Minimal *-varieties and minimal supervarieties of polynomial growth

GOUVEIA, Tatiana VIEIRA, Ana Cristina
tatgouveia@yahoo.com.br
anacris@ufmg.br
DOS SANTOS, Rafael Bezerra
rafaelsantos23@ufmg.br
Instituto de Ciências Exatas, Departamento de Matemática, Universidade Federal de Juiz de Fora

Encontro Brasileiro de Mulheres Matemáticas (EBMM) 27-28 de julho de 2019 - IMPA - Rio de Janeiro - Brasil

Abstract

By a φ-variety \mathcal{V}, we mean a supervariety or a $*$-variety generated by an algebra over a field F of haracteristic zero

For $\mathcal{V}=\operatorname{var}^{\varphi}(A)$ a φ-variety of algebras, we define $c_{n}^{\varphi}(\mathcal{V})=c_{n}^{\varphi}(A)$ and we say that \mathcal{V} is minimal of polynomial growth n^{k} if $c_{n}^{\varphi}(\mathcal{V})$ grows like n^{k}, but $c_{n}^{\varphi}(\mathcal{U})$ grows like n^{t} with $t<k$, for any proper φ-subvariety \mathcal{U} of \mathcal{V}

Motivated by the results in [1], in this work, we characterize the minimal φ-varieties generated by unitary algebras of growth n^{k}. We prove that for $k \leq 2$ there are only a finite number of algebras generating such minimal φ-varieties. For $k \geq 3$, we show that the number of minimal φ-varieties can be infinity and give a receipt for the construction of their T^{φ}-ideals.

Characterization of minimal φ-varieties

Now let's consider the unitary $*$-algebras generating minimal varieties of polynomial growth given by La Mattina and Martino in [4]

For any $k \geq 2$, consider the matrix $E=\sum_{i=2}^{k-1} e_{i, i+1}+e_{2 k-i, 2 k-i+1} \in U T_{2 k}$ and the following subalgebras of $U T_{2 k}$
$P_{k, \rho}=\operatorname{span}_{F}\left\{I_{2 k}, E, \ldots, E^{k-2} ; e_{12}-e_{2 k-1,2 k}, e_{13}, \ldots, e_{1 k}, e_{k+1,2 k}, e_{k+2,2 k}, \ldots, e_{2 k-2,2 k}\right\} \mathrm{e}$
$Q_{k, \rho}=\operatorname{span}_{F}\left\{I_{2 k}, E, \ldots, E^{k-2} ; e_{12}+e_{2 k-1,2 k}, e_{13}, \ldots, e_{1 k}, e_{k+1,2 k}, e_{k+2,2 k}, \ldots, e_{2 k-2,2 k}\right\}$, endowed with the reflection involution ρ, where $I_{2 k}$ denotes the identity matrix of order $2 k$.

The authors also considered the following commutative subalgebra of $U T_{k} C_{k}=$ $\left\{\alpha I_{k}+\sum_{1 \leq i<k} \alpha_{i} E_{1}^{i}: \alpha, \alpha_{i} \in F\right\}$, for $k \geq 2$, where $E_{1}=\sum_{i=1}^{k-1} e_{i, i+1}$ and I_{k} denotes the identity matrix of order k. We denote by $C_{k, *}$ the algebra C_{k} with involution given by $\left(\alpha I_{k}+\sum_{1<i<k} \alpha_{i} E_{1}^{i}\right)^{*}=$ $\alpha I_{k}+\sum_{1 \leq i<k}(-1)^{i} \alpha_{i} E_{1}^{i}$.

Furthermore, in [3], La Mattina, presented some superalgebras generating minimal varieties. For $k \geq 2$, let $C_{k}^{g r}$ to be the algebra C_{k} with elementary grading induced by $g=(0,1,0,1, \ldots) \in \mathbb{Z}_{2}^{k}$

For some $k>2$, let $N_{k}=\operatorname{span}_{F}\left\{I_{k}, E, \ldots, E^{k-2} ; e_{12}, e_{13}, \ldots, e_{1 k}\right\}$ the subalgebra of $U T_{k}$, where $E=\sum_{i=1}^{k-1} e_{i, i+1} \in U T_{k}$ and I_{k} denotes the $k \times k$ identity matrix

Consider the superalgebra $N_{k}^{g r}$ to be the algebra N_{k} with elementar \mathbb{Z}_{2}-grading induced by $g=$ $(0,1, \ldots, 1) \in \mathbb{Z}_{2}^{k}$

