Group-invariant solutions for the Ricci curvature equation and the Einstein equation

João Paulo dos Santos1, Romildo Pina2

1 Universidade de Brasília
2 Universidade Federal de Goiás

In this talk, it will be considered the following problems:

(P1) Given a symmetric (0,2)-tensor R, defined on a manifold M^n, $n \geq 3$, does there exist a Riemannian metric g, such that $\text{Ric}_g = R$?

(P2) Given a symmetric (0,2)-tensor T, defined on a manifold M^n, $n \geq 3$, does there exist a Riemannian metric g, such that $\text{Ric}_g - \frac{1}{2}Kg = T$?

Where, in both problems, Ric_g is the Ricci tensor and K is the scalar curvature of g, respectively.

Finding solutions to the problems (P1) and (P2) corresponds to solving systems of nonlinear second-order differential equations. We use the technique of Lie point symmetries to provide conformally flat metrics that solves (P1) and (P2).

References