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1 Introduction

In general, commodity retailers procure their products from the commodities market at
a spot price to then, resell them to final consumers. Depending on the nature of the
commodity being traded, the retailers often engage in long term contracts, even without a
real production endorsement. This makes them vulnerable to fluctuations in the production
conditions of their suppliers. Specifically for retailers in the electricity market, changes
in weather conditions can highly affect the quantities and prices of the commodity the
electricity retailer can trade. For instance, an abnormal rise in temperature can severely
reduce the electricity produced by hydroelectric companies due to low levels in dams.
Similarly, changes in wind speed, either up or down, can lead wind power producers to
shut down their turbines, reducing the supply available for sale. Because of this, the
electricity retailer’s profits are considerably dependent on weather conditions. To sort this
out, electricity retailers resort to financial instruments and hedging strategies to cover up
their potential loss.

Hedging is described as an investment made to compensate for a loss in other investment
or enterprise. In other words, if an investor wants to reduce risk exposure to an investment
position, he invests in another instrument that has a negative correlation with the risky
asset that he is trying to protect from. Thus, if the returns of his investment product go
down, the investor can claim the profit from the other instrument and compensate for his
initial loss. This principle can be applied to any kind of activity that comes with a profit
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but also a possible loss. When a household acquires insurance for his house, he is hedging
his house against a possible loss for fire, earthquake, or any other risk.

Nowadays, thanks to the evolution of the financial markets, investors count with dif-
ferent kind of assets and strategies to hedge their investment positions. In the case of the
power market, the electricity reltailer' faces a different kind of risk. We focus on two of
them. On the one hand, the electricity retailer buys electricity (¢) at a random price (p)
and sells it at a fixed price (r)?. Then, his profit is given by, y (p, ¢) = (r — p) g¢. On the
other hand, the electricity retailer faces a weather risk because the price and quantities
that he can acquire are highly dependent on the current and forecasted weather conditions.
Phenomena like Fl Ninio or La Nina affect considerably the price of the electricity. Because
of the volatility in the spot price (p), the electricity retailer is constantly facing the risk of
having to sell below the price at which he acquires the electricity, that is (p > 7).

To hedge against these risks, it is common practice in the industry to use a portfolio
of derivatives such as futures and options peg to price and weather indexes. However, the
method used to construct the portfolio or hedging strategy is not as straight forward as
buying some financial derivatives. There is a vast literature about how to build hedging
strategies (see section 2). Their main differences are: i) the industry under analysis, ii)
the assumptions made over the financial instruments to use, and iii) the estimation or
optimization methods.

In this article, we develop a method to construct the hedging portfolio departing from
distributional assumptions, the underlying assets, and the optimization approach usually
found in the literature. For instance, articles like that of Nésikkala and Keppo (2005)
obtain the optimal hedging ratio but do not consider the weather risk and its correlation
with the electricity price. Likewise, in a series of articles, Oum and Oren (2010) develop
a static hedging strategy considering price and volumetric risk. In this case, though the
authors acknowledge the effect of weather in the price and volume of the electricity market,
they do not consider weather derivatives because, the authors argue, of their speculative
nature.

Besides not considering weather influence, we also find that a substantial proportion of
the literature uses deterministic optimization methods. The problem of this approach is
that it assumes as known the distributions and location parameters of the data generating
process. However, in practice, that information is unknown and, at the most, it can be
estimated with some degree of uncertainty, from historical data. For instance, Id Brik
and Roncoroni (2015) assume lognormal distributions for the price, volume, and an index
correlated with price. Similarly, Lee and Oren (2009) assume that temperature follows a
normal distribution while demand and price of commodities follow a normal distribution.

To overcome these issues, we build upon the works of Pantoja Robayo (2011, 2012), and

In the electricity markets, the electricity retailers work as the intermediaries between the generators
(hydroelectric, power plants, and so forth) and the final customers and industries.

2Usually, electric markets are regulated by governments who decide about the price the retailers can
charge to final customers.