For $k \geq 2$, consider G_{k} to be the finite dimensional Grassmann algebra with 1 generated by the elements e_{1}, \ldots, e_{k} over F subject to the condition $e_{i} e_{j}=-e_{j} e_{i}, 1 \leq i, j \leq k$. Finally consider $G_{k}^{g r}$ to be the finite dimensional Grassmann algebra G_{k} endowed with the grading induced by the canonical grading of $\mathcal{G}^{g r}$

In what follows we will consider \mathcal{V} be a φ-variety of polynomial growth generated by a unitary algebra Theorem 1. Let \mathcal{V} be a φ-variety of polynomial growth n^{k} and let $\pi_{n}^{\varphi}(\mathcal{V})=\sum_{(\gamma, \sigma) \vdash n} \widetilde{m}_{\gamma, \sigma} \chi_{\gamma, \sigma}$ be its nth proper φ-cocharacter. Then \mathcal{V} is minimal if and only if the following hold i) There exists a pair of partitions $(\lambda, \mu) \vdash k$, such that $\widetilde{m}_{\lambda, \mu}=1$ and for all $(\nu, \theta) \vdash k$ with $(\nu, \theta) \neq(\lambda, \mu)$ we have $\widetilde{m}_{\nu, \theta}=0$;
ii) if $(\lambda, \mu) \vdash k$ is a pair of partitions and $f_{\lambda, \mu}$ is a Y-proper highest weight vector such that $f_{\lambda, \mu} \notin I d^{\varphi}(\mathcal{V})$, then for each $h<k$ and for each $(\nu, \theta) \vdash h$, if $f_{\nu, \theta}$ is a Y-proper highest weight vector such that $f_{\nu, \theta} \notin I d^{\varphi}(\mathcal{V})$, we must have $f_{\nu, \theta} \rightsquigarrow f_{\lambda, \mu}(\bmod \operatorname{Id}(\mathcal{V}))$, this is, $f_{\lambda, \mu} \in\left\langle\operatorname{Id}^{\varphi}(\mathcal{V}), f_{\nu, \theta}\right\rangle_{T^{\varphi}}$

By using our theorem we can give new examples of minimal φ-varieties
Theorem 2. Let $\mathcal{T}_{k, *}$ be a $*$-variety generated by a unitary algebra and determined by T^{*}-ideal
$\left\langle\left[y_{1}, y_{2}\right],[y, z], z_{1} \circ z_{2}, z_{1} z_{2} \ldots z_{k+1}\right\rangle_{T^{*}}$.
Then $\mathcal{T}_{k, *}$ is minimal of growth n^{k}
Denote by $G_{k, *}$ the algebra G_{k} endowed with the involution $*$ such that $e_{i}^{*}=-e_{i}, i=1,2, \ldots, k$.
La Mattina and Misso (2006) proved that

```
                                    Id}\mp@subsup{}{}{*}(\mp@subsup{G}{2,*}{})=\langle[\mp@subsup{y}{1}{},\mp@subsup{y}{2}{}],[y,z],\mp@subsup{z}{1}{}\circ\mp@subsup{z}{2}{},\mp@subsup{z}{1}{}\mp@subsup{z}{2}{}\mp@subsup{z}{3}{}\mp@subsup{\rangle}{\mp@subsup{T}{}{*}}{
```

Notice that $\mathcal{T}_{2, *}=\operatorname{var}^{*}\left(G_{2, *}\right)$, that is, $G_{2, *}$ is a minimal $*$-algebra of quadratic growth. Furthermore
$\operatorname{Id}^{*}\left(G_{3, *}\right)=\left\langle\left[y_{1}, y_{2}\right],[y, z],\left[z_{1}, z_{2} z_{3}\right], z_{1} z_{2} z_{3}+z_{3} z_{2} z_{1}, z_{1} z_{2} z_{3} z_{4}\right\rangle_{T^{*}}$;

- $\mathcal{U}=\operatorname{var}^{*}\left(G_{3, *}\right) \Rightarrow \mathcal{T}_{3, *} \subsetneq \mathcal{U}$;
- $G_{3, *}$ has cubic growth and it is not minimal.

