

Minimal *-varieties and minimal supervarieties of polynomial growth

GOUVEIA, Tatiana VIEIRA, Ana Cristina DOS SANTOS, Rafael Bezerra tatgouveia@yahoo.com.br anacris@ufmg.br rafaelsantos23@ufmg.br

Instituto de Ciências Exatas, Departamento de Matemática, Universidade Federal de Juiz de Fora

Encontro Brasileiro de Mulheres Matemáticas (EBMM) 27-28 de julho de 2019 - IMPA - Rio de Janeiro - Brasil

Abstract

By a φ -variety \mathcal{V} , we mean a supervariety or a *-variety generated by an algebra over a field F of characteristic zero.

For $\mathcal{V} = \operatorname{var}^{\varphi}(A)$ a φ -variety of algebras, we define $c_n^{\varphi}(\mathcal{V}) = c_n^{\varphi}(A)$ and we say that \mathcal{V} is **minimal of polynomial growth** n^k if $c_n^{\varphi}(\mathcal{V})$ grows like n^k , but $c_n^{\varphi}(\mathcal{U})$ grows like n^t with t < k, for any proper φ -subvariety \mathcal{U} of \mathcal{V}

Motivated by the results in [1], in this work, we characterize the minimal φ -varieties generated by unitary

Theorem 6. Let A be a unitary *-algebra such that $\pi_3^*(A) = \chi_{\lambda,\mu}$ where $m_{\lambda,\mu} = 1$ in the decomposition of $\chi(\Gamma_3^{\varphi})$. Then A generates a minimal *-variety of cubic growth if and only if either $A \sim_{T^*} Q_{4,\rho}$ or $A \sim_{T^*} P_{4,\rho}$ or $A \sim_{T^*} C_{4,*}$ or $A \sim_{T^*} L_{*}$.

Theorem 7. Let A be a unitary superalgebra such that $\pi_3^{gr}(A) = \chi_{\lambda,\mu}$ where $m_{\lambda,\mu} = 1$ in the decomposition of $\chi(\Gamma_3^{\varphi})$. Then A generates a minimal supervariety of cubic growth if and only if either $A \sim_{T_2} N_4$ or $A \sim_{T_2} N_4^{gr}$ or $A \sim_{T_2} G_3^{gr}$ or $A \sim_{T_2} C_4^{gr}$.

In what follows we consider \mathcal{V} to be a φ -variety of cubic growth such that $\pi_3^{\varphi}(\mathcal{V}) = \chi_{\lambda,\mu}$, where $\chi_{\lambda,\mu}$ is one of the four irreducible characters with $m_{\lambda,\mu} = 2$ in the decomposition of $\chi(\Gamma_3^{\tilde{\varphi}})$.

algebras of growth n^k . We prove that for $k \leq 2$ there are only a finite number of algebras generating such minimal φ -varieties. For $k \ge 3$, we show that the number of minimal φ -varieties can be infinity and give a receipt for the construction of their T^{φ} -ideals.

Characterization of minimal φ **-varieties**

Now let's consider the unitary *-algebras generating minimal varieties of polynomial growth given by La Mattina and Martino in [4].

For any $k \ge 2$, consider the matrix $E = \sum_{i=2}^{\kappa-1} e_{i,i+1} + e_{2k-i,2k-i+1} \in UT_{2k}$ and the following subalgebras of UT_{2k} :

 $P_{k,\rho} = \operatorname{span}_F \{ I_{2k}, E, \dots, E^{k-2}; e_{12} - e_{2k-1,2k}, e_{13}, \dots, e_{1k}, e_{k+1,2k}, e_{k+2,2k}, \dots, e_{2k-2,2k} \} e_{12} + e_{2k-1,2k}, e_{13}, \dots, e_{1k}, e_{k+1,2k}, e_{k+2,2k}, \dots, e_{2k-2,2k} \} e_{12}$ $Q_{k,\rho} = \operatorname{span}_F \{ I_{2k}, E, \dots, E^{k-2}; e_{12} + e_{2k-1,2k}, e_{13}, \dots, e_{1k}, e_{k+1,2k}, e_{k+2,2k}, \dots, e_{2k-2,2k} \}, \text{ endowed with}$ the reflection involution ρ , where I_{2k} denotes the identity matrix of order 2k.

