ot — 0, Du+F(u,...,0%u) =0, (x,t)eRI,

where a € (—d/2,0)\2Z, « € N? is a multi-index and F(-) is a reqular enough function representing the
non-linearity. In particular, taking F(u, 0x,u) = uFdy,u, k € Z*, we deduce Theorem 2.21 for the IVP
associated to (2.2).



Chapter

Study of the HBO equation in weighted
spaces

In this chapter, we study the initial value problem (0.2) in weighted spaces. Our purpose is
to establish local well-posedness results in weighted Sobolev spaces and to determine according
to them some sharp unique continuation properties of the solution flow. In consequence, optimal
decay rate for this model is determined. We remark that a key ingredient in our considerations
is the deduction of a new commutator estimate involving Riesz transforms (See Proposition 3.8
below). The results stated in this chapter are contained in [76].

3.1. Statement of results

This work is intended to determine if for a given initial data in the Sobolev space H*(R?) with
some additional decay at infinity (for instance polynomial), it is expected that the corresponding
solution of (0.2) inherits this behavior. Such matter has been addressed before for the Benjamin-
Ono equation in [27, 29], showing that in general polynomial type decay is not preserved by the
flow of this model. As a consequence of our results, we shall determine that the same conclusion
extends to the (0.2) equation.

Let us now state our results. Our first consequence is motivated from the fact that the weight
function (x)" = (1 + |x|?)"/? is smooth with bounded derivatives when r € [0,1]. This property
allows us to consider well-posedness issues for a more general class of weights.

PROPOSITION 3.1. Let w be a smooth weight with all its first and second derivatives bounded. Then,
the IVP (0.2) is locally well-posed in H*(R?) n L?(w?dx) for all s > s;, where s; = 5/3 and s; =
d/2+1/2ford = 3.

The proof of Proposition 3.1 is similar in spirit to that in [18] for a two-dimension model. A
remarkable difference is that our well-posedness results in Theorem 2.1 (see also [39]) enable us
to prove Proposition 3.1 in Sobolev spaces of lower regularity compared with those obtained by
implementing a parabolic regularization argument as in Lemma 2.10.

Next, we discuss LWP for the IVP (0.2) in the weighted Sobolev spaces Z;,(R?) and Z;,(R?)
defined by (1.1) and (1.2) respectively.

38
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For the purpose of obtaining a relation between differentiability and decay in the spaces (1.1),
we notice that the linear part of the equation (0.2) £ = 0; — R1A commutes with the operators

Tp=x + 16 (—A) Y2+ 1o, Ry, 1=1,...,d,

where in this chapter §; ; will denote the Kronecker delta function with §;; = 1if I = 1 and zero
otherwise, thus one has
(L, T)] = LT, —T,L =0.

For this reason, it is natural to study well-posedness in weighted Sobolev spaces Zs,(R?) where
the balancing between decay and regularity satisfies the relation, r < s.

Remark 3.1. For the sake of brevity, from now on we shall state our results for the (0.2) equation only
for dimensions two and three. Actually, it will be clear from our arguments that solutions of this model in
the spaces (3.1) behave quite different in each of these dimensions. Nevertheless, following our ideas one can
extend the ensuing conclusions to arbitrary even and odd dimensions.

Theorem 3.2. Consider d = 2,3. Let s > s; where s, =5/3 and s3 = 2.

(i) Ifr € [0,d/2 +2) with r < s, then the IVP associated to (0.2) is locally well-posed in Zs,(R?).
(ii) Ifr e [0,d/2 + 3) with r < s, then the IVP associated to (0.2) is locally well-posed in Zs ,(R?).

The proof of Theorem 3.2 is adapted from the arguments used by Fonseca and Ponce in [29]
and Fonseca, Linares and Ponce in [28]. Additional difficulties arise from extending these ideas
to the (0.2) equation, since here we deal with a higher dimensional model involving Riesz trans-
form operators. Among them, the commutator relation between R and a polynomial of a certain
higher degree requires to infer weighted estimates for derivatives of negative order. In this regard,
as a further consequence of the proof of Theorem 3.2 we deduce.

Corollary 3.3. Consider d = 2,3 and rg € [0,d/2). Let u € C([0, T]; Zs,(IR%)) be a solution of the
IVP (0.2) with (d/2+2)~ <r <s. Then

V| tu e C([0, T); L*(|x[*° dx)).

Where the operator |V|~! is defined by the Fourier multiplier |&|~! = (&2 + -+ ¢2) /2. Next
we state some continuation principles for the (0.2) equation.

Theorem 3.4. Assume that d = 2,3. Let u be a solution of the IVP associated to (0.2) such that
ue C([0,T]; Zo+ o(R?)) when d = 2 and u € C([0, T); Z33(R®)) when d = 3. If there exist two different
times t1,ty € [0, T|] for which

M(-, t]) € Zd/2+2,d/2+2(11{d), ] =1,2 then 1:1\0(0) =0.

In Theorem 3.4, u € Z,: ,(R?) means that u € H? (R?) n L(|x|*dx), where there exists a
positive number € « 1 such that u € H>™¢(R?).

Theorem 3.5. Suppose that d = 2,3, 1o = 3and r3 = 4. Let u € C([0, T]; Zy, ,(R?)) be a solution
of the IVP associated to (0.2). If there exist three different times t1, t, t3 € [0, T| such that

(v, t) € Zasaizanss(R?), j=1,2,3 then u(x,t) =0.
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It is worth pointing out that the deduction of Theorems 3.4 and 3.5 is more involved in the
odd dimension case, where the decay rates d/2 + 2 and d/2 + 3 are not integer numbers. Roughly
speaking, transferring decay to regularity in the frequency domain, on this setting one has to deal
with an extra 1/2-fractional derivative to achieve these conclusions.

We remark that similar unique continuation properties have been established for the Benjamin-
Ono equation in [29] and the dispersion generalized Benjamin-Ono equation in [28]. A difference
in the present work is that our proof of Theorems 3.4 and 3.5 incorporates an extra weight in
the frequency domain, which allows us to consider less regular solutions of (0.2) to reach these
consequences.

Remarks. (i) When d = 1, the conclusion of Theorem 3.2 coincides with the decay rates showed
for the Benjamin-Ono equation in [29, Theorem 1]. In this sense, our results can be regarded
as a generalization of those derived by the Benjamin-Ono equation (0.1). As a matter of fact,
Theorem 3.2 tells us that an increment in the dimension allows a 1/2 larger decay with respect to
the preceding setting.

(ii) The restrictions on the Sobolev reqularity stated in Proposition 3.1 and Theorem 3.2 are imposed
from the results in Theorem 2.1, which assure that under such considerations the solution u(x,t)
satisfies

(3.1) ue L'([0, T); Wh™(RY)),
Since we employ energy estimates to establish LWP in Zs,(R?), the property (3.1) is essential to
consider lower regularity solutions for our result in this chapter.

(iii) Theorem 3.4 shows that the decay r = (d/2 4 2)~ is the largest possible for arbitrary initial data.
In this regard Theorem 3.2 (i) is sharp. In addition, Theorem 3.4 shows that if uy € Zs,(R?) with
d/2+42 < r < sand1p(0) # 0, then the corresponding solution u = u(x, t) verifies

|x|@/2+2)7y e L*([0, T); L2(RY)), T > 0.
Although, there does not exist a non-trivial solution u corresponding to data ug with 119(0) # 0
with
1x|/2+2y e L ([0, T'); L2 (R%)), for some T' > 0.

(iv) Theorem 3.5 shows that the decay r = (d/2 + 3)~ is the largest possible in the spatial L>-decay
rate. As a result, Theorem 3.4 (ii) is sharp. In addition, Theorem 3.5 tells us that there are non-
trivial solutions u = u(x,t) such that

|x|@/23)7 e L®([0, T); LA(RY)), T >0
and it guarantees that there does not exist a non-trivial solution such that
1x|"2+3y e L ([0, T); L*(R%)),  for some T' > 0.

One may ask whether the assumption in Theorem 3.5 can be reduced to two different times
t; < ty. In this respect, we have the following consequences.

Theorem 3.6. Suppose that d = 2,3, 1o = 3and r3 = 4. Let u € C([0, T]; Zy, ,(R?)) be a solution
of the IVP associated to (0.2). If there exist t1,t, € [0, T], t1 # tp, such that

() € Zasaiaanss(RY), j=1,2,
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and
Jxlu(x, t1)dx=0 or fxlu(x, t)dx =0,
then
u=0.

Theorem 3.7. Suppose that d = 2,3, ro = 3 and r3 = 4. Let u € C([0, T];Z's,d(IRd)) with s =
d/2 + 4 be a nontrivial solution of the IVP associated to (0.2) such that

Up € Zd/2+3,d/2+3 (le) and Jxluo(x) dx # 0.

Let
4

ti= JXWO(X) dx.
| o]|z2
Ift* € (0, T, then
u(t*) € Zajar,as2+3(R%).

Remarks. (i) Theorem 3.6 tells us that the three times condition in Theorem 3.5 can be reduced
to two times t1 # tp provided that

Jxlu(x, t1)dx=0 or Jxlu(x, ty)dx = 0.

(ii) Theorem 3.7 asserts that the condition of Theorem 3.5 in general cannot be reduced to two different
times. In this sense the result of Theorem 3.6 is optimal.

(iii) In view of Theorem 3.7, we notice that the number of times involved in Theorems 3.4 and 3.5 is the
same required to establish similar unique continuation properties for the Benjamin-Ono equation,
see [29, Theorem 1 and Theorem 2]. Therefore, our conclusions on the (0.2) equation are again
regarded as a generalization of their equivalents for the Benjamin-Ono model.

Next we introduce the main ingredient behind the proof of Proposition 3.1 and Theorem 3.2.
When dealing with energy estimates, motivated by the structure of the dispersion term in the
equation (0.2), it is reasonable to try to find a commutator relation involving the Riesz transform,
in such a way that when applied to a differential operator it redistributes the derivatives lowering
the order of the operator. In this direction, we provide a new generalization of Calderén’s first
commutator estimate [12] in the context of the Riesz transform.

PROPOSITION 3.8. Let R; be the usual Riesz transform in the direction | = 1,...,d. Consider
a € C*(R?) with 0"a € L*(RY) for all multi-index vy, and f € S(R?). Then for any 1 < p < oo, any
multi-index o with || = 1, there exists a constant ¢ depending on « and p such that

1
(32) Riadf) —aRif = Y gdfaDR | <cuy 3 1Palelf
1<|Bl<]af ™ (Bl=lal
B . , . .
The operator Dy is defined via its Fourier transform as

33) Dha(@) =1 Mot () ate)



3.2. NOTATION AND PRELIMINARY ESTIMATES 42

In Proposition 3.8 the convention for the empty summation (such as >}, 5/-1) is defined as
zero. Consequently, when |a| = 1 we find

IR, alo* flly S IV al e [ £l -
where
[Rl,ﬂl]a“f = Rl(aa”‘f) — aRla”‘f.

Estimates of the form (3.2) are of interest on their own in Harmonic Analysis, see [56] for similar
results and several applications dealing with homogeneous differential operators. The result of
Proposition 3.8 may be of independent interest. Indeed, we believe that it could certainly be used
to derive other properties for the (0.2) equation.

In the present work, (3.2) is essential to transfer derivatives to some weighted functions. Ad-
ditionally, the operators Dgl defined by (3.3) are useful to represent commutator relations between
the Riesz transform and polynomials.

We will begin by introducing some additional notation and preliminary estimates to be used in
subsequent sections. In Section 3.3 we prove Proposition 3.1, and Theorems 3.2, 3.4, 3.5, 3.6 and
3.7 will be deduced in the following Sections 3.4, 3.5, 3.6, 3.7 and 3.8 respectively. We conclude
this chapter with an appendix where we show the commutator estimate stated in Proposition 3.8.

3.2. Notation and preliminary estimates

Besides the considerations introduced in Section 1.2, we require of some additional considera-
tions. But before we state these conclusions, it is worth to recall the result of Proposition 1.11 that
implies that all the estimates involving the Riesz transform and the weights {w?} (see (1.20)) are
independent of n € Z™ for some appropriated values of 6.

A radial function ¢ € CX(R?), with ¢(x) = 1 when |x| < 1 and ¢(x) = 0if |x| > 2 will appear
several times in our arguments.

Now, we introduce some notation that will be convenient in the proof of Theorem 3.4 and
Theorem 3.5. Given k =1, ..., d fixed, we define the operators F}"s as being:

(3.4) FE(L,E f) = oL (e"EI£(2))

for j =1,2,3,4. More precisely,

F{ (4,6, f) = g (ite1|E[)e" I £(§) + "1 105 £(E),

F(t,€, f) = 02 (itZ[€))e"IE £(2) + 8¢, (it&1 [E1) FF (1,8, f) + FF (4,8, 06, ),

Fi(t,G, f) = &3, (ite|§1)e" 1€ £(§) + 207 (itGalGl) FY (.G, F) + 05, (it51 ) F5 (1€, f)

+ F5(t,8,0z.f),

Fi(t, €, f) = o} (it&1|e))e™Ie £(2) + 362 (itea|&]) FE(t, €, f) + 302 (it&1|E)) FE (€, f)

+ 0, (G S (1,8, f) + F (1,8, 8¢, f)-

Additionally, the operators ﬁjk, j =1,2,3,4 are defined according to (3.5) by the relations

(3.6) Fi(1,6, f) = e " RIE (1,8, ).

(3.5)
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The following identities will be frequently considered in our arguments:

Ot (Cl|§|) S1k[G] + €|1§k 0§k(§1|5|) = 201k Igéfl * |C£| N %é;k,
(3.7) %2 (&118)) = 33>‘1"‘|é| 35”@?3 i‘(lzk i Clélik
& 581 &iéx &6y
- _ 125 5 k k 1522k
(BRI = 1288 + 12a7ls — 3 + 189 15

Next we discuss some properties of the operators Dgl defined by (3.3). The following lemma
is useful to estimate the L?-norm of these operators.

Lemma 3.9. Let a and B be multi-indexes and f € H*I~IFI(IRY). Then there exist constants ¢, € R
such that

(3.8) Dk (2%f) anR (IV[“-1Elfy,

where the sum runs over all index o = (07, . .., Oju|+|p|+1) With integer components such that 1 < 0; < d,
j=1,...,|a| + |B| + 1 and we denote by

Ro =Raor " Rojasppia-
For instance, when « = 0 and |B| = 1, say = ¢, one has
(39) Dit.f = =0ulVI7 f = RaRe(IVI7S),
and so, letting now a = ej,
(3.10) D;;kl Oxf = 01xRif + RiRkR;f.
PROOF OF LEMMA 3.9 . An inductive argument yields the following identity

Cl) _ Pg(¢)
4 g |21+

where Pg () is a homogeneous polynomial with real coefficients of order || + 1. Accordingly, we

(3.11) of ( £+0,

deduce the following point-wise identity

B (o -1 x el (PRI a1,
612 FDL @)@ = g () €7@ = (0 (B ) )
The proof is now a consequence of the fact that the inverse Fourier transform of

Pp(—ig)(—if)"
THICREEE

can be written as a linear combination of the operators R,, where ¢ = (07, ..., Tla|+| 5‘“) with
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As already mentioned, the operators Dﬁl are useful to express commutator relations between
Riesz transforms and polynomials. More explicitly, for a given a multi-index |y| = 1, we shall use
the following point-wise estimate

(313) R f= Y <g>(—1)5'“D§l(x”‘ﬁf),

0<B<y

valid for f regular enough with appropriated decay and satisfying for instance
Jxﬁf(x) dx =0, foreach |B] < ||
In particular, taking v = ¢, k = 1,...,d and recalling (3.10), we obtain
(3.14) (R, x¢]0x, f = Df{lé)xjf =01k Rif + RiR¢Rif.
Now we state some consequences of Theorem 1.13.
PROPOSITION 3.10. Let b € (0,1). Forany t > 0
(3.15) DY (™M) < (112 + 11°1x?),  xeR
PROOF. This result is proved following similar arguments as in [69]. O
By implementing Theorem 1.13, we deduce the following point-wise estimate:

Lemma 3.11. Let 0 € (0,1), 1 = 0,1 fixed and P(x) be a homogeneous polynomial of degree k > 0 in
R?. In addition, let g € L®(R?) such that | - |~'g, Vg € L®(RY). Then,

(3.16) D11 " 'P()g) (&) Sk (11| "glle + IVglle=) (141879,
forall ¢ # 0.

PROOF. Let! = 0,1, we write

f 1€ P(&)g(&) — € — 7| P& — )@ — )|

[y]i+20 diy

(D°(|-|7'P(1)8))*(©) =
(3.17)
= ) dn + e
ngmm{g/z,l}( ) 1 J|77|>min{|§/2,1}(
=T+ 77.

Given that P({) is a homogeneous polynomial of degree k, it is deduced

1
2 [ f L +f T
' ( |77|>|§|/2 |T]|d+29 mm{|g|/2/1}<m‘<‘g‘/2 |17|d+29 )

S 178l (1+18172).

(3.18)



3.2. NOTATION AND PRELIMINARY ESTIMATES 45

On the other hand, when |57| < min {|&|/2,1}, |7 — & ~ |&| and so
1E7P(@)g(@) = 1 = nI*PE — g (@ — )|
<[16"P(@) (3(6) - 8(& — )| + |6 *"P@) — Ig — P& — )| Ig(& — )]
5 nllg e — gl

5 vaHL(f |§|_l|17|+ 2 |€|k+l|€_ |k+l |g(g_17)|
(3.19) =0 ’7
g ] é‘ —nl
=0 1
IV8lo M-8l
< + .
Hence we get
2 =1l
7< (va!lm 4 H| | <§HL7)
5.20) B i
X e S (- 17'glEe + 1Vglie) (1 +1617%).
me{@/zﬂ} =z @0 % (U178l gle=)t )
Gathering (3.18) and (3.20), we deduce (3.16). 0

We are now in position to show the following result, which will be useful to deduce Theorems
3.4 and 3.5 in the three-dimensional setting.

PROPOSITION 3.12. Let ¢ € CP(R®) and P(x) a homogeneous polynomial of degree k > 1 in R>.
Then

(3.21) ‘I|)_(|'k)fg

Skg 1 f s+
Hl/2

Furthermore, if m is an integer with 0 < m < k,

(3.22) H ng

P rgk,m,g HfHHl/z'
H

PROOF. Let us first prove (3.21). Consider a function § € C*°(R?) such that §g = g, then from
(3.16) with I = 0, we have

[Fds],,. 5 st 020 P

SIfglee +IDY2(1-7*P()8) f8liz + Il - TP (D2 (£9) 12
S8l + - 1712 fgl 2
Thus, the commutator relation (1.25) with p; = 1 and p, = 2 yields

(3.24) £ 8l S 1£glz + 112, g1 f Iz + 18D 2 fllz Sg If lppnra-

On the other hand, taking 0 < € < 1, Holder’s inequality and Sobolev’s embedding imply

(3.25) 11172 f8lle S Wflara-olll - 1728l sras2e Sg 1DV flli2 < [Iflipaves

(3.23)
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6/(142¢)
loc

we get (3.21). To deduce (3.22), since P(x) has degree k, there exist finite multi-indexes £, ..., B
of order k — m and homogeneous polynomials Pg, (x), ..., Pg,(x) of order m such that

where we have used that |- |1 € L (R3). Thus incorporating the above estimates in (3.23),

1
(3.26) Px) _ 3 P, (%) 5,

| x[™ x|

j=1

Therefore, since k — m > 1 and xPig is a smooth function with compact support for each j, arguing
as in (3.23) and (3.24), we obtain

P(") L m ‘.
0 < S Ix] Py, (x) %P £ g 11

| ' |m H1/2 j=1
)
S D IxPifgliz + 11 - 17" Py, ()FDY2(xPi fg) |12 + | DV2 (x| Py, (%)) xPi 8] 12
j=1
!
S 2 1P fglmn + 2P gl S e
j=1
The proof of the proposition is now completed. O

3.2.1. Approximation by smooth solutions. The results concerning local well-posedness for
the TVP (0.2) in classical Sobolev spaces H*(IR?) are fundamental in our arguments to extend the
LWP result to the weighted domain. In this regard, part of the proof of Theorem 2.1 (see also [39,
Proposition 5.10 and Lemma 5.9]) guarantees existence of solutions of (0.2) as the strong limit of
smooth solutions in the class

C([o, T); H*(RY)) n L ([0, TS, Wh(RY)),

whose initial data are mollified versions of ug in the sense of the Bona-Smith argument [7]. More
precisely, for a given solution u € C([0, T]; H*(R%)) n L!([0, T]; WY (R?)) provided by Theorem
2.1, there exists a sequence of smooth solutions of (0.2), uy € C([0, T|; H* (R%)) N > 1, such that

(3.27) sup [un(8)[re < 2[uolps
te[0,T]
and
(3.28) uy — u inthe sense of C([0, T]; H*(RY)) n L!([0, T]; W (R?)).

Therefore, (3.28) will be useful to perform rigorously weighted energy estimates at the H*(IR?)-
level stated in Theorem 2.1, and then taking the limit N — oo to deduce Proposition 3.1 and
Theorem 3.2.

3.3. Well-posedness in H*(RY) n L2(w? dx)

In this section we establish local well-posedness in the space H*(R?) n L?(w? dx), that is to say
we deduce Proposition 3.1. We require the following result.
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Lemma 3.13. Let w be a smooth weight with all its first and second derivatives bounded. Define
(3.29) wy(x) = w(x)e*/\‘x‘z, xeRY, Ae(0,1).
Then, there exists a constant ¢ > 0 independent of A, such that
[ walleo < ¢,
where « is a multi-index of order 1 < |a| < 2.
PROOF. The proof is similar to that in [18, Lemma 4.1]. O
Now, we proceed to deduce well-posedness in H*(R?) n L?(w? dx).

PROOF OF PROPOSITION 3.1. Given ug € H*(R) n L?(w? dx), from Theorem 2.1, there exist
T = T(|uo|y:) > 0, u € C([0, T]; H*(R?)) solution of (0.2) with initial datum uy and a smooth
sequence of solutions uy € C([0, T]; H® (R?)) with uy(0) € L2(w? dx), satisfying (3.27) and (3.28).
We shall prove the persistence property u € C([0, T]; L*(w? dx)).

We first perform energy estimates for the regularized solutions uy € C([0, T); H*(R%)), N > 1.
Let w, be defined as in Lemma 3.13. Since w, is bounded and uy is smooth, we can multiply the
equation (0.2) associated to uy by w3uy and then integrate on the spatial variable to deduce

d
(3.30) 7 J(wAuN)Z(t) dx — fw)\RlAuNwAuN dx + fwAuN&’xluNw)\uN dx = 0.

The nonlinear term can be bounded as follows

fwAuNé’xluNwAuN dx| < HVUNHL}‘ HwAuNH%%

To control the factor involving the dispersion, we write
(3.31)
- a)ARlAuN = [Rl,wA]AuN — Rl (wAAuN) = [Rl,wA]AuN — Rl([w/\, A]MN> - R1A<w/\MN).

Since the Riesz transform R is an skew-symmetric operator it is seen that
— JRlA(wAuN)aJAuN dx = 0.

Thus, it remains to control the first two terms on the r.h.s of (3.31). In light of the commutator
estimate (3.2), Lemma 3.9 and (3.27), we have

d d
|[R1, w]Aun| SZI\[RLWA]@%,L!NHL; < Y lePwrliefunliz + > D] Haﬁnglai,»MNHLg
=1 1BlI=2 j=11p1=1

d
2
Slunliz+ Y Y. [0Pwa ] |DR, &% unlliz
j=11pl=1
S lunllipns < luolles,
where the implicit constant on the r.h.s of the above inequality is independent of A by virtue of

Lemma 3.13. On the other hand, the identity

[w)\, A] unN = (ACUA)MN — ZVwA : VMN
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and (3.27) yield
IR1([wp, Alun)l 12 S 8wl e [unllz + Vol [Vun| 2
S (JAwa o + [Vewa] ) Juol g -
Gathering all these estimates, there exist constants ¢y and c¢; (depending on the L*-norm of the
weight w and its derivatives, and independent of A) such that
2

— Jwaun (B)][72 < coJuollps lwrun (82 + 1 [Vun] o leoaun ()72 -

dt
Consequently, in view of Gronwall’s inequality we arrive at
(3:32) Jaorun (D)2 < (Jlworun (0)] 2 + o gl £)ect ol TNl s,

From (3.28) and the fact that w, is bounded, one can take the limit N — o0 in (3.32) to find

s ()2 < (Jlonttoll 2 + co oy £)et BIT#Mi o5

< (Jwttol 2 + co o] e £)er BIVHEIer o
The above inequality and Fatou’s lemma yield
(3.33) lwon(®)l2 < (lewonollz + co ol e BITHOhr &, 0 < ¢ < T,

This shows that u € L®([0, T]; L?>(w?dx)). Let us prove that u € C([0, T]; L?>(w?dx)). Firstly, we
claim that u : [0, T] + L?(w? dxdy) is weakly continuous. Indeed, for a given g € S(IRY),

6 U ) —u(t))wgdx| < U s)—u(t))(w—wy)gdx|+ fw(u(s)—u(t))w;\gdx
3.34
S tS}gI;] lwou(t)] 2 | (w0 — wr)glp2 + uls) — u(t) |2 | wwaglpa -

Therefore, since |ww) gl < |w?g|2 < o, by using that g(w — w)) — 0as A — 0in L?(R?) (due
to Lebesgue dominated convergence theorem), (3.33) and the fact that u € C([0, T]; H*(R%)) for
s > 0, we can take A — 0in (3.34) to deduce weak continuity.

On the other hand, the estimate (3.33) yields

o (u(t) — o) B = ai(t) 2 + o2 — 2qu<t>wuo dx
(3.35)
< (wuol| 2 + cot)2 261 5o Vu(s)l o ds + kuoﬂiz — 2qu(t)wuo dx.

Clearly, weak continuity implies that the right-hand side of (3.35) goes to zero as t — 0*. This
shows right continuity at the origin of the map u : [0, T] — L?*(w?dxdy). Fixing T € (0,T) and
using that (0.2) is invariant under the transformations, (x,t) — (x,t+ 7) and (x,t) — (—x, T —
t), right continuity at the origin entails continuity in all the interval [0, T], in other words u €
C([0, T); H*(R%) A L*(w? dx)).
The continuous dependence on the initial data can be deduced from its equivalent in H*(IRY) and
employing the above arguments. The proof of Proposition 3.1 is now completed.

O
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3.4. Well-posedness in Z;, and Zsr

In this section, we prove Theorem 3.2. When the decay parameter r € [0, 1], the weight (x)"
satisfies the hypothesis of Proposition 3.1. Thereby, we may assume that 1 < r <s.

Let u € C([0, T]; H*(RY)) be a solution of (0.2) with initial datum ug € Zs,(IR%) provided by
Theorem 2.1. We shall prove that u € L®([0, T]; L?(|x|*" dx)). Once we have established this con-
clusion, the fact that u € C([0, T]; L?(|x|*" dx)) and the continuous dependence on the initial data
follows by the same reasoning in the proof of Proposition 3.1.

We begin by giving a brief sketch of the proof. Let m be a non-negative integer, 0 < 6 < 1 and
write 7 = m + 1+ 6. Consider k = 1,2...,d, multiplying (0.2) by w2?x2"y (where w, is given
by (1.21)) and integrating in R we obtain
;ddt J (w}ﬁex,’fu)z(t) dx — J Wi xRy Auwl MO x My dx
(3.36)
+ Jw”oxk udy uwh O xMudx = 0.

Arguing recursively on the size of the parameter r = m + 1 4 6, starting with m = 0, we will de-
duce from previous cases (decay r < (m — 1) + 1+ 6), that u € L*([0, T]; Zs,_1 (IR?)) and satisfies
(3.37) sup ([ (Bl + ) KA aPu() ) < ¢

te[0,T] 1<|Bl<m
where C;! depends on T, |[uo| s, [ {x) 1ol 2 and SoT [u(T) [ wror (rey dT. With the aim of (3.37), we
proceed to estimate the last two term on the left-hand side of (3.36) to obtain a differential inequal-
ity, which after adding for k = 1,...,d has the form

d d d

d
i 25 It xulz) < K3, oy xgulfa) " + Ko ) oy Oxful)
k= k=1 k=1

(3.38)

for some positive constants K; and K. Then Gronwall’s lemma shows

Z Jwy P xu(t) |2 < C
and so letting n — o0, one gets
(3.39) sup [0 ()] < Ca,
re[0,T]

where C; is independent of n, depends on T, ||ug] s , [|[{x)"ug| ;2 and HuHLlTWM (R)-

Therefore, we continue in this fashion, increasing r = m + 1 + 6 and deducing (3.37) in each
step to conclude the proof of Theorem 3.2 (i). This same procedure also provides a method to
deduce Theorem 3.2 (ii). However, in this case the estimates for the integral equation (3.36) require
of additional weighted bounds for derivatives of negative order, which will be deduced from the
hypothesis #(0) = 0. This discussion encloses the scheme of the proof for Theorem 3.2.

ISince we rely on Gronwall’s lemma to attain our estimates, one may expect that C; depends on H<x>r —1BloBy, H 2
for each multi-index 1 < |B| < m. However, the interpolation inequality (1.28) shows that these expressions are
bounded by |uo] = and [<x)"Lug|| 2.
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Next, we state the main considerations to get (3.37). As above, letr = m 41+ 60 withm > 1,
consider a fixed integer 1 < I < m and a multi-index < of order I. We use the (0.2) equation to
obtain new equations

(3.40) 01(0"u) — R1A u + 07 (uuy,) = 0.

After multiply (3.40) by w%\frzsxim*%" 07u and integrate over R?, it is deduced

1d

5T J (wpox m(?%t) (t)dx — Jw}ﬁex;("WRlAé’“’uwﬁex,’?mmu dx

(3.41)
+ Jw}fexf707(u6x1u)w,11+9x1’f|7|87u dx = 0.

