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Abstract

In this poster we put forward recent developments in regularity theory for some

classes of nonlinear PDEs. Our arguments relate a problem of interest to an-

other one, for which a richer theory is available. It operates in two distinct

layers; first compactness builds upon suitable notions of stability to produce

approximation results. Then, a scaling argument localizes the analysis to es-

tablish (in some cases, sharp) regularity results. The toy-models we cover

include fully nonlinear PDEs, the Isaacs equation, double-divergence prob-

lems and degenerate/singular equations.
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methods; Estimates in Hölder and Sobolev spaces.

Regularity theory for nonlinear
operators

Regularity theory is about the properties of a function which are implied by

the mere fact that it solves a given partial differential equation, in some ap-

propriate weak sense.

In the linear case, a celebrated result is the so-called Schauder’s regularity

theory. It says that weak solutions to

∆u = f in B1

are of class C2αloc(B1), provided f ∈ Cαloc(B1).

A further example os regularity result in the linear setting is the De Giorgi-

Nash-Moser theory; it says that weak solutions to

div(A(x)Du) = 0 in B1

are of Hölder continuous, provided the matrix A is well-prepared.

When entering the realm of nonlinear PDEs, we start by revisiting the former

results. This is the content of the Evans-Krylov and Krylov-Safonov theories.

Let F : S(d)→ R be a fully nonlinear (λ,Λ)-elliptic operator; that is, to satisfy

λ‖N‖ ≤ F (M + N) − F (M) ≤ Λ‖N‖,

for every M, N ∈ S(d) with N ≥ 0.

The Evans-Krylov theory states that (viscosity) solutions to

F (D2u) = 0 in B1 (1)

are in C2,αloc (B1), provided F is convex.

When the convexity of the operator F fails, the Krylov-Safonov theory as-

sures that solutions to (1) are in C1,αloc (B1).

A fundamental question haunted the community for about twenty years

though: would solutions to (1) be mor regular than stated by the Krylov-

Safonov, in the absence of convexity?

Set in negative recently by Nadirashvili and Vladut, this issue launched a

new direction of research in the area: what are the structures capable of un-

veil further regularity?

Inspired by intrinsically geometric ideas due to L. Caffarelli – and reported in

a trail-blazing paper in the Ann. Math., 1989 – we investigate work in line with

this research agenda through a class of techniques referred to as regularity

transmission by approximation methods.

Regularity transmission by
approximation methods

Given a PDE of interest, we related it with an auxiliary one, for which a richer

theory is available. The strategy to connect both problems is by means of an

approximation method.

For instance, the equation

F (D2u) = f in B1

can be studied through the regularity theory available for (1), provided f sat-

isfies certain (fairly general) conditions.

Another example has to do with diffusion operators of p-Laplacian type. I.e.,

we have recently discovered that information on the solutions to

∆pu := div(|Du|p−2Du) = f in B1

can be accessed through the analysis of the Laplace equation in case p is

close to 2 in some sense that can be made precise.

The main difficulty is to design the most robust path connecting both prob-

lems. In what follows we give two examples

A nonconvex model: the Isaacs
equation

We are interested in the following (fully nonlinear) PDE:

sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(x)D2u

)]
= f in B1.

We suppose:

1. Ellipticity: the matrix Aα,β : B1 ×A× B → Rd2 satisfies

λId ≤ Aα,β ≤ ΛId,

for 0 < λ ≤ Λ, fixed;

2. the source term f : B1 → R is in p−BMO(B1);

3. A and B are compact metric spaces.

Isaacs equation arises in the context of two-players, zero-sum, differential

games, as introduced by Rufus Isaacs;

→ Applications to life and social sciences;

Example of an operator that is neither convex nor concave;

→ Regularity: Evans-Krylov theory is not available.

We propose an approximation mechanism based on the (homogeneous)

Bellman equation:

inf
β∈B

[
−Tr

(
Aβ(x)D2h

)]
= 0 in B1,

where Aβ : B1 × B → Rd2 is a (λ,Λ)-elliptic matrix.

At the core of the method is a (uniform) smallness regime of the form

|Aα,β(x) − Aβ(x)| � 1/2.

Ideally, different smallness regimes yield different estimates, in Sobolev and

Hölder spaces.

Arising in the theory of (stochastic) optimal control, the Bellman equation is

convex with respect to the Hessian;

=⇒ The Evans-Krylov theory is available and solutions to

inf
β∈B

[
−Tr

(
Aβ(x0)D

2h
)]

= 0 in B1,

have C2,γ-estimates, for every x0 ∈ B1.

