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Stability conditions

Let A be an abelian category; my personal favorites are Coh(X)
and Rep(Q).

A stability condition condition on A is the choice of a total
pre-order < on the class of non zero objects of A such that, for
every short exact sequence 0 - A — B — C — 0 on A satisfies
the seesaw property:

either A<B «<— A<C «— B=<XC
orA-B «<— A>C < B*>C
orAxB «— Ax(C < Bx<C

An nontrivial object A is (semi)stable if every nontrivial, proper
sub-object B < A satisfies B < (<) A.
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Trivial example

Example

Any two non zero objects A and B satisfy A < B. In this case,
every object is semistable, and an object is stable if and only if it is
simple (ie. it has no sub-objects).

In general, one can show that

simple = stable = indecomposable

Semistable objects might be decomposable.
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Example: Mumford—Takemoto stability

Let X be a smooth projective curve, and set A = Coh(X), the
category of coherent sheaves on X.
The slope of a sheaf on X is defined as follows:

We then declare that F < E when u(F) < u(E).

Not hard to check that the seesaw property is satisfied.

Marcos Jardim Stability on abelian categories 3/14



Example: King stability for quivers

Let @ = (Qo, Q1) be a quiver, and set A = Rep(Q), the category
of linear representations of Q.

Let n = #Qp and choose vectors § € Z" and « € Z']; define the
slope of a representation R as follows:

0. dimR
Ry = 2 dm~K.
MR = Gim R

Again, we declare that S < R when p(S) < u(R).

Just as in the previous example, one can also show that the seesaw
property is satisfied.
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Elementary properties

Pretty much all of the basic familiar properties of pu-stability for
sheaves will generalize to arbitrary stability conditions on abelian
categories.

For instance, let A and B be semistable objects with if B < A. If
¢ : A — B is a nonzero morphism, then:

A=< B;
B stable = ¢ is an epimorphism;

A stable = ¢ is an monomorphism;

A and B stable => ¢ is an isomorphism.

Moreover, assume that Hom(A, B) is always a finite dimensional
vector space over an algebraically closed field . Then every stable
object is a Schur object, i.e. Hom(A, A) = k.
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Weakly artinian, weakly noetherian

Let (A, <) be an abelian category equipped with a stability
condition.

(A, =) is weakly artinian if every descending chain
v 5 Ay > Al - Ap=B
of sub-objects of an object B satisfying A; < Aj+1 has to stabilize.
(A, <) is weakly noetherian if every ascending chain
Al > Ay — .- —B

of sub-objects of an object B satisfying both A; = Aj;1 and
A; = Aj+1 has to stabilize.
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Harder—Narasimhan filtrations

Theorem

If (A, =) is weakly artinian and weakly noetherian, then every
object B admits a unique filtration

0=By— By~ ---—=B,=B

such that
© each factor G; := B;/B;j_1 is semistable;
Q@ GG =G,
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Jordan—Holder filtrations

Theorem

If (A, X) is weakly artinian and weakly noetherian, then every
semistable object B admits a filtration

0=By—By—---—=B,=B

such that
© each factor G; := B;j/Bj_1 is stable;
Q G <Gy =< <G

The Jordan—Holder filtration is not unique, but the associated
graded object @7, G; is.
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Numerical stability conditions, |

Let Z : Ko(A) — C be an additive group homomorphism such that
Im(Z(A)) > 0 for every object A, and Re(Z(A)) < 0 whenever
Im(Z(A)) =0.

This is usually called a central charge for the category A. Set
_Re(Z(A))
Im(Z(A))

the slope or phase associated to the central charge Z; division by 0
is defined to be 400, as in the case of usual u-stability described
above.

pnz(A) =

It induces, as in the two examples discussed above, a stability
condition on A

A=XB <= pz(A) < pz(B).
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Numerical stability conditions, Il

For the usual p-stability on Coh(X), one would take

Z(E) := — deg(E) + v—1rk(E)

However, this is not quite a central charge as defined above when
dim X > 2, since Z(Op) = 0.

Therefore, it is useful to consider a weaker version:
Z : Ko(A) — C is an additive group homomorphism
such that Re(Z(A)) < 0 whenever Im(Z(A)) = 0.

More generally, one may consider central charges taking values on
a totally ordered R-vector space A such that for a€ R and v € A,
thena>0, v>0 = a-v>0, —v<0.
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Polynomial stability conditions

As an example, take P : Ky(A) — R[t] such that for any object A,
the polynomial Pa(t) has positive leading coefficient.

For instance, Pg(t) can be the Hilbert polynomial of a sheaf E on
a polarized projective variety.

Given Pa(t) = Y 7_; akt® and Py(t) = S_7_, bitk, let
NA, B) == (Amm=1,- s Am,0, Am—1,m=2, - - - A1,0)
be the 2 x 2 minors of the matrix of coefficients

am P aO
by, - b
Define: AXB <= A(A B) >1x 0

@ Usual Gieseker stability for sheaves on a polarized projective
variety!

Marcos Jardim Stability on abelian categories



S-equivalence

Two semistable objects are S-equivalent when the associated

graded objects coming from their Jordan—Holder filtrations are
isomorphic.

Clearly, two stable objects are S-equivalent if and only if they are
isomorphic.
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Moduli sets of stable objects

Fix a class v € Ko(A) and consider the sets

A(y)*t :={A € A | [A] =, A semistable}
and M(y) := A(y)*"/S-eqv

@ Does the moduli set M(~y) admits some kind of geometric
structure (stack, scheme, projective variety)?

Sheaves, quivers: A(y) can be given the structure of a projective
variety, and S-equivalence is translated into a group action; then
the Hilbert-Mumford criterion in GIT can be translated into a
numerical stability condition in A!l

More on Joyce's series Configurations in abelian categories, I-IV.
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See you tomorrow!
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