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Triangulated categories

Recall that a triangulated category .7 is an additive category (ie.
Hom sets are abelian groups) equipped with a shift functor
A+ A[1] and a collection of distinguished triangles

A— B — C— All]

satisfying various axioms that essentially make distinguished
triangles look like short exact sequences in abelian categories.

Main example: categories of complexes, homotopic categories,
derived categories of abelian categories.
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t-structures and hearts

A t-structure on 7 is a pair (2=°, 2=9) of subcategories of 7
such that

o X 9<% — XJ[1] € 2=° and
Y€ 250 = Y[-1] € 2=

o Xe 250 Y e 20 = Hom(X,Y)=0;

o forany Ac .7, thereare X € 2<% and Y € 2=0 and a
triangle X - A — Y — X[1].

The heart 2% of (2=, 22°) is the full subcategory of .7 given by
2<°n 2=

Theorem
2% is an abelian category. J
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Basic example: the standard t-structure

Let A be an abelian category, and D*(.A) be its derived category.
Take:

P<0 .= {E € D*(A) | HP(E) =0 for p > 0}
220 .= {E € D*(A) | HP(E) = 0 for p < 0}

All the axioms are satisfied and
PV ={E c D*(A) | HP(E) =0 for p#£0} = A

as a subcategory of D*(.A).
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Stability conditions on triangulated categories: ingredients

A stability condition on a triangulated category .7 is a pair
o = (A, Z) consisting of the heart A of a t-structure on .7 and a
central charge Z : Ky(A) — C on A.

In addition, we assume that Z factors through a surjective group

homomorphism 7 : Ko(A) — A, where A is a finite dimensional
lattice equipped with a norm || - || on A® R.
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Stability conditions on triangulated categories: axioms

(1) Im(Z(A)) > 0 for every A € A, and
Im(Z(A)) > 0 —> Re(Z(A)) < 0; set

Re(Z(A))

pz(A) = —m

(2) Every E € A admits a Harder—Narasimhan filtration;

(3) the support property

[ 1Z(E)] | }
inf E € A semistable » > 0
{ EGIR
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Basic example: sheaves on curves

Let X be a smooth projective curve, and let .7 = DP(X).

Take A = Coh(X) as the heart of the standard t-structure on
DP(X).

Set A = H°(X,Z) @ H?(X,Z), so that + is just the Chern
character map; || - || can be the usual euclidian norm.

Set Z(E) := —deg(E) + v/—1rk(E).

The support property is trivially satisfied because ||v(E)|| > 1 for
every sheaf E.
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Revisiting the axioms: weak stability conditions

(1') Im(Z(A)) > 0 for every A € A, and
Im(Z(A)) >0 = Re(Z(A)) <0

We say that o = (A, Z) is a weak stability condition if it satisfies
(1') instead of (1).

Example: usual p-stability on Coh(X) when dim X > 2.
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Revisiting the axioms: support property

ere is a symmetric bilinear form @ on A ® R such that
3") There i ic bili f Q on A ® R such th
(i) If E € Ais semistable, then Q(v(E),v(E)) > 0;

(ii) For a non zero v € A® R with Z(v) =0, then
Q(v(E),~(E)) <.
In fact, (3) < (3).

The inequality in (3".i) plays the role of a Bogomolov inequality.

It is possible to have a weak stability condition that satisfies (3'),
eg. usual p-stability on Coh(X) when dim X > 2.
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Examples for higher dimensional varieties

Let X be a projective variety for which there are a quiver @ and an
equivalence of triangulated categories D(X) ~ D®(Q); eg.
X =P", also smooth quadrics, etc.

The standard t-structure on DP(Q) induces a (non standard)
t-structure on DP(X).

Since Kp(X) ~ Kp(Q), one can use a central charge on Rep(Q) to
induce a central charge on the heart on DP(Q) pulled back from
DP(X).
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Bridgeland's deformation theorem

Let Stab(.7") be the set of stability conditions on the triangulated
category 7. Consider the coarsest topology in Stab(.7) for which
the maps

Z € Hom(A, C)
o0:(A,Z)— ¢ pub(E)€R for each E € A
p7(E) € R for each E € A

are continuous.

Theorem

The map Z : Stab(.7) — Hom(A, C) is a local homeomorphism.

In particular, Stab(.7) is a complex manifold of complex dimension
rk(A).
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Group actions on Stab(.7")

Two groups act naturally on Stab(.7):
e Aut(.7), auto-equivalences of .7,

¢ (A Z)— (P(A),Zod,)

where &, : Ko(7) — Ko(.7) is the induced group
homomorphism.

@ GL*(2,R) universal cover of 2 x 2 matrices with positive
determinant.

T-(A,2)— (A4 T 1o2)

(full action is harder to summarize...)
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Stab(X) for curves

Stab(X) has been fully described when X is a smooth projective
curve:

o Stab(P!) = C?;

e when g(X) >0, Stab(X) =H x C = GL*(2,R) - y.

Here, og is just the usual p-stability on the standard t-structure.
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Numerical walls

How the moduli set of semistable objects varies when the stability
condition changes?

Given vectors u, v € A, a numerical wall for u and v is the set
Ty = {0 €Stab(X) | pz(u) = pz(v)}.
This is a real submanifold of Stab(X) of real codimension 1.

T.,v may not be connected or irreducible, and may have
components of higher codimension.
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Actual walls

Let o+ be a path in Stab(X) where t € (—¢, €); assume that og lies
in a numerical wall T, .

Take an object E € A; for each t with y(E) = v. Nothing may
happen with E as one moves along o; and crosses the numerical
wall:

@ there may not exist objects F € Ag with y(F) = u;

@ if such objects exist, there might not be a monomorphism
F € Ein Ap.

An actual wall for v is the subset W, v of T, consisting of those
o € Ty, such that there are objects E, F € A, with v(F) = u
and y(E) = v, and a monomorphism F < E such that both F
and E/F are o-semistable.
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Local finiteness

Bridgeland proved that Stab(X) has a reasonable wall and
chamber structure, at least locally.

Theorem

Fix v € N and a compact set K C Stab(X).

There are only finitely many actual walls {W,, ,}7_; for v
intersecting K, each of real codimension 1, and any connected
component

n
Cck\|JWiy
i=1
has the following property: if E is o-semistable for some o € C,
then E is o’-semistable for every o’ € C.

v" The moduli set M, (v) is constant in each chamber C.
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See you tomorrow!
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