

Regularity Theory for the Isaacs equation through approximation methods

Miguel B. Walker Ureña

Graduate Program in Mathematics Pontifical Catholic University of Rio de Janeiro mwalkeru@mat.puc-rio.br

where $A_{\beta}: B_1 \times \mathcal{B} \to \mathbb{R}^{d^2}$ is also a (λ, Λ) -elliptic matrix, and

Suppose that $\overline{A}_{\beta} : B_1 \times \mathcal{B} \to \mathbb{R}^{d^2}$ satisfies that, for every

The Isaacs equation is an important example of fully nonlinear elliptic equation, appearing in a variety of disciplines. Of particular interest is the fact that such equations are driven by nonconvex operators. Therefore, it falls off the scope of the Evans-Krylov theory and poses additional, delicate, challenges when it comes to its regularity theory. We describe a series of recent results on the regularity theory of the Isaacs equation. These cover estimates in Hölder and Sobolev spaces. We argue through a genuinely geometrical method, by importing information from a related Bellman equation.

Key-words: Isaacs equations; Regularity theory; Estimates in Sobolev and Hölder spaces; Approximation methods

Introduction

This work details previous results obtained in [3], and is part of the author's M.Sc. dissertation, produced under the

is under a smallness regime for the quantity $|A_{\alpha,\beta} - \overline{A}_{\beta}|$. If $u \in C(B_1)$ be a viscosity solution to (1), $\delta > 0$ and q > 1, it's possible to take a Bellman equation's solution $h \in W^{2,q}(B_{7/8}) \cap \mathcal{C}(\overline{B}_{8/9})$ in $B_{8/9}$ such that

h = u in $\partial B_{8/9}$ and $\|u - h\|_{L^{\infty}(B_7/9)} < \delta$

The regularity of h is because (2) is convex with respect to the Hessian, which provides us access to the Evans -Krylov theory that provides solutions with local $C^{2,\gamma}$ and $W^{2,q}$ regularity.

Another useful approximation is through polynomials of the form

 $P_n(x) = a_n + \mathbf{b}_n \bullet x + \frac{1}{2} x^T C_n x$

that with suitable conditions, satisfies

 $\sup_{x \in B^{\rho^n}} |u(x) - P_n(x)| < \rho^{2(n+\gamma)}$

and

 $|a_n - a_{n-1}| + \rho^{n-1} ||\mathbf{b}_n - \mathbf{b}_{n-1}|| + \rho^{2(n-1)} ||C_n - C_{n-1}||$

 $x_0 \in B_1$

$$\sup_{x \in B_{r_0}} \left| A_{\alpha,\beta}(x) - \overline{A}_{\beta}(x_0) \right| < \epsilon_2$$

uniformly in α and β , and

$$\sup_{r \in (0,r_0]} \oint_{B_r(x_0)} |f(x) - \langle f \rangle|^p \, dx \le \epsilon_2^p$$

for some $\epsilon_2 > 0$. If $x_0 \in B_{1/2}$, we have $\sup_{x \in B_r(x_0)} |u(x) - u(x_0) - Du(x_0) \cdot x| \le C\left(-r^2 \ln(r)\right)$

Estimates in Hölder Space

Theorem 3. Let $u \in C(B_1)$ be a viscosity solution of

 $\sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \left[-\operatorname{Tr} \left(A_{\alpha,\beta}(x) D^2 u \right) \right] = f \quad , \text{ in } B_1$

where $A_{\alpha,\beta}: B_1 \times \mathcal{A} \times \mathcal{B} \to \mathbb{R}^{d^2}$ is a (λ, Λ) -elliptic matrix. Suppose that $\overline{A}_{\beta} : B_1 \times \mathcal{B} \to \mathbb{R}^{d^2}$ satisfies that, for every $x_0 \in B_1$

direction of Professor Edgard Pimentel.

The Isaacs equation has the form

 $\sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \left[-\operatorname{Tr} \left(A_{\alpha,\beta}(x) D^2 u \right) \right] = f \quad \text{in } B_1 \qquad (1)$

where $A_{\alpha,\beta}$: $B_1 \times \mathcal{A} \times \mathcal{B} \to \mathbb{R}^{d^2}$ is a (λ, Λ) -elliptic matrix, that means $\lambda \operatorname{Id} \leq A(x) \leq \Lambda \operatorname{Id} \quad \forall x \in B_1$.

Definition 1 (Class of viscosity solutions). The Pucci's extremal operators $\mathcal{M}_{\lambda,\Lambda}^{\pm}: \mathcal{S}(d) \to \mathbb{R}$ are defined as follow:

> $\mathcal{M}^+(M) := \Lambda \sum_{e_i > 0} e_i + \lambda \sum_{e_i < 0} e_i$ $\mathcal{M}^{-}(M) := \Lambda \sum_{e_i < 0} e_i + \lambda \sum_{e_i > 0} e_i$

where e_i are the eigenvalues of M.