Pantoja Robayo and Vera (2019) who, like previous literature, assume normality and log-
normality of the variables under consideration, as well as independence between the price,
volume, and weather. To do so, we define the electricity retailer’s profit as: y(p, ¢, w) =
(r—p)q. Where, y (p, q, w) is the profit function that depends, explicitly, on the spot price
(p) and quantity (¢), and implicitly, on the weather (w) given the correlation between these
three variables. Have on mind that price (p) and quantity (w) are both random while the
selling price (1), at which he sells to final customers, is fixed by regulators. To hedge
against the probability that the price which the energy retailer pays is higher than the
price he can charge to final customers, e.g. p > r, the electricity retailer uses a portfolio
of financial instruments based on price and weather indexes. This hedged profit can be
expressed as:

Y(p, q,w,u, U) = y(p>Q,w) + P(p)Tu + W (w)Tv
= (r=p)a+Y_ P+ Yy Wiw) (1.1)
i J

where u; and v; are the weights assign to each instrument in the hedging portfolio and P (p)
and W (w) are, respectively, the vectors of the pay-offs of such instruments. Explicitly,
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As a profit-maximizing agent, the electricity retailer seeks to maximize his hedged
profit. In this article, we are assuming that the electricity retailer has a mean-variance
utility function. According to Markowitz (1952), the agent seeks to minimize his portfolio’s
variance for a given level of expected returns. That is equivalent to maximize the returns
for a given level of variance. In our case, that translates into the next optimization problem,

max E¢[Y(p7%w7uav)] - aVarw[Y(p,q,w,u, U)]

u,v
s. t. Zuiﬂf =0 (1.2)
Z vjﬂ;-“ =0

where 7; and m; are the prices of the corresponding instruments. On the other hand,
the probability measure ¢ supported on {(p,q) : p > 0, ¢ > 0} represents the electricity



retailer’s beliefs about the realization of the prices (p) and quantities (¢) at time ¢. As
mentioned before, previous literature usually assumes that i follows a normal or log-normal
distribution. In our case, we assume that v is unknown and that only a sample S is at
hand. To tackle this, we use robust optimization techniques® to solve model (1.2) including
such uncertainty. Specifically, given a set S of data sampled from (i.e. according to) 1, we
shall define a set W(S) of all the possible measures that could have generated such sample.
In this setting, ¥(.S) is called the uncertainty set over the measure 1. After defining an
appropriate uncertainty set,* we can solve the optimization problem in (1.3):

max min ETZ) [Y(p’ q,w, U,U)] - aVarw[Y(p, q,’LU,U,’U)]
uv 2heW(S)

s. t. Zumf 0 (1.3)
Z vj7r§ =0

Notice that equation (1.3) is an equivalent version of (1.2) after considering the uncer-
tainty associated to the parameters.

The rest of the article is as follows: section 2 summarizes the recent literature in the
hedging of price, volume, and weather risk for different commodities, with a particular in-
terest in the electricity market. Additionally, we review the recent advances in optimization
methods under uncertainty, especially robust optimization techniques. Section 3 develops
the methodology we are implementing to solve the stated problem. Here we include the
derivation of the usual optimization approach, as well as our robust optimization proposal,
so we can have a benchmark to compare our results with. Finally, in section 4 we make a
simulation exercise to see if the proposed method performs better than the deterministic
optimization approach. We also make an empirical application to show the usefulness and
applicability of our hedging proposal. In section 7?7 we conclude.

2 Literature review

This article is framed in two different bodies of literature. One group contains the literature
about hedging different types of risk in general and hedging risk in the electricity market in
particular. As we mentioned before, this literature differs in the type of risk being hedged
and in the assumptions about the distributions of the variables under consideration. We
contribute to this field of research by proposing a hedging solution to an electricity retailer
facing price, volume, and weather risk, as well as the correlations between them.

3See for instance: Bertsimas and Thiele (2006); Bertsimas et al. (2011, 2018); Cornejuelos et al. (2018);
Gabrel et al. (2014) for a detail and technical review of the advances on robust optimization.

“See Bertsimas and Brown (2009) for details about how to define appropriate uncertainty sets depending
on the problem to deal with.



The other group of literature is that of the optimization methods used to solve such
hedging problems. Within this group, we find linear, quadratic, and other different conic
optimization methods. Following with the advances in operations research, we also find
different methods for optimization under uncertainty like stochastic optimization, distri-
butionally robust optimization, and data-driven robust optimization. We aim to make this
article a guide to practitioners without the need for them to immerse in the intricacies of
optimization under uncertainty.