Estimating the above equivalences for allk = 1, ...,d and each multi-index 7y with |y| = I, we will
deduce a closed differential inequality similar to (3.38), which yields L2 ({x)*~?' dx) bounds for all
derivative of order |y| = I. Then, adding for [ =1, ...,m, (3.37) follows.

A first step to study (3.36) and (3.41) is to reduce our arguments to bound the dispersive terms
corresponding to the second factors on the left-hand sides of these equations. Indeed, we first
consider a fixed decay parameter r = m + 1 + 6 for some nonnegative integer m and 6 € [0,1].
Then, the nonlinear part of (3.36) can be controlled as follows

U Wl 1y, uwl PP u dx| < IVu] s u2,.
X

Since our local theory in H*(IR?) assures that u € L((0, T); W"*(R%)), the above expression leads
to an appropriated bound after Gronwall’s Lemma. Now, we proceed to bound the nonlinearity
in (3.41). Here, m > 1 and we shall assume from previous steps that

(3.42) sup ([ 2u(t)| .+ Y Ko TFPu(t))) < G,

re[0,T] 1<|Bl<m—1

where the constant C3 has the same dependence of C; in (3.37), after changing by r — 1. We write
Jw}l%xz_mw(u&xlu)w,lfexf_76%1 dx

. 1460 . m=[Y| Av1,, A72 146, m—=|7| xy
= > c%%fwn xp oMU op uw, x0T u dx

(3.43) T1t72=7
= Z (- )+ Z (- )+ Z ()
T +r2=Y T1+Y2=Y T1+Y2=Y
Im|=0or [7i|=7] Iml=1 2<Iml<lv-1
=: B; + B, + Bs.
We proceed to estimate the terms B, j = 1,2,3. Formally integrating by parts in the x; variable
gives
1 _ _ _ _
B =3 fw,lfex;f mé”u&’xluw,lfgx;f Mary dx — Jé’xl (whtox]" m)u&"uw%”xf My dx.

Then, when |y| = m, using that |Vw.?| < |wf| with a constant independent of n, we find

140
Bil S (Il + IVl ) lwn 07 ullg,,
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which is controlled by the local theory after Gronwall’s lemma. Now, when 1 < |y| < m, the
inequality (1.22) reveals that

1+6 — 1+6—-1—
|ax1 (wn+ x;{” |7|)| 5 <x>m+ + M/
with implicit constant independent of 1, and so
[Ba| Sl 1) = M0 u o o0y 0 + |V 1 ok O 0,

Since 1 < |y| < m, our assumption (3.42) shows that the above expression is controlled. This
completes the estimate for B;. Now, we consider By, in this case |y1| = 1, then 0720y, has order ||

and so
jwh oM oPu) o Jwh O Mo .

|Bo| SVulz )
Bl=[7]
Notice that the previous estimate is part of the differential inequality collected after adding (3.41)

for all multi-index of fixed order ||. To control the last term, we use that

w111+9 |xk|m7\'y| g <x>1+9+m71*(|72|+1)’

whenever v = 71 + 72 and 2 < |y1|. Then Sobolev’s embedding gives,

Bal S Y M ulig koMo o, u o lwh Oxy Mo u)
2421
<Iml<lyl-
(3.44) e
< Y ey (1D a2, ) ko Mo,
Y1t+72=Y
2<m|<l/-1

for any € > 0. Since |y1| < m —1, taking 0 < € < m+ 1+ 60 — |y1| — d/2 and recalling that the
regularity s > r = m + 146, we get

H]WHWIHGMHL; S ol s

for all |y1| < m —1. Plugging this information in (3.44) and using (3.42), we get a controlled
estimate for Bs. This completes the study of the non-linear term (3.43).

Thus matters are reduced to control the second term on the left-hand sides of (3.36) and (3.41).
Since the estimate for the latter can be obtained from the former by changing the roles of u by 0"u,
we will mainly focus on the Lh.s of (3.36). Whence we write

WO Ry Au
=w TRy (k' Au) + wl T [x", Ri] Au
=wORIA (XM u) + wh R ([x, Alu) + wlt® [x", Ry Au
(3.45) =Ry (wiPA(x"u)) + [wl ™, Ri]A(x u) + wh™OR ([xf, Alu) + wh ™ [, R1] Au
Ry A ) + Ra ([}, Al (xffu) + [k, Ry AGE ) + bRy (o, Alu)
+ wit? [, Rq] Au
=R A(wy xu) + Q1 + Q2 + Q3 + Qu.

To simplify our arguments, the same notation Q; will be implemented for different parameters r

1+9

previously fixed. Inserting R1A(w,, ™ x}'u) in (3.36), one finds that its contribution is null since
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the Riesz transform defines a skew-symmetric operator. Accordingly, it remains to bound the
Qj-terms to deduce Theorem 3.2.

3.4.1. LWP in Z;,(RY) for r € [0,3) if d = 2, and r € [0,3] when d = 3. We divide the proof
into two main cases.

Case 1: r € [0,2]. As discussed, when r € [0, 1], LWP is a consequence of Theorem 3.1. Suppose
that » > 1, so our conclusion is obtained from (3.36) withm = 0,r =1+ 60 € [1,2] with0 < 0 < 1.
Notice that we do not require to deduce weighted estimates for derivatives. Besides, Q3 = Q4 =0
in (3.45), which reduce our arguments to handle the terms Q; and Q>.

We write

Q1 = ~Ri(A(w: ) u +2Vwl ™ Vu).
Then, the properties of the weight w,, in (1.22) lead to the following estimate
(3.46) 10112 S @)Vl S IV (@hu) |z + [Vwhule S 1V (whu)| 2 + [u] 2
The interpolation inequality (1.28) shows

0/(1+6 1/(1+6
(3.47) IV (@)l S 17 @)l S leok g0 000

Note that this imposes the condition r = 1+ 60 < s. Applying in (3.47) Young’s inequality and
going back to (3.46), we bound Q;. To estimate Q,, we apply Proposition 3.8 to find

d d
(348) [Qallz < X [wy ™, Ralotuliz S 35 X5 0Py ulia + ) I\ﬁﬁwfeDzﬁaﬁéul\Lg-
j=1 j=11pl=2 1Bl=1

The second term on the r.h.s can be bounded by combining Proposition 1.11, (3.10) and (1.22) to
obtain

(3.49) |0Pwy DY %l S SuklwhRionul 2 + [wh RiRkR x| 2 S |whul 12,

0 < 20 < 2 < d, which is controlled as in (3.47). Notice that the above argument fails when 6 = 1
in dimension d = 2 (since w? does not satisfies the A,(IR?) condition), instead letting B = ¢;, we
use the identity (3.10) to write

wanﬁi” =01,1WnRj0x;ut + wn R1R R j0xu
(350) :(Sl,l [wn/ Rj]axju + 51,1Rj(wnale/l) + [wn/ R]]aij[R]‘u + Rl ( [wn/ Rl]aijju)
+ RaRi([wy, Rj]axju) + RleRj(wnﬁxju).

Hence, the decomposition (3.50) allows us to apply Proposition 3.8 with one derivative to get

2
(351) S 1P D 2 uliz £ ) fwaDfh & uliz < luliz + lwads ] 2.

1Bl=1 I=1
It is worth to notice that the above argument also establishes the bound (3.49) without the aim
of Proposition 1.11. In this manner, the right-hand side of (3.49) and (3.51) can be estimated as in
(3.47). Putting together these results in (3.48), we bound Q> by Gronwall’s terms. Finally, inserting
the above information in (3.36) with m = 0 yield the desire conclusion.
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Case 2: r € (2,3)ifd = 2and r € (2,3] whend = 3. By setting m = 1 and r = 2 + 6, with
0 <6 <1ifd =2 and including 6 = 1 if d = 3, our conclusions are obtained from (3.36). We first
claim that

(3.52) sup [x)""'Vu(t)]2 < M,
t€(0,T]

with M depending on |uo| s, [[{x) o] ;2 and T. This estimate is derived from (3.41) with m = 1
and v of order 1. Hence, (3.52) is established by reapplying the same arguments in the previous
case, substituting u by dy,u, I = 1,...,d in each estimate. Notice that in this case, (3.47) is given by

6/(1+6) 1/(1+6) 0/(1+6) 1/(1+6
11 (wnds )iz < lwn ™ omully 700, H 'S w0 ou H I 0u H :

7

which leads to a controlled expression after Young’s inequality, since Hwﬁe&xlu\m is part of the
Gronwall’s term to be estimated and 2 + 6 < s. It remains to study the factors Q; in (3.45). To treat
1, we write

(w30, A (i) = =M (wy ) xiu = 2V (w,7) - V ()

3.53
(359 = —A(wh ) xu — 20y, (wh™)u — 26,V (wlt?) - Vu

This expression and (1.22) imply
(3.54) 1Q1l12 S [KOuliz + [y oV 2 S [<xul 2 + KTV 2.

Notice that [|(x)u| 2 is bounded by the preceding case and e 3aaven| 12 by (3.52). To deal with
>, we gather Proposition 3.8, Lemma 3.9 and (1.22) to find

1Qalliz S ez + Y, 1P, D Alxian)| 2 S vkl + [ wh DR, Alen) 1z
(3.55) Bl=1
S Koullz + lwhaVuls,

which is controlled due to (3.52). To estimate Q3 we employ the following point-wise inequality

d
Q3] = | = 2w, " R10wu| S |whRidxu| + Y [whxRidxul

(3.56) =1

d d
< Wi Ry Oy, u| + Z w8 [x1, R1] 0, u| + Z [ Wi Ry (x)0x,1)),
=1 =1

which hold since w:? < wf + |x|wf. Thus, recalling (3.14) to handle the second term on the r.h.s
of (3.56) and using Proposition 1.11 with 0 < 0 < 1whend = 2, and with0 < 6 <1 whend = 3,
it is deduced that

13112 < lwhowul iz + |whul iz + lwhlxlxul 2 < 1C0 ull + Kx) Va2

which is controlled by previous cases and (3.52). This complete the estimate for Q.
Next, we use the identity (3.14) to write Q4 as

14 146
Qs = w, " [xx, Ra]Au = —w, DY Au.
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Using again the inequality w:™® < w9 + |x|w?, we find
d
0 0
|Qalli2 S Il DR Aulz + ) |whxi D Az
=1
It is not difficult to see that forallj =1,...,d

e A2 . e+-ex A2 53 2
XD 0y u = =D "oy u + DRl(xléxju)
_ e +ex A2 93 )%k
= —Dg, "oy u+ DY O, (x10x,u) — 851D Ox;u.

Thus, combining the above decomposition, Lemma 3.9 and Proposition 1.11 with 0 < 6 < 1 if
d=2o0r0 <6 <1whend = 3, we obtain

d

(3.57) 1Qallr2 S lwpulz + wh Vil + ) wha Vil 2.

=1
The above expression is controlled by previous cases and (3.52). This concludes the estimates for
the factors Q;.
Finally, gathering the above information in (3.36) with m = 1 and recalling our previous discus-
sions, we have deduced Theorem 3.2 (i) when d = 2. In addition, when d = 3, we have shown
that u € C([0, T]; Z,s(R®)) with r € [0,3], s > 7.

3.4.2. LWP in Z,,(R3), r € (3,7/2). In this part we complete the proof of Theorem 3.2 (i)
for d = 3. To obtain our estimates, we consider the differential equation (3.36) with m = 2,
0<0<1/2,r=3+0andr <s.

We start by deducing weighted estimates for derivatives of u. Considering (3.41) with m = 2
and 7y of order 2, we can reapply the argument when the decay parameter 7 lies in the interval
(1,2] to deduce

r—2
(3.58) sup |52:2 [y ~20Pu(t) |12 < Mo,
where M depends on |ug| s, [|[(x) 19,2 and T. Therefore, setting m = 2 and <y of order 1 in (3.41),
the inequality (3.58) allows us to argue exactly as in the previous subsection to deduce

(3.59) sup [(x)" " Vu(t)[ 2 < My,
te[0,T]

with M; depending on |ug] s, [{x)"uo[ ;2 and T. Now we can proceed to estimate the terms Q;
defined by (3.45) with m = 2.

We can deduce a similar estimate as that of (3.53) dealing with x?, then by employing (3.59),
we derive a bound similar as the one in (3.54) to finally control Q;. The estimate for Q is achieved
as in (3.55) employing Proposition 3.8, substituting x; by x]% and controlling the resulting factor by
(3.59). The terms Q3 and Qy can be controlled from the fact that w?*2? satisfies the hypothesis of
Proposition 1.11 whenever 0 < 6 < 1/2. Indeed, writing

(3.60) Qs = 2wl P Ryu — 4wk Ry (xy oy 1)
and employing identity (3.13) with B = 2¢,

Qs = wy " [xZ, Ra]Au = wy " D Au — 2w} M D A(xu) + 4w} D oy, u.
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Then Lemma 3.9 and Proposition 1.11 imply

(3.61) 1Qsl2 + 1Qualiz S lwyPulz + ooy xVul 2 S I 2ulz + [0 Vul 2,
which is bounded by previous cases and (3.59). Whence inserting this bound in (3.36) yields the
proof of Theorem 3.2 (i).

3.4.3. LWP in Z,,(R?), r € [3,4). Here we restrict our arguments to dimension d = 2. Our
conclusions are achieved from (3.36) by setting m = 2,0 < 6 < 1 and so r = 3 + 6. When the initial
datum ug € Zs,r(IRz), 3 <r <4andr < s, we can repeat the arguments leading to (3.58) and (3.59)
in dimension 3 to deduce

(3.62) sup > [ Mau(t)] 2 < Mo,
te[0,T] 1<|y|<2

where My depends on |ug| s, [|(x) uo] ;2 and T. On the other hand, when (0, t) = 1p(0) = 0 in
R2, we claim

(3.63) sup [<0)°V[7hu () | 2re) S M
t€[0,T]

for all 0 < 6 < 1 and M; depending on |ug|| s, [{x) uo|;2 and T. Indeed, let ¢ € C*(R?) with
¢ =1 when || < 1and write

(3.64) De(Ig17'2(2)) = De (817" a(@)¢) + De (1217'a(0) (1 - ).
In sight of the zero mean assumption and Sobolev’s embedding
(3.65) 181712 S I Vily < 100 ull
for all € > 0. Hence, from (1.26) and Lemma 3.11 one deduces
D221z < IDL(E 209 1z + 116 A1~ )
< 121 R (@)l + 1281 2E)9) Iz + 1t | VPl
S IVl 912 + 1D (18171(8)) @iz + 11817152 Degloz + il
S IVl 1912 + (IVEl Lz + NS ey ) (21 @l + 191i2) + 1l gy

(3.66)

Consequently, the above estimate and (3.65) yield

(3.67) sup [0 [V u(t)2 S sup <P u(t)] .

te[0,T] te[0,T]

Since the right-hand side of the above inequality is bounded by previous cases whenever € < 1,
the proof of (3.63) is now completed. In this manner, with the aim of (3.62) and (3.63) we proceed
to estimate the terms Q; given by (3.45) with m = 2.

The analysis of Q; and Q> is obtained by implementing the same ideas leading to (3.54) and (3.55)
respectively. To estimate Q3, we write

(3.68) Qs = 2w P Ryu — 4wl R (0 u) = 2w PR u — 4wk TR (04, (xiut)),
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then using that w}? < wf + w!|x|, it is not difficult to deduce a similar estimate to (3.56) to find
01|~ 0 0
1Qalz < I IV iz + <) ulz + K> OV ul 2.

Now, we detail which estimate requires the negative derivative in the above expression. Arguing
as in (3.56) to study the first factor on the r.h.s of (3.68), we have

d
jwi P Rau| S lwh Raul + D [w [xy, Raul + [’ Ra (xyu)).
=1

Since w®[x;, R1]u = —w® Df{l (1), Lemma 3.9 shows that this expression is bounded by [[(x)?|V |~ 1u|| 12
To study Q4, we consider the identity

(3.69) Qs = wi ™ [, R1] Au = w) P DR*Au — 2w} D A(xqu) + 4wy "D oy, u

Then using that w)™® < w? + wf|x|, by a similar reasoning to the deduction of (3.57) we find

(3.70) [Qallz S KXV utliz + )T Pul 2 + <) OV 2.

Once again, it is worth pointing out which expressions require to consider negative derivatives
following the ideas behind (3.57) to control Q4. Indeed, this procedure yields the identities

(3.71) DY Au = D Au + DR*A(xqu) — 2D3 0,1

and

672 XDy Ox,u = [x1, DY 10y, + D (x10x,14)

' = —D%’:re"&xku + D Oy (x1u) — 64,1 DY -

Hence, we use Lemma 3.9 and Proposition 1.11 to get
0 2+ 0 et 01|~
Jeon Dy Al + ey D Ol + | DR iz S | VI~ u gz

Finally, from the previous conclusions we have completed the proof of Theorem 3.2 (ii) for the
2-dimensional case.

3.4.4. IWP in Z;,(R3), r € [7/2,9/2). Here we assume that r € [7/2,9/2) with r < s and
1p(0) = 0. As usual, letting r = 14 m + 6, our estimates are derived from (3.36) with m = 2,
1/2 < 6 < 1whenr € [7/2,4], and setting m = 3,0 < 6 < 1/2if r € (4,9/2). By recurring
arguments employing (3.41) and proceedings cases, starting with the derivatives of higher order
and then descending to those of order 1, it is not difficult to observe

(3.73) sup Z [y~ PloPu(t)) 2 < M,
’ te[0,T] 1<|pl<m

where M depends on |ug| gs, [|[{x) 1012 and T. On the other hand, we claim

(3.74) sup [V u(t)] 2 < M,
te[0,T]

forall 0 < § < 3/2. As above, we let ¢ € CZ°(IR?) such that ¢(¢) = 1 when |¢| < 1. We decompose
according to

DY(|&| 71 (&) = DE(IE|" a(&)¢) + DE(|&7 (&) (1 — ¢)).
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Given that 6 < 2, from Sobolev’s embedding
675 ID2(ET 2@ - 9) i S IETEE) (1 - @)l S il S K0 ulz.

Consequently, it remains to estimate the L2-norm of Dg (1&]71(&)¢(&)). The assumption #1(0) = 0
along with Sobolev’s embedding yield

(3.76) 1611201 S IVl < 1602 €ul ;.
Let us suppose first that 0 < § < 1, the above inequality then shows

D2 (@)9) Iz S 1121 @@Ly S NS G @)@+ V)l iz + 12129 1 + 181 Vgl 3
S IVl (19l + IVl + 11 17 liz)

5/2
SIG>2 eu] 3,

where we have used that |¢|~! € L2 (IR®). This concludes (3.74) as soon as 0 < 6 < 1. To deduce

(3.74) when 1 < § < 3/2, welet0 < §* < 1/2 and equivalently we shall bound the L2-norm of the
expression
D" 0z, (121 '6(¢)9) == DE" (181 °¢i(@)) —iDg" (161 u(C)9)

+DE (1817'(2)09),

forall | = 1,2,3. Since 0¢,¢ is supported outside of the origin, the last term on the r.h.s of (3.77) is
bounded as in (3.75). To control the remaining parts we require a preliminary result.

(3.77)

Lemma 3.14. Let ¢, 1 € C°(R®) and 0 < 0* < § fixed, then

(3.78) 19D (|- | 19) |12 Sor g 1
and
(3.79) 16D (|| 1)1z Soxgp 1-

PROOF. We write
[oD (-] 1) (&) 2
_ J @IS~ 9 (G) = 1n "¢ (n)]
R3xRR3

|é’ _ 77|3+29*

2
dnydg

21p(@) —y Ol & = I PP
<f QRO IOCs s [ e RO 4 g

=7+ 11
From (1.27) and the fact that |Z| 1¢(&) € L?(R?),

~ _ * 2 _
ZS-17'9D" 9l7 S (1llpe + 1Vl )7 - 17 ¢l 72
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On the other hand, gathering together Fubinni’s theorem, Holder’s inequality and Hardy-Littlewood-
Sobolev inequality we find

~ [p(n)? 1 p(2)?
<
1z NL@XW RGP Em jcp

1
iy g 121 DI gy * 11 19O ()

—1,02 —1492
Sl - 17 ¢z,
where in order to control the above expression one must assure that 1 < p,q < 3/2 with

ES
L2 1 200 o prcpn
g 3 p 3

Note that2/3 <1/g < 1,if and only if, (2 —-26*)/3 <1/p < (3 —26*)/3,and since2/3 < 1/p <

1, we get
2 1 3-20*

35p° 73
Consequently, for fixed 6* € (0, %), one can always find p assuming the above condition. This

establishes (3.78). To prove the last assertion of the lemma, we use the commutator estimate (1.25)
to find

1D (|- 17" 9) 2 S 1D, ¢l - [Tl + D (1 - 171 9) 2
S (17 @l + 1D Pl + l@le ) I 179l + 19D (17 9) 12
which is bounded by (3.78). 0

Now, we can estimate the first term on the r.h.s of (3.77). In view of the zero mean assumption
and Sobolev’s embedding we get

(3.80) I181728(8)] S IVitly S 160> €ul e,

where we have set € > 0 small to control the above expression by the result in Theorem 3.2 (i).
Thus, let ¢ € C*(R?) with ¢¢ = ¢, combining (3.80), Lemmas 3.11 and (3.79) we get

IDE" (12176 (0§ ()P (2)) I12
< -3z ~ —1 ~D9* —2x ~ —2x ~ DQ* 115
S S cu(@)e(e)z + 1161~ ¢Pe (I817"Gru) [z + [1617CiugD™ (1 - |7 P)l 12
S @l + 01 @l + 19D (-1 12) Vil 1z
S x> €ul 2
To deal with the second term on the r.h.s of (3.77), we use Lemma 3.14 to find
IDE" (|- |1 50) |z S IDE 5l - |l + |50GDE (|+179) Iz
S CGams @)l - 17 @l + 10> > € ul 2 |6DE (|- |7 ¢) 2
S sl gy 1 ol Tl + Dl a1 1@ Tl | e
+ 160> <ul 2 [$DE (| - |7 9) 12
S K2 |

where we have used that Hx/quL;, < H<x>5/2+€u|\L% for all € > 0. Notice that when 0 < e < 1—6%,
Theorem 3.2 (i) assures that the r.h.s of the above inequality is controlled. This shows that (3.77) is
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bounded for all [ = 1,2, 3, which establishes (3.74).

Proof of LWP in Zs,(R3), r € [7/2,9/2). Inlight of (3.73), (3.74) and Proposition 1.11 with0 < 0 < 1,
one can employ the same line of arguments leading to LWP in Z;,(IR?), r € [3,4) to deduce the
same conclusion in Z,(IR?) r € [7/2,4], r < s (the extension to r = 4 is given by the fact that w?
satisfies the A,(IR%) condition).

Accordingly, it remains to establish LWP when the decay parameter r € (4,9/2). This conclu-
sion is obtained from (3.36) with m = 3 and 0 < 6 < 1/2. Under these restrictions, the estimates
for Q1, Q2 and Q3 follow from (3.73) and recurring arguments. Finally, in view of identity (3.13)

with ¢y = 3¢, and using that wi,”g satisfies the A, (IR?) condition when 0 < 0 < 1/2, it is seen that
(3.81) 1Qalz S KX IV ulia + <) Pul 2 + <0 V| 3,

which is bounded by previous cases, (3.73) and (3.74). This completes the proof of the Theorem
3.2 (ii).

3.5. Unique continuation principle: two times condition

In this section we infer Theorem 3.4. We begin by introducing some notation and general
considerations independent of the dimension to be applied in the proof of Theorem 3.4. We split
F§ defined by (3.4) as

(3.82) F5 (4, f) = 02 (it&a|2])e™ I8 £(2), and FEy (&, f) = FE(t, &, f) — Fy (1.8, f).

In addition, we define ﬁé‘ ;1 and ﬁé‘ , as in (3.6), that is,

(3.83) B (e f) =e "EIE (te f), 1=1.2

Without loss of generality we shall assume that t; = 0 < ta, i.e., ug € Zg/242,4/2:2(R?). Recalling
(2.5), the solution of the IVP (0.2) can be represented by Duhamel’s formula

(3.84) u(t) = U(t)ug — L Ut = )t 00 u(t) dE

or equivalently via the Fourier transform
. / t . 7 ~
i(t) = ikl — % JO =00l E 2 (¢ d.
By means of the notation introduced in (3.4) and (3.82), we have for k = 1, 2 that

2 : ot
~ ~ 1 >
(3.85) () = > (¢, 8 10) — ZJO FS,(t—t,& cu?)dt.
m=1

Notice that &’g’k (¢1/¢]) is locally integrable in IR? but not square integrable at the origin. The idea
is to use this fact to determinate that all terms in (3.85) except Fé‘, 1(t,&,1p) have the appropriate
decay at a later time in dimension d = 2. When d = 3, we shall use that for ¢ € CX(R%),
Dé/ z(é’gk (&11€])¢)(¢) ¢ L2(IR®) to reach the same conclusion. At the end, these facts lead to the
proof of Theorem 3.4.
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Next, we proceed to infer some estimates for Fé‘, (8,8, f) and ﬁé"l(t, ¢, f), assuming that f is a suf-
ficiently regular function with enough decay and setting 0 < t < T. Let a,b € IR, in view of the
identities (3.5) and (3.7), it is not difficult to deduce

3 3—m

KEY Ba(t, €, f) e S5 2. 160" (9%, (i8111)) O Fl

m=0 j=0
1 1-m

+ 2. 2, K632, (it€1g]) (9%, (it21]E1) Y O f -

m=0 j=0

(3.86)

In particular, since our arguments in dimension d = 3 require of localization in frequency with a
function ¢ € C*(IR?), the same reasoning yields

3 3—m
&Y Fa(t,8, f) Pl < 2 Z KE)" (g, Zt€1|€|))]a§kf¢”Hb
m=0 j=0

(3.87) o

2 Z [<&)"oz, lt(?l|§|)(5§k(lt§1|§|))’5gkf4’\|m

On the other hand, since (3.7) implies that |6l§k (&|E)] S (&* !, 1=1,2, one can take b = 0in (3.86)
to find

3 3—m
(3.88) KEY o (6 iz = KO Bp(t.8, Az S 35 D) KO g fl2-

m=0 j=0

We can now return to the proof of Theorem 3.4. We divide our arguments according to the dimen-
sion.

3.5.1. Dimension d = 2. In this case, we assume that u € C([0, T]; Z,+ »(IR?)) solves (0.2) with
u, u(tz) € Z33(R?) for some t, > 0. Additionally, we take k = 1,2 fixed. Recalling (3.85), we have

Claim 3.15. The following estimate hold:

(3.89) Eb (1,8, i) Z f EE L (E— 1,2, cni2) di' € L2((E)*dg)

forall t € [0, T).
Let us suppose for the moment the conclusion of Claim 3.15, thus one has
0% 1i(t) € L*(<&)*dg) if and only if F§; (t,¢,1ip) € L*((&)~*d¢).
Let ¢ € C*®(R?) with ¢ = 1 when |¢| < 1. We divide F31(t ¢, 1p) as
F5; (1,8, 1i0) =03, (it€1]g]) ("1 = 1)1k (8)¢p + 03 (it€1[E) (i#0(8) — 1k (0) )¢

o
+ 2 (it€1|€]) 0 (0)¢ + 02 (itZ1|g])e"™ e 1eliip(8) (1 - ¢)
k k k k
=F11+Fi,+ i3+ i
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Since |&’gk(it§1|g’f NI < 1€7Y € # 0and t < T the mean value inequality shows that the L?-norms
of Fé‘, 11 and Féf, 14 are bounded by a constant (depending on T) times || ;2. Moreover, Sobolev’s
embedding gives

(3.90) I\Fak,l,zHLg S IVio|z [l S 13" o] 125 1<) uo 12
Hence, we get
03, 1(t) € L2((§)~*dg) if and only if &3, (tZ1|¢])ito (0) (&) € L2((Z)*dE).

Considering that u(t;) € Z33(R?), the above implication holds at t, > 0. At the same time,
|0gk (&1|])|? is not integrable at the origin, so it must be the case that iip(0) = 0.

PROOF OF CLAIM 3.15. In view of (3.88) with 4 = —2 we find
3
(3.91) 16 *F3a (1, o)z S [<Eoll 2 + HagklfoHL% + ) &) o o]z
’ m=0

Noticing that the r.h.s of (3.91) is bounded by | Juo ;> + [<Y3u | 2, we complete the estimate for

the homogeneous part of the integral equation. To control the integral term, replacing g by udy, u
in (3.91) and using (1.28), we observe that it is enough to show

(3.92) u? e L°([0, T]; Z13(R?)).

Indeed, udy,u € H'(R?) follows from the fact that H?(IR?) is a Banach algebra. In addition, the
hypothesis u € Zy+ ,(IR?) assures that there exists € > 0 such that u € H2¢(R?), as a result (1.28)
yields

- [P S Kol [Pl < 1772 (o) gz [
| < 2l 2 eu] "
This establishes (3.92) and consequently the proof of Claim 3.15. O

3.5.2. Dimension d = 3. We consider u € C([0, T]; Z33(IR®)) solution of (0.2) with uo, u(t;) €
2727 /2(R?) for some t, > 0. Our arguments require localizing near the origin in Fourier frequen-
cies by a function ¢ € C*(IR?) with ¢(&) = 1if |¢| < 1. Thus, recalling (3.85) we have:

Claim 3.16. Letk =1,2,3. Then
~ i ' -~
394 Fialt, & @)p(@) — 5 O [ Fiult— 1,8, 60)p(@) dt' e HY2(R)

m=1 0
forall t € [0, T).
Let us suppose for the moment that Claim 3.16 holds, then
0% 1 (t)¢ € Hy?(R®) if and only if Fy; (t, &, iho)¢ € HY*(R?).
We split F§ 1 as
FE (1,8 i) =23, (81121) (") — 1) (8)p + 03, 431161 (0(8) — i0(0))p + 23, (i1 & o ()¢

_.rk k k
=F311+F10+ Fq 3
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The mean value inequality reveals

(3.95) \|F§1,1\|H5/2 < Bl S IKE0dl 2 + 151 Ve (o) iz S kol gy S I<0Duolz
and from Sobolev’s embedding and the fact that | - | !¢ € L?(IR®) one gets

(3.96) HF312HH1/2 SIE i S (Il + 111719 l2) [ Vi |y < 1<% uo 13-
Hence,

(3.97) 02 i(t)g € HY'*(IR) if and only if 62 (it1]g])i0(0)¢ € H}'*(IR?).