Let $f \in \mathcal{C}(B_1)$, a function $u \in \mathcal{C}(B_1)$ is the class of supersolutions $\overline{S}(\lambda, \Lambda, f)$ (resp. subsolutions <u>S</u>) if

 $\mathcal{M}^{-}(D^2u) \leq f$ in B_1 (resp. $\mathcal{M}^{+}(D^2u) \geq f$)

in the viscosity sense. So the class of (λ, Λ) -viscosity solutions is the set

 $S(\lambda, \Lambda, f) = \overline{S}(\lambda, \Lambda, f) \cap \underline{S}(\lambda, \Lambda, f)$

 $\leq C \, \rho^{(n-1)(2+\gamma)}$

where $0 < \rho \ll 1$ and $\gamma \in [0, 1)$

Main Theorems

Estimates in Sobolev Space

Theorem 1. Let $u \in C(B_1)$ be a viscosity solution to

 $\sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \left[-\operatorname{Tr} \left(A_{\alpha,\beta}(x) D^2 u \right) - \mathbf{b}_{\alpha,\beta}(x) \bullet Du \right] = f \quad , \text{ in } B_1$

where $A_{\alpha,\beta}$: $B_1 \times \mathcal{A} \times \mathcal{B} \rightarrow \mathbb{R}^{d^2}$ is a (λ, Λ) -elliptic matrix and $\mathbf{b}_{\alpha,\beta}$: $B_1 \times \mathcal{A} \times \mathcal{B} \rightarrow \mathbb{R}^d$ is a vector field such that $\mathbf{b}_{\alpha,\beta} \in L^p(B_1)$ uniformly.

For every $\delta > 0$ it is possible to choose $\epsilon_1 > 0$ such that if $\overline{A}_{\beta}: B_1 \times \mathcal{B} \to \mathbb{R}^{d^2}$ satisfies

 $\left|A_{\alpha,\beta} - \overline{A}_{\beta}\right| < \epsilon_1$

and $||f||_{L^{p}(\mathcal{O})} < \epsilon_{1}$, then, $u \in W^{2,p}_{loc}(B_{1})$ and

 $\sup_{x \in B_{r_0}} \sup_{\alpha \in \mathcal{A}} \sup_{\beta \in \mathcal{B}} |A_{\alpha,\beta}(x) - \overline{A}_{\beta}(x_0)| < \epsilon_3 r^{\gamma}$

and

 $\int_{B_n} |f(x)|^p \, dx \le \epsilon_3^p r^{\gamma p}$

for some $\epsilon_3 > 0$.

Then, there exists $\gamma \in (0,1)$ such that u is of class $C^{2,\gamma}$ at the origin and if $f \equiv 0$, we have $u \in C^{2,\gamma}_{loc}(B_1)$ and there exists a universal constant C > 0 such that

 $\|u\|_{\mathcal{C}^{2,\gamma}(B_{1/2})} \le \|u\|_{L^{\infty}(B_{1})}$

References

[1] L. Caffarelli. Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (2), 130(1):189-213, 1989.

[2] L. Caffarelli and X. Cabré. Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Col-

Regularity theory by approximation methods

Here, we argue through and techniques in the realm of /regularity transmission by approximation methods. This approach is very much inspired by the idea first introduced in [1]. See also [2].

We can approximate the equation (1) by a Bellman equation of the form

$$\inf_{\beta \in \mathcal{B}} \left[-\operatorname{Tr} \left(A_{\beta}(x) D^2 v \right) \right] = 0 \quad \text{in } B_{8/9}$$
 (2)

 $\|u\|_{W^{2,p}(B_{1/2})} \le C\left(\|u\|_{L^{\infty}(B_{1})}\right)$

 $+ \sup_{\alpha \in \mathcal{A}} \sup_{\beta \in \mathcal{B}} \|\mathbf{b}_{\alpha,\beta}\|_{L^{p}(B_{1})} + \|f\|_{L^{p}(B_{1})} \right)$

where C > 0 is a universal constant (depends only on d, λ) and Λ).

Estimates in $C_{loc}^{Log-Lip}(B_1)$

Theorem 2. Let $u \in C(B_1)$ be a viscosity solution of

 $\sup_{\alpha \in \mathcal{A}} \inf_{\beta \in \mathcal{B}} \left[-\operatorname{Tr} \left(A_{\alpha,\beta}(x) D^2 u \right) \right] = f \quad , \text{ in } B_1$ where $A_{\alpha,\beta} : B_1 \times \mathcal{A} \times \mathcal{B} \to \mathbb{R}^{d^2}$ is a (λ, Λ) -elliptic matrix.

loquium Publications. American Mathematical Society, Providence, RI, 1995.

[3] E. Pimentel. Regularity theory for the isaacs equation through approximation methods. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 36(1):53 – 74, 2019.

Acknowledgements

The author is supported by the Graduate Program in Mathematics at PUC-Rio and CNPq-Brazil.