The authors also considered the following commutative subalgebra of UT_k C_k = $\left\{ \alpha I_k + \sum_{1 \le i < k} \alpha_i E_1^i : \alpha, \alpha_i \in F \right\}, \text{ for } k \ge 2, \text{ where } E_1 = \sum_{i=1}^{k-1} e_{i,i+1} \text{ and } I_k \text{ denotes the identity ma-}$ trix of order k. We denote by $C_{k,*}$ the algebra C_k with involution given by $(\alpha I_k + \sum \alpha_i E_1^i)^* =$ $\alpha I_k + \sum (-1)^i \alpha_i E_1^i.$

 $1 \le i \le k$

Furthermore, in [3], La Mattina, presented some superalgebras generating minimal varieties. For $k \ge 2$, let C_k^{gr} to be the algebra C_k with elementary grading induced by $g = (0, 1, 0, 1, ...) \in \mathbb{Z}_2^k$.

For some k > 2, let $N_k = \operatorname{span}_F\{I_k, E, \ldots, E^{k-2}; e_{12}, e_{13}, \ldots, e_{1k}\}$ the subalgebra of UT_k , where

 $E = \sum e_{i,i+1} \in UT_k$ and I_k denotes the $k \times k$ identity matrix.

Consider the superalgebra N_k^{gr} to be the algebra N_k with elementar \mathbb{Z}_2 -grading induced by g = $(0, 1, ..., 1) \in \mathbb{Z}_2^k.$ For $k \ge 2$, consider G_k to be the finite dimensional Grassmann algebra with 1 generated by the elements e_1, \ldots, e_k over F subject to the condition $e_i e_j = -e_j e_i, 1 \le i, j \le k$. Finally consider G_k^{gr} to be the finite dimensional Grassmann algebra G_k endowed with the grading induced by the canonical grading of \mathcal{G}^{gr} . In what follows we will consider \mathcal{V} be a φ -variety of polynomial growth generated by a unitary algebra. **Theorem 1.** Let \mathcal{V} be a φ -variety of polynomial growth n^k and let $\pi_n^{\varphi}(\mathcal{V}) = \sum_{(\gamma,\sigma) \vdash n} \widetilde{m}_{\gamma,\sigma} \chi_{\gamma,\sigma}$ be its nth proper

Let h and h be Y-proper linearly independent highest weight vectors associated to (λ, μ) . Then h and h are linearly dependent modulo $\mathrm{Id}^{\varphi}(\mathcal{V})$. We prove that \mathcal{V} is uniquely determined, up to a scalar γ in F, by a linear combination $h + \gamma h$.

In this case, we will denote the T^{φ} -ideal of \mathcal{V} by $I_{\tilde{h}+\gamma h}$.

Proposition 1. There is no *-variety \mathcal{V} of cubic growth such that $\pi_3^*(\mathcal{V}) = \chi_{(1),(2)}$.

For the pair of partition $(\lambda, \mu) \vdash 3$ fixed as above, let $Q^{\lambda,\mu} = \{f_{\sigma,\tau} : (\sigma, \tau) \vdash 3, (\sigma, \tau) \neq (\lambda, \mu)\}.$ **Theorem 8.** Let $\pi_3^*(\mathcal{V}) = \chi_{\emptyset,(2,1)}$. Then \mathcal{V} is a minimal *-variety of growth n^3 if and only if $Id^*(\mathcal{V})$ coincides with one of the following T^* -ideals i) $I_{f_7+2f_7'} = \left\langle \Gamma_4^*, Q^{\varnothing,(2,1)}, g_1, g_2, g_4, f_7+2f_7' \right\rangle_{T^*};$ *ii*) $I_{f_7+\gamma f_7'} = \left\langle \Gamma_4^*, Q^{\varnothing,(2,1)}, g_2, f_7+\gamma f_7' \right\rangle_{T^*}$, where $\gamma \in F$ is any scalar such that $\gamma \neq 2$. **Theorem 9.** Let $\pi_3^{gr}(\mathcal{V}) = \chi_{(1),(2)}$. Then \mathcal{V} is a minimal supervariety of growth n^3 if and only if $Id^{gr}(\mathcal{V})$ coincides with the T_2 -ideal $I_{f'_5} = \left\langle \Gamma_4^{gr}, Q^{(1),(2)}, f'_5 \right\rangle_{T_2}$. **Theorem 10.** Let $\pi_3^{gr}(\mathcal{V}) = \chi_{\emptyset,(2,1)}$. Then \mathcal{V} is a minimal supervariety of growth n^3 if and only if $Id^{gr}(\mathcal{V})$