Letting k = 1 in (3.97), we claim

(3.98) DY (32 (211E)¢) ¢ L*(R).

Consequently, since (3.97) holds for t = t, > 0, (3.98) imposes that 1ip(0) = 0. We now turn to the
proof of (3.98). For a given x = (x1, x2, x3) € R3, we denote by £ = (xp, x3) € R?. Let

F(Z) =0, (&12]) = 3(53 +83)*/12P = 3I¢[*/ 1P
and the region
P = {x eR3: x| <2V4%|, |x] < 1/16} .
When ¢ € P and 4|¢| < || <1/2, one has | — | = 3|¢| and |§|4 > |§|4/2, from these deductions,

F(@) ~F(E =) = Wg e
|¢|5|5 |5(|¢ nPIE* = 18115 —nPP/3) Z 1817
Hence,
. o 2
(DY, @lehe) @xr(@ > | F@) = FE=mF 4 ()
(3.99) 4g<lyl<1/2 ]

1 1

1
> 1
~ |€| 4z|<|y|<1/2 |;7|4 WXP(@) ~ |§|3X77(é)1

where xp stands for the indicator function on the set P. Therefore, given that || 3/2xp ¢ L2(IR®),
we get D}/2(02 (5118))¢) ¢ L*(R).
PROOF OF CLAIM 3.16. Letting ¢ € C*(R3) with ¢¢ = ¢, Proposition 3.10 yields
IDY2(FE(t, &, )iz S 1DV BN 8, £z + IDYA(ENEE )iz
(3.100) S IDY NGl 1F (5,8, Hgliz + 1D 2 (EF (4,8, ))9) iz
SIFCE F)plpe
Analogously, we bound the Hé/ 2_norm of F§,(t,¢, f)¢ by that of 1?52(1‘, ¢, f)¢. Consequently the

above computation reduces our arguments to bound (3.94) for the operators F3 . Letting f = ilp
and b = 1/2in (3.87), repeated applications of Proposition 3.12 show

3
Tk ~ ~ ~ -~ 3+1/2
(3.101) |F3,(t¢, uo)‘PHHé/z S 20 Hf?gkuofi’HHé/z + H“OHHél/zw + Hagkuol\Héuzw S P g .
= :
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On the other hand, employing (3.87) with f = §; u2and b = 1/2, it is deduced

3
(3.102) [Ba(t =18, Gu)gly S D) 108 @)l S 10" iz
m=0

This expression is controlled since
u* € L2([0, T]; L*(|x[* dx)),

which holds arguing as in (3.93) employing complex interpolation (1.28). Finally, one can follow
the ideas around (3.96) to bound HFé‘ (t=1,¢, éluz)cpu H by the r.h.s of (3.102). The proof is now
completed. O

3.6. Unique continuation principle: three times condition

We first discuss the main ideas leading to the proof of Theorem 3.5. By hypothesis, there exist
three different times t1, t, and t3 such that

(3.103) u(-,t) € Zajarsass(RY),  j=1,2,3
The equation in (0.2) yields the following identities,
d _ ¢ )
(3.104) o ety = L = ol 1=1,...d
and hence
01,1
(3.105) fxlu(x,t) dx = fxluo( x)dx 4+ =2 > ”M()”Lz, I=1,...,d.

If we prove that there exist f; € (t1, 1) and f, € (¢, t3) such that
Jxlu(x, f)dx =0, forallj = 1,2,

in view of (3.104) with [ = 1, it follows that u = 0. In this manner, assuming (3.103), we just need
to show that there exists #; € (t1, ;) such that

Jxlu(x, t)dx =0.
Without loss of generality, we let t; = 0 < t, < t3, that s,

o, u(t)) € Zasnysas2+3(RY),  j=2,3.

Next, we introduce some further notation and estimates to be used in the proof of Theorem
3.5. Foragivenk =1, ...,d, recalling (3.5), we split Fi‘ as

(3.106) FE(LE f) = EE (L E f) + B (L E f),
where
Ff (4 f) = 0f (it&a|E))e™ e £ (&) + 463 (it |])e™e1¢0g, £(2).

In addition, we set

(3.107) FE (1, & f) = e RIS (1, f), 1=1,2
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We require to estimate the following differential equation obtained from (3.84),

(3'108) Z F4m t C MO) J F4m( t,/é’/gl&) dt,/

for each k = 1,...,d. Now, we proceed to bound the terms F]-k . To localize in frequency, taking
g€ L®(RY), (3.5) gives

K6 Fia (8,8, )8l
4 4—m
I3, (2112 g, A lED Fgl e + 3 D K8 (35, (it&aIZ1)) 0F, £ 8l
m=0 j=0

(3.109)
+2 2\|<c>“a (21121 (9, (it1121) Y 08 f 8
=0 ;=0

+ 48" (95, (it21121)) 07 £ 8 )
In particular, setting b = 0, ¢ = 1 and using that |&’ék(it(;‘1|(;‘|)| <EPF T 1=1,2and |8§k(it(§1|§|)| <
|&|~!, we have

4 4-—m

(3.110) K& Fx,(t, Crf)HLg = [<&"F, (L&, f) HL2 S Z 2 H<C>u+]5gkf”L2

m=0 j=0

Additionally, when f = iy, we define the operators

Fiq (60 (2)) = o2 (itea]2]) ("8 — )it (2),

P412 (t,&,1u0(¢)) Z 5 (it&1]¢])Rp(tio, & &)ePp(2),
|B|=2

Fi1a(t 8, 100(8)) = 2, (i1 |E)iHo () (1 — ¢(8)),
Fi14(£8,000(3)) = 402 (it61]5]) ("l — 1) g, 10 (§),
Ffys5(t ¢ 1 (C)):45§k(1t51|5|)(a§k (&) — 0z, 110(0))9(¢),
Fi16(t 8, 100(8)) = 402, (it81181) 0g, 190 (5) (1 = 9(8)),

where ¢ € C*(IR) is radial such that ¢ = 1 when |&| < 1 and

I/TOI |ﬁ| f \‘B| 15/81/[0(1/6)

Consequently, when #(0) = 11p(0) = 0, it holds

6
Fi1(t8,10(8)) = X Fiy (£ 8, 100(8)) + 02 (it€1G1) Vit (0) - &
(3.111) j=1

+ 403 (itG1|€]) 0,110 (0)¢(8).

Notice that (3.111) is still valid replacing ip by &3 112. We are now in position to prove Theorem 3.5.
We divide our arguments according to the dimension.
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3.6.1. Dimension d = 2. Suppose that u € C([0, T]; Z33(IR?)) with o, u(t2) € Zs4(IR?). Under
these considerations we have:

Claim 3.17. We find the following estimate to hold:

6 .t .
(3.112) D Fg(4 8 i) — L J Fypj(t—t, ¢ &) dt' e I*(R?)
= 2do
and
. t ~
(3.113) Fia (8,8, 100) = 5 f Fio(t=t,¢,qu)dt’ e L2((5)°dE)
0

forall t € [0, T).

PROOF. We first prove (3.112). The mean value inequality shows that Fff/ L ].(t, &, 1p(&)) isbounded
by the L2-norm of u for all j # 2,5. We use Sobolev’s embedding to find

1
bzl s 1 | a-vefieepdl;
|Bl=2

1
S 3 [ a-0ePa00 gl v

_»J0
(3.114) |Bl=2
1
S S (| a-van il gl
pl=2
S 3 DYz S 10 Pl
Bl=2

This argument provides the same bound for Fi‘l 5, Since one can write

1
Fh (1,8 100 (2)) = 422 (it 2)) fo Vo i (vE) - & p v,

On the other hand, given that u € C([0, T]; Z33(IR?)), it is possible to argue as in the deduction of
(3.93) to find

(3.115) udy,ue L2([0, T); L*(|x[°dx)) and u?e L°([0, T]; L*(|x|® dx)).
Thus, replacing iy by §1L?2 in the preceding discussions and employing (3.115), we conclude

(3.112).

Next we deduce (3.113). To estimate the homogeneous part, we employ (3.110) with a = —4
and f = 1y to deduce

4
(3.116) @ Eialt & (@Dl S Il + X, O™ il

and so the above inequality is controlled after Plancherel’s theorem by [{x)*u|| 12- Finally, re-

placing iy by Clqu in (3.116), one can control the resulting expression by (3.115) and the fact
udy,u € H3(R3). This completes the deduction of (3.113). O
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Summing up we get

0z ii(t) € L*(¢€)~°d¢g), if and only if

. t .
134, @DV 0) - £0(8) — 5 | (1= )04 (@IENV (Ei2) (0,¢) -G (@) ¥
(3.117) o A
+ 4103, (B121)25, 09 €) 45 | (=13, (E11ED %, (E0P) (0,)p()

e L2({¢)~"dP),
for fixed t > 0. Let us denote by

(3.118) Ci(t) := tdg10(0) — % f(t — )0y (E112) (0,£) dt,, 1=1,2,
0
The hypothesis at t = t,, the fact that (¢) ~ 1 on the support of ¢ and (3.117) imply
2
(3.119) 2 Ci(t2) 75 (G112DE1 (E) + 4Ck(12) 25, (G1121)9(£) € LA(R?).
1=1

From this, we claim that
(3.120) Ci(tr) = Ca(t) = 0.

Let us first write C; (t) in a more convenient way for our arguments. We have

—

g, 110(0) = —ixjup(0) = —ifxluo(x)dx
and by (3.104),
0s, ((i21/2)12) (0, ') = —ixyudn,u(0,1') = —ijxluﬁxlu(x, ) dx

011

(3.121) d
=i () B, = iy J sy (x, ) dx.

Integration by parts then gives

R N
Cl(t) :t(?glqu (O) — % L (t — tl)aé‘l ((ﬁuz) (0, tl) ar

t
(3.122) = —it J xjug(x) dx —idy J (t— t')% ( J xu(x, t') dx)dt!
0
t
=—it(1—6y) Jxluo(x) dx — i J Jxlu(x, ') dxdt.
0
Let us suppose for the moment that (3.120) holds, as a result the equation (3.122) shows

to
0="Ci(t) = —iJ Jxlu(x,r) dxdt.
0

In this manner, the continuity of the application T — Sxm(x, T) dx assures that there exists a time
f1 € (0, t2) at which this map vanishes. According to our reasoning at the beginning of this section,
this concludes the proof of Theorem 3.5 when d = 2.
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We can now return to deduce (3.120). We set
2

G(g) := > ,iCi(t2) 0% (£1/E)& + 4iCk(t2) 22 (Z112])-

I=1
Given that G(v&) = v™1G(&), ¢ # 0, v > 0, by changing to polar coordinates and recalling that ¢
is radial, we find

(3.123) IG(E)p(E)]% ~ (Ll G(x)[2dS(x)) JOOO v~ (v)[* dv.

Since |v|~!¢(v) is not integrable, (3.119) implies that G = 0. However, the functions 6gk(§1|§ )¢,
6gk(§1|€ |)&2 and 63k(§1|§ |) are linear independent (on R), so it must be the case that Ci(t) =
Cy(ty) = 0, which is (3.120).

3.6.2. Dimensiond = 3. Here we assume that u € C([0, T]; Z44(R3)) with ug, u(t2) € Zg/29,2(R3).
Recalling the notation (3.111), we state:

Claim 3.18. One has:

(3.124) ZF41] (t,& 1) — : J Fyp(t— — & Eu)p(E) dE € HE(R3).
and

- ~
(3.125) (&) Fio(t, ¢, o) — % L<§>_2Fz]f,2(t —1,§,Gu?) dt’ € HY2(R).

forall t € [0, T).

PROOF. We first establish (3.124). The mean value inequality, the fact that || ! € L? (R®) and
a similar reasoning to (3.95) and (3.96) establish

(3.126) |F51,(t, € (@)l S 160 uoliz + ol

forall j = 1,3,4,6. An analogous argument to (3.114), making a change of variables and using
Sobolev’s embedding provides

1B 2 (68,00 (@) e < 25 (-1 ¢l + Ipllen) IRp (o, §) g + |V Rg (10, )l 2

B|=2
(3.127) < 2 1Pl + J (1-v dV)HvaﬁMOHLs [l
|B|=2 |B|=2
S ol + ) I\Dé/ZVf?ﬁLToHLg < I o] 2-

1Bl=2
The estimate Fj, 5(t,&,10()) is obtained in a similar fashion to Ff, ,(t,&,10(Z)). This concludes
the considerations for the homogeneous part in (3.124). On the other hand, given that

ue C([0,T]; Zs4(R%)),
by a similar reasoning to (3.93) one has

(3.128) udy,u € L2([0,T]; Z3 9/2(R?)).
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This enables us to change the roles of 1) by Elqu in the above estimates to conclude (3.124).

Let us now establish (3.125). The inequality (1.26) and Proposition 3.10 imply

[€6)2Fia (8, tio)| 12 SI@Y 2R (4,8, i) |2 + 1<) *Fia (4,8, o)l 12
K& 2 Fa (48 o) (1 - ) e

We proceed then to estimate each term on the r.h.s of (3.129). From (3.110) with a = —3/2 we find

IK6) "2 Egy (1,8, 1) 2

(3.129)

i MN 1 M%

2 oo an] 1%
U
pH

(3‘130) 4 4—m 2 4—m 4 aein
5 )+ D20 D)+ D0 D)+ DL K g
m=3 j=0 m=1 j=2 j=2
2 4—m )
N I\Iéuolhg + 0 DK P o ollzz + H<C>5/2uo\|L2
m=1 j=2

In view of the inequality [{()~ /2+]8mu0\|Lz S oz (<§>J 3240y HLz + | [KEy—3/2 8m]uo\|Lz and com-
plex interpolation,

2 4-m

>y |\<C>_3/2+j5¢ktfo|\Lg

m=1 j=2

M \

U’” (&3 )||L2+H<é‘>5/2uo\|Lz
(3.131)

Hk\
3 N

5/2.~ 3)/5, 5m/(8—2j) (8—2)) 5/2
\<C> / ”OH 112" il H N4 ey o2

|MN HMN
HM

S H]S/ZuOHLZ + H<§>5/2uo||Lz
Plugging the above conclusion in (3.130) gives
(3.132) K& "2 Fy(t 8, o)z S H]&*ﬁolhz + H<C>5/2uo\|Lz S I uoll 2 + 117 ol 12

To treat the second term on the r.h.s of (3.129), in view of Proposition 1.14 with h = (Z)~2, we
shall estimate the Hé/ 2(1R3)—no1rm of I?i‘ ,(t,&,11p)¢. Therefore, settinga =0, g =¢pand b =1/2in
(3.109), after repeated applications of Proposition 3.12 we find

4 2
(3.133) |FE, (¢, €, il 4>|\Hm 2 \agkﬁonHé/z + ] 0% 1o, 72 H<x>9/2u0
m=0

L3

Next we deal with the remaining term on the r.h.s of (3.129). Let us first deduce some additional
inequalities. Let P({) be a homogeneous polynomial of degree k with 1 < k < 4, [ an integer
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number such that 0 </ < k and f a sufficiently regular function. Then if k — I < 2, from (1.27) we
get

IDY2((@y |é|l)f(1— )i SIDY2 (G2 |é|)< )l e
(3.134)
1O 2T A= e DY fis S U

and whenk — [ > 2,

LG éf)f(l ~ o)l SIDYA(@ ;ﬁ? (1= )| K12 F1 2
(3135) @ (1 - ) DY (@)

B
SIE 1l

In consequence, letting ¢ = 1 —¢, a = —2 and b = 1/2 in (3.109), after applying (3.134), (3.135)
and (1.28) to the resulting inequality one has

(3136) (&) FE,(t, & 1io) (1~ P S K6Y*"%dtoll 2 + 17" %dioll 2 ~ 1<0)* 2uolluz + 17°%uo]lsz.

Finally, collecting (3.132), (3.133) and (3.136), we complete the analysis of the homogeneous part
in (3.125). The estimate for the integral term is achieved by the same estimates applied to ; 12 in
view of (3.128).

O

Summing up, we can conclude that

5§kﬁ(t) € Hé/z(]Rg’) implies

3137) (&) ?a4,ii(t) e H*(R?), which holds if and only if

3
D Ci(t2)<E) 208 (§1151) G190 (8) +4Ck(£2)(E) %02, (511E)p(8) € HY*(R),
=1

for fixed t > 0, where we have defined C;(t) exactly as in (3.118) extending tol = 1,2, 3.
We now focus on (3.137) when k = 1. Given ¢ = (&1, &, &) € R3, we denoted by &= (6,8)eR?
and

3
= Y iC(t2) 0%, (E118])E1CE) ™2 + 4iC (t2) 0, (Z1]E])<(E)

=1
= |§|5|5|4<§>2< 1521(31 )|E1 72616 + 12iCy (¢ ))

Whenever C;(t) # 0 for some t > 0 fixed, we c1a1m that

(3.138) DY2(G(-)¢) ¢ LA(R).

Since (3.137) is valid at t > 0 and k = 1, once we have established (3.138), it must follow that

(3.139) Ci(t) = 0.
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This in turn allows us to proceed as in the previous subsection to infer Theorem 3.5 in the three-
dimensional case. In this manner, it remains to prove claim (3.138). Suppose that for some t > 0,
C1(t) # 0, we choose then a fixed constant K satisfying

1 G| |G
0<K< mm{15 15|é2( Hl’ 15|(133(t)|}

and we define
(3.140) Py 1= {xe]RS x| < (1 Kz)*1/2|3€|}.

Notice that when x € Pk, one has that |x1| < K|x| and so

\15201 x| "2x1x| < 152|cl NE ARG

In addition, let us consider

(3.141) §ePxn{l¢] <1/16},
and for fixed ¢ satisfying the above conditions, we take

(3.142) ne€Pxn{4ldl <yl <1/2},
Therefore, for such ¢ and 7, one gets the following lower bound

o lef

=5 SIGE

and since |§1 — 11| < 2K|¢ — 7|,
1§ —7l*
G(¢ — < 18|Cqy(t .
(e -l < 18c 0] =1

Consequently, collecting the above estimates and using that 3|¢|,3|7|/4 < |& — 7| and (8/9)?
(&Y~? < 1, whenever (3.141) and (3.142) hold, we arrive at

9IC1 (1))
[
_ 6lGi(1)]

- 1
&A= 1@t ) > —
> O (B~ ) zwe
Then, (3.143) and the fact that ¢ = 1 when || < 1 yield

G@) - GE-nl= 5 (87971 —nPIE* =218 —qier)

(3.143)

o _ 2
(Dé/z(c(')(P))Z(g)XPKm{§<1/16}(‘§)ZJ €)== b 110 (@

nePen{4lg|<|y|<1/2} Uik
1 1

> 4 .

R GE Jremniaetemeryz it 1P E</16€)
1

2 @XPW{\;‘KU@(C)-

Considering that \5\%/2 XPericl<1/16) & L%(IR?), the last inequality establishes (3.138). The proof is
now completed.
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3.7. Reduction to two times condition

In this section we deduce Theorem 3.6. Without loss of generality we may assume that
(3.144) t1 =0 and JX1M0(X) dx = 0.

Let us treat first the two-dimensional case. Collecting (3.117), (3.122) and (3.105), we have for
t, # 0 that

63{5[(-, t>) € L*(IR?) implies
0% 1i(-, ) € L*({€)™*dg), this holds if and only if

ty 1 tr 2 t?. ’
ozf Jxlu(x,t’)dxdt' _ f () dt = 2 Jugl,
0 2 Jo 4

whenever k = 1,2. A similar conclusion can be drawn for the three-dimensional case after gather-
ing together (3.137), (3.139) and (3.105) to deduce
0z, ii(- 1) € HY2(R3) implies

(&) 204 ii(- t2) € H/*(R?), which holds if and only if

ty 1 [ 2 t5 2
0= J Jxlu(x, ') dxdi’ = J t u(t)| 2 dt’ = 2 fuollz2 -
0 2 Jo 4

(3.145)

(3.146)

3.8. Sharpness three times condition

This part concerns the proof of Theorem 3.7. Whenever u € C([0, T; Zs,,(R%)) with r, = 3,
r3 =4and s > d/2+ 4 one has

(3.147) udyu € L0, T); Zajar3,4/243(RY)).

Setting d = 2, we can employ (3.147) to replace all the L2({&)® d&) estimates provided in the proof
of Theorem 3.5 by their equivalents in the space L?(IR?). This in turn yields

Oz u(-,t) € L*(R?), if and only if
t t t/ ’ . .
(3.148) 0= Jo Jxlu(x, t)dxdt = Jo Jxluo(x) dx + 5 |ug|72dt’ =0, if and only if

t
t (Jxluo(x) dx + 1 |1/l0|%2> =0,

for each k = 1,2. On the other hand, when d = 3, (3.147) establishes that all the estimates exhibited
in the proof of Theorem 3.5 can be achieved directly in the space Hé/ ?(R%) without the aim of the
weight (&) ~2. Consequently,

Oz u(-,t) € HY2(R3), if and only if
t
f fxm(x, tYdxdt' =0, if and only if
0

(3149) t t tl
0= J Jxlu(x, t)dxdt = J Jxluo(x) dx + 5 |uo||?> dt' = 0, if and only if
0 0

t
; ( [ty + 4 |uo|iz) —o,
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This completes the proof of the theorem.

3.9. Appendix: Commutator estimate for Riesz transform operators
This section is devoted to establishing Proposition 3.8.

PROOF OF PROPOSITION 3.8. Without loss of generality we shall deduce (3.2) for R4. By ap-
plying Bony’s paraproduct decomposition we write

1

Ra(ad*f) —aRyd"f — > -0PaDf *f
1<ipTlal P
1
= Z Rl(P<N/2aPNa“f) — P<N/2aPN8"‘R1f— 2 Ea P<N/211PND5 8"‘f
N>0 1</BI<al
+ 3] (Rl(PNaP<N/28”‘ f+ PyaPyd*f) — (PyaPoy 20" Ry f + PyaPyd*Rif)

N=>0

1 N
-y —'(aﬁPNaP<N/ZD§]0“f+65PNaPND£]6”‘f)>
1<iB<la|

—: 77(Ih) + 7t(hl + hh).

Here 77(1h) corresponds to the lower-higher frequencies and 7t(hl + hh) combines the higher-lower
and higher-higher iterations. We first estimate 7t(I1). The Littlewood-Paley inequality asserts

() (£, )l ~ | (Pure () (£,8)]

Then by support considerations,
tm o n n
Pyre(1h) Jz““ o G1tm mo iaﬁ <> P
) = 2, §+ul Il 1% CINNTT
X P (§ + 1) p<n/2(8)Pn (m)a(E) f()e™ 0 dgdn
= 2 Z g N(D)(Pon/20Pa, Py f),

N~M |B|=|a|

Where, by the Taylor’s expansion of the function |x| 'x;, we have defined for each multi-index
the bilinear operator o (D) as in (1.18) with associated symbol

() =~ o ( [[a-veme (52 i) dv) @+ 1o 2Ok )
for some suitable bump functions satisfy: ¢ ,(-) = ¢°(2°N~1), oy (-) = ¢(N1-) with ¢y =
o, o' = ¢, dist(supp(¢'),0) > 0 and such that ¢% ,(&)PN (1) is supported in the region
&l <yl 2

Consequently, one can verify that opn € C*(R? x R?) is compact supported outside of the
origin in the region |¢| « |77| and it satisfies (1.17) uniformly on v € [0, 1], for each N ~ M. Indeed,

%For instance one can take ¢° supported on B(0,2 +€) with ¢° = 1 on B(0,1) and ¢! supported on
{x:1/2—e€ < |x| <2+¢€} with ¢! = 1 for 1/2 < |¢] < 1. Thus, for € > 0 sufficiently small (e < 2/7 is enough),
4>1<N/2((§)¢%\,(17) is supported in the region |{| « |7].
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since 0 y is supported in the region |{| « || with || ~ N, we have | + tg| ~ |y| uniformly on
0 <t < 1, which implies that 0 y is smooth. To establish the decay property for the derivatives
of the symbol, we denote by

X1
|x]

1
(3.150) sen) = [ a-viiial () -+ v,

and let 1, 72 be arbitrary multi-indexes. Since |§ + 77| ~ |17| and agl agz 0N (¢, 1) is a linear combi-

nation of terms of the form

(3.151) o (1)o7 o (8(&,m)) 0 (92N 2(8)) 077 (9 (1))
where y11+ 712 = 71 and Y21 + Y22 + Y23 = Y2 with |21 < |#|, we are reduced to show
(3151)] S Jy[ e,
To obtain this estimate, we use that
07 (™)) S |12,
for all 7 # 0, given that |7,1| < |a|. Hence, since [07 (x1]x|7!)| < |x[~17, we find
L () PN T
uniformly on 0 < t < 1. Thus gathering these results we arrive at
(3151)] S |~ Fral=mal=raal bl =3l (01290) Ly 2(2) (09 ()|

< |,7|—|71|—|72||(| . |\71,z|+m,3\532,3¢1)(,7/N)|

< |,7|*|71|*|“er'
Thus op n satisfies (1.17). These facts allow us to use the Fourier decomposition on a cube in
R? x RY of side length CN for C large to deduce

O—ﬁ,N(gl 17) — Z Cnl’HZ,Nei(m-ngnz.q)/CN
1’11,1’12€Zd
where the Fourier coefficients {c,, », N} are rapidly decreasing. After this we get
osN(D) (P_n,20Pa, Py f)(x) = Z CnynaNPen20Pa(x — 11 /CN)Pyf(x —ny/CN),
nl,nzeZd

and so we arrive at

|Pmre(Ih)(x)|
SO D lemmnlP<ndPa(x — n1 /CN)Py f(x — na/CN))|.

N~M |B|=|a| ny,nre24

To control the above expression, we use Lemma 1.8 to find
IP_n/20Pa(x —n1/CN)| < (1+ |n1])* M(Pa)(x),
and writing N = cp}\]l/)N,

IPnf(x =n2/CN)| S (1+ |n2]) ' M(Py f) ().
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Gathering the above estimates with the decay of the coefficients {c,, », v} yield
Pur()(x)| < D0 >, M(éPa)(x) M(Pyf)(x).
N~M |B|=|al

In this manner, the above display, Lemma 1.7 and the Littlewood-Paley inequality show

I S X IM@a)(MPuf) 2 ol S Y 10Palie | flor
|BI=]al |BI=]a]
It remains to derive a bound for 7t(hl + hh). Notice that our previous considerations cannot be
adapted to this case, since the support in frequency of 7t(hl + hh) lies in the region |17] < ||, where
the line segment # 4 v¢ can pass through the origin. Instead, we estimate separately each term in
rt(hl + hh).

Using that D% = 2jy|=la| €407 07 for some constants ¢, € R, we can write
m(hl+hh) = > Y cyR1((D2M07Pyd"a) (Paond® f)) — ¢y (D207 Py87a) (Poon 0™ Ra f)
N>0{y|=la]

1
—cy Y = (F(D7PMTPydYa) (P<an DR, 0 f))
1<|pl<la| P

=: Z cyR107, (D) (974, f) + cy01,(D)(97a, R1f) + cq05,(D)(07a, f)
v|=lal
where we have employed P_y /> + Py = P<yy and the operators o7, (D) are defined through the
symbols

2 lh‘+|“‘ |C|2‘a|17 ¢N<€)¢ N(ﬁ)/

N=>0
and

|f>‘|1 ~
oIenn =5 5 [ (I) S @ T dn

2
N>01<|B|<|a| |€| i

for each |y| = |a|. Using that UM(C, 1) is supported in the region || < ||, we can argue exactly
as in the analysis of o \; above to prove that this operator satisfies the hypothesis of Proposition
1.6. Consequently, the L¥ boundedness of the Riesz transform yields

[Rict,(D)(@7a, £) + 07, (D)(@a, Raf)| | < 107l Iflo

for all [y| = |a|. On the other hand, we divide the operator ¢y, (D) by choosing (fixed) multi-
indexes a(k) with 1 < k < |«| satisfying, a(k) < a and |a(k)| = k. Then we write
03, (D)@, f) = 3 o5, 5(D)@"a, Tof),
1<[Bl<la|
where for each |B| =k, k=1,...,|a] — 1 we have set

1)lel+1; #B
(&) = 3 S S g (Opean ()

N>0

~ fﬂ”‘(“a’g <|7371|> fn)e™ dn.

and the operators
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One can verify that (szﬂ(g',‘, 1) satisfies the hypothesis of Proposition 1.6 for each 1 < |B| < |a].
Additionally, the classical Mikhlin multiplier theorem establishes that Tg defines a bounded oper-
ator from LP(RY) to LP(R?), whenever 1 < p < co. Notice that this same fact can also be proved
directly by observing that () (%) can be written as a linear combination of compositions of
Riesz transform operators. Summarizing we conclude:

103, (D)@, |y S >, 103,570, Tpf)lr S 35 107l [ Tef),,

1<|Bl<a 1<|B<a

Slo%al o 1 flley -

This completes the estimate for 7t(hl 4 hh) and in consequence the proof of Proposition 1.6.