Minimal φ-varieties with at most quadratic growth

In order to start our classification, it is important to know the decomposition of the character of the space Γ_{n}^{φ} of multilinear Y-proper polynomials of degree n, for $n=2,3$.
Theorem 3. i) $\chi\left(\Gamma_{2}^{\varphi}\right)=\chi_{(1),(1)}+\chi_{\left(1^{2}\right), \emptyset}+\chi_{\emptyset,\left(1^{2}\right)}+\chi_{\emptyset,(2)}$;
ii) $\chi\left(\Gamma_{3}^{\varphi}\right)=\chi_{(2,1), \emptyset}+\chi_{(2),(1)}+2 \chi_{\left(1^{2}\right),(1)}+2 \chi_{(1),\left(1^{2}\right)}+2 \chi_{(1),(2)}+\chi_{\emptyset,\left(1^{3}\right)}+2 \chi_{\emptyset,(2,1)}+\chi_{\emptyset,(3)}$.

Consider the multilinear Y-proper polynomials of degree 2: $g_{1}=[y, z], g_{2}=\left[y_{1}, y_{2}\right], g_{3}=\left[z_{1}, z_{2}\right], g_{4}=$ $z_{1} \circ z_{2}$ and the multilinear Y-proper polynomials of degree 3: $f_{1}=\left[y_{1}, y_{2}, y_{3}\right]+\left[y_{3}, y_{2}, y_{1}\right], f_{2}=\left[y_{1}, z, y_{2}\right]+$ $\left[y_{2}, z, y_{1}\right], f_{3}=z\left[y_{1}, y_{2}\right]$ and $f_{3}^{\prime}=\left[y_{1}, y_{2}, z\right], f_{4}=z_{1}\left[y, z_{2}\right]$ and $f_{4}^{\prime}=\left[z_{1}, z_{2}, y\right], f_{5}=z_{1}\left[y, z_{2}\right]+z_{2}\left[y, z_{1}\right]$ and $f_{5}^{\prime}=\left[y, z_{1}, z_{2}\right]+\left[y, z_{2}, z_{1}\right], f_{6}=S t_{3}\left(z_{1}, z_{2}, z_{3}\right), f_{7}=z_{1}\left[z_{3}, z_{2}\right]+z_{3}\left[z_{1}, z_{2}\right]$ and $f_{7}^{\prime}=\left[z_{1}, z_{2}, z_{3}\right]+\left[z_{3}, z_{2}, z_{1}\right]$, $f_{8}=\sum_{\sigma \in S_{3}} z_{\sigma(1)} z_{\sigma(2)} z_{\sigma(3)}$.
Theorem 4. Let A be a unitary $*$-algebra such that $c_{n}^{*}(A) \leq k n^{2}$, for some nonzero constant k. Then A generates a minimal $*$-variety if and only if either $A \sim_{T^{*}} C_{2, *}$ or $A \sim_{T^{*}} P_{3, \rho}$ or $A \sim_{T^{*}} Q_{3, \rho}$ or $A \sim_{T^{*}} G_{2, *}$ or $A \sim_{T^{*}} C_{3, *}$
Theorem 5. Let A be a unitary superalgebra such that $c_{n}^{g r}(A) \leq k n^{2}$, for some nonzero constant k. Then A generates a minimal supervariety if and only if either $A \sim_{T_{2}} C_{2}^{g r}$ or $A \sim_{T_{2}} N_{3}^{g r}$ or $A \sim_{T_{2}} G_{2}$ or $A \sim_{T_{2}} G_{2}^{g r}$ or $A \sim_{T_{2}} C_{3}^{g r}$

Minimal φ-varieties of cubic growth

Theorem 6. Let A be a unitary $*$-algebra such that $\pi_{3}^{*}(A)=\chi_{\lambda, \mu}$ where $m_{\lambda, \mu}=1$ in the decomposition of $\chi\left(\Gamma_{3}^{\varphi}\right)$. Then A generates a minimal $*$-variety of cubic growth if and only if either $A \sim_{T^{*}} Q_{4, \rho}$ or $A \sim_{T^{*}} P_{4, \rho}$ or $A \sim_{T^{*}} C_{4, *}$ or $A \sim_{T^{*}} L_{*}$
Theorem 7. Let A be a unitary superalgebra such that $\pi_{3}^{g r}(A)=\chi_{\lambda, \mu}$ where $m_{\lambda, \mu}=1$ in the decomposition of $\chi\left(\Gamma_{3}^{\varphi}\right)$. Then A generates a minimal supervariety of cubic growth if and only if either $A \sim_{T_{2}} N_{4}$ or $A \sim_{T_{2}} N_{4}^{g r}$ or $A \sim_{T_{2}} G_{3}^{g r}$ or $A \sim_{T_{2}} C_{4}^{g r}$.