coincides with one of the T_2 -ideals i) $I_{f'_{7}} = \left\langle \Gamma_{4}^{gr}, Q^{\varnothing,(2,1)}, g_{2}, f'_{7} \right\rangle_{T_{2}};$ $ii) I_{f_7+2f_7'} = \left\langle \Gamma_4^{gr}, Q^{\varnothing,(2,1)}, g_2, g_4, f_7+2f_7' \right\rangle_{T_2};$ *iii*) $I_{f_7+\gamma f_7'} = \left\langle \Gamma_4^{gr}, Q^{\emptyset,(2,1)}, g_2, f_7+\gamma f_7' \right\rangle_{T_2}$, where $\gamma \in F$ is any scalar such that $\gamma \neq 2$.

In [2], we generalize the procedure above in order to classify the minimal φ -varieties generated by unitary algebras with growth $n^k, k \ge 4$ and we provide a method to construct their T^{φ} -ideals.

Minimal φ -varieties of growth $n^k, k \ge 4$

Consider the decomposition of the H_k -character of Γ_k^{φ}

 φ -cocharacter. Then \mathcal{V} is minimal if and only if the following hold

i) There exists a pair of partitions $(\lambda, \mu) \vdash k$, such that $\widetilde{m}_{\lambda,\mu} = 1$ and for all $(\nu, \theta) \vdash k$ with $(\nu, \theta) \neq (\lambda, \mu)$ we have $\widetilde{m}_{\nu,\theta} = 0$;

ii) if $(\lambda, \mu) \vdash k$ is a pair of partitions and $f_{\lambda,\mu}$ is a Y-proper highest weight vector such that $f_{\lambda,\mu} \notin Id^{\varphi}(\mathcal{V})$, then for each h < k and for each $(\nu, \theta) \vdash h$, if $f_{\nu, \theta}$ is a Y-proper highest weight vector such that $f_{\nu, \theta} \notin Id^{\varphi}(\mathcal{V})$, we must have $f_{\nu,\theta} \rightsquigarrow f_{\lambda,\mu} \pmod{Id^{\varphi}(\mathcal{V})}$, this is, $f_{\lambda,\mu} \in \langle Id^{\varphi}(\mathcal{V}), f_{\nu,\theta} \rangle_{T^{\varphi}}$.

By using our theorem we can give new examples of minimal φ -varieties.

Theorem 2. Let $\mathcal{T}_{k,*}$ be a *-variety generated by a unitary algebra and determined by T^* -ideal

$$\langle [y_1, y_2], [y, z], z_1 \circ z_2, z_1 z_2 \dots z_{k+1} \rangle_{T^*}.$$

Then $\mathcal{T}_{k,*}$ is minimal of growth n^k .

Denote by $G_{k,*}$ the algebra G_k endowed with the involution * such that $e_i^* = -e_i, i = 1, 2, \ldots, k$. La Mattina and Misso (2006) proved that

 $\mathrm{Id}^*(G_{2,*}) = \langle [y_1, y_2], [y, z], z_1 \circ z_2, z_1 z_2 z_3 \rangle_{T^*}.$

Notice that $\mathcal{T}_{2,*} = \operatorname{var}^*(G_{2,*})$, that is, $G_{2,*}$ is a minimal *-algebra of quadratic growth. Furthermore • Id^{*}(G_{3,*}) = $\langle [y_1, y_2], [y, z], [z_1, z_2 z_3], z_1 z_2 z_3 + z_3 z_2 z_1, z_1 z_2 z_3 z_4 \rangle_{T^*};$

• $\mathcal{U} = \operatorname{var}^*(G_{3,*}) \implies \mathcal{T}_{3,*} \subsetneq \mathcal{U};$

• $G_{3,*}$ has cubic growth and it is not minimal.

