Convergence analysis of a multiscale hybrid-mixed method

Henrique Versieux¹, Frederic Valentin², Diogo Paredes³

 1 Universidade Federal de Minas Gerais

 2 Laboratorio Nacional de Computaça o científica

 3 Pontificia Univeridad Católica de Valparaíso

In this work we study the convergence of the Multiscale Hybrid-Mixed finite element method for second order elliptic problems with rough periodic coefficients.

We analyze the convergence of the method with respect to the mesh size h and the number of degrees of freedom on each edge (associated with an subpartition of the each edge with size \hat{h}). In particular, we establish that the discretization error for both the primal variable in the broken H^1 seminorm and for the dual variable in the $H(\text{div}; \cdot)$ norm is $O(\hat{h} + (\frac{\epsilon}{h})^{\delta})$, where $0 < \delta \leq 1/2$ (depending on regularity). Such result rely on sharpened asymptotic expansion error estimates for the elliptic models with prescribed Dirichlet, Neumann or mixed boundary conditions.

References

- [1] C HARDER; D PAREDES; F. VALENTIN, A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients, J. Comput. Phys.
- [2] D PAREDES; F VALENTIN; H VERSIEUX, On the robustness of multiscale hybrid-mixed methods, Math. Comp.