Chapter

Study of a model arising from
capillary-gravity wave flows

This chapter is aimed to prove various well-posedness results in real, periodic and anisotropic
weighted Sobolev spaces for the IVP (0.4) that arise in the study of capillary-gravity wave flows.
To achieve these conclusions a key ingredient is the deduction of a fractional commutator estimate
for the Hilbert transform (see Proposition 4.2 below). Additionally, in this chapter, we determinate
some unique continuation principles that characterize the spatial behavior of solutions of (0.4). As
a further consequence of our results, we derive new well-posedness conclusions for the Shrira
equation that appears in the context of waves in shear flows. The contents of this chapter are also
presented in [75].

4.1. Statement of results

Since some of our estimates depend on the direction of the variables, for now on we will
denote the spatial variables by (x,y) € R2. In this chapter, we will mainly work on the IVP (0.4)
without distinguishing between the signs of the term +H xaﬁu. Firstly, to justify the quantity (0.8),
we consider the spaces X*(IR?) defined by all the tempered distributions such that

(4.1) Iflxs = 173 f 1z, + IDx 2 fliz, + 1D 20y fliz, < 0.
Our first conclusion establishes local well-posedness in the spaces H*(IR?) and X*®(IR?).

Theorem 4.1. Let s > 3/2 and let X°(IR?) be any of the spaces H*(IR?) and X°(IR?). Then for any
ug € X°(R?), there exist a time T = T(||uoxs) and a unique solution u to the IVP (0.4) in the class

(42) C([0, T]; H*(R?)) n LY([0, T]; W (IR?))
if ug € H*(R?), or in
(4.3) C([0, T); X*(R?)) n L ([0, T]; Wy ™ (R?))

if ug € X*(R?). Moreover, the flow map ug — u(t) is continuous from X°(IR?) to X°(IR?).

76
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The proof of Theorem 4.1 is adapted from the short-time Strichartz linear approach imple-
mented by Kenig [50], and Linares, Pilod and Saut [59]. A novelty in the present work is the
study of the operators D, /2 and D, /29, which yields additional difficulties in contrast with the
operator J; 19, considered in the previous references. Among them, we required to deduce the
following commutator relation:

PROPOSITION 4.2. Letl < p<owand 0 <o, B <1, B> 0witha + p =1, then
(44) | DY M, §1DE f i (r) Spa 102811 ) I f Lo (w)-

Proposition 4.2 can be regarded as a non-local version of Calderon’s first commutator estimate
deduced in [19, Lemma 3.1] and its extension to the BMO spaces in [56, Proposition 3.8] (see
Proposition 1.5). This commutator is useful to perform energy estimates involving the operator
DV Zé’y and the nonlinearity in the equation in (0.4).

We remark that Theorem 4.1 improves the conclusion in [21] lowering the regularity in the
Sobolev scale to s > 3/2 and obtaining well-posedness conclusion in spaces well-adapted to (0.8).
Furthermore, we believe that these results could certainly be used to study existence and stability
of solitary wave solutions, where one employs the quantity E(u) (see for instance [24]).

Next, we present our result in the periodic setting.

Theorem 4.3. Let s > 3/2. Then for any ug € H*(T?), there exist T = T(||uo|ns) and a unique
solution u of the IVP (0.4) that belongs to

C([0, T]; H¥(T?)) n F5(T) n B¥(T).

Moreover, for any 0 < T’ < T, there exists a neighborhood U of ug in H*(T?) such that the flow map
data-solution,
vel —ve C([0,T']; H(T?))

is continuous.

The function spaces F°(T) and B*(T) are defined in Section 4.4 below. Theorem 4.3 is proved
by means of the short-time Fourier restriction norm method developed by Ionescu, Kenig and
Tataru [44], see also [77, 90]. Mainly, this technique consists of an energy method combined with
linear and nonlinear estimates in the short-time Bourgain’s spaces F*(T) and their dual NV*(T)
(see Section 4.4), where the former spaces enjoy the X*! structure with localization in small time
intervals whose length is of order 27/, j € Z* U {0}. We emphasize that up to our knowledge
Theorem 4.3 seems to be the first non-standard result dealing with the periodic equation (0.4).

Regarding the quantity E(u) in the periodic setting, we consider the Sobolev spaces

(4.5) X5(T?) = {f € H(T?) : f(0,n) =0, foralln e Z}

equipped with the norm | f||xs(r2y = || f] s (2)- Then, since X* (T?) is a closed subspace of H*(T?),
by replacing the spaces H*(T?) by X*(T?) in Section 4.4 below, the same proof of Theorem 4.3
yields:

Corollary 4.4. Let s > 3/2. Then the IVP (0.4) is locally well-posed in X*(T?).
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Remarks. (i) Our local theory is still not sufficient to reach the energy spaces X'(K?), K €
{R, T} determined by (0.8). Thus we cannot implement the invariant E(u) to obtain global solu-
tions.

(ii) For the one-dimensional Benjamin-Ono equation (0.1), many authors, see [43, 64, 85] for instance,
have applied the gauge transformation to establish local and global results. Unfortunately, we do
not know if there exists such a gauge transformation for (0.4). Additionally, we do not know if
there is a maximal norm estimate avalaible for solutions of the IVP (0.4), which would allow us to
argue as in [51] to improve the results in Theorem 4.1.

(iii) Concerning R? solutions of the IVP (0.4), we do not have a standard approach to derive bilinear
estimates in the spaces F°(T) and N°(T). As a consequence, the short-time Fourier restriction
norm method applied to this case leads the same regularity attained in Theorem 4.1. For this
reason, we have proved Theorem 4.1 employing the short-time linear Strichartz approach instead,
which also provides solutions in the class L'([0, T); WY (IR?)). The advantage of using this
consequence lies in its application to methods based on energy estimates as the one we employ here
to deduce well-posedness in weighted spaces.

Next, we study LWP issues in the anisotropic weighted Sobolev spaces defined by (1.3) and
(1.4).

To motivate our results, we observe that x(H,u + ’Hxaﬁ) f € L?(IR?) requires the condition
§ f(x,y)e¥Tdxdy = 0 for almost every . Thus, formally transferring this idea to the equation
in (0.4), we do not expect that in general solutions of this model propagate weights of arbitrary
order in the x-variable. Indeed, the first weight we contemplate to propagate without any further
assumption should be of order |x|* for some 0 < a < 1. Therefore, answering this question we
have the following theorem:

Theorem 4.5. (i) Ifr1 € [0,1/2) and r, = 0 with s > max{(3/2)",ry}, then the IVP associ-
ated to (0.4) is locally well-posed in Zs s, ,(IR?).
(ii) Let rp =0, s = max{(3/2)%,r2}. Then the IVP (0.4) is locally well-posed in the space

(4.6) ZHg1/25,(R?) = {f € Zs,1/21,(R?) 2 | fl1z,, 5, + X1V 2Haf 15, < o0}

(i) If r1 € (1/2,3/2) and r, = 0 with s = max{(3/2)",rp}, then the IVP associated to (0.4) is
locally well-posed in Zs y, r,(IR?).

In particular, Theorem 4.5 shows that solutions of the IVP (0.4) admits weights of arbitrary
order in the y-variables. The proof of these results follows the ideas of Fonseca, Linares and Ponce
[27, 28, 29]. We emphasize that our conclusions involve further difficulties, since here we deal
with anisotropic spaces in two spatial variables, and the x-spatial decay allowed by solutions
of (0.4) does not even reach an integer number for arbitrary initial data. In this regard, in [29,
Theorem 1], it was established that for general initial data, solutions of the Benjamin-Ono equation
(0.1) propagate weights of order between [0,5/2), while solutions of (0.4) allow weights of order
[0,1/2) in the x-variable. Finally, we remark that Theorem 4.5 improves the range of weights
determined in the work of [21], and we do not require the assumption d; 'u € H*(IR?).

Next, we state some unique continuation principles for solutions of the IVP (0.4).
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Theorem 4.6. Let r1 € (1/4,1/2),r2 = ry and s > max{-—~— 4 —, r2}. Let u be a solution of the IVP
(0.4) such that u € C([0, T]; Zsr,,r,(IR?)) n L1([0, T]; Wi5,(R?)). Ifthere exist two different times t; < t;
in [0, T] for which

u(-, 1) € Zg 1/2y+r,(R?) and u(-, t2) € Zg1 2, (R?),
then 11(0,7,t) = 0 for all t € [t1, T| and almost every 1.

Theorem 4.7. rp = 1y = (3/2)” and s > max{3, r2}. Let u be a solution of the IVP (0.4) such that
u € C([0, T); Zs,r, r,(R?)). If there exist two different times t; < t, in [0, T] for which

(-, 1) € Zg,32)+ ,(R?) and u(-, t2) € Zg3/2,,(R?),

Then the following identity holds true

t

4.7)  2isin((1F7?)(t—t))0:u(0,1,t1) = —L sin((1F7?)(ta — t'))iz(o, n,t)dt,

1

for almost every n € R. In particular, if u(-,t1) € Zs o+ o+ (R?) it holds
(4.8) 2sin(t — 1) un(x, y,t1)dxdy = (cos(tr —t1) — 1) Ju%(x,y) dxdy.

Remarks. (i) Since the weight |x| does not satisfy the A, condition (see [20, 84]) the assump-
tion Hyug € L*(|x| dxdy) subscribed in the space ZHy1 5 ,,(IR?) is necessary in our arquments.
Moreover, for a function ug € Zs 1,2 ,,(IR?) the condition 1io(0,17) = 0 does not make sense in
general. Besides by inspecting our arquments in Lemma 4.47 below and employing [88, Theorem
4.3), the hypothesis Hyug € L?(|x|dxdy) can be replaced by the assumption that for a.e. 1, the
map & — 1lo(&,n) belongs to the L?(IR)-closure of the space of square integrable continuous odd
functions.

(ii) Theorem 4.6 establishes that for arbitrary initial data in Zs,rl,rz(IRz) withry = randr #1/2,
(1/2) is the largest possible decay for solutions of the equation in (0.4) on the x-spatial variable.
Consequently, for this regimen of indexes r1, 12, Theorem 4.5 (i) is sharp. However, it still remains
an open problem to derive a similar conclusion for the cases 0 < ro < r1. Moreover, Theorem 4.6
shows that if ug € Zs r, r, (R?) withry > 11 = (1/2)7, max{i,rz} and 11p(0,77) # 0
for almost every 1, then the corresponding solution u = u(x t) of the I VP (0.4) satisfies

x|y e L®([0, T]; L2(R?)), T > 0.
Although, there does not exist a non-trivial solution u corresponding to data ug with 11y(0,1) # 0
a.e. with
1x|'2u e L*([0, T']; L*(IR?)), for some T' > 0.
(iil) The condition u(-,t1) € Zsy+ o+ (R?) in Theorem 4.7 can be relaxed assuming for instance

u(-,t1) € Zs3/2) (R?) and xu(x,y,t) € L'(R?).

In addition, (4.8) provides some unique continuation principles for solutions of the IVP (0.4).
Indeed, if (t» — t1) = k7t for some positive odd integer number k, then it must be the case that

= 0. Besides, if there exists three times t; < to < t3 such that u(-,t1) € Zsy+ o+ (R?),
u(-,t;) € Zsz/20,(R?), j = 2,3 and

sin(t; — #1)(1 — cos(t3 — t1)) # sin(t3 — t1)(1 — cos(tr — t1)),
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then u = 0. Accordingly, Theorem 4.7 establishes that for any initial data ug € Zs,, ,,(IR?),
ry =11 > 2 (or ug € Zg3/9)+ 5, (R?) with xug € L'(IR?)), s > max{3, 72} the decay (3/2)"
is the largest possible in the x-spatial variable. More precisely, if ug € Zs s, r,(R?), 12 = 11 > 2,
s > max{3, 2}, then the corresponding solution u = u(x, t) of the IVP (0.4) satisfies

1x|®/27w e L®([0, T|; L2(R?)), T >0
and there does not exist a non-trivial solution with initial data uy such that

Ix*2u e L*([0, T']; L2(R?)), for some T' > 0.

All of the previous well-posedness conclusions were addressed by compactness method. As
a matter of fact, we have that the local Cauchy problem for the equation (0.4) cannot be solved
for initial data in any isotropic or anisotropic spaces by a direct contraction principle based on its
integral formulation.

PROPOSITION 4.8. Let s1,50 € R (resp. s € R). Then there does not exist a time T > 0 such
that the Cauchy problem (0.4) admits a unique solution on the interval [0, T| and such that the flow-map
data-solution ug — u(t) is C2-differentiable from H*2(R?) to H*"*2(IR?) (resp. from X*(IR?) to X*(IR?)).

We remark that a similar conclusion was derived before for the IVP (0.6) in [23]. Finally, we
present our conclusions on the Shrira equation:

Theorem 4.9. Let s > 3/2, then the IVP (0.6) is LWP in H*(K?), K € {R, T} and in the space
X5 (IR?) determining by the norm

Iflgs = IT:f iz, + 1DZ 20, f .z,

In addition, the results of Theorems 4.5 and 4.6 hold for the IVP (0.6). Moreover, the conclusion of Theorem
4.7 is also valid considering

t ~
(4.9) 2isin(y2(t — 1))0:0(0, 5, 1) = — f “sin(n2(ts — £))i2(0, 1, ¢') dt

5]

instead of (4.7). In particular, if 0z11(0,1,t1) = O for a.e. n, then u = 0.

Consequently, Theorem 4.9 determines new well-posedness conclusion in the spaces X5(R2)
where the energy (0.9) makes sense. Besides, in the periodic setting, we obtain the same well-
posedness result stated for the two-dimensional case in the work of Schippa [81, Theorem 1.2],
that is, we deduced that (0.6) is LWP in H® ("JFZ), s > 3/2. We remark that our results are provided
by rather different considerations than those given in [81], where the author employed the setting
of the periodic UP-/VP-spaces ([36, 37]) combined with key short-time bilinear Strichartz estimates
(see Section 3 of the aforementioned reference). Certainly, we believe that these considerations can
be adapted to (0.4).

Regarding weighted spaces, our conclusions extend the results in [61], since here we deal with
less regular solutions, and we improve the x-spatial decay allowed by (4.9) to the interval [0,3/2).
Actually, by increasing the required regularity, it is not difficult to adapt our result to solutions in
anisotropic spaces H**?(IR?). We remark that our proof of well-posedness in Zs, »,(R?) is applied
directly to solutions in the space H? (IRZ), in contrast, in [61] the author first derive well-posedness
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in weighted spaces for solutions with the additional property d; 'u € H*(IR?).

We will begin by introducing some notation and preliminaries. Sections 4.3 and 4.4 are devoted
to prove Theorem 4.1 and Theorem 4.3 respectively. Theorems 4.5, 4.6 and 4.7 will be deduced
Section 4.5. Section 4.7 is aimed to prove Theorem 4.9. The ill-posedness result of Proposition
4.8 is deduced in Section 4.6. We conclude this chapter with an appendix where we show the
commutator estimate in Proposition 4.2.

4.2. Notation

The Fourier variables of (x,y,t) are denoted by (¢, 4, 7) and in the periodic case by (m, n, T).
Recalling the function g satisfying (1.6) for d = 1, and the functions ¢, we define the projector
operators in L2(IR?) by the relations

F(Py(u) () = pn(8)F (u) (&, 1),
F(Pen ())& m) = p<n(Q)F (u)(E 1),

We will also employ the projectors (1.7) for R?. We set

(4.10)

(411) w(§,1) = sign(¢) + sign(£)&” T sign(&)r”,
and define the resonant function by
(4.12) Q(&1,1m1,82,12) = w(C1+ Eo, 1 +12) —w(C1,m) — w(Ca,12).

4.3. Well-posedness in H*(IR?) and X®(IR?)

This section is devoted to establish Theorem 4.1 in which we derive LWP for the IVP (0.4) in
the spaces H*(R?) and X*(IR?).

4.3.1. Preliminary estimates.
4.3.1.1. Linear estimates. This part is aimed to deduce some key linear estimates for the prob-
lem:

(4.13) {W + Hott — Hydu + Hodju =0, (x,y) eR? teR,

u(x,0) = up,
where the solutions are given by
@19 S(t)uo(x,y) = | TG g, ) dgy
and w(¢,n) as in (4.11). We have the following decay estimates:
Lemma 4.10. Let 1 < p < 2, then it holds
(4.15) IS flr S HEPPY £l
PROOF. Let us prove first the case p = 1. We write

(4.16) SO f(x,y) =1C, 1) = f(x,y),
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where the semi-convergent integral is to be understood as

1 ‘ s
(417) [y t) = o Mm | HEDTE g0 (/N go (/M) déd,
and the limit is considered in the distributional sense. Employing the identity
7'(1/2 _ 72 i si
(4.18) ( i6x? )((: ;7> |5|1/2€ i /45614sgn(5)’

which is valid for any real number § # 0, and the fact that 1y is an even function, we obtain

lim eifw(é‘,ﬂ)JriXCHyi% (&/N)po(n/ M) dedny

M—oo R2

1/2
:|7T|1//2 [ sty /) ag

t 0
1/2 0 4
(4.19) * |7:|1/2J it HEF T £ Fisign(t VT yo(5/N) dg
—o0
2771/2

_ |t|1/2 %( Joo ez‘t+it§2i¢$%isign(t)+ix§¢0(€/N) dé)
0

Now, since the phase function ¢(¢) = t + &2 + # T 7 sign(t) + x¢ satisfies, ¢"({) = 2t, Van der
Corput lemma (see Chapter VIII in [82]) yields

1.20) |J«oo eit+it§2iy7 FFisign(t -er:lp (é/N)| < 1/2
0

uniformly on N > 1. Then gathering (4.19) and (4.20), we find |I(x,y,t)| < |t|~'. This result
and (4.16) establish (4.15) when p = 1. Therefore, the preceding conclusion and the fact that
IS(£)fll,2 = |If ]2 allows us to use the Riesz-Thorin interpolation theorem to deduce (4.15), when-
everl < p <2 O

By means of Lemma 4.10 and the Stein-Tomas argument, we deduce the following space-time
norms for solutions of (4.13).

Lemma 4.11. The following estimate holds
@21) us<t>f|\Lngy <1l
whenever 2 < p,q < o, q > 2and * s+ 3 1=

Notice that the endpoint Strichartz estimate corresponding to (g4, p) = (2, o0) is not stated in
the preceding lemma, as a consequence we need to lose a little bit of regularity in order to control
this norm.

Corollary 4.12. Foreach T > 0 and § > 0, there exists ks € (0,1/2) such that

(4.22) HS( )fHLZLf ~ T

where the implicit constant depends on 9.
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PROOF. Taking p sufficiently large such that 6 > 2/p, Sobolev embedding and (4.11) yield

(4.23) IS()flizpe <o T [S(0)1°F

Lq Lp N<5

This completes the proof. ]

In addition, we require the following refined Strichartz estimate, which has been proved in a
different context (see [11, 50, 59]).

Lemma 4.13. Let 0 < § < 1and T > 0. Then there exist x; € (3,1) and 6 > 0 such that

1ollrrg So T“”(?HPJIJ”M‘S v(t)|2 +?u1f]> 1%/ 2°Dyo(t)]12,
0,T
(4.24)

T o
[ 2R, + DGR ), ),
0 2
whenever v solves
(4.25) 010+ Hyv — ’Hxé’,%v + ’Hxé’ﬁv =F

PROOF. In view of Corollary 4.12, (4.24) is deduced following the same reasoning in the proof
of Lemma 2.7 (see also, [59, Lemma 4.11] and [50, Lemma 1.7]). ]

4.3.1.2. Energy estimates. Denoting by X*(IR?) = [, X*(R?), we have:

Lemma 4.14. Let s > 0. Consider T > 0 and u € C([0, T]; H®(R?)) be a solution of the IVP (0.4).
Then, there exists a positive constant cq such that

2 2 2
(4.26) | ullLg g < luolzes +co IVt o |1l s -
Moreover, if u € C([0, T]; X*(IR%)) solves the IVP (0.4), then there exists a constant Co > 0 such that
2 2 |~ 2
(4.27) | ullze xs < ol xs + CO(H”HL%L;@ + HaquLlTL;‘y‘) ] Lep xs -

PROOF. The estimates of the norms ||J*(+)] 12, and | J3 ()| 13, are deduced applying the standard
energy method implementing Lemma 1.1. This procedure was done in Lemma 2.8. However, we
also invite the reader to see [11, Lemma 4.1] for the former norm and [50, Lemma 1.3] for the latter.
This establishes (4.26).

Now, to deal with the component |Dz!/2(-)]| 1, in the X°(IR?)-norm, we apply D;!/? to the

equation in (0.4), we multiply then by Dy!/2

1d‘
2dt

u and integrate in space to deduce
1 _ -
(4.28) D7 u ()|, = -5 JDX 120 (u*)D7Y%u dxdy,

where we have used that the operator H, — Hxﬁi + ”Hxaﬁ is skew-symmetric. To estimate the
integral term above, we write 0y = —H D, to find

UDxl/zax(uZ)Dxl/Zu dxdy‘ = U?—[x(uz)udxdy‘ = Uuz”z'-lxu dxdy‘
(4.29)

S lullglulz,,
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Going back to (4.28), the last display shows
d,
(4.30) S IDx ()1, S g Jul k-

To control the norm |D;1/2d,(-)|| 12, we apply Dy, 172 to the equation in (0.4), multiplying the

resulting expression by Dy /29, u and integrating in space, we deduce

1d_ 2 1 _ _
(431) T JDX 1230, (u?) D5V 20,u dxdy.
Once again, decomposing dy = —H Dy and using that #, is skew-symmetric, we get
J D;l/zﬁyax(uz)D;l/zayu dxdy = — f?—txay(uz)&yu dxdy
(4.32) = — J([Hx, u)dyu)0yu dxdy

= J(D}C/Z[Hx, u]D,l(/z(Dx_l/Zayu))D;l/Z&yu dxdy.
Then the Cauchy-Schwarz inequality and Proposition 4.2 yield

[ DYDY HDL 200 D 2ty

(433) S DY (M, u] DY (D20, |12 |12 | D5 2y 2,
S (lulig, + loxullg) IDx V20ul,
and so we arrive at
d, . _
(434 D 3u(t)12, S (luloor + 0wl )ID 2012,
Gathering all the above estimates for the components of the X*(IR?)-norm completes the proof. [J

Next, we derive a priori estimates for the norms |u| iz and |Vu| iz in H*(R?), s > 3/2,

and HuHUT% and Hé’quUT% in X*(R?),s > 3/2.

Lemma 4.15. Let s > 3/2 fixed.

(i) Consider u € C([0, T); H®(IR?)) solution of the IVP (0.4). Then, there exist k5 € (1,1) and
¢s > 0 such that

(4.35) I (T) = [ullp e + 1Vl e -
satisfies
(4.36) hi(T) < esT (14 ha(T)) Juf L s -
(ii) Assume that u € C([0, T]; X (IR?)) solves the IVP (0.4). Then, there exist x; € (1,1) and cs > 0
such that
(4.37) ho(T) = H“HLlTL;ij + HaquLlTL‘;{ij :
satisfies

(4.38) ha(T) < esT (14 ho(T)) Juf L xs -
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PROOF. Let us first deduce (i). In this case, we assume that u € C([0, T]; H*(IR?)) solves the
IVP (0.4). We begin with the norm HVuHUTL%. Taking F = —V(udyu) = —10,V(u?) in (4.25) and
using Lemma 4.13, we deduce

T
(4.39) IVuliy g, <o TK‘S(?UF; [P/ 20u(t)] 2 +f0 722 () (¢)] 2 ),
0,T

where 0 < § < s/2 —3/4. Our choice of § implies that the first term on the right-hand side of
(4.39) satisfies

(4.40) sup [ J*22u(t)] 2, < |uligpe.
t€[0,T]

On the other hand, applying Lemma 1.2 we find
722 (4w,
< WY (g, + 12 (i) |,

J
<l (112200l 2, + 11> 0gulz,) + (6l g, + |6yl 11> 2ul

(4.41)

S (Il + 1Vt ) Il v
Plugging (4.40) and (4.41) in (4.39), we arrive at
g&1mng
(4.42) Vil e S T+ ha(T)) [l o,

for some ks € (1,1). Setting F = —ud,u in (4.25) and applying (4.24) and Lemma 1.11, the estimate
for |u| Iz is obtained in a similar fashion as above. It is worth to notice that the resulting bound
for this case can be controlled by the norm |[u[ ;- f+-1. This completes the deduction of (4.36).

Next, we proceed to deduce (ii) following the arguments in [50] and [59]. Here we assume that
u e C([0, T], X*(IR?)). In view of Lemma 4.13 with F = —d,(udyu), we find

HaquLlTL;fy‘ <5 T" ( ?UIT”;/HZ%(” HL)z(y + ?u% H]J?;/Z-&-stiu(t) ”L§y
0,T 0,T
(4.43)

T
+ [ o) ()], + 17Dy ) (), d ).
0

We will derive bounds for each factor on the right-hand side of the above equation. Taking § > 0

small such that 3 (1£2) < s, Young's inequality yields

(@49 (DYl S (4 Y0 T gl S (1) e
By taking the same § > 0 as above, the previous inequality and Plancherel’s identity show

sup (I 2u(0)li, + 12 Dju()l
0,T

(4.45) S ?UI? (3u(#) iz, + D5 20yu ()] 12,)
0,T

S lulligxs-
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This completes the estimate for the first two terms on the right-hand side of (4.43). Next we deal
with the third factor on the r.h.s of (4.43). An application of (1.11) allow us to deduce

[12/2 (uo) i, = 2> (udsu) 2 iz
(4.46) S Motle 1322 0l + |0xu Lz 1222 ul 215
S (lulleg, + loxulz ) xule s, .
which holds for 0 < § < min{1/2,s/2 — 3/4}. Using that H]x”HL;“L%y < [[u]Ly x5, integrating (4.46)

between [0, T| completes the analysis of So 1JL/ 2428 (you) (¢ )12, dt'. Next we decompose the last
term on the r.h.s of (4.43) as follows

J H 1/2+(5D(5 u&xu)(t')H%dt'

(4-47) T ) ! ' T 1/24+6 10 ! !
S [ DS (uor) ()13 + 1DV D ) (1)1,

=T+71T.
The fractional Leibniz’s rule (1.10) shows

T
(4.48) - fo 1Dy () () ) |12 )

T
5
S [ ) gIDg(t )iz, + 10t g 1Dz, )
0
Therefore, from the point-wise estimate

(4.49) &gl = (2149282l S (1 DT+ 182y,

valid for / = 0,1 and 0 < 6 < 1 small satisfying 2%1”) < s, we can apply Plancherel’s identity to

find

T
VS (f Ju(t) g, + l0xu(t) g dt') (| Jzul iz, + D5 20z 12,)
(4.50) 0

T
< ( j () gy + 10t () gy ) o
0

On the other hand, employing Lemma 1.3, we further decompose Z7 as follows

17 < f Ju(#) 5 | D/ DY () |, e + f Js1(t)] L, DY Dhu(¥) |15, ¥

4.51

sy [ DY) g oD, + [ 10D () D) g
=TI1+ 11, + 7115+ 11y,

where % + ql—l = 5. Since the norms \|D3/2+‘5D‘5u|\Lz HD}/H‘SDiuHL% |U3/2+5D5“HL§/ we use

\* |
%Gn

(4.44) with 3 (£ ) < s and Plancherel’s identity to mfer

17, + 11, < ( jo () s + 10t () s ) s
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To deal with Z73, we let 0 < § < 1/2 small satisfying 2(”‘5 5 < then we employ (1.13) to control

the norm |D}/2+y| Lg,- The estimate for |0y DyuH 12, is a consequence of Plancherel’s identity and
(4.49) with | = 1. Summarizing, it follows

T2 5 ([ (0l + 10Ol ) g

Next, by employing (1.14), (1.15) in Lemma 1.4, it is seen that
T4 < 16D ul o | DGl 1
S ol 1J/2* 0w 2 1z, [l

0
Lz, (HD;/Z”HL%L;@ + H”HL%L@) /

forsome 0 < 6 « 1and 0 < &y < s — 3/2 fixed. Given that

Y2 = 15148 2D Y2 S 1812182l S (L 1ED + 1812 Inl,
Plancherel’s identity yields
(452) IDY gz, + lul iz, S I liexe
From this we get
174 S (LT |u(t) g + [0xu(t) g dt') [u] Lz x-

According to (4.51), this completes the estimate of ZZ. Collecting the bounds derived for 7 and
17, we obtain
HaquLlerfy ST (1 + ha(T)) |ullrg xs-

To deal with ””HUTLS@’ we apply Lemma 4.13 with F = —udyu = —30,(u?) to get

Iy S T* (sup| J;/* " u(t )1z, +sup |12/ 2H° Dyu(t )iz,
[0,T] 0,T]

j (Y2 02) (#) |z, + DL () |, ) ).

From (4.45) it is deduced
(4.53) ?ug(u”m u(t)iz, + 11 #°Dyu(t)liz,) < Il
0,T

On the other hand, applying (1.11) we find
[ 22 @, + D56 Wl ) 5 [ 12402 0

sj [ | T2 ()5, .
0

Taking 0 < 6 < 1/16, Young's inequality establishes

(4.54) p[V/320 = || 41|72 (B2 S (14 2]y 25 (872,
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thus an application of Plancherel’s identity reveals
T
|, e 72,
0
T
(455) S [ 1 (72l + (), + DY u(e) g, )

S ([ 1)1 ) i
Therefore, estimates (4.53) and (4.55) show that
[l r So T (1 + ha(T)) 1] e xs-
The proof is completed. O

Additionally, we require to control the norm ||02u| LhLz: This estimate will be useful to close

the argument in the proof of Theorem 4.1 for space X®(IR?)

