

Representations of Z \ Z

Tulio Gentil

Universidade de Brasília - Brazil tuliomarcio940@hotmail.com

Abstract

A group G is said to be self-similar if admits a faithful representation on an regular one-rooted m-tree \mathcal{T}_m such that the representation is state-closed and is transitive on the tree's first level. In 2016, Dan*tas, A. and Sidki, S.* [1] *showed that* $\mathbb{Z} \wr \mathbb{Z}$ *cannot be* self-similar. Although $\mathbb{Z} \wr \mathbb{Z}$ can not be self-similar, recently we show that the group $\mathbb{Z} \wr \mathbb{Z}$ is state-closed of degree 3 and finity by state.

G.

The group G is said to be transitive if

 $P(G) = \{ \sigma(\alpha) \in S_m : \alpha \in G \}$

is a transitive subgroup of S_m .

A group G is self-similar provided for some finite positive integer m, the group has a faithful representation on an infinite regular 1-rooted m-tree \mathcal{T}_m such that the representation is state-closed and is transitive on the tree's first level. If a group G does not admit such a representation for any m then we say G is not self-similar.

we have that

$G = \langle H, \alpha \rangle$

satisfies $G/N \simeq H \wr \mathbb{Z}$ where N is a subgroup of G isomorphic with many copies of H'. In particular, if H is abelian, then $G \simeq H \wr \mathbb{Z}$. Choice $H = \langle \alpha \rangle$, then $\gamma = ((\gamma, \alpha), e)$ and

$G = \langle \gamma = ((\gamma, \alpha), e), \alpha = (e, (\alpha, e))\sigma \rangle \simeq \mathbb{Z} \wr \mathbb{Z}.$

G can be embedded in a tree of degree 4 such that *G* becomes estate-closed

1. Trees and their automorphisms

Let m be a positive integer and consider the alphabet $Y = \{0, 1, ..., m - 1\}$ and $\mathcal{M} = \mathcal{M}(Y)$ the set of all finite sequences from Y. The length of an element $u \in \mathcal{M}$ is denoted by |u|.

Definition 1 The 1-rooted regular m-ary tree \mathcal{T}_m is the graph $(V(\mathcal{T}_m), E(\mathcal{T}_m))$ with $V(\mathcal{T}_m) = \mathcal{M}$ and $(u,v) \in E(\mathcal{T}_m)$ if and only if v = uy for some $y \in Y$, where $u, v \in \mathcal{M}$.

Figure 1: *1-rooted binary tree*

Theorem 1 Let G be a group, H a subgroup of Gsuch that |G:H| = m, $f \in Hom(H,G)$ and T = $\{t_0, t_1, \dots, t_{m-1}\}$ a transversal of H in G. For $g \in G$ let $\sigma(q)$ be the permutation defined by $i^{\sigma(g)} = j$ if and only if $Ht_ig = Ht_i$. Then $\varphi : G \longrightarrow \mathcal{A}_m$ defined by

$g^{\varphi} = (t_i g t_{i^{\sigma(g)}}^{-1})_{i \in T} \sigma(g)$

is a representation of G. Furthermore, $ker(\varphi) =$ f - core(H).

2. Non existence of self-similar representation of $\mathbb{Z} \wr \mathbb{Z}$

Theorem 2 Let $G = B \wr X$ be a self-similar wreath product of abelian groups. If X is torsion free then *B* is a torsion group of finite exponent.

In particular, $\mathbb{Z} \wr \mathbb{Z}$ can not be self-similar. **Steps of Proof**

- Let $f : H \longrightarrow G$ be a simple virtual endomorphism with |G:H| = m.
- Either $B^m = 1$ or $A_0^f \leq A$. In both cases $A \neq A_0$,

$G = \langle \gamma = (\gamma, \alpha, e, e), \alpha = (e, e, \alpha, e)(02)(13) \rangle.$

The embedded can be made on the tree of degree 3, in fact

$$G = \langle \gamma = (\gamma, \alpha, e), \alpha = (e, e, \alpha)(02) \rangle \simeq \mathbb{Z} \wr \mathbb{Z}.$$

For the last isomorphism put $\mathbb{Z} \wr \mathbb{Z} = \langle y \rangle \wr \langle x \rangle$, $H_0 = \langle y \rangle^{\langle x \rangle} \langle x^2 \rangle$ and $H_1 = \mathbb{Z} \wr \mathbb{Z}$. Consider the homomorphisms that extend the maps

and

 $f_1: H_1 \longrightarrow \mathbb{Z} \wr \mathbb{Z}$ $y \longmapsto x$ $x \mapsto e$

and so use the representation φ to get ker $(\varphi) = \{1\}$.

Work together with Dr. Alex Dantas and Dr. Said Sidki.

An automorphism α of a 1-rooted regular tree \mathcal{T}_m is a bijection morphism of graphs $\alpha : \mathcal{T}_m \longrightarrow \mathcal{T}_m$, which preserves the length of vertices. We denote the group of automorphisms of \mathcal{T}_m by \mathcal{A}_m .

Example 1 Given a permutation σ of Y we can extend it (rigidly) to an automorphism $\bar{\sigma}$ of the tree \mathcal{T}_m in the following form:

 $(\emptyset)\bar{\sigma}=\emptyset,$

 $(yu)\bar{\sigma} = y^{\sigma}u.$

An automorphism $\alpha \in \mathcal{A}_m$ induces a permutation $\sigma(\alpha)$ on the set Y. For this we consider the restriction $\alpha|_Y$.

