On groups with cubic polynomial conditions
 R.N. Oliveira \& A. Grishkov \& S. Sidki.

UFG \& USP \& UnB

ricardo@ufg.br

Abstract

Let $\boldsymbol{F}_{\boldsymbol{d}}$ be the free group of rank \boldsymbol{d}, freely generated by $\left\{\boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{d}\right\}$, and let $\mathbb{D} \boldsymbol{F}_{d}$ be the group ring over an integral domain \mathbb{D}. Given a subset \boldsymbol{E}_{d} of \boldsymbol{F}_{d} containing the generating set, assign to each \boldsymbol{s} in \boldsymbol{E}_{d} a monic polynomial $p_{s}(x)=x^{n}+c_{s, n-1} x^{n-1}+\ldots+c_{s, 1} x+c_{s, 0} \in$ $\mathbb{D}[x]$ and define the quotient ring $$
\boldsymbol{A}_{(d, n, E d)}=\frac{\mathbb{D} \boldsymbol{F}_{d}}{\left\langle p_{s}(s) \mid s \in \boldsymbol{E}_{d}\right\rangle_{\text {ideal }}}
$$

When $\boldsymbol{p}_{s}(s)$ is cubic for all s, we construct a finite set \boldsymbol{E}_{d} such that $\boldsymbol{A}_{\left(d, n, E_{d}\right)}$ has finite rank over an extension of \mathbb{D} by inverses of some of the coefficients of the polynomials. When the polynomials are all equal to $(x-1)^{3}$ and $\mathbb{D}=\mathbb{Z}\left[\frac{1}{6}\right]$, we construct a finite subset \boldsymbol{P}_{d} of $\boldsymbol{F}_{\boldsymbol{d}}$ such that the quotient ring $\boldsymbol{A}_{(d, 3, P d)}$ has finite $\mathbb{D}-r a n k$ and its augmentation ideal is nilpotent. The set \boldsymbol{P}_{2} is $\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{1} \boldsymbol{y}_{2}, \boldsymbol{y}_{1}^{-1} \boldsymbol{y}_{2}, \boldsymbol{y}_{1}^{2} \boldsymbol{y}_{2}, \boldsymbol{y}_{1} \boldsymbol{y}_{2}^{2},\left[\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right]\right\}$ and we prove that $(x-1)^{3}=0$ is satisfied by all elements in the image of F_{2} in $\boldsymbol{A}_{\left(2,3, P_{d}\right)}$.

Introduction

The impact of finite order conditions on a group has guided major developments in group theory, so have similar finiteness questions in the theory of algebras [4]. The purpose of this work is to examine finitely generated groups defined by a finite number of algebraic relations of small degree; to wit, polynomials in one variable in degrees 2 and 3. The degree 4 case presents challenging difficulties.

Results

Our first result is a finiteness rank criterion.
Theorem 1. Let G be a group generated by $\left\{a_{1}, \ldots, a_{d}\right\}$. Define the following subsets of G

$$
E_{1}=\left\{a_{1}\right\}, M_{1}=\left\{e, a_{1}^{ \pm 1}\right\}
$$

and inductively for $1 \leq s \leq d-1$,

$$
\begin{aligned}
E_{s+1}= & E_{s} \cup M_{s} a_{s+1}^{ \pm 1} \\
M_{s+1}= & M_{s} \cup M_{s} a_{s+1}^{ \pm 1} M_{s} \\
& \cup M_{s} a_{s+1}^{-1}\left(M_{s} \backslash\{e\}\right) a_{s+1} M_{s}
\end{aligned}
$$

Suppose G is a multiplicative subgroup of a ring \boldsymbol{R} such that each $\boldsymbol{x} \in \boldsymbol{E}_{d}$ satisfies some cubic polynomial in one variable over the center \boldsymbol{Z} of \boldsymbol{R}. Then the subring of \boldsymbol{R} generated by \boldsymbol{G} is the \boldsymbol{Z}-linear span of M_{d}.
Let F_{d} be the free group of rank $d \geq 2$, freely generated by $\left\{y_{1}, \ldots, y_{d}\right\}, \mathbb{L}$ be an integral domain and $\mathbb{L} \boldsymbol{F}_{\boldsymbol{d}}$ be the group ring of \boldsymbol{F}_{d} over \mathbb{L}. The augmentation ideal of $\mathbb{L} \boldsymbol{F}_{d}$ is \mathbb{L} - generated by $u(g)=g-1$ for all $g \in F_{d}$.
For the sake of completeness, we treat first groups satisfying unipotent quadratic conditions.
Theorem 2. Define the quotient ring $A_{d}(2)=\frac{\mathbb{Z} F_{d}}{\left\langle(x-1)^{2} \mid x \in S_{d}\right\rangle}$ where

$$
S_{d}=\left\{y_{i}(1 \leq i \leq d), y_{i} y_{j}(1 \leq i<j \leq d)\right\}
$$