Minimal φ -varieties with at most quadratic growth

$$\chi(\Gamma_k^{\varphi}) = \sum_{(\lambda,\mu) \vdash k} \overline{m}_{\lambda,\mu} \chi_{\lambda,\mu}.$$

For each pair of partitions $(\lambda, \mu) \vdash k$, let

• $f_{\lambda,\mu}^1, f_{\lambda,\mu}^2, \dots, f_{\lambda,\mu}^{\overline{m}_{\lambda,\mu}}$ be Y-proper linearly independent highest weight vectors associated to (λ, μ) ; • $V^{\lambda,\mu} = \operatorname{span}_F \{ f^1_{\lambda,\mu}, f^2_{\lambda,\mu}, \cdots, f^{\overline{m}_{\lambda,\mu}}_{\lambda,\mu} \}.$

Proposition 2. Let V be a φ -variety generated by a unitary algebra and consider

$$\pi_k^{\varphi}(\mathcal{V}) = \sum_{(\lambda,\mu) \vdash k} \widetilde{m}_{\lambda,\mu} \chi_{\lambda,\mu}$$

the decomposition of its k-th proper φ -cocharacter. Then $\widetilde{m}_{\lambda,\mu} = 1$, for some pair of partitions $(\lambda,\mu) \vdash k$ if and only if dim $(V^{\lambda,\mu} \cap Id^{\varphi}(\mathcal{V})) = \overline{m}_{\lambda,\mu} - 1.$

For a fixed part of partitions $(\lambda, \mu) \vdash k$ such that $\overline{m}_{\lambda,\mu} \neq 0$ in the decomposition of $\chi(\Gamma_k^{\varphi})$, we define

$$Q^{\lambda,\mu} = \{ f_{\sigma,\tau} : (\sigma,\tau) \vdash k, (\sigma,\tau) \neq (\lambda,\mu) \},\$$

and consider

- $W^{\lambda,\mu}$ a subspace de $V^{\lambda,\mu}$ with dim $W^{\lambda,\mu} = \overline{m}_{\lambda,\mu} 1;$
- $B^{\lambda,\mu}$ a basis of $W^{\lambda,\mu}$;
- $h \in V^{\lambda,\mu}$ such that $h \notin W^{\lambda,\mu}$.

We define the following T^{φ} -ideals:

$$I_{k} = \begin{cases} \left\langle \Gamma_{k+1}^{\varphi}, Q^{\lambda,\mu}, B^{\lambda,\mu}, [y_{1}, y_{2}] \cdots [y_{k+1}, y_{k+2}] \right\rangle_{T^{\varphi}}, \text{ if } k \text{ is even and } \varphi \text{ is an automorphism} \\ \left\langle \Gamma_{k+1}^{\varphi}, Q^{\lambda,\mu}, B^{\lambda,\mu} \right\rangle_{T^{\varphi}}, \text{ otherwise} \end{cases}$$

$$I_{k-j} = \left\langle I_{k-j+1}, f_{\delta,\xi} : (\delta,\xi) \vdash (k-j) \text{ such that } h \not\in \left\langle f_{\delta,\xi}, I_{k-j+1} \right\rangle_{T^{\varphi}} \right\rangle_{T^{\varphi}},$$

In order to start our classification, it is important to know the decomposition of the character of the space Γ_n^{φ} of multilinear Y-proper polynomials of degree n, for n = 2, 3.