2.1 Risk hedging

In the field of risk hedging, we find for instance that some researchers and practitioners
work on and implement methods based on Value at Risk (VaR), Conditional Value at Risk
(CVaR), and expected shortfall (ES). Broadly speaking, these literature aims to measure or
estimate the biggest loss that an investor faces due to his portfolio fluctuations with a given
probability. We refer the interested reader to the works of Acerbi and Tasche (2002a,b);
Jorion (2007); Abad et al. (2014) and the references therein for further details about these
methods.

The other field of the literature, and in which is article is framed, is the one that
uses financial instruments like futures, forwards, options, and other derivatives to hedge
against a possible loss. The initial works on this field are usually attributed to Modigliani
and Miller (1958, 1963). Later on, we find the articles of Stulz (1984); Smith and Stulz
(1985); MacMinn (1987) who build upon those of Modigliani and Miller and hedge risk
by purchasing corporate insurance and by using derivatives like forward contracts. For
further details about the initial works and evolution of corporate hedging in general, we
refer the reader to the article of Gupta (2017) who makes a concise revision of the literature
regarding corporate hedging models.

The use of derivatives to hedge against either price, quantity, or weather risk in the
electricity market started around the early 2000s. For instance, Bessembinder and Lemmon
(2002) find optimal forward positions for producers and retailers and show that the optimal
positions depend on statistical properties of power demand and spot prices. Around the
same period, we find the article of Carr and Madan (2001) who present a model considering
three different assets: bonds, stocks, and European options. The authors objective is to
find the optimal position of agents in the derivative asset. The conclusion is that agents,
individually, hold different quantities of derivatives though in the aggregate they do not.

Continuing on this research line, Oum et al. (2006); Oum and Oren (2009, 2010) present
a series of articles where they develop a static hedging strategy and obtain the optimal
hedging position using electricity derivatives to hedge price and volumetric risk. In the 2006
article, the authors consider a single period model and assume that the hedging portfolio
is acquired in the first period and maintained to maturity. In 2009, the authors solve the
same optimization problem but consider maximizing the expected utility subject to a Value
at Risk (VaR) constraint. Finally, by 2010, the authors consider financial instruments and



co-optimize the portfolio mix and procurement time. Though the authors acknowledge
the effect that weather has both in price and volume, they do not include weather-based
instruments in the optimization.

More recently, we find articles like that of Id Brik and Roncoroni (2015) who structure
a static hedging strategy to reduce financial risk from price and volume. Similarly, Leung
and Lorig (2016) and Dupuis et al. (2016) follow a similar idea. Leung and Lorig propose a
framework for hedging a contingent claim by choosing a static position in vanilla options,
while Dupuis et al. develop a dynamic global hedging method using futures contracts for
a retailer facing load, price, and basis risk. Finally, Du and Vishwanathan (2017) finds
that the optimal linear hedge position includes four components: i) the expected net open
position, ii) a term accounting for the correlation between quantity and price, iii) a term
accounting for the correlation between load and price, and iv) a speculative component.

2.2 Optimization

Optimization methods have been an integral part of asset allocation and risk hedging since
the early stages of portfolio management. Markowitz (1952), the author of one of the most
used models in asset allocation, states that investors either maximize returns subject to
the desired risk or minimize risk subject to the desired return. Since then, researchers
and practitioners have used different optimization methods to determine the appropiate
weights or distribution of assets within their portfolios. In this category of optimization
methods, we could include most of the articles discussed above. However, the main critique
of the deterministic optimization methods is that they required parameters like the mean
of the expected returns and expected volatility of the underlying assets. These parameters
are not known at the moment of the optimization; hence, they must be estimated with
some degree of error. Then, the portfolio manager would perform an optimization based
on such parameters—including their estimation error. The hope is that the estimation error
is negligible and that, in consequence, the optimal decision does not change considerably
when the real parameters are realized. However, different authors have shown that these
results are quite sensitive to estimation errors, see for instance Scutella and Recchia (2010,
p. 116).