and B_{d} is the augmentation ideal of $\boldsymbol{A}_{d}(2)$. Then: (i) rank $\boldsymbol{A}_{d}(2)=$ 2^{d},(ii) \boldsymbol{B}_{d} is commutative, nilpotent of degree $d+1$, with torsion subgroup $\operatorname{Tor}\left(B_{d}\right)=B_{d}^{d}=\mathbb{Z} .\left(a_{1} \ldots a_{d}-1\right)$ and $2 . B_{d}^{d}=0 ;(i i i) G_{d}$ is a free d-generated nilpotent group of class 2.
We pass on to the more general problem of describing finitely generated groups G which satisfy a finite number of cubic unipotent conditions. As expected, the situation here becomes more complex. If we
require further that G be a subgroup of a finite dimensional algebra (without characteristic restrictions) and that the unipotent cubic condition holds for all $\boldsymbol{g} \in G$ then by Kolchin's theorem [2] G is nilpotent. Theorem 3. Let $\mathbb{D}=\mathbb{Z}\left[\frac{1}{6}\right]$. There exists a finite subset \boldsymbol{P}_{d} of \boldsymbol{F}_{d} such that the quotient ring $\boldsymbol{A}_{d}(3)=\frac{\mathbb{D} \boldsymbol{F}_{d}}{\left\langle(x-1)^{3} \mid x \in P_{d}\right\rangle}$ has finite \mathbb{D}-rank and the augmentation ideal $\omega\left(\boldsymbol{A}_{d}(3)\right)$ is nilpotent.
Remark 1. We do not know if in our first theorem the condition $(g-1)^{3}=0$ for all $g \in E_{d}$ yields that the group G is nilpotent.
The case $d=2$ of the above theorem is a consequence of a careful study of the following quotient rings
$\boldsymbol{A}_{Q}=\frac{\mathbb{Z} \boldsymbol{F}_{2}}{\left\langle(x-1)^{3} \mid x \in Q\right\rangle}, Q=\left\{y_{1}, y_{2}, y_{1} y_{2}\right\} ;$
$\boldsymbol{A}_{S}=\frac{\mathbb{D} \boldsymbol{F}_{2}}{\left\langle(x-1)^{3} \mid x \in S\right\rangle}, S=\left\{y_{1}, y_{2}, y_{1} y_{2}, y_{1}^{-1} y_{2}\right\}$
$\boldsymbol{A}_{T}=\frac{\mathbb{D} \boldsymbol{F}_{2}}{\left\langle(x-1)^{3} \mid x \in T\right\rangle}, T=\left\{y_{1}, y_{2}, y_{1} y_{2}, y_{1}^{-1} y_{2}, y_{1}^{2} y_{2}, y_{1} y_{2}^{2}\right\} ;$
$\boldsymbol{A}_{N}=\frac{\mathbb{D} \boldsymbol{F}_{2}}{\left\langle(x-1)^{3} \mid x \in N\right\rangle}, N=\left\{y_{1}, y_{2}, y_{1} y_{2}, y_{1}^{-1} y_{2}, y_{1}^{2} y_{2}, y_{1} y_{2}^{2}\right.$
$\left.\left[\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right]\right\}$.
Theorem 4. (i) \boldsymbol{A}_{Q} is freely generated as a \mathbb{Z}-module by 1 and monomials in U, V which avoid having subwords from $\left\{(U V)^{2},(V U)^{2}, U^{2} V^{2} U^{2}, V^{2} U^{2} V^{2}\right\} ;$
(ii) \boldsymbol{A}_{S} has \mathbb{D}-rank 23 and $\omega\left(\boldsymbol{A}_{S}\right)$ is nilpotent of degree 7 .
(iii) \boldsymbol{A}_{T} has \mathbb{D}-rank $19, \omega\left(\boldsymbol{A}_{T}\right)^{6}=\mathbb{D} . V U^{2} V^{2} U$ and $\omega\left(\boldsymbol{A}_{T}\right)^{7}=$ 0.

The analysis of the above sequence of rings $\boldsymbol{A}_{Q}, \boldsymbol{A}_{S}, \boldsymbol{A}_{T}, \boldsymbol{A}_{N}$ culminates in a description of \boldsymbol{A}_{N}. This analysis was done using some routines written in the GAP language, [3], for more details see ricardo.ime.ufg.br.
Theorem 5. Let $\mathbb{D}=\mathbb{Z}\left[\frac{1}{6}\right]$. Consider the quotient ring $\boldsymbol{A}_{N}=$ $\frac{\mathbb{D} \boldsymbol{F}_{2}}{\left\langle(x-1)^{3} \mid x \in N\right\rangle}$ where

$$
\boldsymbol{N}=\left\{y_{1}, y_{2}, y_{1} y_{2}, y_{1}^{-1} y_{2}, y_{1}^{2} y_{2}, y_{1} y_{2}^{2},\left[y_{1}, y_{2}\right]\right\}
$$

$\omega\left(\boldsymbol{A}_{N}\right)$ its augmentation ideal and let G be the image of \boldsymbol{F}_{2} in \boldsymbol{A}_{N}. Then
(i) $\operatorname{rank} A_{N}=18$,
(ii) $\boldsymbol{\omega}\left(\boldsymbol{A}_{N}\right)$ is nilpotent of degree $\mathbf{6}$,
(iii) G is a free 2-generated nilpotent group of degree 5 ,
(iv) $(x-1)^{3}=0$ is satisfied by all elements of G.

References

[1] Grishkov, A.; Nunes, R.; Sidki, S. On groups with cubic polynomial conditions. J. Algebra 437 (2015), 344364.
[2] Herstein, I. N., On Kolchin's Theorem, Revista Matematica Ibero Americana, 2 (1986), 263-265.
[3] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.10.2; 2019, (https://www.gap-system.org).
[4]Zelmanov, E., Some open problems in the theory of infinite dimensional algebras, J. Korean Math. Soc. 44 (2007), 1185-1195.

Thanks

The author acknowledges support from Procad-CAPES for postdoctoral studies.