GOAL: to import regularity from the Bellman equation – limiting profile – to

the Isaacs equation – original problem.

Our main result reads as follows:

Theorem (P., Ann. Inst. H. Poincaré – Anal. NL, 19) Let u ∈ C(B1) be a

viscosity solution to the Isaacs equation. Suppose

sup
Br

|Aα,β(x) − Aβ| ≤ εrγ,

uniformly, and (∫
Br |f (x)|p dx

)1
p

≤ εrγ.

1. Then, u is of class C2,γ at the origin;

2. if f ≡ 0, we have u ∈ C2,γloc (B1) with

‖u‖C2,γ(B1/2)
≤ C ‖u‖L∞(B1)

.

The proof of this result are amounts to establish the existence of a sequence

of polynomials (Pk)k∈N,

Pk(x) = ak + bk · x +
1

2
xTCkx,

and ρ� 1/2, satisfying

inf
β∈B

[
−TrAβCk

]
= 0;

‖u − Pk‖L∞(B
ρk
) ≤ ρk(2+γ)

and

|ak − ak−1| + ρk−1|bk − bk−1| + ρ2(k−1)|Ck − Ck−1| ≤ Cρ(k−1)(2+γ),

with P0 ≡ P−1 ≡ 0. It ensures oscillation control at the discrete level.

To obtain such a sequence of polynomials we start with an Approximation

Lemma, which is further iterated.

Proposition (Approximation Lemma) Let u ∈ C(B1) be a viscosity solution

to the Isaacs equation. For everyδ > 0, there exists ε > 0 such that, if

sup
Br

|Aα,β(x) − Aβ| ≤ εrγ,

uniformly, and (∫
Br |f (x)|p dx

)1
p

≤ εrγ,

then, there exists h ∈ C2,γ(B7/8) satisfying

‖u − h‖L∞(B7/8)
≤ δ.

Fully nonlinear degenerate diffusions

Here, we examine

|Du|θ(x) F (D2u) = f in B1,

where

1. ((λ,Λ)-Ellipticity) the operator F : S(d) → R satisfies

λ ‖N‖ ≤ F (M + N) − F (M) ≤ Λ ‖N‖ ,

for every M, N ∈ S(d) with N ≥ 0, for some 0 < λ ≤ Λ fixed;

2. (Integrability of the source term) the source term satisfies f ∈ L∞(B1) ∩

C(B1);

3. (Variable exponent) the exponent θ : B1 → R is merely bounded and mea-

surable. In particular, −1 < θ(·).

This problem can be addressed as the nonvariational counterpart of the p-

Laplacian, in the presence of state-dependent degeneracy rates. Among

its applications, we highlight image-processing and the study of functional

spaces with weights. In the case of constante exponents θ(·) ≡ θ, there is a

number of previous results available. In particular:

−→ Previously studied by Araújo, Ricarte and Teixeira, Birindelli and Demen-

gel, Imbert and Silvestre;

−→ Local and global regularity, comparison principles and information on (ap-

propriate notions of) eigenvalues;

−→ The optimal regularity of the solutions is C1,α∗, with

α∗ := min

{
α0,

1

1 + θ

}
.

We have obtained the following regularity result:

Theorem (Bronzi, P., Rampasso, Teixeira)

Let u ∈ C(B1) be a viscosity solution to

|Du|θ(x) F (D2u) = f in B1.

Then, u ∈ C1,αloc (B1), where

α := min

{
α0,

1

1 + ‖θ+‖ + ‖θ−‖

}
.

Morevoer, there exists C > 0, universal, such that

‖u‖C1,α(B1/2)
≤ C

(
1 + ‖u‖L∞(B1)

+ ‖f‖
1

1+ inf θ

L∞(B1)

)
We stress the following:

1. Our arguments accommodate (a continuous approximation of) exponents

of the form

θ(x) :=
1

2
sin

(
1

|x|

)
2. The method seamlessly addresses the degenerate and singular regimes;

3. Explicit dependence of the regularity class on both regimes.

The strategy of the proof lies on the following structures:

1. First, we import C1,α-regularity from the homogeneous, uniformly elliptic,

equation governed by F ,

F (D2u) = 0 in B1.

2. Compactness of the solutions: an application of Jensen’s Lemma yields

u ∈ Cβ(B1), uniformly;

3. Approximation Lemma;

4. Iterative argument.
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