In what follows we consider \mathcal{V} to be a φ-variety of cubic growth such that $\pi_{3}^{\varphi}(\mathcal{V})=\chi_{\lambda, \mu}$, where $\chi_{\lambda, \mu}$ is one of the four irreducible characters with $m_{\lambda, \mu}=2$ in the decomposition of $\chi\left(\Gamma_{3}^{\varphi}\right)$.

Let h and h be Y-proper linearly independent highest weight vectors associated to (λ, μ). Then h and \tilde{h} are linearly dependent modulo $\operatorname{Id}^{\varphi}(\mathcal{V})$. We prove that \mathcal{V} is uniquely determined, up to a scalar $\gamma \operatorname{in} F$, by a inear combination $\tilde{h}+\gamma h$.

In this case, we will denote the T^{φ}-ideal of \mathcal{V} by $I_{\tilde{h}+\gamma h}$
Proposition 1. There is no $*$-variety \mathcal{V} of cubic growth such that $\pi_{3}^{*}(\mathcal{V})=\chi_{(1),(2)}$.
For the pair of partition $(\lambda, \mu) \vdash 3$ fixed as above, let $Q^{\lambda, \mu}=\left\{f_{\sigma, \tau}:(\sigma, \tau) \vdash 3,(\sigma, \tau) \neq(\lambda, \mu)\right\}$
Theorem 8. Let $\pi_{3}^{*}(\mathcal{V})=\chi_{\varnothing,(2,1)}$. Then \mathcal{V} is a minimal $*$-variety of growth n^{3} if and only if Id $d^{*}(\mathcal{V})$ coincides with one of the following T^{*}-ideals
i) $I_{f_{7}+2 f_{7}^{\prime}}=\left\langle\Gamma_{4}^{*}, Q^{\varnothing,(2,1)}, g_{1}, g_{2}, g_{4}, f_{7}+2 f_{7}^{\prime}\right\rangle_{T^{*}}$
ii) $I_{f_{7}+\gamma f_{7}^{\prime}}=\left\langle\Gamma_{4}^{*}, Q^{\varnothing,(2,1)}, g_{2}, f_{7}+\gamma f_{7}^{\prime}\right\rangle_{T^{*}}$, where $\gamma \in F$ is any scalar such that $\gamma \neq 2$.

Theorem 9. Let $\pi_{3}^{g r}(\mathcal{V})=\chi_{(1),(2)}$. Then \mathcal{V} is a minimal supervariety of growth n^{3} if and only if $\operatorname{Id}^{g r}(\mathcal{V})$ coincides with the T_{2}-ideal $I_{f_{5}^{\prime}}=\left\langle\Gamma_{4}^{g r}, Q^{(1),(2)}, f_{5}^{\prime}\right\rangle_{T_{2}}$
Theorem 10. Let $\pi_{3}^{g r}(\mathcal{V})=\chi_{\varnothing,(2,1)}$. Then \mathcal{V} is a minimal supervariety of growth n^{3} if and only if $\operatorname{Id} d^{g r}(\mathcal{V})$ coincides with one of the T_{2}-ideals
i) $I_{f_{7}^{\prime}}=\left\langle\Gamma_{4}^{g r}, Q^{\varnothing,(2,1)}, g_{2}, f_{7}^{\prime}\right\rangle_{T_{2}}$;
ii) $I_{f_{7}+2 f_{7}^{\prime}}=\left\langle\Gamma_{4}^{g r}, Q^{\varnothing,(2,1)}, g_{2}, g_{4}, f_{7}+2 f_{7}^{\prime}\right\rangle_{T_{2}} ;$
iii) $I_{f_{7}+\gamma f_{7}^{\prime}}=\left\langle\Gamma_{4}^{g r}, Q^{\varnothing,(2,1)}, g_{2}, f_{7}+\gamma f_{7}^{\prime}\right\rangle_{T_{2}}$, where $\gamma \in F$ is any scalar such that $\gamma \neq 2$.

In [2], we generalize the procedure above in order to classify the minimal φ-varieties generated by unitary algebras with growth $n^{k}, k \geq 4$ and we provide a method to construct their T^{φ}-ideals.

Minimal φ-varieties of growth $n^{k}, k \geq 4$
Consider the decomposition of the H_{k}-character of Γ_{k}^{φ}

$$
\chi\left(\Gamma_{k}^{\varphi}\right)=\sum_{(\lambda, \mu) \vdash k} \bar{m}_{\lambda, \mu} \chi_{\lambda, \mu} .
$$

For each pair of partitions $(\lambda, \mu) \vdash k$, let

- $f_{\lambda, \mu}^{1}, f_{\lambda, \mu}^{2}, \cdots, f_{\lambda, \mu}^{\bar{m}_{\lambda, \mu}}$ be Y-proper linearly independent highest weight vectors associated to (λ, μ);
- $V^{\lambda, \mu}=\operatorname{span}_{F}\left\{f_{\lambda, \mu}^{1}, f_{\lambda, \mu}^{2}, \cdots, f_{\lambda, \mu}^{\bar{m}_{\lambda, \mu}}\right\}$.