Proposition 1 The group A_m satisfies

 $\mathcal{A}_m = \mathcal{A}_m^m \rtimes S_m = \mathcal{A}_m \times \ldots \times \mathcal{A}_m \rtimes S_m.$

Thus, we can identify each element $\alpha \in \mathcal{A}_m$ by

 $\alpha = (\alpha_0, ..., \alpha_{m-1})\sigma(\alpha),$

where $A = B^G$ and $A_0 = A \cap H$.

- If $\exp B$ is infinity, then A^m is a non-trivial normal subgroup of G which is f-invariant.
- Therefore G can not be self-similar.

3. State-closed Representation of $\mathbb{Z} \wr \mathbb{Z}$

Let G be an abstract group and let $H_0, H_1, ..., H_s$ be subgroups of G such that $[G: H_0] = m_0$, $[G: H_1] = m_0$ $m_1, \ldots, [G: H_s] = m_s$ and $m_0 + \ldots + m_s = m$. Consider $f_0: H_0 \to G, \ldots, f_s: H_s \to G$ virtual endomorphisms. Choice $T_i = \{t_{i1}, ..., t_{im_i}\}$ a transvesal of H_i in G. So we can consider the set

 $\{t_{01}, \dots, t_{0m_0}, t_{11}, \dots, t_{1m_1}, \dots, t_{s1}, \dots, t_{sm_s}\}$

and $\sigma_i(g)$ as the permutation each $g \in G$ induces on T_i . In this conditions, we define $\varphi : G \to \mathcal{A}_m$ by $g^{\varphi} =$

 $\left([t_{i1}gt_{(i1)\sigma_i(g)}^{-1}]^{f_i\varphi}, ..., [t_{im_i}gt_{(im_i)\sigma_i(g)}^{-1}]^{f_i\varphi} \right)_{0 \le i \le s} \sigma_0(g) ... \sigma_s(g).$

Theorem 3 The function φ is a well defined homomorphism and G^{φ} is state-closed. Moreover

References

- [1] A. C. Dantas and S. N. Sidki, On selfsimilarity of wreath products of abelian groups. arXiv:1610.08994, to appear in Groups, Geometry and Dynamics.
- [2] A. M. Brunner and S. N. Sidki, Abelian stateclosed subgroups of automorphisms of *m*-ary trees. Groups, Geometry, and Dynamics, 4 (2010) 455 - 471.
- [3] A. C. Dantas, Representações fechadas por estado de grupos metabelianos tipo entrelaçado, Tese de Doutorado em Matemática - Universidade de Brasília, (2016).
- [4] D. J. S. Robinson, A course in the Theory of Groups. Graduate Texts in Mathematics, 80. Springer-Verlag, (1993).
- [5] S. N. Sidki, *Regular trees and their automor*phisms, Monografias de Matemática, vol 56, Instituto de Matemática Pura e Aplicada, 15, (1998).

where $\alpha_{y} \in \mathcal{A}_{m}$.

Definition 2 Given $\alpha = (\alpha_0, ..., \alpha_{m-1})\sigma(\alpha) \in \mathcal{A}_m$, the set

 $Q(\alpha) = \{\alpha, \alpha_0, \dots, \alpha_{m-1}\} \cup Q(\alpha_0) \cup \dots \cup Q(\alpha_{m-1})$

is called of set of states of α .

A subgroup G of \mathcal{A}_m is called state-closed if for all $\alpha = (\alpha_0, ..., \alpha_{m-1}) \sigma(\alpha) \in G$ implies that $\alpha_y \in G$ for each y = 0, ..., m - 1.

If G is an abstract group and there is a homomorphism $\varphi: G \longrightarrow \mathcal{A}_m$ then φ is a representation of $\ker(\varphi) = \langle K \leqslant \bigcap H_i : K \lhd G, K^{f_i} \leqslant K, \forall i \rangle.$

A subgroup G of \mathcal{A}_m is state-closed if and only if $\ker(\varphi) = \{1\}.$

Theorem 4 The group $\mathbb{Z} \setminus \mathbb{Z}$ is state-closed of degree *3* and finity by state. Moreover, $\mathbb{Z} \wr \mathbb{Z}$ is isomorphic to

 $\langle \gamma = (\gamma, \alpha, e), \alpha = (e, e, \alpha)(02) \rangle.$

Brunner and Sidki [6], proved that if $\alpha = (e, (\alpha, e))\sigma$, $\sigma = (01)$ and H is a subgroup of \mathcal{A}_2 , then taking

 $\tilde{H} = \{\gamma = ((\gamma, h), e) : h \in H\}$

[6] A. M. Brunner and S. N. Sidki, Wreath operations in the group of automorphisms of the binary tree. Jounal of Algebra, **257** (2002), 51-64.

[7] R. Grigorchuck and A. Zuk, *The Lamplighter* group as a group generated by 2-state automaton and its spectrum, Geometriae Dedicata, 87, (2001) 209 - 244.

[8] A. Woryna, *The concept of self-similar automata* over a changing alphabet and lamplighter groups generated by such automata. Theoretical Computer Science, **482**, (2013), 96-110.