Lemma 4.16. Let T > 0 and u € C([0, T]; X*(R?)) be a solution of the IVP (0.4). Then for all
s > 3/2, there exist ks € (3,1) and cs such that

HaazcuHLlTL‘}y‘ <eTH(1+ hZ(T))H”HL”T‘XSH +esT™ H@%”HL;%H”HL%‘XS/
where hy(T) is given as (4.37).

PROOF. Applying Lemma 4.13 with F = —0x (0yudyu + ud?u), the proof of Lemma 4.16 fol-
lows the same arguments in the deduction of Lemma 4.15 (ii). O

4.3.2. LWP in H*(IR?) and X*(IR?), s > 3/2. This subsection concerns the deduction of Theo-
rem 4.1. We begin by obtaining some a priori estimates.

4.3.2.1. A priori estimates. In this part we determine some key a priori estimates for smooth
solutions. Our result relay on existence of smooth solutions for the IVP (0.4). To achieve this
conclusion in the spaces X*(IR?), we require the following lemma.

Lemma 4.17. Let s > 4. Then it holds
(4.56) (lullLg + loxuliz) S lulxs,
4.57) | D20} w0 D2ty S (g + 0wl 1Dkl
foreveryl =0,1.

PROOF. We first notice that (4.57) is deduced by applying the same reasoning in (4.32) and
(4.33), which relays on Proposition 4.2. Next, to deduce (4.56), we use Sobolev embedding in the
variables x and y to get

[oxullg S WR/2Ty 2 onula, S W2 ullz, + IR/2HDy > ull iz, < lullx,

xy Y
forany 0 < € « 1 and s > 4, where we have used a similar estimate as in (4.54) and Plancherel’s

identity to estimate || 3/ 2+€D;/ 2+ey|| 2. Since this same reasoning also applies to |u| L%, we obtain
(4.56). The proof is completed. O
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Whenever s > 2, local well-posedness for the IVP (0.4) in H*(R?) follows from a parabolic
regularization. This procedure was applied in [21] for the IVP (0.4) establishing LWP in H*(IR?)
forall s > 2.

Furthermore, by employing Lemma 4.17, it is possible to apply a parabolic regularization argu-
ment adapting the ideas in [21], [60, Chapter 10] or [47, Section 6.2] to obtain local well-posedness
for the IVP (0.4) in X*(R?), s > 4. Summarizing the preceding discussion we have:

Lemma 4.18. Let s > 4 and X°(IR?) be any of the spaces H*(IR?) and X*(R?). Then for any ug €
X°(IR?), there exist T = T(||ug||xs) > 0 and a unique solution u € C([0, T]; X°(R%)) of the IVP (0.4). In
addition, the flow-map uy — u(t) is continuous in the X°-norm.

As in the case of Proposition 2.11, the proof of Lemma 4.18 also provides existence of smooth
solutions and a blow-up criterion. More precisely, let 1y € X°(IR?), where X (IR?) is any of the
spaces H®(IR?) and X*®(IR?), then there exists a solution u € C([0, T*); X*(IR?)) to (0.4), where

T* is the maximal time of existence of u satisfying T* > T(|u|yx:+) > 0 and the following blow-up
alternative holds true

(4.58) tlir?* u(t)]lxs = o0,
if T* < o0.
Next, we state some key a priori estimates.
Lemma 4.19. Lets € (3/2,4].
(i) Then there exists As > 0, such that for all ug € H*(IR?), there is a solution

ue C([0,T*); H°(R?))

of the IVP (0.4) where T* = T*(|lug|gs) > (1 + As |uo| s ) 2. Moreover, there exists a constant
Ko > 0 such that
[tz b < 21t0] s,
and
m(T) = ulpy gy + VUl < Ko,
whenever T < (1 + As ||uo gs) 2
(i) Additionally, there exists As > 0, such that for all ug € X*(IR?), there is a solution u €
C([0, T*); X*(IR?)) of the IVP (0.4) where T* = T*(|lug|xs) > (1 + As |uo| x:) "2 Moreover,
there exists a constant Ky > 0 such that

HMHL}‘XS < 2|uo| s,
and
ha(T) = ulpypy + 0xt] 11y < Ko,
whenever T < (1 + As ||uo] xs) 2

PROOF. In view of Lemmas 4.14, 4.15, 4.18 and the blow-up criteria (4.58) applied to the H*-
norm or the X*-norm respectively, the proof is obtained by the same reasoning in the deduction
of Lemma 2.12, we also refer to [59, Lemma 5.3]. O

Now we can prove the existence of solutions.
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4.3.2.2. Existence of solution. This part is devoted to establish the existence part of Theorem
4.1. We will employ the Bona-Smith argument [7]. Recalling the notation introduced in (1.7) and
(4.10), we have:

Lemma 4.20. Let0 < o <sand M,NeID = {2! : | € Z* U {0}} such that M > N. Assume that
ug € H%(R?), then

(4.59) N’ H]S_U(ng\]uo — P<pup) 2. 0,
xy N—o0
forall 0 < o < s. Moreover, if ug € X*(IR?), then
(4.60) N[350 (PEyuo — PEpuo) |2 — O
= = xy N—oo
and
(461) D20, (Pt = Prygao)| |, = 0

foreach 0 < o <s.

PROOF. By support considerations we observe

K& m)Y = (o (I(& )1/ N) = o1& )|/ M))iko(&, ) S N2E(E, 7)) 100 (&, )],
and
K& (o(&/N) = o(&/M))iio (&, ) > S N2 RE a0 (&, 1) -

Integrating the above expression, using Plancherel’s identity and Lebesgue dominated conver-
gence theorem when ¢ = s, we have that (4.59), (4.60) hold true. A closely similar argument
provides (4.61). 0

Now, we consider s € (3/2,4] fixed. We have the following conclusions according to the spaces
H%(R?) and X°(IR?).
Initial data 1o € H*(IR?). For each dyadic number N € ID, Lemma 4.19 assures the existence of

a time

(4.62) T = (1+ As|uo| )2

(for some constant A5 > 0), independent of N and solutions uy € C([0, T]; H*(R?)) of (0.4) with
initial data P<nup, such that

(4.63) [Nl s < 2 [[uo]| s

and

(4.64) K := sup {HuNHLlT g+ \|wN\|L1T%} < .
NeD

Let M,N e D, M > N, we set wn m := un — up, hence wy,u solves the equation

1
(4.65) Orwn M + Hxwn m — /Hxﬁin,M + ,HxaﬁwN,M + Eax((uN + uM)wN,M) =0,

with initial condition wy u(0) = P<nuo — P<pmito. Therefore standard energy estimates, (4.64) and
(4.60) reveal
N* won ez, S e (N*[[Puito — Putio12) = 0.



4.3. WELL-POSEDNESS IN H%(R?) AND X°(RR?) 91

Thus, interpolating the last result with (4.59) yields

1—0/s

(4.66) N Nz, < N7 Ponmlisss, lonmlizs = o

N—w
whenever 0 < 0 < s.
Initial data uo € X*(IR?). For each dyadic number N € ID, Lemma 4.19 assures existence of a

time T = (1 + As |luo|y:) 2 (for some constant A; > 0) independent of N and smooth solutions
oy € C([0, T]; X*(IR?)) of (0.4) with initial data P% 1 such that

(467) onlexs <2 ol

and

(4.68) Ky = sup {HUNHL]T 1 10Nl Uy} < .
NelD ’

Additionally, we combine Lemma 4.16, (4.67) and (4.68) to infer
(4.69) H@ZCUNHUT% S lonzxsn
provided that A; is chosen large enough. Now, let M, N € DD, since Wy ym = vnN — Uy satisfies

(4.65), employing similar energy estimates leading to (4.27) together with (4.60), we deduce
(4.70) NTC R on = om) gz, = 0

Y N—oo
whenever 0 < o < s.

According to the preceding discussions, when 1y € H® (]RZ), we shall prove that {unx}nep is a
Cauchy sequence in C([0, T]; H*(R?)) n L'([0, T], WY (IR?)).

Additionally, in the case ug € X®(IR?), we will establish that {vn}nep is @ Cauchy sequence in
C([0, T]; X*(IR%)) ~ L1([0, T], Wy *(IR?)). We first obtain some estimates for {uy} and {vy} in the
I lLiwr and |- HLlr wi» norms respectively.

Lemma4.21. Let M,Ne D, M > N.

(i) Ifug € H(R?), s € (3/2,4], then
(4.71) Nlun — uMHLlTL;f; + [V (un - uM)HLlTL;@ Neco 0,
provided that T = T(||ug|ps) > 0 in (4.62) is chosen sufficiently small.
(ii) Ifug € X°(R?), s € (3/2,4], then

(4.72) lon = ol = o(N1)+O(N 1D, 20 (on — vm)ig1z,)
and

(4.73) [0x(on = vm) g1y = 0(1) +O(ID; 20y (on — om) g2, ),

Xy N—o0

foratimeT = (1+ EHuOHXs)_Z sufficiently small.

PROOF. We first prove (4.71). Since wy,m = un — uy satisfies (4.65), we employ Lemma 4.13
with F = =2 (uyn + up)wn,m to get

T
474 Jun —umlprg S T'/? (H]UZH‘SZUN,MHL;L 2, t Jo |74 ((un + upt)wnm) (F)1z, dt’),
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where 0 < § < s/2 —3/4 s fixed. It follows from (4.68) and our choice of J,
(4.75) NITY* 2wyl Lz, — 0,

as N — . Now, applying (1.11), we estimate the second term on the r.h.s of (4.74) as

T
Tl/zJ I7V22 ((un + um)wn,m) () 3, 4t
0

T
< Tl/ZJO T2 (1 + ) () ez, lwn,m () g

4.76
(470 + [l (un + ) () |z [ ]2 wn m (F) 13, dt’

< T2 (HuNHL}‘Hs + IIMMHL%‘Hs) lonmlieg

+ T2 (Junlliy g + laml iy, ) 11 won e,
In virtue of (4.64) and (4.75), the second term on the right-hand side of (4.76) satisfies the required
decay as N — o0. Now taking T sufficiently small such that T'/2|uo|lgs « 1 with respect to the
implicit constant in (4.76) (which is independent of N and depends on s), we can absorb the first
term on the r.h.s of (4.76) by the first term on the left-hand side of (4.74). This establishes

Nlun —umlpyrg = 0

On the other hand, using Lemma 4.13 with F = —3 ¥V ((uy + up)wn,m), it is seen that

IV (un = wan)ly gy S T2 (P> 2 won il iz,

(4.77) T ~

[ (- o) ()], ),
0

where 0 < § < s/2—3/4. Clearly, (4.66) and our choice of § > 0 implies that 173/ 220w ml g1z, —
0as N — oo. In virtue of (1.11) and arguing as in (4.76), we estimate the second term on the r.h.s
of (4.77) as follows

T
71250 o) O,
0

(4.78) < (\|uN\|L‘T“H5 + HuMHL;LHs) HWN,MHUTLX@

3/2426
+ (ln g, + Dol g ) 17272

wN Mgz,
The last display, (4.63) and the fact that un — 111 1, H]3/2+25ZUN,MHL%‘;L%y — 0as N — o0 com-
plete the deduction of (4.75).

Next, we proceed to estimate (4.72) and (4.73). Since both of these estimates are inferred as
in the proof of Lemma 4.15, we will only deduce (4.72). Let us denote by Wnym = N — Um,
then Wy v satisfies (4.65) with Wy Mm(0) = PXyuo — PXyue. Applying Lemma 4.13 with F =
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—%é’x((vN + oMm)WN,Mm)) We get

HUN—UMHUTL;@

S T2 (sup L/ 20z, + s0p I D30 s,
0,T 0,T

(4.79) .
+ fo (7242 (o + oa) @) (#)] 2

+ 12Dy (on + oa)@nm) ()] 12,) dt')

xy
=T (L1 + L+ T3+ 1),

for some 0 < 6 < Jp with Jy to be determined during the proof. Now we estimate each of the
factors Z;.
In view of (4.70), it follows
N Zl — 0,

N—w
whenever 0 < § < dy < s/2—3/4. To study Z,, we employ Young's inequality to derive

i NEL R -
(4.80) (L4 1G22 S N (14 [8]) 2= + N~ Hyl[g] 12

Plancherel’s identity shows

b 1y — ~
(4.81) Ty S NTO L @n gz, + N7HIDE 20N ml g 1z, -

Therefore, choosing 0 < § < Jyp < 1, where Jy is small satisfying 21(;53;558) < s —1, we have from

(4.70) and (4.81) that

Iz Nfoo 0<N_1) + O(N_l|‘D;1/Zawa,MHL%‘L§y)'
Next, we follow the arguments in (4.46) employing (1.11) to deduce
15 S(HE/ZJr%UNHL}“L_%y + H]}c/2+25UMHL7°§“L§y>HvN - UMHLlTL;f;
+ (lonliarg + |‘UM|‘L1TL;3)‘|];/2+2J(UN —om) iz 1z,
Then the above inequality, (4.67), (4.68) and (4.70) show

I = O(luolxlon —omliyrg) +o(N7),

for all 0 < 6 < g, where 5y < s/2 —3/4. Now, we divide the remaining term Z, as follows

T T
72 5 | IDY(on -+ om)@nan) 1)z, 8 + | IDYZD(on -+ o) pe) (1),
=: I4,1 —+ I4,2.
By employing the fractional Leibniz’s rule (1.10) in the y-variable we get
Zin S(IDyoniz 2, + IDyomliziz ) lon — omllis g,

(HUNHLITL;@ + HUMHUTL;;)HD?(UN - UM)HL;‘L,@-

Consequently, choosing 0 < 6 < &y < 1 such that 2(137@50)
to (4.80) to find

iy = O(|uolx:lon — omlpap) +0o(N71) + O(N Dy 20, (vn — om) | 112, )-
N—oo T™xy T =xy

< s, we use (4.67) and a similar argument
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On the other hand, from Lemma 1.3 it is deduced
1/246 10
Tiz S(lonlirg + lomliy g ) 1Dy Dy (on = oa) e iz,
50 1/2+46 0
+ (IDX"** Dyonllz iz, + 1D Dyomlliz iz, on = vmllig
2+6 1/2+46 B
+ (1D 0w 11 + 1D 2 0ull 1 1)IDy (on — om) [ 12,
s s 1/2+46

+ (IDyon] s+ [1Dyomll e )JID: " (on = oa)

= ZLap1+Tapp +Taps+Lapa,
where 1 < rq,51 < 00 and 2 < py,41 < oo satisfy the conditions of Lemma 1.4 (ii). An application
of (4.80) shows

Tipa = o(N71)+O(N"'D; 20, (on —om)liz1z,),

T =xy

1+550

foreach 0 < 6 < Jp < 1, where Jy is small satisfying g

(4.45) and (4.67) to derive

%) < s — 1. Now, we combine estimate

Tyn2 S uolxs|on — UMHLlTL;?y‘-
Additionally, by employing (1.13) and identity (4.49) with I = 0, it is not difficult to see

Tips = o(N7H)+O(NYD:Y20,(on — vm)| 2 ),
N —00 T =xy

forall0 <6 < g < 1and (1 (5 y<s Finally, gathering together estimates (1.14), (1.15), (4.67) and
(4.68) we deduce

1-0

1/2+6
I (on LyLE’

ITspa S KO uo)f lon — omlf LI [ — M)
so that Young’s inequality and (4.70) yield
Tipa = o(N7)+O(Juolxllon —omlliyry),
forall 0 < 6 < dpand 0 < Jp « 1 given by Lemma 1.4. Collecting all of the preceding estimates
Iy = o(N"") +O(Juolx:[on —valpirg) + ON D20y (on —va) |1z, )-
N—o T=xy T ~xy
Plugging the previous estimates for the terms Z;, j = 1,...,4 in (4.79), we obtain
lon = omliyrg = o(NTH)+ O(T"?uo|lx:[on — omll 1) + ON D20y (o8 = va) e 12,)-

This completes the deduction of (4.72) provided that T = (1 + A|ug|xs) 2 is chosen sufficiently
small. ]

Next, we shall prove that {uy} is a Cauchy sequence in C([0, T]; H*(IR?)) and {vy} is a Cauchy
sequence in C([0, T]; X*(R?)).

PROPOSITION 4.22. Let M,N e€1ID, M > N.
(i) Ifug € H(R?), s € (3/2,4], then
(4.82) lun —umlizrs = O
(i) Ifup € X°(R?), s € (3/2,4], then

(4.83) I3 (on = om)llgiz, + D52 (on = om) iz, + IDx 20y (on = om) g1z, N
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PROOF. Let us first deduce (4.82). We apply J° to (4.65), rewriting the nonlinearity as

1
Eax((UN + upm)WNM) = UMOxWN,M + OxUNTON, M-

and then multiplying by J*wn » and integrating the resulting expression in space, we have

1d
5 g7 I (un = um) (1)) = = J]S(uMawa,M)]SwN,M dxdy — J]s(ax”NwN,M)]SwN,M dxdy

= —(Z+1I7).

Integrating by parts,

1
7T = f[]s, uM]&’wa,M]SwN,M dxdy — E J&xuM(]SwN,M)z dxdy,
this implies together with Lemma 1.1,

sy IZ) S N, unlOxwon mliz, | Fwon ez, + IV etaaliz, |7 won mll g,
4.84 V
S P umles, [Von vl | Fwnmlliz, + HV”M\IL;@\IISWN,MHfgy-

On the other hand,

11 = JUS, wn,M|OxuUN J wN,m dxdy + wa,M(ax]s“N)]sz,M dxdy,

then Lemma 1.1 gives

]S-i-l

ZZ] SIUP, wn mlOxunliz, I wn mlliz, + lwnmleg 1T unllig, 1w v,

(4.85) SIVonmlig I Funliz, 1Fwonul iz, + 1Vuy g Fonmlp,

]S+1

+ lwnmlleg [T unloz, [ Fon iz, -

To control | J*"luy] 2, we employ the fact that uy solves the IVP (0.4) and standard energy esti-
mates relaying on Lemma 1.1 to find

C”VUNHL%“L;@

(4.86) 1P un ()2, <e

Xy

H]SHPéNUOHLgy S NECK|USM0HL§yz

where we have also used Gronwall’s inequality and (4.64). Therefore, gathering (4.84)-(4.86), (4.63)
and (4.64), we find

I (un (8) = unt) Iz, S e (I (P<ntto — Pemio) iz, + [Veonmlinig + Nlwnmliyig) = 0,

which holds in virtue of (4.71). This completes the deduction of (4.82).

Next, we prove (4.83). Replacing J° by J; and V by 0y and using (4.67), (4.68) and the inequal-
ity

(4.87) 15 ol S 15 PEyuoliz, S NiJsuoliz,,

the estimate for the norm | J5(on(£) — opm)(2)] 12, follows the same arguments in the deduction of
(4.68). Now, setting Wy pm = UN — UM, We have that wn, M solves the equation (4.65) with initial
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1/2

condition Wy, (0) = PXyuo — PLyuo. Applying Dy to this equation and then multiplying by

D; /2@y p and integrating in space, we have

2 351D ()13, = = [ D 20u(on -+ ow)Bran) Dy oy ey

= — J D;lax«l)]\] -+ UM>Z{N)N,M)HNJN,M dxdy.

Writing 0, = —H,Dy and using that H, determines a skew-symmetric operator, it is seen

JDxlax((UN + UM)TEN,M)ZT)N,M dxdy
1

=5 f[%x/ ON + OM|ON,MTN,m dxdy

1 /9~
= E J‘(D}C/z[Hx/ UN + UM]D}C/Z(D 1/2ZUN M))Dx 1/2wN,M dxdy,

so that Proposition 4.2 applied to the x-variable gives

2dtHD V2@ m(t )HLz < |IDY?[Hy, on + vm] D *(Dy UZZ‘N)NM)HLZ IDy 1/2NNMHL2

S (lon +vmlig + 10x(on +oan) g 1D 2@ m -
Therefore, the preceding estimate, Gronwall’s inequality and (4.68) imply

ID 2 (on = om) g1z, S €Dy (PEyuo = PEyuo) |z, —~ 0.

Finally, we proceed to estimate the norm D:V2¢,(vn — vum)ll; 72 . Since Wy M = UN — Uy solves
p x y LF ny ,
4.65), we apply D71/29, to this equation multi lying by D720, @y M, then integrating in space
pp x y q p g X y , g g p

it follows
5710 20, N, m(t iz,
Dy 1/2 0 Ox((vn +om)WN Mm)Dy 1725 WN M dxdy
(4.88) J Y
= JIHX((UN + UM)ﬁyZ’(?N,M)ﬁyZ’UN,M dxdy + JHx(ay(UN + UM)HNJN,M)ayZ(NJN,M dxdy
=: 11+ 11,
where we have employed the decomposition dy = —H,Dy. Since H, is a skew-symmetric opera-
tor, we have
1 ~ ~
I= E J[?‘lx, UN + UM]ﬁwa,MawalM dx
1

-1 J (DY2[Hy, v + oa] DY2(D5 V20,8 .11) ) (D3 V20, x 1) dx,

then in view of Proposition 4.2 it follows

4.59) 0| S 1Dy ?[Hx, vn +om] Dy 2 (D520, n,m) 12, 1D5 205N, ml 12,
' < (lox +oul g + 10x (o — va) [15) 1D 20yl -
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On the other hand, we use Holder’s inequality to find
~ ~ 2 ~ ~
(4.90) L] S [N mlleg 10y@nmliz, + (050N 2, On Mg |10y Onml 12,

According to the above estimate, we are led to bound the norms ||0,vn/|| 12, and |3, wn,m|| 12, Thus,
given that vy satisfies the equation in (0.4), integrating by parts it follows that
1d H
2dt
Then Gronwall’s inequality and (4.68) yield

1
5yvN(t)\|%%y =— J 0y (vNOyON ) OyoN dxdy = ~5 f&va(ﬁyvN)z dxdy.

loyon(Dlliz, < ¢, P ol 2,

since HaypéNugH% < Nl/ZHD;l/ZayuQHL%}/, we have

(4.91) loyonlierz, S N2,

On the other hand, from the fact that @y, 1 solves (4.65) and integrating by parts, we find
1d . ~ 1
E%Hawa,MH%%y =-3 Jaxay((vz\i + Om)WN,M)OyN,m dxdy

(4.92) - JaxayvaN,Mawa,M dxdy — J OyuNOxWN,MOyWN,m dxdy

1
~3 J&va(éwa,M)z dxdy
=11, + ITT, + TIT;.

To estimate III;, we employ that vy solves the equation in (0.4) to get

1d 3

EEH&WXUN(t)H%%y = _E f&va(ayava)Z dxdy — JaﬁvNayvNﬁyava dxdy
From this estimate and (4.91), it is seen

1d

2 2 2
5 7 1900xoN (D12, S 10x0n g |9y0xonTiz, + 00Ny [0yonliz, 19y0xoN] 12,

Then, in view of (4.67)-(4.69), (4.87), (4.91) and Gronwall’s inequality
|0y 0xon ||y 12, Seh (HayaxPéNUOHLgy + Nl/zuaa%UN”LlTL;g) SN2,

where we used that 3,0, PZ\uo| 12, < N32|D;V 20y 1o 12, Consequently, the previous estimate
allows us to deduce

L S N2 @, mllg 10N Ml 2,
Now, by using (4.91) and Holder’s inequality,
I + 15 S NY2(0xonllLg, + |0xomlLg ) 10,1z, + HavaHL;@H@y@N,MH%;y-

Thus, inserting the above estimates in (4.92), applying Gronwall’s inequality together with (4.67),
(4.68) and (4.72) reveal

499 [oyon Mgz, S e (|10, (PXyuo — P2 pyu0) iz, + NS/ZHZT)N,MHLITL;@
+ Nl/z(HavaHLlT% + HavaHLlTL;,y)) < NV2 4 N3/2HZTJN,MHL1TL£.
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Going back to I, we plug (4.91) and (4.93) in (4.90) to obtain
(4.94) | S N @l + N @l g | Dl

Now, collecting (4.89), (4.94) in (4.88),

Ld, 12, ~ 2
5= ID7Y ynm(t)z, <

=1/27 2
¥ S(lon + omllig + 19y (on + om) |z ) ID5 Oy mllz,

+ NI@n il + N[y | vl

Then, applying Gronwall’s inequality to the last display, together with (4.67), (4.68) and (4.72)
(provided that T = (1 + A|ug|x:) 2 is chosen sufficiently small) yield
HD;UZ%@N,MHL%‘L% 5 ecK1 (HD;l/Zay(PéNMO — PéMuo)HL%y + 0(1)) N:)oo 0.

This completes the proof of (4.83). O
We deduce from part (i) in Lemma 4.21 and Proposition 4.22 that {uy} has a limit u in the class
C([0o, T}; H*(R?)) n L*([0, T]; W' (R?)).

Then, since uy solves the integral equation
1 t
(495 i (£) = S()Pawtio = 5 | S(t=F)o(un(¥)Pdt,

taking the limit when N — o, we find that u satisfies the integral equation in C([0, T|; H*~(IR?)).
This establish that u solves the IVP (0.4). On the other hand, from part (ii) in Lemma 4.21 and
Proposition 4.22, we find that {vx} has a limit v in the class

C([0, T]; X*(R?)) n LY ([0, T]; W™ (R?)).

Thus, implementing the integral equation (4.95) and taking the limit in the class C([0, T]; J2X*(IR?)),
where [2X*(R?) = {f € §'(IR?) : ] 2f € X} with norm |f| 2xs = |J%f|x:, we can argue as above
to deduce that v solves the IVP (0.4). This completes the existence part of Theorem 4.1.

4.3.2.3. Uniqueness and continuous dependence. Let us first establish uniqueness when the
initial data lies in H*(IR?), i.e., in the class C([0, T]; H*(R?) n L'([0, T]; W"*(IR?)). Let u; and u
be two solutions of the IVP (0.4) with initial data u1(0) = u19 and u2(0) = up. We define

K:= max{HVulﬂLlT%, HVMZHL}L;)}~

We have that w = u; — u» solves

1
(4.96) 0w + Hyxw — Hyd3w + Ho0yw + 50 ((u1 + u2)w) =0,

with initial condition w(0) = uy,9 — u,0. We multiply (4.96) by w and integrate by part to obtain

1d 1
gl = = | 8ulun w2y dxdy.

Then, Gronwall’s inequality shows
lu1 — “ZHLgy S exp (C(HaxulﬂyT% + HaquHLlTL;@‘)) lu,0 — UZ,OHLgy < ECKHULO — MZ,()HL%y.

This inequality yields the uniqueness result when 11 = u30. Implementing the same argument
above, we deduce uniqueness in the class C([0, T]; X*(R2) ~ L1([0, T]; Wx® (R?)).
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Continuous dependence in H*(IR?) is arguing as in the proof of Theorem 2.1. Analogously, con-
tinuous dependence in X*(IR?) is proved by this same property in Lemma 4.18 and the ideas in
[59].

4.4. Study of the equation in H*(T?)

4.4.1. Functions spaces and additional notation. We will follow the notation in [44] (see also,
[77, 79, 80, 90]). Recalling that D = {21 leZtT U {0}}, for a given N3, N, € D, we define N; v
N, = max(Nj, N7) and Ny A N; = min(Ny, Np).

Now, for each N € D\ {1} we set

In={meZ":N/2<|m| <N}

and I; = {0}. For the sake of simplicity, we will employ the same symbols in (1.7) to define their
periodic equivalents. However, this convection will be limited to this section. Thus, we define the
projector operators in L?(T? x R) by the relation

(4.97) F (P (u))(m,n, ) = Ly (|(m, n)])F (u)(m, n,T),

forallm,ne Z and T € R.

Given a dyadic number N, we define the operator P<yu by the Fourier multiplier 1;_, (|(m,1)|),
where I<n = [ Jp<n Im with M dyadic. We also set P~ pu = (I — P<p)u.

Since we do not require to divide the lower modulations terms, recalling the function 1y defin-
ing (1.7) for d = 1 and the functions ¢, we will denote by ¢; = 9o, on = Pn for all N dyadic
with N > 1. For a time Tj € (0,1), let Ny € ID be the greatest dyadic number such that Ny < 1/Tj.
Let N e D and b € [0,1/2], we define the dyadic X*’-type normed spaces

X4 = X{ (22 x R) = {f € [A(Z>xR) : 1, (|(m,n)|)f = f and

(4.98) [lx, = Nelgan (T = w(m,m)) - flia,
+ Z LY |op(T — w(m,n)) -fHL%wT < oo}
L>Ny

We will denote by Xy the space XZ]\,/ 2. Next, we introduce the spaces FY; according to X% uniformly
on time intervals of size N~!:

ooy Fo=(F e CORGIAT) : Pxf = f, Iflyy = sup IF(g1(N(-—i))f g < 0}

and

Ny = {f € C(R; L*(T?)) : Pyf = f,

(4.100) [l := sup [[7 + e (m, m) + NI F(gr(N(- = i) )}

Let T € (0, To] and Yy be any of the spaces F}i, or Ny, we set
YN(T) = {f € C([0, TLL*(T?)) = |fllyy(r) < 0}

equipped with the norm:
flvry = b Fl = fe Y, f=fon [0,T]}
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Then for a given s > 0, we define the spaces F*(T) and N*(T) from their frequency localized
version F%(T) and NV (T) by using the Littlewood-Paley decomposition in the following manner

(4.101) F(T) == {f € C([0, T H*(T?)), [ flFoa(ry = D) (N*+ Nés)l\PNfllﬁfv(T) < oo}
NeDD

and

(4102)  N(T):={f e C([0, THH(T?), If Ry = > (N* + N&) [P Sl < ).
NeD

Next, we define the associated energy spaces B°(T) endowed with the norm
B(T) := {f € C([0, TL; H*(T%)), If5s(r) = [P<nof (0)

+ > sup |Pnf(tn)|Fe < oo}
N>N(] tNe[O/T]

(4.103)

In the subsequent considerations Fy and F*(T) will denote the spaces above with parameter b =
1/2.