Proposition 2. Let \mathcal{V} be a φ-variety generated by a unitary algebra and consider

$$
\pi_{k}^{\varphi}(\mathcal{V})=\sum_{(\lambda, \mu) \vdash k} \widetilde{m}_{\lambda, \mu} \chi_{\lambda, \mu}
$$

the decomposition of its k-th proper φ-cocharacter. Then $\widetilde{m}_{\lambda, \mu}=1$, for some pair of partitions $(\lambda, \mu) \vdash k$ if and only if $\operatorname{dim}\left(V^{\lambda, \mu} \cap \operatorname{Id} d^{\varphi}(\mathcal{V})\right)=\bar{m}_{\lambda, \mu}-1$.

For a fixed par of partitions $(\lambda, \mu) \vdash k$ such that $\bar{m}_{\lambda, \mu} \neq 0$ in the decomposition of $\chi\left(\Gamma_{k}^{\varphi}\right)$, we define

$$
Q^{\lambda, \mu}=\left\{f_{\sigma, \tau}:(\sigma, \tau) \vdash k,(\sigma, \tau) \neq(\lambda, \mu)\right\},
$$

and consider

- $W^{\lambda, \mu}$ a subspace de $V^{\lambda, \mu}$ with $\operatorname{dim} W^{\lambda, \mu}=\bar{m}_{\lambda, \mu}-1$;
- $B^{\lambda, \mu}$ a basis of $W^{\lambda, \mu}$
- $h \in V^{\lambda, \mu}$ such that $h \notin W^{\lambda, \mu}$.

$$
\text { We define the following } T^{\varphi} \text {-ideals }
$$

$\begin{aligned} & \text { We define the following } T^{\varphi} \text {-ideals: } \\ & I_{k}=\left\{\begin{array}{l}\left\langle\Gamma_{k+1}^{\varphi}, Q^{\lambda, \mu}, B^{\lambda, \mu},\left[y_{1}, y_{2}\right] \cdots\left[y_{k+1}, y_{k+2}\right]\right\rangle_{T^{\varphi}} \\ \left\langle\Gamma_{k+1}^{\varphi}, Q^{\lambda, \mu}, B^{\lambda, \mu}\right\rangle_{T^{\varphi}}, \text { if } k \text { is even and } \varphi \text { is an automorphism }\end{array}\right.\end{aligned}$

$$
I_{k-j}=\left\langle I_{k-j+1}, f_{\delta, \xi}:(\delta, \xi) \vdash(k-j) \text { such that } h \notin\left\langle f_{\delta, \xi}, I_{k-j+1}\right\rangle_{T^{\varphi}}\right\rangle_{T^{\varphi}}
$$

for $1 \leq j \leq k-2$
We have

$$
I_{k} \subseteq I_{k-1} \subseteq \cdots \subseteq I_{2} .
$$

Notice that the T^{φ}-ideal I_{2} depends on the choice of the subspace $W^{\lambda, \mu}$ and on the Y-proper highest weight vector h.

We introduce the notation $I_{2}=I_{h}^{\lambda, \mu}$, and we have proved the following result.
Theorem 11. Let \mathcal{V} be a φ-variety of growth $n^{k}, k \geq 4$, generated by a unitary algebra. Then \mathcal{V} is minimal if and only if $\operatorname{Id}^{\varphi}(\mathcal{V})=I_{h}^{\lambda, \mu}$, for some pair of partitions $(\lambda, \mu) \vdash k$.

References

1] A. Giambruno, D. La Mattina and M. Zaicev. Classifying the Minimal Varieties of Polynomial Growth. Canad. J. Math. Vol 6 (2014) 625-640
[2] T. Gouveia, R. B. dos Santos and A. Vieira.Minimal $*$-varieties and minimal supervarieties of polynomial growth. Preprint.
[3] D. La Mattina - Varieties of superalgebras of almost polynomial growth. J. Algebra 336 (2011), 209226.
[4] D. La Mattina and F. Martino. Polynomial growth and star-varieties. J. Pure Appl. Algebra, 220 (2016) 246-262.

