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Set up

X = smooth projective variety with Pic(X ) = Z ·H, with H ample.

Set ω = αH and B = βH with α ∈ R+ and β ∈ R, and consider
the family of weak stability conditions (Bβ,Z tilt

α,β) on Db(X )
constructed in the previous lecture:

Bβ(X ) := 〈Fβ[1], Tβ〉

Tβ := {E ∈ Coh(X ) | ∀ E � G satisfies µβ(G ) > 0}, and

Fβ := {E ∈ Coh(X ) | ∀ F ↪→ E satisfies µβ(F ) ≤ 0}.

Z tilt
α,β(B) := −

(
chβ2 (B)− 1

2
α2 ch0(B)

)
+
√
−1 chβ1 (B)

for B ∈ Bβ
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Construction for 3-folds, I

The idea of Bayer–Macri–Toda is to tilt Bβ on the torsion pair

Tα,β := {E ∈ Bβ(X ) | ∀ E � G satisfies να,β(G ) > 0}, and

Fα,β := {E ∈ Bβ(X ) | ∀ F ↪→ E satisfies να,β(F ) ≤ 0}.

where να,β is the slope function for the central charge Z tilt
α,β:

να,β(B) :=


chβ2 (B)− α2 ch0(B)/2

chβ1 (B)
, if chβ1 (B) 6= 0;

+∞, if chβ1 (B) = 0.

The category Aα,β := 〈Fα,β[1], Tα,β〉 will be the heart of a
t-structure on Db(X ).
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Construction for 3-folds, II

BMT define the central charge, for objects A ∈ Aα,β, as follows

Zα,β,s(A) :=− chβ3 (A) + (s + 1/6)α2 chβ1 (A) +

+
√
−1
(

chβ2 (A)− α2 ch0(A)/2
)

and prove that the pair (Aα,β,Zα,β,s) with s > 0 is a Bridgeland
stability condition on X provided a certain generalized Bogomolov
inequality is satisfied.
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Generalized Bogomolov inequality, I

Recall that the usual Bogomolov inequality for µ-semistable
sheaves

Qtilt(B) := ch1(B)2 − 2 ch0(B) ch2(B) ≥ 0

was a key ingredient to prove that (Bβ,Z tilt
α,β) satisfied the support

property.

Similarly, every να,β-semistable object B ∈ Bβ must satisfy

Qα,β(B) = α2Qtilt(B) + 4(chβ2 (B))2 − 6 chβ1 (B) chβ3 (B) ≥ 0,

in order for the pair (Aα,β,Zα,β,s) to satisfy the support property.
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Generalized Bogomolov inequality, II

The generalized Bogomolov inequality has been shown to hold in
various cases, by different authors, in the past 5 years: P3 (Macri),
smooth quadric three-folds (Schmidt), abelian threefolds with
Pic = Z (Maciocia–Piyaratne and Bayer–Macri–Stelari), Fano
3-folds with Pic = Z, and the smooth quintic 3-fold (Li).

However, a counter-example was given by Schmidt in the case of
P3 blown-up at a point.

From now on, we take a 3-fold X on which the generalized
Bogomolov inequality holds.
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Issues

The structure of numerical and actual walls is a lot more
complicated... in particular, they may intersect one another at
several points.

The large volume limit also gets a lot more complicated, and
depend on the way a path goes to infinity.

I will end the course presenting work done in collaboration with A.
Maciocia.
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Important curves: Θv and Γv ,s

The blue hyperbola is the curve Re(Z tilt
α,β(v)) = 0; we call it Θv .

Together with the dotted vertical line, it divides the plane into 4
regions, labeled (from left to right) R−v , R0−

v , R0+
v and R+

v .

The red curve is given by Re(Zα,β,s(v)) = 0; , which we call Γv ,s .
It may or may not cross Θv , either in its left or in its right branch.
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Bounded and unbounded walls, I

Numerical λ-walls can either be bounded or unbounded, and
may have two connected components.

The shape of numerical λ-walls may depend a lot on the value
of the parameter s; s = 1/3 appears as a critical value in
many situations.
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Bounded and unbounded walls, II

This numerical λ-wall Υu,v ,s has two connected components, one
bounded and the other unbounded.

Γ−

v,s

Θ−

v Γ0
v,s Θ+

v

Γ+
v,s

Υu,v,s

Υu,v,s

Here, v = (2, 0,−1, 0) (null correlation bundle on P3)
u = (1, 0,−1, 1) (ideal sheaf of a line), and s = 1/3.
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Bounded and unbounded walls, III

This picture shows the same numerical λ-wall for different values
of s, one is connected while the other has two components.

s = 0.01

s = 2.5

s = 0.01

Θ−

v Θ+
v

α

β

We took v = (2, 0,−3, 0) (stable rank 2 sheaf on P3) and
u = (0, 0, 1,−1) (structure sheaf of a line).
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Structure of numerical λ-walls

A numerical λ-wall Υu,v ,s bounded if and only if µ(v) 6= µ(u).

Unbounded connected components of numerical λ-walls for v
never cross Θv , and stay within R0

v .

Unbounded connected components never intersect one
another.