4.4.1.1. Basic properties. Now we collect some basic properties of the spaces X% and F§(T).
These results have been deduced in different contexts in [35, 44, 79, 78, 90].

Lemma 4.23. Let Ne D and b € (0,1/2]. Then

Ifnlpe 11 S HfNng]

mntT

where g =2/ (1+2b), fn € XY and the implicit constant is independent of Ny > 1.
PROOF. We decompose fy according to its modulations to derive

”fNHLf,,,nL‘i S Z lpr(T —w(m, n))fNHLfn,an + oLy (T — w(m, ”))fNHL;",nL‘;
L>N0

(4.104) < 2 LIgn(r—w(m,n))(T—w(m,n)) " or(t —w(m,n)) fnl 1
L>Nyp

+ N(?H(?SNO (T —w(m,n)){t—w(m, n)>7b§0<No (T—w(m, ”))fN|‘L2m,nLi’

where ¢ and @<y, are two adapted functions to the support of ¢; and @<y, respectively. Now,
since 1/q = 1/2 4 b, we apply Cauchy-Schwarz in the time variable to obtain

Il

m,n

< D) Lllgu(t = w(m,n){T = w(m,n)y ™| sl gn(t — w(m,n) fnlizllz,,
(4.105) LN,

+ N1 (7 = w(m, m)) = o(m, )y~ e (v — w(m,m)) sl i,
< Il

where we have used that |$r{T)7?| pises |l P<No(T)?] ;10 Sp 1 with involved constant independent
of L. O

q
Lyt

Lemma4.24. Let Ne D, be (0,1/2], fy € X% and h € L*(R) satisfying
(o) S D7
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Then for any Z% eD, ﬁo > Noand typ € R,

(4.106) N0 |g_gp (7 = wlm,m) F(No(t =) 1A, 5 Uil

and

@107) > L (= wlm m) F(Ro(t — ) F(F))], S Il
L>Ny ,n, T

The implicit constants above are independent of No > 1.

PROOF. We first deduce (4.106). From Holder’s inequality and Young’s inequality it is seen

No 195, (T = w(m, m) F(h(No(t — 1)) F ™ (fi)) 1z

m,n, T

~b-1 RPN |
SNo llogllen e °R(No T') s (fn)ll o2

Lz,
< b1 ~ o~
SNoo e<noler[B(No ) o [ fnllpz, oo/
where ! =1 +p
q 2 ’

1 1 1 1 1 1 1 1
(4.108) -=—+4—, and —=—+4+--1=—+4b—.
2 pop2 P2 41 q 7 2
It is not difficult to see that for fixed b € (0,1/2], one can always find indexes 2 < py,p2 < oo,

1 < g1 < oo assuming the conditions displayed above. Therefore, given that 1 = i + qll +band

Nl/ri] ’\’1/‘1]

~ 1
that |¢_g[lon ~ No * and |h(No ’L')HL? ~ Ny, wededuce

No g, (v — w(m,m) F((No(t — 1)) F () iz, < Il o

mnT T

The estimate above and Lemma 4.23 complete the deduction of (4.106). Let us treat (4.107). De-
composing fn by modulations, it follows

> L pu (e = wolm, m) F(u(No(t — 1) F~ (f)

L>N0

<Y X R forlr—wlmm) @ R ) e (1 (x - wlm,m) fx)
L>Np L1=No

=5 3 )+ Y > («+)="IT+1I,

L>Np No<L1<L/10 L>Ny L1=(Nov(L/10))

L2

m,n,T

L2

m,n,T

where we set 77y, (T) = ¢<n,(7) and 571, (T) = ¢r,(7) for L1 > Np. To estimate Z, we notice that
|t—7'| ~ L,since |t —w(m,n)| ~ Land |t' — w(m,n)| < L1 < L/10 in the support of each integral
in the summation. Consequently, this fact, Holder’s inequality and Young’s inequality imply

~ =1 1
ISy Y RN len(t—w(mm)(||- P2h(Ny 1))
L>Np No<Li<L/10

sz (e, (T —w(m, ) fnl) 2] 2

m,n

b_3/2>—1 ~ ~—1
SY X LN el AN o (T = wlmm) s o
L>N, No<L1<L/10
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where the indexes p1, 91,9 satisfy the relations (4.108) and % = % + b. Now since HG"LHL? ~ LVp,

~ ~3/2+41/
|- 2h(Ny )|\Lq1~No T an nd1/p; +b—3/2 < —1/2, we can sum over L to get

1/24+1/q1
< S LYmthseyg 70, (T = w(m,m)) iz, g
L>N, No<L1<L/10

1+1/P1+1/Q1+b(

<No lp<no(T = w(mm) fnlz o+ > Ion (v —wlmn)fuls 1),

m,n m,n

L1>N0
which is controlled as in (4.104) and (4.105), since —1 +1/p1 +1/q1 + b = 0. The remaining term

is controlled by Young’s inequality in the following manner

~—1 ~ ~—1
I7 5 > LiNo Ilh(No )| ¢ e, (T = w(m,n)) fnlliz iz,

D1 LNy (N Dl I, (T = w(m, ) ez, o S 1Nk -
L12N0
This estimate completes the proof of the lemma. O

Additionally, we require the next result.
Lemma 4.25. Let Ne D, be (0,1/2] and I ¢ R a bounded interval. Then

sup L*|lo1 (T — w(m, m)) F(L1(t) f)l 2 S IF ()l x,

LeD

for all f whose Fourier transform is in X%, and the implicit constant is independent of Ny > 1

PROOF. We decompose f by modulations according to

Lo (t —w(m,m) F(Lif) |z £ 35 L lon(t—w(m,m)F(Lr) = |1, (T = w(m,n)) F(f)ll2

m,n,T

L1=Ny
= 2 () + Z («-)=T+171I,
No<Li<L/10 L1=(Nyv(L/10))

where we set #n,(T) = @<n,(7) and #,(T) = ¢r,(7) for L1 > Nyp. When L < L/10, we have
|T — 7’| ~ L, thus applying Holder inequality and then Young's inequality it is seen
(4.110) 5 Y el - Tl e, (v = w(m, ) F () s o

N0<L1<L/1O
where % =1+4b,0<m<1and py, p2, g1 satisfy (4.108). If b = 1/2, we take m = 1, p; = g = 2
and q; = o, and when 0 < b < 1/2, wesetm = b, py = b~ and q; = (1 —2b)~!. Notice that
under any of these restrictions, ||| - "Ll pm < o0, since |17(T)| < (1)1 Consequently,

~

75 Y L= wlmn)F(Ply,
NO L]<L/1O

Arguing as in (4.105), the last display yields to the desired bound. The estimate for Z7 is obtained
following a similar reasoning as in (4.109). The proof is completed. U

We will require the following lemma to obtain time factors in the energy estimates.
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Lemma 4.26. Let T € (0, Ty) and 0 < b < 1/2. Then for any f € Fx(T),

Il 2y < T2 1 fl gy
where the implicit constant is independent of N, Ngy and T.
PROOF. The proof follows the same arguments in [35, Lemma 3.4]. H

Next, we recall the embedding F*(T) < C([0, T]; H¥(T?)), s > 0, T € (0, Ty] established in
[90, 44].

Lemma 4.27. Let T € (0, Ty|, then

sup [u(t)|me < llullps(r)
te[0,T]

whenever u € F°(T) and the implicit constant is independent of No > 1,

We also need the following linear estimate which is deduced from the arguments in [44, Propo-
sition 3.2] (see also [90, Proposition 6.2]).

PROPOSITION 4.28. Assume that T € (0, Ty, s = 0 and u,v € C([0, T]; H*(T?)) with
Oru 4 Hott — Hop02u + Hxaﬁu =v, onT?x[0,T).
Then
(4.111) lllps(ry S Tullsry + lolascr)
where the implicit constant is independent of T.
To obtain a priori estimates for smooth solutions we need the following lemma.

Lemma 4.29. Lets > 0, v € C([0, To]; H®(T?)). Then the mapping T — ||[v| ns(ry is increasing and
continuous on [0, Ty| and

PROOF. The proof follows the same line of arguments in [90, Lemma 6.3]. O

4.4.2. [? Bilinear estimates. Next, we obtain the crucial L2 bilinear estimates, which will be
applied to obtain both the short time estimates and energy estimates in the subsequent subsec-
tions.

Let N, L € D, we define
Dy, = {(m,n,7) e Z* x R:|(m,n)| € Iy and |t — w(m,n)| < L}

PROPOSITION 4.30. Assume that N;, L; € D and f; : Z* x R — R* functions supported in Dy 1,
fori=1,2,3.
(1) It holds that

@113) |, (i f) £ S N L2 VAl Vfal i Ul
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(2) Suppose that Nyiy < Nyax. If (Nj, Li) = (Nin, Limax) for some i € {1,2,3}, then

(4.114) fzz JR(f1 5 2) f3 S Npd 2Ny 2L 2 (Np2 v L2 | fullz L ol D3l 2 s
X
otherwise
(4.115) Jzz ]R(fl s f2) f5 S Nopal 2Ny2L 2 (Ng2 v L2Y [ ful e | fall g D £l
X

(3) Imein ~ NmaX/
(4.116) fzz ]R(fl #12) - f5 S Lt (Noiaz v Ly 2) Ll 2 1 f2l 2 1ol
X

Before proving Proposition 4.30, we require the following elementary result (see [79]).

Lemma 4.31. Let I, ] be two intervals in R, and ¢ : | — R a C! function with infyej |¢'(x)| > 0.
Suppose that {n € [ nZ, ¢(n) € I} # . Then

|1]
#Hne]nZ eomn)el} S1+ ———.
tnelnZg) e b S 1+ G o)

PROOF OF PROPOSITION 4.30. We notice that

@117) L, Gep)fi=| (ef)f=| (hef)-h=T
Z2xR 7Z2xR Z2xR
Lest us first establish (1). In view of the above display we can assume that Ly = L,;,. Let

ff(m,n,t) = fi(m,n, T+ w(m,n)), then fI is supported in
DY . ={(m,n,7)eR®: |(m,n)| € Iy, and |7] < L;},

and | ff;2 = | fil 2, i = 1,2,3, we find
1= J (fi*f2) - f3
72 xR
@1~ ¥ f Fimy,m, @) f (m, 1, )

my,ny,my,ny

x f(my 4+ my,ny + 1,1 + 1 + Q(my, ny, my, n2)) dTid .

Thus applying the Cauchy-Schwarz inequality in the 7, variable and then in 7; reveals

< Z J|ff(m1,n1,’l'1)| I3 (m2, na, ')HL; | F5 (m1 + ma, ny + no, -)HL% s}
(4.119) R
< L%/2 Z Hff(mlfnlr')HL% Hf;(mZInZI')HL_Zr Hf;f(ml +m2/n1 +n2")HL%'
my,ny,Mmz, Ny
In this manner, the same procedure displayed above applied to the spatial variables on the r.h.s of
(4.119) yields (4.113).
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Next we deduce part (2). By (4.117), we shall assume that N,,;, ~ N> and L; > L3, that is
N> « N7 ~ Nj3. Let us consider the domains:

Ay = (Z* x ]RZ)\OA]'I
j=2
(4.120) Ay = {(T’ﬂl,nl,mZ, ny, 7, 2) € Z* x R? : mymy < 0 and |m;| > |m2|}/
As = {(ml,nl,mz, ny, 71, ) € Z* x R? : mymy < 0and |my| = |m2|},
Ay = {(ml,nl,mz,nz,ﬁ/’fz) €Z'xR* :my=0orm = 0}'

Accordingly, we divide I given by (4.118) as
4 .
(4.121) I=>1T,
j=1

where 7/ corresponds to the restriction of 7 to the domain A;. Notice that the regions A; and Ay
consist of the cases where at least one of the variables mq, m, or my + my is null. We divide our
arguments according to the partitions Z/.

Estimate for Z'. By support considerations it must follows that m,(mq + mz) > 0, or equivalently,
sign(my) = sign(mj + my). Thus the resonant function is given by

(4 122) Q(Tl’l], ny, my, 7’12) = Slgn(mZ) (m% + ZmlmZ) + Slgn(n’lz)(ﬂ% + 2]’[11’[2)
. — sign(ml) - sign(m1)m% + Sign(ml)n%,

In this manner, we divide A; = Aj1 U A1, where A; 1 consists of the elements A; satisfying that
my > 0 and Aj , for which my < 0. Thus, we find

0 0
(4.123) |a—mzﬂ(m1,n1,m2, nz)| ~ |my| and |a—nzﬂ(m1,n1,m2, ny)| ~ ||

in each of the regions A1 and Aj,. Now, since |(m1,11)| ~ Nj in the support of Z!, we further
divide the region of integration according to the cases where |&—7‘120(m1,n1,m2, ny)| ~ Np and
|ainz()(m1,n1,m2, n2)| ~ N1, namely

2

1_ % ). % ) -
(4.124) 7 _I;LLkm{mlel}(fl f2) f3+J (f1* f2) - fa.

Al,km{|m1|<<Nlr |1’11 ‘NNl}
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To estimate the first sum on the rh.s of (4.124), we use that |1y + T + Q(my,ny,my, nz)| < Ls,
(4.123) and Lemma 4.31, together with the Cauchy-Schwarz inequality in the m; variable to find

2

’;JAlfk“{|m1|~Nl}(fl «f2)- f3

< 2 +L/N? J A (m1, 11, 70)|

|ma|~Ny,n1,m2
(4.125) . .
x || f5 (M2, n2, 2) f3 (M1 4 mp, ny 4 12, 71 + 12 + Q(my, 1y, my, 1)) HL%IZdTldTZ

S D+ LY2/N) [l Al o )l des

)

S LNy (1 + Ly 2 /N2 A 2l £ 2 £ e

where the penultimate estimate follows from Cauchy-Schwarz in my, 11, 71, and the last line is ob-
tained by the Cauchy-Schwarz inequality in 717, 2. The estimate for the second sum on the r.h.s of
(4.124) is deduced changing the roles of m, and 1, in the preceding argument. This completes the
study of Z1.

Estimate for Z2. In this case sign(m;) = —sign(my) and my(m; + my) > 0, in other words
sign(my) = sign(my + my). From these restrictions we get

Q(my, n1,my, np) = sign(my) (2mymy + 2m3) F sign(my ) (2nyny + 2n3) + sign(my).

We write A, = Ajq u Ap, where Ay is the set of all the elements in A, for which m; > 0, and
A, consists of those with m; < 0. Consequently, in each of the sets A1, A it holds

0
(4.126) (my,m1,mp, np)| ~ [2my +4my|  and | —Q(my, n1, my, np)| ~ |2nq + 4ny|.

e o

Now, since |(m1,1n1)| ~ Ny, |(m2,12)] ~ No with No « Ny, (4.126) establishes that in each of the
regions defined by 772 restricted to Ap1, Agp, either

|aj120<n11,n1,m2,112)| ~N; or |aizQ(m1r”1fm2'”2)| ~ Ni.

In consequence, we can further divide 72 as in (4.124) to apply a similar argument to (4.125), which
ultimately leads to the desired estimate for Z2.

Estimate for Z° and Z*. In these cases both regions of integration can be bounded directly by
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means of the Cauchy-Schwarz inequality without any further consideration on the resonant func-

tion. Indeed, in the support of I3, we have that m, = —m; and so
I3 - Z Jff(ml’nlfrl)ff(_mll np, TZ)
mq1#0,mn1,np

x fE(0,n1 +np, 11 + T + Q(my, —my, n1,n2)) dudn

<y jm ) LA G ) 1
(4.127) i

< |f5(0,n1 + 12, 11 + T + Q(my, —my, n1,m2)) | dTd T
< 2 f Lo, )iz | e A2 e

N Li/ N2 A G, ) g | A2 R d e,

where we have employed the embedding L?(Z?) c L*(Z?), together with consecutive applica-
tions of the Cauchy-Schwarz inequality starting with m;, then with n;, 77 and finally with n, 7.
This completes the estimate for Z°. On the other hand, we can divide the support of Z* in two
parts for which at least one of the variables among m; and m; is not considered in the summation.
This in turn allows us to perform some simple modifications to the previous argument to bound
74 by the r.h.s of (4.127).

Collecting the estimates for i, j =1,2,3.4, we complete the deduction of (2). Now we proceed
to infer (3). In virtue of (4.117), we shall assume that L, = L,,;, and L3 = L. We write

4 ~ .
= 2 7,
j=1

where 7/ corresponds to the restriction of 7 (given by (4.118)) to the domain A; determined by
(4.120). The estimate for Z! is obtained by employing the reasoning in Z'. Indeed, by using that
L3 = Lyay and Ly = L,y and |(mq,11)| ~ N1 ~ Ny, it is deduced

T S Ny Lyfin (U Ly /NGO U A 21 3 2 £ o

min

The estimates for Z° and Z* can be controlled in a similar fashion as (4.127) without considering
the behavior of the resonant function and employing only the Cauchy-Schwarz inequality to find

4+ 1 SNY2LY, Sl A A ] e

In the case of fz/ the derivatives in the m; and n;, directions of () could vanish in the support of
the integral. Instead, we will employ the remaining directions to deduce the desired estimates.
Indeed, splitting Ay = Ay 1 U Azp, where Ap1 = Ay n {my > 0}, A1 = Ax n {m; < 0}, we get

(4.128) ‘—Q my, ny,my,nz)| ~ [my|  and ‘—Q my, ny, my, nz)| ~ |nal,

in each of the regions A;; and Az»>. Employing (4.128) and similar considerations to (4.125) for
the variables m7 and m, we deduce

1 1/2 1
T* S Ny Ly (U L2 /NGO L2 A e £ e

med
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This completes the deduction of (3). 0
By duality and Proposition 4.30, we obtain the following L? bilinear estimates.

Corollary 4.32. Let N1, Ny, N3, L1, Ly, L3 € ID be dyadic numbers and f; : R?® > R, supported in

DNI.,L’.fOTi = 1,2.

(1) It holds that
(4.129) |10, 0, (fr# f2) 12 S NuwinLfim [ fil 2 | £l -

(2) Suppose that Nyiy < Nyax. If (Nj, Li) = (Niin, Limax) for some i € {1,2,3}, then
(4.130) 11Dy, 1, (1 # f2) 12 S Nopad *Nofi Ldie (Npiz v L2 [ fulz | fall g2

otherwise

(4.131) 11D, 1, (1 # f2)ll12 S Nopad *Nosa L2 (Niz v L2 U fal 2 | f2 2

(3) Imein ~ Nmax/
(4.132) Ly, (% f2)lli2 S LEANYZ v LY2) | filz | fol

4.4.3. Short time bilinear estimates. In this subsection, we derive the bilinear estimates for
the equation and the difference of solutions.

PROPOSITION 4.33. Lets = so = 1, T € (0, Ty|, then
(4.133) 102 (uo) | prs(ry S To/* ([l oy [0l () + [0l 1y e ) )
(4.134) 1% (u) | Aoy S TSMH”HPO(T)HUHFSO(T)/
for all u,v € F*(T) and where the implicit constants are independent of Ty.
We split the proof of Proposition 4.33 in the following technical lemmas.
Lemma 4.34 (Low x High — High). Let N, Ny, No € D satisfying N; « N ~ Na. Then,
(4.135) | P (@ (13,08, vy S NT/ 2l g, 108,
whenever un, € Fn, and vy, € Fn,.
PROOF. We use the definition of the space Ny to find

IPN (0 (unony ) vy S sup 17+ w(m, n) + NI N L)~y N * 80 [0
NE

where

(4.136)

with @191 = ¢1. Now we define

le,(Nng) = @g(NvNo)(T —w(m,n))fn,(m,n,7),

(4.137)
faL = @L(t —w(m,n))fn, (m,n, 1),
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for L > (N v Np), and we set similarly 8N, (NvNp) and gn,, . Therefore, from the definition of the
spaces Xy, (4.130) and (4.131), we find

1PN (0x (1, oN, ) ) vy
< sup >, NL Y21y, - (fan i * §Nala) i

INER [ 11,1,>(N v Ny)
1/2 1/2n71/271/271/2
(4139 Ssp N NLVNTVNPLLR el
: NERL,L1,Ly=(N v Np), L1=Lnax
1/2 1/2x71/271/271/2
+ sup Z NL™ / N~ / N / Lm/edLm/meNllLl ||L2HgN2,L2HL2

tNe]R L/L11L2>(NVNO)/ Ll <Lmax

Ssup N2 YT(IN/LY2( Y LPIfnnle) (), LPlgmlie),
tneR L=N Li=(NvNp) Ly=(NvNp)

where, since |t + w(m,n) + iN|~! < N1, the sum over Ny < L < (N v Ny) on the left-hand
of (4.138) can be controlled by the right-hand side of this inequality. In this manner the above
expression and Lemma 4.24 complete the deduction of the lemma. 0

Lemma 4.35 (High x High — High). Let N, N1, N, € D satisfying N ~ N; ~ Ny » 1. Then,
(4.139) 1PN (2 (unyom,)) e S N2 g [y, o -
whenever un, € Fy, and vy, € Fy;,.

PROOF. Following the same arguments and notation in the proof of Lemma 4.34, we write

HPN(aX(”MUNz))HNN ~ sup Z NL?I/ZHJLDN,L ) (fN1,L1 * gNzle)HLZ

INER [ 1) 1,>(NvNp)
(4.140) _ Sup( Z NL—l/Z(_”>+ Z NL—l/Z(...))‘
INER 1 10 Ly>(NvNp) L,L1,Ly>(NvNp)
L<(LiALy) L>(L1ALp)

To estimate the first term on the right-hand side of (4.140), we employ (4.132) and the restrictions
(N \% No) <L< (Ll A Lz) to find

(4.141) NL*I/ZH]IDN,L ’ (fN1,L1 *gNzle)HLZ 5 Nl/z(N/L)iln(L%/szNllhHLZ)(LémngNz,LzHLZ)'

Thus, we add the above expression over L,L;, L, > (N v Np) with L < (L1 A Ly) and then we
apply Lemma 4.24 to the resulting expression to obtain the desired bound. Next we deal with the
second sum on the right-hand side of (4.140). Interpolating (4.129) and (4.132) it is seen

NL_l/ZH:I]‘DNL : (le Li * &Ny, Lz)HL2
1-6)/2 0
S NZOp12p 02 62 002y 21 212 £y ) (LY 2 g s 12),

min max-="med

(4.142)

forall 6 € [0,1] and L > (Ly A Lp). Under these considerations, either L1 = Ly;;; or Ly = Ly,
which implies

I 1/2L(1 9)/2L9/2L9/2L 1/2L 1/2\L 0/27 — 1/2+9/2L 1/2+9/2

min max—med min max
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Then, plugging the last display in (4.142) and recalling that N < L;, N < L, we get

NL Y2 1py, - (FnpLy * SNn) |12

(4.143) _ -
S NN/ (L s ) (L2 18 1o 122)-

Therefore, taking 0 sufficiently close to 1, we sum (4.143) over L,L1,L, > (N v Np) with L >
(L1 A Ly) and then we apply Lemma 4.24 to control the second term on the r.h.s of (4.140). This
completes the proof of the lemma. O

Lemma 4.36 (High x High — Low). Let N, Ny, N> € D satisfying N « N; ~ Na. Then,
(4.144) [Py (82 (18, 08,)) vy S N2 Tog (Noar) |10, 1y, o0, [,
whenever un, € Fy, and vy, € Fy;,.

PROOF. Following the same notation employed in the proof of Lemma 4.34, we have

| P (0x (N, 0N, )) vy
N sup Z NL_l/ZHﬂDN,L ) (fN1,L1 * gszLz)HU

(4.145) INER [ 1 1,>(NvNp)
= sup ( Z NL_l/Z(...)+ Z NL_l/z(...))_
INER I 11,1,>(NvNp), L=Lyax L,L1,Ly=(NvNy), L<Luax

To estimate the first term on the r.h.s of (4.145), we use (4.130) to deduce

(4.146) NL_l/ZH]lDN,L ’ (lerL] * gNz,L2>HL2 5 I\]?)/ZI\]l_l/Z(Z\]ll/2 2 Ll/z)”ff\h,h HLZHgszLzHLZI

min
where L,L1,Ly = (N v Np), L = Lysx. These restrictions imply, Nfl/z(Nll/2 v Ll/z)Lfl/ngl/z <

min
N_l/ZLn:;{Z, then when L,,,; ~ L = L;;,,, we have

147 N32NTV2 (N2 v L2 | o a2 188 a2
(4.147) < NY2(N/L)V2(11/2 11/2
S NYAN/L) (L e 2) (L I8Ny Lz [122)-
Now, when L,,,; « L, we use the bound,
N32NY2(NY2 v LD | a2 8 1 2
< NVA(LY2 f i l2) (LY 2 g L 12).

By support considerations it must follows that L ~ ()| < N7, whenever L,,;; < L, this implies that

(4.148)

summing over L in (4.148) yields a factor of order log(Nj). This remark completes the estimate
for the first sum in (4.145). The remaining sum in (4.145) is bounded directly by (4.131) in the
following manner

-1/2
! Dy, - \JNy,Ly No,Ly ) |12
NL™2|1 (fNuLy * 8No L) |
— —1/271/2 1/2 1/2 1/2
S N32LRNTVRLI2 (N2 0 LY2Y | l2) (L5 2 18N 1 12)

med min

S NYAN/LYA L] ) (L5 2 Ign o 2),

where we used that Nfl/z(Nll/2 v Ll/z) < N*1/2L7111/1.ﬁ, for L1,Ly, L3 = (N v Np) and L < Lyy.

min
The proof of the lemma is now completed. O
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Lemma 4.37 (Low x Low — Low). Let N, N1, Ny € D satisfying N, N1, Na « 1. Then,
(4.149) 1PN (Ox (ny 0N ) e S s ey, o L,
whenever un, € Fn, and vy, € Fn,.

PROOF. Following a similar reasoning as in the proof of Lemma 4.34, we notice that it is
enough to establish

(4.150) NL™VY2|1py, - (fanin * &Nota) 2 S L7Y2(L 2] g 12) (LY 218N 1 12)

for L,L1,Ly = Ny, where we define fn; N, = @<, (T —w(m, n)) fn,(m,n,T) and fn, 1, = ¢r,(T —
w(m,n))fn,(m,n,T) L1 > No with fy, as in (4.136) and similarly we set gn, r, with Ly > Np. In this
manner, we have that (4.150) is a direct consequence of (4.129) and the fact that N, N;, N, S 1. O

We are in conditions to prove Proposition 4.33.

PROOF OF PROPOSITION 4.33. We will only deduce (4.133), since (4.134) is obtained by the
same reasoning. For each Nj, N, € ID, we choose extensions uy,, vn, of Py, u and Py,v satisfying
uny s < 2| Pnytllgg, (1) and [on, [F < ZHPNZUHFS . By the definition of the space N*(T) and

1

Minkowski inequality we have

5
Jox(u0) Ly 2(2 NN (Y IPe@ o)) =),

j=t N1 (N1, N2)€A; =
where
Ay ={(N;,N;) e D*: N; « N ~ Ny},
Ay ={(N1,N;) e D*: N « N ~ Ny},
Az = {(N;,N;) eID?*: N~ Nj ~ Ny » 1},
Ay = {(N;,N;) e D*: N « N; ~ Ny},
As = {(N;,N) e D*: N ~ Ny ~ N, < 1}

To estimate S;, we use Lemma 4.34, the fact that Nll/ e < Tg/ 4(Nf’ ate 4 Ng / 4“) for € > 0 small
enough and the definition of F*(T) to derive

2\ 1/2
Sq 5 Té/4( Z (st + NZs ( Z N N3/4+e + N3/4+6)Hu1\11 HFN1 HUNHFN> )
Nz=1 Nj«N

1/4
< To"*[ullpo(my [0l r)

The estimate for S, is obtained symmetrically as above. Next, we use Lemma 4.35 and that
N1/ < TVA(NG/A* 1 NPT o obtain

1/2
+ 3/4)
53 ST/ ( D (N 4+ NEY N/ N fun Jon ) S T3 fullso ol
N=1

Let 0 < € « 1 fixed, then Lemma 4.36 and the Cauchy-Schwarz inequality yield

2\ 1/2
SSTA(Y N[ X NyANTAN 4 NG (NG 4 NY44) fuw, Iy, ol v, ) )
Nz1 N«Ni,N

1/4
< To Hull oy ol pscry
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which holds given that N'/22¢ log(Nyax) < To/*N7¢/2Ny/2(N3/4H4€  N3/4T4€) . The estimate
for S5 follows from Lemma 4.37 and similar considerations as above. This concludes the deduction
of (4.133). O

4.4.4. Energy estimates. This subsection is devoted to derive all the estimates required to
control the B*-norm of regular solutions and the difference of solutions.

Lemma 4.38. Let so > 1/2, then there exists v > 0 small enough such that for T € (0, Ty] it holds
that
3

< TN T T il
i=1

(4.151)

J UiUoUs
T2x[0,T]
for each function u; € Fn,(T), 1 =1,2,3.