Theorem 3. $i \chi(\Gamma_2^{\varphi}) = \chi_{(1),(1)} + \chi_{(1^2),\emptyset} + \chi_{\emptyset,(1^2)} + \chi_{\emptyset,(2)};$

 $ii)\chi(\Gamma_3^{\varphi}) = \chi_{(2,1),\emptyset} + \chi_{(2),(1)} + 2\chi_{(1^2),(1)} + 2\chi_{(1),(1^2)} + 2\chi_{(1),(2)} + \chi_{\emptyset,(1^3)} + 2\chi_{\emptyset,(2,1)} + \chi_{\emptyset,(3)}.$

Consider the multilinear Y-proper polynomials of degree 2: $g_1 = [y, z], g_2 = [y_1, y_2], g_3 = [z_1, z_2], g_4 =$ $z_1 \circ z_2$ and the multilinear Y-proper polynomials of degree 3: $f_1 = [y_1, y_2, y_3] + [y_3, y_2, y_1], f_2 = [y_1, z, y_2] + [y_2, y_3] + [y_3, y_2, y_3] + [y_3, y_3, y$ $[y_2, z, y_1], f_3 = z[y_1, y_2]$ and $f'_3 = [y_1, y_2, z], f_4 = z_1[y, z_2]$ and $f'_4 = [z_1, z_2, y], f_5 = z_1[y, z_2] + z_2[y, z_1]$ and $f'_5 = [y, z_1, z_2] + [y, z_2, z_1], f_6 = St_3(z_1, z_2, z_3), f_7 = z_1[z_3, z_2] + z_3[z_1, z_2] \text{ and } f'_7 = [z_1, z_2, z_3] + [z_3, z_2, z_1],$ $f_8 = \sum_{\sigma \in S_3} z_{\sigma(1)} z_{\sigma(2)} z_{\sigma(3)}.$

Theorem 4. Let A be a unitary *-algebra such that $c_n^*(A) \leq kn^2$, for some nonzero constant k. Then A generates a minimal *-variety if and only if either $A \sim_{T^*} C_{2,*}$ or $A \sim_{T^*} P_{3,\rho}$ or $A \sim_{T^*} Q_{3,\rho}$ or $A \sim_{T^*} G_{2,*}$ or $A \sim_{T^*} C_{3,*}.$

Theorem 5. Let A be a unitary superalgebra such that $c_n^{gr}(A) \le kn^2$, for some nonzero constant k. Then A generates a minimal supervariety if and only if either $A \sim_{T_2} C_2^{gr}$ or $A \sim_{T_2} N_3^{gr}$ or $A \sim_{T_2} G_2$ or $A \sim_{T_2} G_2^{gr}$ or $A \sim_{T_2} C_3^{gr}$.

Minimal φ -varieties of cubic growth

Let L_* be a unitary *-algebra generating the *-variety $\mathcal{T}_{3,*}$.

for $1 \le j \le k - 2$. We have

 $I_k \subseteq I_{k-1} \subseteq \cdots \subseteq I_2$

Notice that the T^{φ} -ideal I_2 depends on the choice of the subspace $W^{\lambda,\mu}$ and on the Y-proper highest weight vector h.

We introduce the notation $I_2 = I_h^{\lambda,\mu}$, and we have proved the following result.

Theorem 11. Let \mathcal{V} be a φ -variety of growth $n^k, k \geq 4$, generated by a unitary algebra. Then \mathcal{V} is minimal if and only if $Id^{\varphi}(\mathcal{V}) = I_h^{\lambda,\mu}$, for some pair of partitions $(\lambda,\mu) \vdash k$.

References

- [1] A. Giambruno, D. La Mattina and M. Zaicev. Classifying the Minimal Varieties of Polynomial Growth. Canad. J. Math. Vol 6 (2014) 625-640.
- [2] T. Gouveia, R. B. dos Santos and A. Vieira. *Minimal *-varieties and minimal supervarieties of polynomial* growth. Preprint.
- [3] D. La Mattina Varieties of superalgebras of almost polynomial growth. J. Algebra 336 (2011), 209-226.
- [4] D. La Mattina and F. Martino. *Polynomial growth and star-varieties*. J. Pure Appl. Algebra, **220** (2016) 246-262.