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Abstract

We study the long time behavior of energy solutions for a class of wave
equation with time-dependent potential and speed of propagation. We
introduce a classification of the potential term, which clarifies whether
the solution behaves like the solution to the wave equation or Klein-
Gordon equation. Moreover, the derived linear estimates are applied
to obtain global (in time) small data energy solutions for the Cauchy
problem to semilinear Klein-Gordon models with power nonlinearity.

Introducao

Let us consider the Cauchy problem for the wave equation with time-
dependent potential and speed of propagation
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The Klein-Gordon type energy for the solution to (1) 1s given by
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One can observe many different effects for the behavior of E, ,,,(t) as
t — oo according to the properties of the speed of propagation a(t)
and the coefficient m(t) in the potential term.

We first discuss properties of the energy in the case m(t) = 0 in
(1). If 0 < a9 < a(t) < aq for any ¢ > 0 with a suitable control
of the oscillations it is possible to prove that E, o(t) has the so-called
generalized energy conservation property. Bui/Reissig proved energy
estimates considering a(t) > ao > 0 an increasing function also
satisfying suitable control on the oscillations.

In the case a(t) = 1, Eq,,(t) is a conserved quantity for the clas-
sical Klein-Gordon equation, whereas it 1s known that the behavior
of the potential energy ||u(t,-)||z2 changes accordingly to the cases
lim tm(t) = oo or lim tm(t) = 0. To explain this effect, let us
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consider the energy
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Bohme/Reissg studied decreasing coefficients m = m(t) which sa-
tisfy among other things lim; ,.tm(t) = oo. In this case the
potentials are called effective, 1.e., the decay of solutions and its de-
rivatives 1s related to the decay of solutions of the classical Klein-
Gordon equation measured in the L? norm. Under some additio-
nal condition on m, was proved that E,(u)(t) < CE,(u)(0),
with p(t)? = m(t). Bohme/Reissig derived the energy estimate
E,(u)(t) < CE,(u)(0), for scale invariant models m(t) =
£ > 0, but now the constant g has an influence on the function

14¢°
p(1).

In [2, 3] the authors explained qualitative properties of solutions to
(1) in the case @ = 1 and lim;_,tm(t) = 0. Under a suita-

ble control on the oscillations of m, if (1 + t)m(t)? € L'(R™T),
it was proved a scattering result to free wave equation, whereas the
potentials are called non-effective if (1 + t)m(t)? ¢ L'(R™) and
limsup,;_,.(1+t) [, m(s)3ds < i. In the case of non-effective
potentials, the decay of the solutions and its derivatives 1s related to
the decay of solutions to the free wave equation measured in the L9
norm.
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Objetivos

We introduced a classification for the potentials in (1) 1n terms of the
time-dependent speed of propagation a(t) € L*. In the case of effec-
tive and non-effective potentials we derive sharp energy estimates. As
an application to our derived linear estimates, we proved global exis-
tence (1n time) of small data energy solutions, 1n the case of effective
potentials, for semilinear models with power nonlinearity associated

to (1).

Resultados

Let a € C?[0, c0) be a strictly positive function, such that a ¢ L.
We define

a(t)
A(t)’

A(t) = 1+ / a(r)dr, n(t) = m(t) = p(t)n(t) > 0.

Theorem 1.1f a(t) and p(t) satisfy suitables oscillations conditions,
then

1. The potential term m(t)*u generates scattering to the correspon-
ding wave model if p*n € L*([0, c0)).

2. The potential term m(t)*u represents a non-effective potential if
p?n & L' and

lim sup A(t) { [oo mlslals) gg 4 @B 1 o [“'<S)]2ds}

b oo A(s)? 2a(t)? a(s)3

< 5

3. The potential term m(t)?u generates an effective potential if
limg_, o pu(t) = oo.

Theorem 2. Suppose that potential term m(t)?u generates an ef-

fective potential. If g € L'0,00) and 1 < p < —2— such
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that / a(s _%m(s)_% (m(s)> ds < oo,k = 0,1,
0 a(s)

then there exists a constant € > 0 such that for all (ug,uy) €
HY(R™) N L*(R") with ||(ug, u1)||ginrz: < € there exists a
uniquely determined energy solution u € C([0,00), H'(R™)) N
C'([0,00), L*(R™)) to the semilinear model with power nonlinea-

rity associated to (1) .
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