PROOF. In view of (4.117) we will assume that N; < N, < Ns. Let if; € Fy, extensions of u; to
R such that HﬁinNl_ < 2”“1’HFNZ,(T)/ i=1,2,3. Now let h : R — R be a smooth function supported in
[—1,1] such that
Z B(x—k)=1, VxeR
kezZ
Then, we write

< 3 J h(Nst — k) Lo 7yi53)|

J UilUaU3
T2x[0,T]

‘k|<N Z2xR
(4.152) (IF (h(Nst —K)Lio,gyit1)1) * (|F (N3t — k) Lo iz )
:;2(...)+2(...),

A B
where

= {k e”Z : ]’l(Ng,t — k)ﬂ[O,T] = ]’l(Ngt — k)},

= {k ez : ]’l(Ng,t — k)]l[O,T] * h(N3t - k) and h(N3t — k)ﬂ[O,T] # 0}
Let us estimate first the sum over A in (4.152). Recalling the dyadic number Ny defining the spaces
X%, we denote by

fII\(]i,N3vN0 = P (NywNy) (T — W) | F (h(N3t — k)iiz)],
flr = 91, (T — w)| F(h(Nst = k)il3)],
foreachi =1,2,3,L > (N3 v Np) and k € A. Now since there are at most N3T integers in A, we
employ (4.114) and (4.115) when N; « N3, or (4.116) if N; ~ N3 to deduce that

Ta < 2 JZX (R * o) * fRi 1

|k‘€A Li,Ly, L3/(N3\/N
(4.153)

3
1/2 I ! g
S Nl/ T sup H Z Li/ HfNi,LiHLZ S/ Nl/ TH HuiHFN",
keA i=1 L,>(NsvNp) -

where the last line above follows from (4.106) and (4.107).
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Next we deal with the sum over B in (4.152). We consider b € (0,1/2) fixed and let

gn,L = 91, (T — )| F (h(Nat — k) Lo 7y,

foreachi =1,2,3, L € ID and k € B. We treat first the case N7 « Nj. Since #B < 1, we have

k k k
I5 < sup Z J , (8N1,L1 * gN2,L2> "8N;, Ly
keB Ly,Ly,L3=1 Z7xR

Ssup ( Z fZZXJR(---)—F 2 J (--+)) =:sup (Z5* + 7).

keB [, <Ly Ly, Lo, L3, Ly <Lyay V2% ¥R keB

From (4.114) and the fact that N; /2(N3/2 v LV2Y[ 172 < (N7V/2 v L 1/2) < 1, we get

min min min
1,k 1/2771/271/2 1/2 1/2 k k k
IB N Z Ny / N, / Lm/ax(N/ Lm/m>HgN1,L1HLZHgNZ,LZHLZHgN3,L3HL2
Lz,LgéLl
(4.154) 1/271/2 71/2 ,k k k
Z N1 Lmamem HgNl,Ll HLZ HgNQ,Lz HLZ HgN:;,Lg, ||L2'
Ly, L3<Lq

In the regions where L,,.;j ~ Ly, we use Lemmas 4.25 and 4.26, together with the fact that
HLNIZ'”FN 2”“1HFN ) to deduce

Nl/ZL Ll/ZLb 1/2

sup med “max Smed mangNl L HLZHgNz Ly HL2H8N3 Ls I
keB 1,,15<L,,
(4155) Lmﬂd"’Lmnx \
1/2 2-b)~
S Nl/ Z Lmax T(1/270) H HuiHFN,-(T)
Ly,Lo,Ls i=1

Now we deal with the case L,,,; « Lyy. Interpolating the right-hand side of (4.154) with the
bound derived for Illg,’k using (4.113) instead of (4.114), we find for all 6 € [0,1) that

1-6/276/2 71/2) k k k
sup Z N, / Lm/ame/m”gNl,LlHL2HgNz,LzHL2HgN3,L3HL2
keB' 1,,15<L,,
Lmed <« Lmax

Lo (1- 0)/271/21b 11/2

1-6/2 k k k
(4 156) = ?{ug 2 N / Lmed max max ~med mmHgNl,Ll HL2HgNZ,LZHLZHgN3,L3HL2
’ € Ll Lmu‘(

Lmed «Lpax
3

1-9 2 (1-6) /2 —b)~
5 N1 / Z Lmax med)T(l/Z ) H Hui”FNi(T)
Li,Ly,Ly i=1

Therefore, the estimate for sup,_z Illg'k is now a consequence of (4.155) and (4.156). On the other
hand, we can implement (4.115) and the same ideas dealing with (4.155) to derive the following
bound

2,k 1/27-b 1b 1/271/2y .k k k
sup ZB fg sup 2 N / LmﬂmeﬂXLm/edLm/angNl,Ll HL2|‘gN2,L2HL2HgN3,L3HL2
keB keB LlrLZrL3/L1<Lmax

3

1/2 1 2—b)~

S Nl/ Z Lmux /27b) H HuiHFNl.(T)
Ly,Lp,Lp i=1
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This completes the analysis of Zp in the region N7 « N3. Next we treat the case N; ~ N,. Interpo-
lating (4.113) and (4.116), we obtain for all 6 € [0, 1] that

0/2/n71/2 1/2\1—08707 —1/2760/2—b\71/2 71/2 7D
Iggsup Z (me{ (N / Lm/ed) N Lmed/ Lm/m )Lm/llem/edme

keB Li,Ly,Ls
4.157 X K X
(4.157) x HgN1 L1HLZHgNz,LZHLZHgN3,L3HLZ

1/2+6/2 0/2(7-6/276/2—b\71/271/271b k k k
N iullé’ Ny 1216/ Z me{ (Lmeé Lm/m )Lm/ame/edL mH8N1,L1HL2H8N2,L2HL2H8N3,L3HLZ-
€ Ly,Lo,Ls

Therefore, taking 0 sufficiently small and employing a similar reasoning to (4.156), the estimate
for Zg when N; ~ Nj is a consequence of (4.157). Gathering all the previous results we obtain
(4.151) forv=1/2—b. O

Lemma 4.39. Assume that sy > 3/2, Ny < N, then there exists v > 0 such that for T € (0,1],

[, Pu@unyo) Py dsdyde] S TN ol o 3 1l
TZX]R N2~N 2

whenever v € Fy, (T) and u € Fy, (T).

PROOF. We divide the integral expression in the following manner

J PN (0xuPn,v)Pyu dxdydt
T2xR

(4.158) = J OxPyuPN,vPNuU + J PN (0xuPn,v) Pyu — OxPnuPn,vPNu
T?2xR T?2xR
=7+171T.
Integrating by parts and using (4.151), the first term on the right-hand side of the above expression
satisfies
(4.159) T S TN Joley, ooyl

The estimate for Z7 is deduced arguing as in [44, Lemma 6.1], for completeness we shall show
this procedure. We consider extensions i and 0 of u and v respectively such that [[il]| g, < 2[|u]p, (1)
and ||0]|g,, < 2||v[|r, then we write

(4.160) IT =), f (P (0" Py, %) — 0y Pyi* Py, %) PyilF,
kez JT2xR

where iI* = Lj,rh(Nt — k)i and o = Ljo,r)h(Nt — k)0 with  defined as in the proof of Lemma
4.38. In addition, we consider smooth partitions Py defined by F (13N4)) (m,n) = yn(m,n)dp(m,n)
with 7y : R? > R smooth compact supported in {|(&,7)| ~ N} with the property that PyPy = Py.
Then we have

F([PN(ﬁxﬁkleak> - axPNﬁkPngk])(m,Tl)
= Z K(m,n,my,ny) F (@) (m —mq,n — nl)f(|V|Ple7k)(m1,n1)

my,ny

(4.161)
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where using that |(m —mj,n —n1)| ~ N, we set
K(m,n,my,n1)
~ (m—my) {UN(m,n) —nn(m—my,n—nq) } ~

mi,n m—my,n—n
|(mq,n1)] 1N, (m 1)N§N77N2( 1 1)

with 75, 77N, = N, - Since

K (m,n,my,n1)| < fjng (ma,m1) > fing (m —my,n —ny),
No~N
we can combine the last inequality, (4.161) and (4.160), to employ the same arguments leading to
(4.151) to obtain the desired estimate for ZZ. This completes the proof of the lemma. O

PROPOSITION 4.40. Let T € (0,To) and s > sy > 3/2. Then for any u € C([0, T]; H*(T?))
solution of the IVP (0.4) on [0, T],

(4.162) ey S TutolB + TVt oy i
PROOF. According to the definition of the spaces B°(T) and the fact that u solves the IVP (0.4),

it is enough to derive a bound for the following expression

(4.163) N%| Pyu(tn)|32 < N%|Pyug|?, + N*

~

J Py (udyu) Pyu dxdydt|,
T2 x[0,T]

for N > Np. Now we split the estimate of the integral term above according to the following
iterations: High x Low — High,

(4.164) er or PN (0xuPn,u)Pnu dxdydt, where Ny « N,
Low x High — High, /
(4.165) quz o PN (0xPn, uPn,u) Pyu dxdydt, where Ny « N, ~ N,

x[0,
High x High — High,
(4.166) quz o PN (0xPn, uPn,u) Pyu dxdydt, where N ~ Nj ~ Ny,
and High x High — Low,,
(4.167) er or PN (0xPn,uPn,u) Pyu dxdydt, where N « Ni ~ Nj.
In view of Lemma 4.39, tI;e High x Low — High iteration satisfies
(4.168) (4.164) < TN/ 2% Py, Py (T) NEN \|PN2u|\§N2 (1)

o~

Summing the above expression over N and N; « N, we can modify the power of N1(3/ 2 by an
small factor to apply the Cauchy-Schwarz inequality in the sum over Nj. Next, we apply the same
inequality for the sum over Nj, obtaining (4.162) for this case. Recalling (4.159) in the proof of
Lemma 4.39, we notice that the Low x High — High iteration satisfies the same estimate on the
r.h.s of (4.168).
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Next we apply (4.151) to control the High x High — High iterations as follows
(4.169) (4.166) < TN/ | Pau] gy )| Py ey, 1) 1PN, 7)-

(8/2)*

Since N ~ Nj ~ N, we can increase the power in N by a small factor to apply the Cauchy-

Schwarz inequality separately in each of the sums N, N;, N, to derive the desired result. The
estimate for High x High — Low is obtained by (4.151) and a similar reasoning to the iteration
High x High — High. This completes the estimate for the r.h.s of (4.163) and thus the deduction
of (4.162). O

We also require the following result to deal with the difference of solutions.

PROPOSITION 4.41. Let T € (0, Ty, s = so > 3/2. Consider u,v € C([0, T]; H*(T?)) solutions of
the IVP (0.4) with initial data ug, vo € H* (T?) respectively, then
@170)  Ju—olBory S o — 00l + T (J = ol ry I — 01agr, + olloqn I — 0 o)),
and
171 l = 0l15s (1) S o = vollze + T ([0 po (1) 14 = 0l ) + 14 = Ollpso (¢ = Ol sy [0l sy
+ ol pssara ()1 = 0llpsry e = vllpor) ),
where the implicit constants are independent of Tp.

PROOF. We shall employ a similar reasoning to the proof of Proposition 4.40. Letting w =
u — v, we find that w solves the equation:

(4.172) {(W + Haw — 02w + Ho02w + 30x((u + 0)w) =0,

w(x,0) = uy — vy.
Let § € {0,s}. The definition of the B*(T)-norm and the fact that w solves (4.172) yield
[@[5s ) S IP<ngw(0) 7+ Y, sup N°|Pyw(t)72

N>N, In

S lw@)lgs + Y, N*
N>N0

(4.173)
J Py (wdyw + vdyw + 0xvw) Pyw dxdydt| .
T2x[0,T]

Then, we are reduced to estimate the integral term on the right-hand side of the last inequality.
Arguing as in the proof of Proposition 4.40, applying Lemmas 4.38 and 4.39, we obtain

f Pn(wdyw + vdyw) Pyw dxdydt
T2 x[0,T]

(4.174) N>Np
S TV(Hpr(a/Z)*(T)HwH%O(T) + HUHF(S/N(T)HWH%O(T))
and

Z NZS

(4.175)  N=N,

J Py (woyw + voyw) Pyw dxdydt
T2 x[0,T]

S T (10l s 101y + [l oy [0l o o).
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where we emphasize that the last term on the right-hand side of (4.175) appears from the estimate
dealing with the Low x High — High iteration and Lemma 4.38 since in this case

~ 3/2 + ~
NZ S T'NE NZ | Pyl gy ()P0l ) [P g )

J PN (0xPn, wPN,v) Pyw dxdydt
T2 [0,T]

with Ny « N ~ N,. It remains to estimate the integral involving vo,w in (4.173). We divide our
considerations as in the proof of Proposition 4.40 according to the iterations: High x Low — High,
Low x High — High, High x High — High and High x High — Low. Notice that in this case we
cannot apply Lemma 4.39 to control the High x Low — High iteration. We use instead Lemma
4.38 to find for N; « N that

N2§

J Pn(0xvPn,w) Pyw dxdydt‘
T2x[0,T]

(4.176) . W
ST ) NYNGN IPnywl gy, (r)l Pyl gy, (1) IPN® ] By ()-
Ny~N

Summing (4.176) over N and N; « N, we use that N1(1/2)+N2NZg S N2(3/2)++§N§N1_€ for0<e«1

to apply the Cauchy-Schwarz inequality on the sum over N; and then on N to control the resulting
expression by (4.170) if § = 0, or (4.171) if § = s. The other iterations are treated as in the proof
of Proposition 4.40, and their resulting bounds are the same displayed on the right-hand sides
of (4.174) and (4.175) when s = 0 and s = s respectively. The proof of the proposition is now
completed.

O

4.4.5. LWP in H*(T?), s > 3/2. Here we prove Theorem 4.3. We shall implement similar con-
siderations as in [44, 90] to prove Theorem 4.3. We begin by recalling the local well-posedness
result for smooth initial data, which can be deduced applying the parabolic regularization argu-
ment (see [46, Theorem 2.1]) with the periodic Kato-Ponce estimate in [42].

Theorem 4.42. Let ug € H®(T?). Then there exist T > 0 and a unique u € C([0,T]; H*(T?))
solution of the IVP (0.4). Moreover, the existence time T = T(|uo|ys) is a non-increasing function of
|uo|| gz and the flow-map is continuous.

We divide the proof of Theorem 4.3 in the following main parts.

4.4.5.1. A priori estimates for smooth solutions.

PROPOSITION 4.43. Let s > 3/2 and R > 0. Then there exists T = T(R) > 0, such that for all
up € H®(T?) satisfying |luo|gs < R, then the corresponding solution u of the IVP (0.4) given by Theorem
4.42 is in the space C([0, T]; H* (T?)) and satisfies

(4.177) sup [[u(t)|ns < [uolns-
te[0,T]

PROOF. We consider s > 3/2 fixed and 1 as in the statement of the proposition. In virtue of
Theorem 4.42, there exist T' = T'(|ug| ) € (0,1] and u € C([0, T']; H®(T?)) solution of the IVP
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(0.4) with initial data up. Then for a given Ty € (0, 1] to be chosen later, we collect the estimates
(4.111), (4.133) and (4.162) to find for each s; = s > sp > 3/2 that

lullpss o1y Sl g () + 105 (%) | ar ()
(4178) 102 )l ) S To el oy el .

[ullpes (1) S Ttoll e + T8l iy Nt ),

where 0 < T < (T’ A Tp). We emphasize that our arguments indicate that the implicit constants in
(4.178) and v > 0 are independent of Ty € (0, 1] and in consequence of the definition of the spaces
involved (which depend on Ny < T;™). Letting s; = s = sp and I's(T) = il s 7y + 10 (u?) | s (7).
(4.178) yields

(4.179) T(T) S |uolls + Ty"*Ts(T)? + Ty To(T)*'2.
Considering now s; = 3, 59 = s in (4.178), we also find
(4.180) lulper) < luollms + T5/4F5(T)H”HP3(T) + Tgrs(T)UzH”Hﬁ(T)-

Since the mapping T > |u|ps(r) is decreasing and continuous with imr_,o [ups(r) S |ullns, from
(4.112) it follows that

(4.181) Hm T(T) S Juolne,

where the implicit constant is independent of Ty and the definition of the spaces involved. Thus,
we can choose Ty = Tp(R) > 0 sufficiently small, such that Té/ *R + TYRY? « 1 (according to the
constants in (4.179) and (4.181)). Then, for this time and the associated spaces F*(T), N*(T), BS(T),
we can apply a bootstrap argument relaying on (4.179), (4.181) and the continuity of I's(T) to
obtain I's(T) < |Juol|ps, for any 0 < T < Tp. Consequently, Lemma 4.27 reveals

sup  fu(t)[ms < [uol s
te[0,(T' ATy)]

Therefore, up to choosing Tj smaller at the beginning of the argument, from (4.180) we infer

sup  u(t)|pgs < lluol g
[0, (T ATo)]

In this manner, the last display and Theorem 4.42 allow us to extend u, if necessary, to the whole
interval [0, To(R)]. This completes the proof of the proposition. O

4.4.5.2. L%-Lipschitz bounds and uniqueness. Let u,v € C([0, T']; H*(T?)) be two solutions
of the IVP (0.4) defined on [0, T'] with initial data ug,v9 € H*(T?) such that u,v € F¥(T,T') n
N3(T, T'), where we denote by F*(T, T’) and B*(T, T’) the spaces defined at time T" and 0 < T <
T'. Notice that this implies that u, v € F*(T, To) n N*(T, Ty), whenever 0 < T < Ty < T'. We collect
(4.111), (4.134) and (4.170) to get

lu = llpor,zyy S It = 0llpocr,m) + 102 ((# + v) (1 — )| jror, 1)
(4.182) 10x (1 + v) (1 = 0)) | jor, 1) S To/* (Nl s 7y) + 100 ps (7, 10) )t — 0l po(1, 1)

lu —olpocr,1) S o —voll 2 + To (lullps(rmy) + HUHFS(T,TO))UZH” — 0| po(r,7y)-
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Let R > 0, satisfying sup,q 7, (|u(t) s + o(t)|ms) < R. Following a similar reasoning as in the
proof of Proposition 4.43, there exists a time Ty = Typ(R) > 0 sulfficiently small, for which Tg /4R +
TYRY? « 1 with respect to the constants in (4.182) and |u|| r(1,1)7 19l (7,1) S R. Consequently,
(4.182) and Lemma 4.27 yield

sup u(t) — o)l S |u—vlprz) S o —volli2,

t€(0,T]
forany 0 < T < Tp. Thus, if uy = vy, the last equation reveals that u = v on [0, Tp]. Since T
depends on R = R(sup,cio 1 ([4(t)[1s + [0(#)[/1:)), we can employ the same spaces to repeat this
procedure a finite number of times obtaining uniqueness in the whole interval [0, T'].

4.4.5.3. Existence. Let R > 0and 3/2 < s < 3 fixed. For a given uy € H*(T?) with |ug|n: < R,

we consider a sequence (up,) = H®(T?) converging to ug in H*(T?), such that [jug |z < R.
We denote by ®(ug,) the solution of the IVP (0.4) with initial data ug, determined by The-
orem 4.42. Therefore, according to Proposition 4.43, there exists T/ = T’(R) > 0, such that
®(up,) € C([0, T'); H®(T?)) and (4.177) holds. We shall prove that (®(ug,)) defines a Cauchy
sequence in C([0, T]; H*(T?)) for some 0 < T < T'. To this aim, we will proceed as in [44, 90].

For a fixed M > 0 and 7,/ > 0 integers, we have
sup [P (uon) () — P(uos) (1) = < sup ([P (o) (t) — P(Pamiton)(t)]m
te[0,T] te[0,T]
(4.183) + [ @ (Peption) () — D(Peptio) ()] 1
+ [ @ (1) (£) — P(P<pio) ()| 1s)

forall 0 < T < T'. Using Sobolev embedding and (4.177), we get

10x (@ (P<mton) + P(P<mito)) (Dllre S [P (P<pation) () | + [P (P<ppito) (£) [

S |P<mtion] s + | P<mtiollps-

Then, the standard energy method and the above inequality show that the second term on the
right-hand side of (4.183) is controlled as follows

(4.184) sup HCD(PgMMO,n)(t) — q)(PéMuO,l)(t)HHS < C(M)Huo,n — UO,IHHSI
te[0,T]

foreach 0 < T < T’ and some constant C(M) > 0 depending on M. Therefore, it remains to
estimate the first and last term in (4.183). By symmetry of the argument, we will restrict our
considerations to study the former term. To simplify notation, let us denote by u := ®(ug,),
v := O(P<pup,) and w = u — v, then taking Ty € (0, T’], we gather (4.111), (4.133) and (4.171) to
find

1wl sy < wlgsery + 102 (w4 + 0)w) | ars(T),

(4.185) 105 ((u + 0)w) | wery S To* (l + 0l ps(ry @] psr))

1/2

1/2
[@llps(r) S luon — Penttionllrs + T8 (0l lwlps(ry + o]

E¥ (1)

1/2 1/2
[l o] 42),
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forall 0 < T < Ty, and where s +3/2 < s’ < 2s is fixed. The above set of inequalities reveal

[wlles(ry S ltton — Peation|ms + (Tg 2 (uallps oy + lollps(ry) + To ol ) ) el psr)

1/2 1/2 1/2
+ Ty ol [ol2 Lol

(4.186)

Repeating the arguments in the proof of Proposition 4.43, using (4.178) with s; = s’ and sp = s, we
choose Ty = Ty(R) < T’ small so that

HUHFSI(T) rS HpéMuO,n”Hs’, 0<T < T0,
and such that, employing (4.182) and similar considerations in the uniqueness part above,
lwlpory < lton — P<mttonlz, 0 < T < To.

Furthermore, we can choose Tj smaller, if necessary, to assure that Tol/ 2R + Ty RY2 « 1 with
respect to the implicit constant in (4.186). Then gathering these estimates in (4.186), we get

1/2

e HuO,n — PgMuO,nHiéz

S|P mtion] s + M 2| Pe gt u]| 2] Po patio n] 2,

[wllps (1) < 400 = P<mtion||ms + [[P<pmtion|

where, given that s < s’ < 2s, we have used that |P<pion e S M =%| P<pttg ] prs. From the
above inequality and Lemma 4.27, we arrive at
1/2 1/2
(4.187) SEJP] 1D (110,0) (£) = P(Pepation) (D) S (14 | Popation] )| Pomtion 1
tel0, T
where 0 < T < Tj. Therefore, according to our previous discussion, this completes the esti-
mate for the first and third terms on the r.h.s of (4.183). Noticing that for 1,/ large, | P~ ation s,

| P~muo | Hs < 2| P=muol| s, we can take M large in (4.187), and then 7, [ large in (4.184), obtaining
that (®(ug,)) is a Cauchy sequence in C([0, T]; H*(T?)) for a fixed time 0 < T < Tp.

Since each of the elements in the sequence (®(1,)) solve the integral equation associated to
(0.4) in C([0, T]; H*"1(T?)), we find that the limit of this sequence is in fact a solution of the IVP
(0.4) with initial data up. This completes the existence part.

4.45.4. Continuity of the flow-map. Itis not difficult to obtain the continuity of the flow-map
from the same property for smooth solutions in Theorem 4.42 and the preceding arguments. We
refer to [90] for a more detailed discussion.

4.5. Well-posedness results in weighted spaces

This section is aimed to establish Theorem 4.5. We will start by introducing some preliminary
results.

4.5.1. Notation and additional results. We shall employ the notation introduced in Section
1.2. We consider the approximations {w,} defined in (1.20) for 4 = 1. To explicitly show the
dependence on the spatial variables x, y in our estimates, we will denote by w,, x(x) = w,(x) and

Wny(y) = wn(y).
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Since we are interested in performing energy estimates with the weights w,, and then taking
the limit n — oo, we must assure that all the computations involving the Hilbert transform and
the aforementioned weights are independent of the parameter n. In this direction we have:

PROPOSITION 4.44. For any 6 € (—1,1) and any n € Z*, the Hilbert transform is bounded in
L?(wf (x) dx) with a constant depending on 0 but independent of n.

Proposition 4.44 was stated before in [29, Proposition 1]. We require the identity
(4.188) [Hy, x| f = 0if and only if J f(x)dx =0.
R

We will employ the characterization of the spaces L! (R?) = J*LP(IR¥) determined in Theorem
1.13. Additionally, its consequences (1.26), (1.27) and Lemma 1.15 will be constantly employed in
our considerations.

Additionally, we require the following result which is proved in much the same way as in [69].

PROPOSITION 4.45. Let p € (1,00). If f € LP(R) such that there exists xo € R for which f(x]),
f(xy) are defined and f(x§) # f(xg), then for any § > 0, DYPf ¢ LV (B(xo,6)) and consequently

feLl (R).

Proposition 4.45 is useful to determine our unique continuation conclusions in Theorems 4.6
and 4.7.

PROPOSITION 4.46. Let b € (0,1). Forany t >0

(4.189) Db(eix|x\t) < (P2 4 tP|xP),  xeR
and

(4.190) Db (¢isign(M)ixisign()°t) < |x1=b  x e R\{0},
forally e R.

PROOF. Estimate (4.189) follows from the same arguments in [69]. On the other hand, since
|efsign(x)tFisign(x)n*t __ pisign(y)tFisign(y)1*| — 0 whenever sign(y) = sign(x), we perform a change of
variables to find

. . 5
o . zt |6151gn x)tFisign(x)y?t 151gn(y)t+151gn(y)77 t|2 1/2
D (elsgn(X) Fisign(x)n f pp—ieE y>
1 2
< (L>| A dy) "~
This completes the deduction of (4.190). O

The following result will be useful to study the behavior of solutions of (0.4) in L?(|x|*" dxdy),
whenever r € (1/2,1].

Lemma 4.47. Let 1/2 <s < 1and f € H*(R) such that f(0) = 0. Then, ||sign(&) f|as S || f | as-
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PROOF. Since the case s = 1 can be easily verified, we will restrict our considerations to the
case 1/2 < s < 1. We first notice that the same argument in the deduction of (4.190) establishes

D* (sign(x)) ~ [x|™"

Thus, an application of (1.27) and the previous result reduces our analysis to prove

(4.191) Il S 1 ke
However, the preceding estimate is a consequence of [88, Proposition 3.2] and the assumption
f(0)=0. O

Now we are in the condition to prove Theorem 4.5

4.5.2. Well-posedness in Z;,, , and Z's,rl,z. This part is dedicated to prove Theorem 4.5. In
view of Theorem 4.1, for a given ug € Z;, »,s(R?) = H*(R?) n L?((|x|*" + |y|*?) dxdy) there exist
T = T(Juo| ) > 0and

ue C([0, T]; H*(R?)) n LY([0, T]; WV (IR?))
solution of the IVP (0.4). Let 0 < K < oo defined by
(4.192) K= |ulrzns + H”HL%L;@ + HV“HUTL,@-

In what follows, we will assume that u is sufficiently regular to perform all the computations
required in this section. Indeed, the proof of Theorem 4.1 establishes that there exists a smooth
sequence of solutions uy € C([0, T]; H*(R?)) with un(0) € H®(R?) n L2((|x*" + |y|*2) dxdy),
satisfying un(0) — ug in the Z,, ,,s(R?) topology, and such that (4.63) and (4.64) hold. Thus,
applying our arguments to the sequence uy and then taking the limit N — oo yield the required
assumption on u.

452.1. LWPin Z;,, ,,, 11 € [0,1/2),r2 = 0. Here we deduce Theorem 4.5 (i). Let us first prove
the persistence property u € C([0, T]; L>((|x|*" + |y|*"?) dxdy)). We begin by deriving some esti-
mates in the spaces L?(|x|*"' dxdy) and L?(|y|*"2 dxdy).

Estimate for L?(|x|* dxdy). Here, 0 < r; < 1/2 fixed. We apply H, to the equation in (0.4)
to find

(4.193) OrHxtt — u + d5u F Sju + Ho(udxu) =0,

multiplying then by Huwit and integrating in space, we infer

2 7 H”Hx u(t) ;{XH%Z — fu?—lxu wzrl dxdy + J&zu’}{xu wzrl dxdy

(4.194)
f&zu?{xu wat dxdy + J?—[x (udxu)Hyu wit dxdy = 0.

21’1

Multiplying the equation in (0.4) by uwy;', and then integrating in space, it is seen that

2dtHu( Jw an%z + f?-lxuuwzrl dxdy — J?-[xézuuwyl dxdy
(4.195)

f?—lxé’zuwzrl dxdy + Jué’xuuwzrl dxdy = 0.
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Adding the differential inequalities (4.194) and (4.195), after integrating by parts in the y variable
we deduce

R

1d
E%(Hu(t)w,r}xH%%y + | Hu(t) w) %iy) = J(Hxaiuu — PuH u)w?L dxdy

(4.196) - J (udeu + Hy (udgu) M) dxdy

=:01+ Q2.

Now, since 0 < r; < 1/2, |0y w2r1| < w x with implicit constant independent of n, integrating by
parts and using the Cauchy-Schwarz mequality we find

|Q1| = U& H Uy w2r1 dxdy — Ja UH 1 Oy wzyl dxdy
S loxulpgrg lluwiclz, + 10xule s | Hot wil iz, -

Notice that the norm || 0xu( = 12, is controlled by (4.192). Next, since 0 < r; < 1/2, Proposition 4.44
shows

| Mo (uoxu)wy! 12, = (Mo (uru)wy Jiallip S ludsuwy iz S l0xu] g luwyy s, -
Hence, we employ Holder’s inequality to get
2
|Qaf < [[0xulng [uwh iz, + [Ha(uxu)wy |z, | Hatt wiel iz,
S \IaquL,;@HMwZ{xH%gy + [ Oxulleg uwyl o iz, | Hau wilyllrz, -

Thus, gathering the previous estimates,

2 2
(4.197) EE(H w(B)widol, + [Hocu(t) Wikl )

/
H )12

S (luwit |2z, + [Heuwy + ol (luwyi i, + | Hauwii|gs )

Estimate for the L2 (|y|>2 dxdy). In this case, r, > 0 is arbitrary. Multiplying the equation in (0.4)
by uw;?, and integrating in space yield

5 lu(t)wi, f?—[xuw uw;? dxderJ’Hx&Zuw uw;2, dxdy
(4.198) J?—[xé‘zuw” uw, dxdy — Ju&xuw uw;z, dxdy

=:A1+ Ay + Az + Ay

Since the weight function w;?, = w;?, () does not depend on x, writing Huw;?, = H(uw)?,) and
using that H, determines a skew-symmetric operator, we have that A; = 0. Similarly, integrating
by parts on the x variable and writing Hdxuws?, = Hy(0xuwi?y), it follows that A, = 0.