Optimization under uncertainty surged around mid 1950s with the articles of Beale
(1955); Dantzig (1955); Charnes and Cooper (1959), and Zackova (1966). More recently,
though, we find for instance the work of Pflug and Wozabal (2007) who study the Markowitz
portfolio optimization problem but taking into account the ambiguity in choosing the prob-
ability model.”> Since then, different methods to tackle the uncertainty problem have arisen.
Nowadays, we find two big categories: stochastic optimization and robust optimization. For
further details about the early stages of stochastic optimization, we refer the reader to the

5 According to the authors, “we refer today to the ambiguity problem if the probability model is unknown
and to the uncertainty problem, if the model is known, but the realizations of the random variables are
unknown.” (Pflug and Wozabal, 2007, p. 435).



article of Birge (1997). The main difference between stochastic optimization and robust
optimization is that the former assumes as known the distribution of the data generating
process of the parameters subject to uncertainty while the latter does not.

In the sake of brevity, we do not make a detailed review of the literature in robust
optimization which is vast. To that end, we invite the reader to revise the articles of Yu et al.
(2003); Ben-Tal and Nemirovski (2008); Fabozzi et al. (2010); Bertsimas et al. (2011, 2018);
Gabrel et al. (2014) and Ning and You (2019). These articles present a different level of
detail and to different sets of applications the recent and not so recent advances in the area
of optimization under uncertainty including stochastic optimization, chance-constrained
optimization, and robust optimization which can be divided into distributionally robust
optimization and data-driven optimization. For a book treatment of the topic, we invite
the reader to see Ben-Tal et al. (2009); Fabozzi et al. (2012). We do, however, revise the
literature that intertwines the areas of research in which this article is immersed: risk
hedging of electricity retailers and robust optimization.

More in line with our research question, the article of Pineda and Conejo (2013) uses
a multi-stage stochastic model to determine the optimal forward and option contracts to
manage the two main risk faced by power producers: price and product availability. For
its part, the articles of Tiutiincii and Koenig (2004) and Scutella and Recchia (2010) pro-
pose a robust optimization method to solve the mean-variance optimization problem of
Markowitz. Finally, the thesis dissertation of Boye Ahlgren and Aalberg Huse (2018) con-
siders hedging decisions of an electricity producer accounting for uncertainty in prices and
production, letting the underlying probability distribution itself be subject of uncertainty.
Our article differs from these on different fronts: i) we control for the risk associated with
changing weather conditions. We consider in our hedging portfolio for the electricity re-
tailer derivatives based on weather indexes. ii) We use robust optimization methods. As we
have stated before, the main difference between robust optimization and distributionally
robust optimization or stochastic optimization is that we do not assume that we know the
distributional form of the parameters subject to uncertainty.

3 Methodology

As we saw in section 2, different authors consider the problem of hedging the electricity
retailer’s profit against price, volume, and—in some instances—weather risk. Note, however,
that most of these authors use a deterministic optimization method to solve the mean-
variance approach of Markowitz:

max E[Y (p7q’w)uvv)] —a Var [Y (p7Q7w7u7/U)]
s. t. Zuim =0 (3.1)
Zvim =0



which, under some assumptions and after using some properties of the expectation oper-
ator, can be shown to be equivalent to equation (3.2). In appendix ??, we present the
derivation of equation (3.1) as well as the definitions of vectors V (p) and V (w), and
matrices M (p), M (w), and M (p, w).

E[Y (p,q, w,u,v)] —aVar[Y (p,q, u,v)]
= py — aag + [(V (p)" —2aM (y, p)T) (V (w)" = 2aM (y, w)T)] [ﬂ

o[l [ e[ e

This approach, however, assumes that price and volume are deterministic. It uses
the estimation, based on historical information, of the returns and the volatility of the
underlying assets to determine the optimal hedging positions. To overcome this issue, we
are going to depart from this assumption and consider the uncertainty associated with
price and volume. This model, however, is going to be our benchmark.

3.1 Robust optimization

There exist in the literature different interpretations of what robust is. For some authors,
robust refers to estimating robustly the parameters to be used in an optimization problem
or econometric model. For others, robust refers to estimating robustly the distribution, as-
sumed to be known, of the parameters under uncertainty, not the parameters themselves.
This is usually known as stochastic optimization. Other literature assumes that the un-
certainty is in the distribution function of the parameters, giving birth to distributionally
robust optimization.