Suppose a Chern character v satisfies the Bogomolov
inequality and v0 6= 0. Any connected bounded component of
a numerical λ-wall in R−v ,s for some s ≥ 1/3 intersects Γ−v ,s .

If Γv ,s intersects Θv , then there are vanishing ν− and λ−walls
containing the point of intersection in its interior.
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A cool wall

Γ−

v,s
Γ0
v,s

Γ+
v,s

Θ−

v

Θ+
v

Υu,v,s

Ξu,v

b

b
b

b

b

b

v = (3, 1, 0,−1), u = (0, 1,−3, 7), and s = 1/3.
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Asymptotic λ-stability

Let γ : (0,∞)→ R× R+ be an unbounded path.

An object A ∈ Db(X ) is asymptotically λ-(semi)stable along γ if
the following two conditions hold for a given s > 0:

there is t0 > 0 such that A ∈ Aγ(t) for every t > t0;

for every sub-object F ↪→ A within Aγ(t) with t > t0, there is
t1 > t0 such that λγ(t),s(F ) < (≤) λγ(t),s(A) for t > t1.

One can show that asymptotically λ-semistable objects with
ch0(A) 6= 0 satisfy the usual Bogomolov inequality Qtilt(A) ≥ 0.
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Asymptotic λ-stability along Γv ,s

Let v be a numerical Chern character with v0 6= 0.

For each s > 0, we have:

An object A ∈ Db(X ) with ch(A) = v is asymptotically
λ-(semi)stable along Γ−v ,s if and only if A is a Gieseker
(semi)stable sheaf.

An object A ∈ Db(X ) is asymptotically λα,β,s -(semi)stable
objects along Γ+

v ,s if and only if A∨ is a Gieseker (semi)stable
sheaf.
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Unbounded Θ-curves

A path γ(t) = (α(t), β(t)) is called an unbounded Θ−-curve if

lim
t→∞

β(t) = −∞ and lim
t→∞

α̇(t)

β̇(t)
> −1.

That is, γ(t) is asymptotically bounded by Θ−v

Similarly, we say that γ(t) = (α(t), β(t)) is an unbounded
Θ+-curve if γ∗(t) := (α(t),−β(t)) is an unbounded Θ−-curve

Marcos Jardim Bridgeland stability on 3-folds 15 / 21



Asymptotic λ-stability on R±v

Let v be a numerical Chern character with v0 6= 0.

For each s ≥ 1/3, we have:

An object A ∈ Db(X ) with ch(A) = v is asymptotically
λ-(semi)stable along an unbounded Θ−-curve if and only if A
is a Gieseker (semi)stable sheaf.

An object A ∈ Db(X ) is asymptotically λα,β,s -(semi)stable
objects along an unbounded Θ+-curve if and only if A∨ is a
Gieseker (semi)stable sheaf.

Victor Pretti is currently studying the case v0 = 0, and a similar
result holds.
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Asymptotic λ-stability on R0
v

If A ∈ Db(X ) is an asymptotically λ-semistable object along the vertical line
{β = β} with ch0(A) 6= 0, then:

H−2(A) = 0;

dimH0(A) ≤ 1, and every sheaf quotient H0(A) � P (including H0(A)
itself) satisfies

ch3(P)

ch2(P)
≥ 6s + 1

3

(
µ(A)− β

)
+ β

whenever ch2(P) 6= 0;

H−1(A) = Ã is µ-semistable, and every sub-object F ↪→ A with
µ(F ) = µ(A) satisfies

3s − 1

3
δ20(F ,A)(µ(A)− β) +

1

2
(δ20(F ,A)− δ30(F ,A)) ≤ 0;

Ã∗∗/Ã has pure dimension 1, and every subsheaf R ↪→ Ã∗∗/Ã (including
Ã∗∗/Ã itself) satisfies

ch3(R)

ch2(R)
≤ 6s + 1

3

(
µ(A)− β

)
+ β;

if U is a sheaf of dimension at most 1 and u : U → A00 is a non-zero
morphism that lifts to a monomorphism ũ : U ↪→ A within Aα,β for every
α� 0, then U also satisfies the previous inequality.

Marcos Jardim Bridgeland stability on 3-folds 17 / 21



Case study: null correlation sheaves on P3

Let v = (2, 0,−1, 0) be the numerical Chern character
corresponding to null correlation sheaves on P3, and fix s = 1/3.
The region R−v is divided into three stability chambers Ci within
which the λα,β,s -stable objects are described as follows:

(C1) null correlation sheaves;

(C2) nontrivial extensions of a semistable torsion free sheaf K with
ch(K ) = (2, 0,−2, 2) by OL(−1), where L is a line;

(C3) no stable objects.

ThetaEThetaE
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Case study: null correlation sheaves on P3

For each s > 0, there is a neighbourhood of the point
(α = 1/

√
6s + 1, β = 0) which is divided into exactly three

stability chambers Ci ; within which the λα,β,s -stable objects are
described as follows:

(C1) shifted null correlation sheaves E [1];

(C2) their dual objects E∨[1] ;

(C3) no stable objects.
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Thanks!
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Thanks!
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