Now, integrating by parts and using that H, is skew-symmetric, it is not difficult to see that

(4.199) |As| = ‘ZJHX&’ udyw;z uw, dxdy| < H&’yu(?ywzzlyHLJszHuw,rf,yHL%y.
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From the fact that |é’;w,rfy| < wlfy_ l, | = 1,2 with a constant independent of 7 and (4.192), it follows
(4.200) |Oyudyw;? HLz S oy ”HL/LZ <K,

whenever 0 < r; < 1. Now, if r, > 1, the identity d,ud,w;?, = d,(ud,wi?,) — u&zw;%y shows

(4.201) Ha uo wnyHLZ < H]j(uwfz 1)HL2 +Hu82 rzyHL2 < H]y(l«lwrz 1)HL2 + Huwnpr_
To estimate the last expression, choosing ¢ = 7, ' a = b = rpyin (1.28) and applying Young’s
inequality
1)/ 1
(4.202) Ty (ueo2, 1)HL2 =[]y (uwiz, 1)HL2HL2 < [l H (r2— 7‘2”]1’2uHL52//1’2HL)2C

< Juwf? HLz 77uliz,-
Thus, choosing s > max{3/2,,}, (4.200)-(4.202) and (4.192) imply
|As| < Juwiy Iz, + luwizy |17,

Finally,
2
| Aa| S 10xulleg [uwiiy 72 -

Plugging the estimates for A;, j = 1,...,4 in (4.198) yields

(4.203) 5 77 lu(t)w; HLz S luwiiylig, + (1 + ||6xu\|%)\|uw;2,y\|%§y

This completes the analyze for the L?(|y|*" dxdy)-norm;

Now, we collect the estimates derived for the norms L?(|x|*"t dxdy) and L?(|y|* dxdy) to conclude
Theorem 4.5 (i). Letting

$(8) = (D)2, + [ Han(t) wi By + [t I,

the inequalities (4.197) and (4.203) assure that there exists some constant ¢y independent of n such
that

d
78(8) < cog(t)'2 + co(1 + 0|, )8 (2).
Then, Gronwall’s inequality reveals
I (E)ita By + [Han(t) wily + lu(t)ly By

2 ct+c [Vu(s)|; o ds
< (ol + Hatowliy B+ lowfz, 122 )72+ ept/2) 26 b1V g

2 cot+co §o [Vu(s)| oo ds
< (o By, + Moo By + o212y )12+ co/2) % o ITHO g

Thus, taking n — o0 in the previous estimate yields

It By, + (DG 2 + ()21,

(4'204) 7112 r r 1/2
< ((Huo<X>1HL;y + | H oy |7 2, Huo<y>ZHLz )"+ cot/2

)2 C0t+COSg [Vu( )Hfoy‘ds

This shows that u € L*([0, T|; L?(|x|*" + |y|*2 dxdy)). Now, we shall prove that
ue C([0, TJ; L2(|x [ + |y[* dxdy)).
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Firstly, since u € C([0, T]; H*(IR?)), it is not difficult to see that u : [0, T] — L?(|x|*" + |y|*2 dxdy)
is weakly continuous. The same is true for the map Hu(t) on L?(|x|*"t dxdy). On the other hand,
(4.204) implies

o (E)=1a0) ) B, + (1 (8) = o))" B + () = )",
=[u(£) ey B, + [Ha (e By + () s, + JuoCey™ B + [Hattoo) 3,

+ o) 3, — 2 f u()utg(x)>" dxdy 2 f Hou(£) Htig(x)*" dady

(4.205) -2 J u(t)uolyy* dxdy

< "2 oy "2 n2 \1/2 2)2pS0t+e0 oI Vu(s)lg s
<((luoC)™ [z, + [ HauolX)™ I, + [u0y) 1, )= + cot/2)" /

oG By, + [Patoo B -+ oy —2 [ (B diedy

-2 J Hou(t) Hyrolx)? dxdy — 2 J u(t)uoly)>? dxdy.

Clearly, weak continuity implies that the right-hand side of (4.205) goes to zero as t — 0. This
shows right continuity at the origin of the map u : [0, T] — L?(|x|*" + |y|*? dxdy). Taking any
T € (0,T) and using that the equation in (0.4) is invariant under the transformations: (x,y,t) —
(x,y,t+ 1) and (x,y,t) — (—x,—y, T — t), right continuity at the origin yields continuity to the
whole interval [0, T], in other words, u € C([0, T]; L?(|x|*"* + |y|*2 dxdy)).

The continuous dependence on the initial data follows from this property in H*(IR?) and the
same reasoning above. This completes the proof of Theorem 4.5 (i).

4.5.2.2. Persistence property and LWP in Z;, ,,, r1 € [1/2,3/2) r, > 0. Here it is estab-
lished Theorem 4.5 parts (ii) and (iii). Let u € C([0, T]; H*(R?)) n L!(]0, T]; W'*(IR?)) solution
of the IVP (0.4) with initial data u( satistying the hypothesis of Theorem 4.5 (ii) or (iii) pro-
vided by Theorem 4.1. Since we have already established that solutions of the IVP (0.4) pre-
serve arbitrary polynomial decay in the y-variable, we will restrict our considerations to deduce
u, Hyu € L°([0, T]; L2(|x[*1 dxdy)), r1 = 1/2. Once this has been done, following the arguments
in (4.205), we will have that u, H,u € C([0, T]; L*(|x[*" dxdy)). Moreover, the continuous depen-
dence on the spaces ZH;1/2,,(R?) and Zs,, 1, (R?), 11 > 1/2 follows by applying the same energy
estimates for the difference of solutions.

To assure the persistence property in Zs, », (R?) for Theorem 4.5 (iii), we require the following
claim:
Claim 4.48. Letry € (1/2,3/2), s > 3/2 fixed and
ue C([0, T], H*(R?)) A LY([0, T]; Wy ™ (R?)) n L([0, T]; L2(|x[*"* dxdy))

be a solution of the IVP (0.4). Assume that 11(0,1) = 10(0,7) = 0 for a.e 5. Then, i1(0,7,t) = 0 for every
t € [0, T| and almost every 11 € R.
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PROOF. Since u solves the integral equation associated to (0.4), taking its Fourier transform
we find

. / t . / -~
(4.206) (g, n,t) = MR (E,7) - % e (AL
0

where w({,77) is defined by (4.11). Now, the assumptions imposed on the solution show
u? e LY([0, T]; L2(|x|[*" dxdy)).

Hence, the above conclusion, Fubini’s theorem and Sobolev’s embedding on the ¢-variable deter-
mines (&, 7,t) and Sé ei“’@'ﬂ)(f—t')uz(é‘, 1,t') dt’ are continuous on ¢ for every t € [0, T] and almost
every 77. From this, (4.206) yields the desired result. O

We begin by considering the case 1/2 < r; < 1. We employ the differential equation (4.196)
with the present restrictions on r1. This reduces our considerations to bound the terms Q; and Q>
defined in (4.196) for this case. Thus, integrating by parts yields

Q1] = ‘ — Jaxquuaxwﬁf}C dxdy + f&xuﬂxu 6xwflf}c dxdy
< owtl o, luwofty iz, + 10tz [ Mt 1z,

where, given that 1/2 < r; < 1, we have used |6xw%r}c| < |wiiy]. On the other hand,

1
Qp = — Ju2axuwﬁf} ) J’Hx(é’xﬂ)}[xuw%f}c dxdy
1 1
= — Juz(?xuw%f}c ~5 J[wzlx, Ho] oxr* Hyuwll, dxdy — 5 f?—[x(&’xuzw;{x)ﬁxuwZ{x dxdy.
Hence, Proposition 1.5 and Hoélder’s inequality allow us to deduce

2
|Qaf Sloxutlig [uwi iz, + [oxwielig luleg iz, [ Hauwy iz,

|t g ot oz, [ Mtz

Combining the estimates for Q; and Q;, we will obtain the same differential inequality (4.197)
adapted for this case. Consequently, this estimate, Gronwall’s inequality and the assumption
Hug € L?(|x| dxdy) imply u, Hyu € L([0, T]; L?(|x| dxdy)). The proof of Theorem 4.5 (ii) is com-
pleted.

On the other hand, under the hypothesis of Theorem 4.5 (iii), the fact that #1(0,7) = 0 a.e 5y
and Lemma 4.47 assure that Hyug € L?(|x|*"t dxdy) for 1/2 < r; < 1. Then Gronwall’s inequal-
ity and the differential inequality (4.197) for this case yield u € L*([0, T]; L?(|x|>" dxdy)), when-
ever 1/2 < r; < 1. This consequence and Claim 4.48 complete the LWP results in Z,, ,,(IR?),
1/2<r <1

Now, we assume that 1 < r; < 3/2. We writer; = 1+ 6 with 0 < 6 < 1/2. By the previous
step, the fact that i1(0,7,t) = 0 for all € [0, T] and almost every # € R and identity (4.188), we
have that u, Hyu € C([0, T]; L?(|x|* dxdy)). Thus, we multiply the equation in (0.4) by ux?>w?, and
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(4.193) by H,ux*w?,, then integrating in space and adding the resulting expressions reveal

1d
3 g )t B+ (0 x0 o[ ) = [ (Mo — Bty dxdy
=: 01+ Qa

Integrating by parts on the x-variable,
O =— 2( J'Hx(?xuu xw? dxdy f&xu?{xu xw? dxdy)

JHX&’ uux?oy w2, dxdy — Jé’ uHux?0,w?, dxdy) =: Q11 + Qio.
The Cauchy-Schwarz inequality and Proposition 4.44 determine

0 0
(4.208) |Qu1| S | Halxutfy o[z 1 x70f i, + | Oxuwwfy ol 2 | Hoct X205, o] 12,
. 9 9 9
S (W (uwy )Mz, + utlzz,) (i xwy, 12, + [Hatt xwy o r2)-

By complex interpolation (1.28) with v = 1/(1 + 6), we argue as in (4.202), using that |wl+9|

wf . + |x|wf  to deduce H]x(uwﬁ,x)ﬂ% < Huwfz,xHL)sz + Huan,xHL%y + H]Heuﬂ%. This last estimate,
the fact that u € C([0, T]; L?(|x|*" dxdy)), 0 < r < 1 and (4.208) complete the study of Q11

On the other hand, since |x20yw?’ | < w}t? with implicit constant independent of n, the estimate
for Ql,z follows the same ideas employed to estimate QM.
Finally, identity (4.188) and Proposition 4.44 show

Qs S v lig Jow el [Ty, + [0t g e xawy, gz, [ Mot 2005,z

Xy

Noticing that (4.188) implies H g xwyx = Hy(xug)wd . € L2(R?). Thus, we can employ recur-
rent arguments combining the previous estimates for Ql, Q,, (4.207) and Gronwall’s inequality to
conclude u € L (|x|* dxdy), whenever 1 < r; < 3/2. The proof of Theorem 4.5 (iii) is completed.

4.5.3. Two times condition in Z;, ,,. Here we establish Theorem 4.6. Without loss of gener-
ality we shall assume that t; = 0, i.e., ug € Zg1,9)+,,(R?) and u(t2) € Z1/5,,(R?). So that u €
C([0, T]; Zs r,,r, (R?)) A L1([0, T]; W%, (IR?)), where r1 € (1/4,1/2),1; > r1and s > max{(%z%ll)_, r2}.
The solution of the IVP (0.4) can be represented by Duhamel’s formula

(4.209) u(t) = S(t)upg — f S(t—tudu(t)dt'.
0

Since our arguments require localizing near the origin, we consider a function ¢ € C*(R) such
that ¢(¢) = 1 when |¢| < 1. Then taking the Fourier transform to the integral equation (4.209), we
have

t
(4.210) (&1, (&) = e“CM (&, 1) (&) — fo e M (& 3, £) () dt,

where, recalling (4.11), w(¢, 1) = sign(¢) + sign(&)¢&* F sign(¢)7n>.
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Claim 4.49. Let 0 < € « 1 Then it holds

(4.211) T2 ( L t =G (&, ) (&) dt') € L([0, T); L2(R?)).

Let us assume for the moment that Claim 4.49 holds, then
@4212) (G t)9(8)) € L*(R?) ifand onlyif J3/2(e*@Nliy(g,7)¢(8)) € L*(R?).

We first notice that since uy € L2(|x|'" dxdy), Fubini’s theorem and Sobolev embedding on the
¢-variable determines that i1y(¢, 77) is continuous in ¢ for almost every 7 € R. Therefore, given that
(4.212) holds at t = t,, Fubini’s theorem shows that ]é/ (el ©mty (&,17)¢(¢)) € L2(R) for almost
every 77 € R, then an application of Proposition 4.45 imposes that 1((0,7,t) = 0 for almost every
1. From this fact, the integral equation (4.210) and Claim 4.49, we deduce that i#(0,7,t) = 0 for all
t > 0 and almost every 7.

PROOF OF CLAIM 4.49. In virtue of Theorem 1.13,

t N
”]é/Z—i-e(J elw(é‘rﬂ)(tft)uux(gﬂ,l/ t')qb(E) dt,)HLé
(4.213) ° -
S | Wl IR g de + | 1DV (e OTI (9@ .

o

To estimate the r.h.s of the last inequality, we decompose w(é, ) = wi1(,n) + wa(&, 1) where
w1(E, 1) = sign(¢) F sign(&)y>. Then, writing 1y (¢) = i§u2((,‘) nd using (1.26) and Proposition
4.46,

D/ (e NN (&, 1, )p(8)) 12,
S DY ED )T p(E) |1y + DY (e )T E) |,
+ 1D 2 (i (8)) 1z,
(4.214) Sr (e it + i + 11612 i 2 ) 9]y +HD§/2+€(€<P)L72HL§”
+ |EpDY ()]

ST () |z, + Nz, + 12 () |z, + 1G22 )
St (lulg + 10xul g )R iz, + 1KV 2ul, ,

where the last line is obtained by (1.11). We employ complex interpolation (1.28) to deduce

[ g S I ) A P, S T2 (L)) AP0

(4'215) 1 2 4 4 —1-2 4
S Kyl P

7

where s > maX{le%ll)_,Tz}- Hence, (4.213), (4.214) and (4.215) yield

t N
H]g/2+€( JO Elw(é’q)(tit )ul/lx(g/ 7, tl) ¢<€)dtl> HL%T7

o (14 [l + 106l (Ut g o+ G0 Y)Y gz, )
This completes the proof of Claim 4.49. O



4.5. WELL-POSEDNESS RESULTS IN WEIGHTED SPACES 129

4.5.4. Three times condition in Z; , ,,. This part concerns the deduction of Theorem 4.7. Here
we assume that u € C([0, T]; Zs s, (R?)), s > max{3,r2}, 72 = r; = 3/2 — ¢, where 0 < € < 3/20.
Without loss of generality, welet t; = 0 < ty, thatis, ug € Zg (3/2)+ ,,(IR*) and u(+, t2) € Zs3/2,,(IR?).
Taking the Fourier transform in (4.209) and differentiating on the ¢ variable yield

g (g, n,t) =2it|Ele My (& 1) + <M ey (&, 1)

o , - - A
(4.216) — 2if e WM Ut) (p )| ity (8,1, t) dt’ — % J e CmUt)y2 (& y ¢y dr
0 0

i

t ’ ”
o E J elw((:ﬂ])(t*t )g 551/!2({::/ 17/ tl) dtl’
0

where w(&,7) = sign(¢) + sign(&)&2 F sign(&)n? and we have used that 1(0,7) = 41y (0,7) = 0
together with the identity

06 CMt = 2isin((1F 42)t)65 + 2it|g[eENY,
setting (65¢) (&, 17) = (0, 7).
Claim 4.50. It holds that

t , .
T2 (HEle S () || e E 0 = e, )

- , R
_ % f GENE (G, 1) dt ) € L2(0, T]; L(R?).
0

PROOF. We first deal with the term provided by the homogeneous part of the integral equa-
tion. We use Theorem 1.13, (1.26) and Proposition 4.46 to find
T2 (18l @M ti0) |15 < I1Eldol 3, + D (121" M i) 1,
(4.217) < s o
l1¢litoll2, + 1161 “ttollzz + 1P (1810) 2, -

To estimate the last term on the r.h.s of the above expression, we use (1.26), (1.27), Plancherel’s
identity and Young’s inequality to find

IDY2(el)lis, = 1D @i, S W@zl

(4.218) S WIS il 173 2o 147115

SR uolz, + K> uolliz,,

where we have also used (1.28) with v = 1/3,a = b = 3/2. Collecting (4.217) and (4.218), we
complete the analysis of H]l/ 2(|Elewemtiy))| 12, Next, we shall prove that

(4.219) uiy € L*([0, T); HY2(R?)) n L°([0, T]; L*(|xPdxdy)).

where H3(IR?) is defined by the norm | f|; = |J5f]|z2- Once this has been established, according
to the reasoning in (4.217) and (4.218) it will follow

J:3( Jot e CNEE (t— o) g (&, m, ') dF) € L ([0, T]; L*(IR?)).
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Indeed, (1.11) and Sobolev’s embedding show |[utiy|z2 < |u|2;, whenever s > 5/2. Now, com-
plex interpolation (1.28), Young’s inequality and Sobolev’s embedding determine

1<) unnl iz, < I 20z, + (G0 20?1z,
(4.220) S Nullug I 2ull iz, + 10> u 2H2/3H]§( Dl
S 1P ull 2|60 2ul 2, + 16 41?2, + 113 (4) .,

Since H3(IR?) is a Banach algebra, |J3(u?)| 12, < PP 12, < |ul3s, so it remains to derive a
bound for the second term on the right hand side of equation (4.220). Let 0 < € < 3/20, applying
Sobolev’s embedding and complex interpolation we find

[z, S <Gy Pulty S T2y Pu)liE,,

(4.221) 3/2-¢, | o8 e lg
S Gy = u F'H]S MH B

Notice that since 0 < € < 3/20, |] Si‘éiuH B, S | ISMHL)z(y. Plugging (4.221) in (4.220), we complete the
deduction of (4.219). To prove the remaining estimate, i.e.,

t , ~
Y L etz o2(& 1y, ') dt') € L*([0, T); L2(R?)),

we write a%”AZ = —ixu?, then according to (4.217) and (4.218), it is enough to show
(4.222) xu® € L°([0, T]; HY*(R?)) ~ L*([0, T); L*(|x[*dxdy)).

To this aim, after some computations applying Theorem 1.13 and property (1.26), we employ
complex interpolation and Young’s inequality to show

172" () |z, Sl oz, + 102" 2 ) 1z, + 1272 () iz,
4/9 5/9
S lulleg 1Coul iz, + lullg 112 2wl iz, + 1K™ [ 1770 )35 2
S Pullig, [<0ul, + 17Pults, + 10 0% 1z,

Recalling (4.221), we conclude that xu? € L®([0, T]; H3/?(IR?)). Finally, since u € C([0, T]; H*(IR?)),
s > max{3,r,}, there exists some 0 < § < 1 such that 3 + ¢ < s, then we have

[y 2 |z, < <0 *ulify, S 1TV ) )l

(4'223) < 3/2—e 646 S 646
I<Ce )™= ull HI euH -

Now, taking 0 < € « 1such that 3=2¢ < 346 < s, (4.223) shows that xu2 € LOO([O, T]; L2(|x|3dxdy)).
This in turn verifies (4.222). O

Consequently, from (4.216) and Claim 4.50, it follows:
J3/?0¢ii(g, 1, t) eL*(R?) if and only if

) . £ " A~
JA2 (e e gt (&) — 5 L (ED IR, ) d ) € IA(RP).

Now, since (4.223) establishes that w2 e H (R?), Sobolev’s embedding determines that 12 can be

regarded as a continuous function on the ¢ and # variables. Additionally, since 01ty € H él/ 2" (R?),

(4.224)
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Fubinni’s theorem and Sobolev’s embedding shows that dzi1o(&, 77) is continuous in ¢ for almost
every 77 € R. Thus, given that (4.224) holds at t = t,, we gather the preceding discussions and
Proposition 4.45 to get

1)

ei(1$n2)tza€ﬁ‘o(olﬁ> _ % f ei(liqz)(tzft’)ll\z(ol 1, tl) dr'

0
. t N
- e*i(ﬁ'?z)fzagﬁo(o, 7) — % f ’ e 1OFP) ()20, 97, #) dt’
0
so that

t

(4.225) 2isin((1 F 7%)t2)dz1i0 (0,77) = — J sin((1F 72) (k2 — £))12(0, 1, ') ¥,

0

for almost every # € R. This completes the deduction of identity (4.7). Now, recalling that the
quantity M(u) = |u(t)|2 is invariant for solution of the equation in (0.4), and that 7 — 1u2(0, 7, t)
determines a continuous map, we take 7 — 0 in (4.225) to find

]é/zégﬁ(g,n,tz) € L*(IR?) and 5 — &;i9(0,7) continuous at the origin imply

(4.226) . N >
2isin(tp)¢119(0,0) = (cos(t2) — 1)\|u0\|L%y.

Therefore, in the case that ug € Z o+ »+ (R?), (4.226) yield identity (4.8).

4.6. Lack of C?-regularity flow-map data solution

Here we prove that the flow-map data solution determined by the IVP (0.4) is not of class C?
at the origin of the spaces H**2(IR?) and X*(IR?). We will consider the former case since the same
considerations also work for X°(IR?) instead. Following the reasoning in [66], [23] and [39], it is
enough to establish that

S 1l s [92] o1
H152

fo S(t— 0. ((S(#)pr) (S() b))t

does not hold for arbitrary ¢, ¢» € H**2 (le), s1,82 € Rand 0 < t < T. Indeed, we will construct
two sequences of functions, ¢ y and ¢, n, such that

(4-227) H‘Pl,NHHSLSz ’ H(PZNHHSLSZ <C
and
(4.228) 131350 |S(t—=1)0x (S()pL,n ) (S(E)p2n)) A | gy = 0

We define ¢ y and ¢ n via their Fourier transforms as

{4@(@) =y ANy 4, (6), with A = [N, N +9] x [y1/2/2,91/7],
Pon (&) =74 x 4, (8), with Ay = [~47, —37] x [y1/2/2,91/%]
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where N » 1,y = N~(17€) and 0 < € < 1/3. Notice that ¢; y and ¢ v satisfy (4.227). To estimate
the integral term, we take the Fourier transform with respect to the space variable to find

R0 = { [ st 0as@immstie) a] @

(4229) 6710(61,171,62,772) -1 —

= - itw (&)
JK(cm(:e O(81,11,82,112) PN (E— &1 — ) PN (&1, m) dErdm

where we employed the notation introduced in (4.11) and (4.12) with (¢, ) = ({1 + G2, 11 + 172)
and

K i={n€R*: (E—&1,m—1m) € A, (G1,m) € Az}
When (& — 1,1 —m1) € Ay, (1,m) € Az, we have that TN((f, 1) is supported in

Az = [N =4y, N —29] x [y'/2,291/2].

Then one has

(4230) Q(gll 171/ 62/ 772) =1 + 2661 $ 2;7171
and so, since ¢G1 < 0, |GG1| ~ YN and |ny1| ~ 7,
(4.231) Q(¢1,m,81,m2) ~ (1—=9N) ~ 1.

From this we get

sin(w) dw

1- eiQ(é],m,gz,ﬂz)t _ 1- COS(Q(@L 71, CZ/ 772)t) > Jt/z
(4.232) Q(G1,11,82,12) Q(G1,m,82,12) ~h
= |1 —cos(t/2)],
where 0 < t < 1and N is large such that 1/2 < Q(&1,71, &2, 172). From (4.232) and |Kz,)| ~ 7*/2
we infer

o N 3/2
& 1D as(®) 2 3 37alt = cos(t/2)| xas(€),

which yields
IIN(D)prs2 2 NP1 = cos(t/2)] = N4 1 — cos(t/2)),
for 0 < t < 1, above we used that (1 + |7]?)%2 ~ 1 with involved constants independent of s, € R.
Given that 0 < € < 1/3, the above display shows that (4.228) holds. The proof is now completed.
4.7. Results on the Shrira equation

This section is aimed to briefly indicate the modifications needed to prove Theorem 4.9. We
first recall that (0.6) is LWP in the space H*(IR?), s > 3/2 by the results established in [11]. To
prove well-posedness in the space X°(IR2) determined by the norm

-1/2
Iflg = 173f ]z, + D5 %0y f 12,

the key ingredient is the refined Strichartz estimate deduced in [11]:

Lemma 4.51. The results of Lemma 4.13 hold for solutions of the IVP (0.6).



4.8. APPENDIX: FRACTIONAL COMMUTATOR ESTIMATE FOR THE HILBERT TRANSFORM 133

Once the above lemma has been established, the proof of LWP in X (R?) follows the same

line of arguments leading to the conclusion of Theorem 4.1. Actually, this case does not require
to estimate the norm |D; 1/ zuHL%y, which slightly simplifies our arguments. We emphasize that

Lemma 4.17 assure existence of solutions of the IVP (0.6) in the space X*(R2?) = (Ns=0 X*(IR?).
Consequently, it follows that (0.6) is LWP in X (R?),s > 3/2.
On the other hand, setting
@(8, 1) = sign(¢)&* + sign(2)y?,

the resonant function determined by the equation in (0.6) is given by

Q&1 11, E2,12) = @(E1 + Eaom1 +172) — B(E1,172) — B (&2, 172).-

Then, it is not difficult to see:

PROPOSITION 4.52. The results in Proposition 4.30 are valid replacing the set Dy 1. by
Dy = {(mmn,1)eZ*xR:|(m,n)| € Iyand |t — &(m,n)| <L},

whenever N, L € D.

This in turn allow us to follow the same reasoning leading to the deduction of Theorem 4.3 to
conclude that the IVP (0.6) is LWP in H*(T?),s > 3/2.
Concerning well-posedness in weighted spaces, here we replace equation (4.193) by

O Hau + O%u + &’;u + Hy(uoxu) = 0.

Then, by employing the identity above, we can adapt the arguments in the proof of Theorem 4.5 to
obtain the same well-posedness conclusion in anisotropic spaces for the equation in (0.6). Besides,
the arguments in Proposition 4.46 show

Db (eS8t < |x|7P x e R\{0},

whenever b € (0,1) fixed and for all # € R. Thus, the previous estimate allows us to deduce
Theorems 4.6 and 4.7 in a similar fashion. However, instead of (4.7) we get

ty

2isin(n?(ty — t1))21(0, 17, 1) = —J sin(17%(t, — t'))uAZ(O, n,t')dt,

ty

for almost # € R. This encloses the discussion leading Theorem 4.9.
4.8. Appendix: Fractional commutator estimate for the Hilbert transform

In this part we deduce the estimate (4.4).

PROOF OF PROPOSITION 4.2. When B = 1, by writing Dy = H.0x and using that H, deter-
mines a bounded operator in L¥, we have that (4.4) follows from Proposition 1.5.
We will assume that 0 < a, B < 1 with a + p = 1. We write

D[y, D% f (x)

(4.233)
— f &1+ &l 22l (sign(r + &) — sign(E2)) (1)

~

(&)e™ E1te) gz dg,,
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then neglecting the null measure sets where ¢; 4 > = 0 or ¢, = 0, we observe that the integral in
(4.233) is not null only when (&1 + &2)&> < 0, in order words, when |&>| < |&1]. Thus, by Bony’s
paraproduct decomposition we find

DA, gIDLF =H (3 DM(PEgPLyDLf)) - ) DY (PP HsDLf)
N>0 N>0
(4.234) +H (Y D“(Pﬁgﬁfwfﬁ) — ) D*(PigPyH.DLS)
N>0 N>0
= A+ A + Az + Ay,

where PXy f = 3,y P5f and P5f = 3,y Pif- We proceed to estimate each of the factors A;,
j=1,...,4 Sincea + B =1, B > 0, and the Hilbert transform determines a bounded operator in
L?, by the Littlewood-Paley inequality and support considerations we have

AL < H Ppy( Z D*( PNgP<NDXf)))1%A H Z D“PM(PN8P<NDxf)1§A T

(4.235)

/

< Z H Py (PraxgNPPENDES) s |
for some adapted projections Py supported in frequency on the set |&| ~ N, and with L ~ 1
dyadic. Now, by employing Lemma 1.8, we deduce
(4.236) [Pin(PNorgN~FPEGDEF) (x)] S M(ProxgN PPN DES) (x).
Inserting the above expression on the r.h.s of (4.235), applying Lemmas 1.7 and 1.8, we get
vy il S ITROGNFPIDE g s £ 1M (NP PEND gl
S 10xg ] [(N“PPENDEF) -

To estimate the preceding inequality, we write P}, = Py P}, then employing Lemma 1.8, it follows

INTPPENDEf(x)| < NP Y |MPRf(x)] S 3 LPM(PY,Lf) (%),
M«N 1«L
so that
(4.238) (N“PPENDEf)a S (M(Pf))

Hence, plugging (4.238) in (4.237), by Fefferman-Stein inequality and Littlewood-Paley inequality,
we conclude

(4.239) | Avllzr S 10xg e £ lLr-

Now, replacing f by H,f in the arguments above, we derive the same estimate in (4.239) for the
term Aj.

A similar reasoning yields the desired estimate for 43. Indeed, sincea +p = 1, « > 0, by
Littlewood-Paley inequality

(4.240) Azl S H > M*N “PM(PNaxgpNPNf))IZ
NZM
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Then Lemma 1.8 shows
(X M*N “Py( PNagPNPNf) S (oL M( PLMagPLMPLMf))
(4.241) NzM L1
— =X ~
S (M(P;\rangNPZ{ff))zgv
Thus, the preceding estimates and Lemma 1.7 reveal

(4.242) [ As[[r S IM(0x8) (M(PR ) ) e S 10xglle [ flr-
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The estimate for A4 follows from the same arguments employed to analyse A3. The proof of

Proposition 4.2 is completed.

O
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