In our case, robust refers to the whole optimization problem. We consider the un-
certainty associated with the parameters, as well as the uncertainty associated with the
distribution of the parameters. To do so, we define an uncertainty set that considers:
i) the uncertainty about the future electricity price, ii) the uncertainty about the quan-
tity that will be demanded by final customers, and iii) the uncertainty about the future
weather conditions that will ultimately affect both price and quantity. In the literature,
there are different kind of uncertainty sets depending on the problem at hand. There exist
for instance box uncertainty set, polyhedral, ellipsoidal, between others.® Because we are
dealing with two different variables (price and weather), each one with its uncertainty, but
correlated between them, the box uncertainty set seems more appropriate.

6See for instance Bertsimas and Thiele (2006); Bertsimas and Brown (2009), and Ben-Tal et al. (2009) for
further details about how to determine which uncertainty sets are appropriate to different kind of problems,
as well as to see how to construct such uncertainty sets.



Spw = {p:pe p—0p, pH+opl, w:w € [wW— oy, w—i—aw]} (3.3)

The robust counterpart of the mean-variance optimization problem presented in (3.1)
is:

s. t. Tpu =0 (3.4)
mov =10

We consider three different assets for hedging against price risk and three others for
hedging against weather risk. Hence, the payoffs of the hedging portfolios can be expressed
as:

(1+Tf)B (1—|—7’f)B
Pp)=| F{ |, Ww) =| F(w)
(p— k)" (w— k)"

4 Numerical applications

4.1 Simulation exercise

In order to determine the effectivity and performance or our proposed method, we perform
a simulation exercise. First we generate synthetic data for In(p), ¢, and In(w) from a
multivariate normal distribution with the population parameters: p, = 4, p,, = 1.9, and
g = 2,000 and variance-covariance matrix

0.42250 0.06084  237.90
Spawg = [0.06084 0.51840  267.84
237.90 267.84 3.6 x 10°

Using this synthetic data, we estimate the electricity retailers profits without hedging;
that is, y (p, ¢, w) = (r — p) ¢. In addition, we estimate the profits if the electricity retailer
hedges against price and weather risk using equation (3.2) and the robust counterpart as
in equation (3.4). We call these three models as unhedged profits, hedged profits (general),
and hedged profits (robust). Figure 4.1 presents the empirical densities of the three models
under analysis. It is clear from this figure that when the electricity retailer does not hedge
against price and weather risk, he is facing considerable loss with relatively high probability.
On the other hand, hedging-though reduces the expected profits—decreases as well the
likelihood of negative profits.

To better appreciate the likelihood of negative profits, we compute the quantiles from
zero (the maximum loss) to 50% (the median) of the densities depicted. Figure 4.2 presents



Figure 4.1: Electricity retailer’s profits densities
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the results. From this figure, we see that the maximum possible loss faced by the electricity
retailer is of about 350,000 while the respective loss for the general and robust models is
about 175,000 and 150,000 respectively. Since some times plots are hard to read, we
present table 4.1 with some of the quantiles plotted on figure 4.2. In the table is clearer
than the robust portfolio has a slightly lower maximum lost, while the unhedged profit is
considerably bigger.
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Figure 4.2: Electricity retailer’s profits quantiles
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Table 4.1: Percentiles of the lower tail of the profits density

Percentile Robust General Unhedged

0% “156,278.38 -175,505.77  -371,051.80
1% -32,457.36  -70,110.59  -212,280.70
2% 5,348.05  -34,853.04 -172,878.15
5% 34,573.06  14,277.33  -90,002.17
10% 57,933.57  44,368.77 -5,325.32
15% 69,143.03  61,335.20  27,920.29
20% 72,501.70  73,116.25  52,613.28
30% 83,759.02  91,370.42  83,657.55
40% 95,092.65 106,678.68  105,491.04
50% 106,551.54  118,257.80  123,684.65

Note: This table shows the percentiles of the lower tail of the
profits density for the robust, general, and unhedge models.
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