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06 February 2020



Torsion pairs

Let A be an abelian category.

A torsion pair (F, T ) on A consists of two full additive
subcategories such that

Hom(T ,F ) = 0 whenever T ∈ T and F ∈ F;

for each E ∈ A, there are T ∈ T and F ∈ F such that

0→ T → E → F → 0.

I The exact sequence is unique.

Basic example: for A = Coh(X ), take

T = {torsion sheaves} and F = {torsion free sheaves}
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Tilting on a torsion pair

Theorem

Let A ⊂ T be the heart of a t-structure. If (F, T ) is a torsion
pair on A, then the full subcategory of T given by

A# :=

 E ∈ T

∣∣∣∣∣∣
Hp
A(E ) = 0, p 6= −1, 0

H−1A (E ) ∈ F
H0
A(E ) ∈ T


is also the heart of a t-structure on T .

I A# = 〈F[1], T 〉.

Marcos Jardim Bridgeland stability on surfaces 2 / 13



Stability conditions for surfaces: construction, I

Let X be a smooth projective variety over C
Fix an ample divisor ω and a divisor B, both in NS(X )⊗ R.

Given a sheaf E on X , defined

µω,B(E ) :=


ω · ch1(E )

ch0(E )
− ω · B

ω2
if ch0(E ) 6= 0

+∞, otherwise

and consider the following subcategories of Coh(X )

Tω,B := {E ∈ Coh(X ) | ∀E � G , µω,B(G ) > 0}

Fω,B := {E ∈ Coh(X ) | ∀F ↪→ E , µω,B(F ) ≤ 0}

One can check that (Fω,B , Tω,B) is a torsion pair in Coh(X ).
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Stability conditions for surfaces: construction, II

So we set Cohω,B(X ) := 〈Fω,B [1], Tω,B〉. Take Λ := Knum(X ), and
γ : K0(X )� Knum(X ) to be the Chern character map.

The final ingredient is the central charge on Cohω,B(X ):

Zω,B :=
(

chB
2 (E )− ω2 ch0(E )/2

)
+
√
−1
(
ω · chB

1 (E )
)

where we use the twisted Chern character chB(E ) = e−B · ch(E ):

chB
1 (E ) = ch1(E )− ch0(E ) · B and

chB
2 (E ) = ch2(E )− ch1(E ) · B + B2 ch0(E )/2.
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Stability conditions for surfaces: embedding theorem

Assume dimX = 2.

Theorem

The pair (Cohω,B(X ),Zω,B) is a Bridgeland stability condition on
Db(X ), and the map

Amp(X )× NS(X )⊗ R −→ Stab(X )

(ω,B) 7→ (Cohω,B(X ),Zω,B)

is a continuous embedding.

I Main ingredients: Harder–Narasimhan filtration for µ-stability
in Coh(X ); the Bogomolov inequality for µ-semistable sheaves.
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Stability conditions in the upper half plane

Fixing (ω,B) ∈ Amp(X )× NS(X )⊗ R primitive, consider the
family of stability conditions induced by (α · ω, αβ · B) where
(β, α) ∈ R× R+ = H.

This gives a copy of the upper half plane H embedded in Stab(X ).

Note that µα·ω,αβ·B = α · µω,β·B , so the heart Aα·ω,αβ·B does not
depend on α.

I Notation: σα,β = (Cohβ(X ),Zα,β).
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Bertram’s nested walls theorem

Take v ∈ Knum(X ) for which there is a µω-semistable sheaf E with
ch(E ) = v .

Theorem

1 Numerical walls for v in H are either semicircles centered in
the β-axis, or the vertical line β = µ(v).

2 Distinct numerical walls for v do not intersect one another.

3 The top point of a non vertical numerical wall for v lie along
the hyperbola Re(Zα,β(v)) = 0.

4 If a single point of a numerical wall for v is actual, then the
whole numerical wall is actual.

5 Then there is an actual wall for v which contains in its interior
every other actual wall for v .
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Picturing walls in H

Marcos Jardim Bridgeland stability on surfaces 8 / 13



Twisted Gieseker stability

Twisted Hilbert polynomial (cf. Riemann–Roch, n = dimX ):

Pω,B(E , t) :=

∫
X

chB(E ) · etω · td(X ) =
n∑

k=0

ak(E ,B, ω)tk

We say that E is B-twisted Gieseser semistable w.r.t. ω if every
subsheaf F ↪→ E satisfies

Pω,B(F , t)

an(F ,B, ω)
< (≤)

Pω,B(E , t)

an(E ,B, ω)
for t � 0.
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The large volume limit

Theorem

Let E ∈ Db(X ) be an object satisfying chB
1 (E ) · ω > 0.

E is a B-twisted Gieseker semistable sheaf if and only if there
is an α0 > 0 such that E is σα,β-semistable for every α > α0.

Let E ∈ Db(X ) be an object satisfying chB
1 (E ) · ω < 0.

E is a B-twisted Gieseker semistable sheaf if and only if there
is an α0 > 0 such that E∨[1] is σα,β-semistable for every
α > α0.

I There is a Gieseker chamber beyond the largest actual wall in
the upper half plane H.
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Tilt stability for higher dimensional varieties

When dimX ≥ 3, the pair (Cohω,B(X ),Zω,B) is a weak stability
condition on Db(X ) satisfying the support property.

However, the large volume limit is a little different, considering a
truncated version of the twisted Poincaré polynomial (ignoring
coefficients of tk for k < dimX − 2).
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Moduli spaces

After the construction of Stab(X ), studying the moduli spaces of
Bridgeland semistable is the main motivation to study stability
conditions.

Given σ = (A,Z ), let M̂σ(v) be set of σ-semistable objects E
with ch(E ) = v , and Mσ(v) be set of S-equivalence classes.

When σ is a (weak) stability condition constructed via tilting as

above, then M̂σ(v) is an algebraic stack of finite type over C
[Toda, Piyaratne–Toda].

For certain surfaces (like K3, P2, P1 × P1) one can go further and
show that Mσ(v) is a projective scheme.
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See you tomorrow!

Marcos Jardim Bridgeland stability on surfaces 13 / 13


