32° Colóquio Brasileiro de Matemática

impa

IMPA, Rio de Janeiro, July 28 - August 02, 2019

Spectral Theory Approach for a Class of Radial Indefinite Variational Problems

Mayra Soares and Liliane Maia

Pontifícia Universidade Católica - PUC-Rio, Universidade de Brasília - UNB ssc_mayra@hotmail.com,lilimaia@unb.br

1. ABSTRACT

Considering the radial nonlinear Schrödinger equation

$$-\Delta u + V(x)u = g(x, u) \text{ in } \mathbb{R}^N, \ N \ge 3$$
 (P_r)

we aim to find a radial nontrivial solution for it, where V changes sign ensuring problem (P_r) is indefinite and g is an asymptotically linear nonlinearity. We work with variational methods associating problem (P_r) to an indefinite functional in order to apply our Abstract Linking Theorem for Cerami sequences in [2] to get a non-trivial critical point for this functional. Our goal is to make use of spectral properties of operator $A:=\Delta+V(x)$ restricted to $H^1_{rad}(\mathbb{R}^N)$, the space of radially symmetric functions in $H^1(\mathbb{R}^N)$, for obtaining a linking geometry structure to the problem and by means of special properties of radially symmetric functions get the necessary compactness.

2. INTRODUCTION

Since problem (P_r) is radially symmetric, to deal with the Spectral Theory of A it suffices to request informations under an associated operator \bar{A} on the half-line, which is more manageable. Hence we assume that the potential V satisfies:

$$(V_1)_r\,V\in L^\infty(\mathbb{R}^N)$$
 is a radial sign-changing function, $V(x)=V(|x|)=V(r),\ r\geq 0;$ $(V_2)_r$ Setting $\bar V(r)=V(r)+rac{(N-1)(N-3)}{4r^2}$ and $\bar A:=-rac{d^2}{dr^2}+\bar V(r)$, an operator of $L^2(0,\infty),\ 0\notin\sigma_{ess}(\bar A)$ and

$$\sup \left[\sigma(\bar{A}) \cap (-\infty, 0) \right] = \sigma^{-} < 0 < \sigma^{+} = \inf \left[\sigma(\bar{A}) \cap (0, +\infty) \right].$$

Moreover, we take the nonlinearity g under the hypotheses below:

 $(g_1) \ g(x,s) \in C(\mathbb{R}^N imes \mathbb{R},\mathbb{R})$ is a radial function such that $\lim_{|s| o 0} \frac{g(x,s)}{s} = 0$, uniformly in x and

for all
$$t \in \mathbb{R}$$
, $G(x,t) = \int_0^t g(x,s) ds \ge 0$;

$$(g_2)$$
 $\lim_{|s| o +\infty} rac{g(x,s)}{s} = h(x),$ uniformly in x , where $h \in L^\infty(\mathbb{R}^N);$

$$(g_3) \ a_0 = \inf_{x \in \mathbb{R}^N} h(x) > \sigma^+ = \inf \left[\sigma(A) \cap (0, +\infty) \right];$$

 (g_4) zero is not an eigenvalue of $\mathcal{O}:=A-\mathcal{H}$, where \mathcal{H} is the operator multiplication by h(x).

$$(g_5)$$
 For $Q(x,s):=rac{1}{2}g(x,s)s-G(x,s)\geq 0$ for all $(x,s)\in \mathbb{R}^N imes \mathbb{R}$ and $\sigma_0:=$

 $\min\{\sigma^+, -\sigma^-\}$, there exists $\delta_0 > 0$ such that $\frac{g(x,s)}{s} \ge \sigma_0 - \delta_0 \implies Q(x,s) \ge \delta_0$.

In order to get a nontrivial critical point for the indefinite functional associated to (P_r) , we apply our following abstract result proved in [2].

Theorem 2.1. Linking Theorem for Cerami Sequences: Let E be a real Hilbert space, with inner product (\cdot, \cdot) , E_1 a closed subspace of E and $E_2 = E_1^{\perp}$. Let $I \in C^1(E, \mathbb{R})$ satisfying:

$$(I_1)\ I(u)=rac{1}{2}(Lu,u)+B(u),$$
 for all $u\in E$, where $u=u_1+u_2\in E_1\oplus E_2$, $Lu=L_1u_1+L_2u_2$ and $L_i:E_i o E_i,\ i=1,2$ is a bounded linear self adjoint mapping.

 $(I_2)\ B$ is weakly continuous and uniformly differentiable on bounded subsets of E .

 (I_3) There exist Hilbert manifolds $S,Q\subset E$, such that Q is bounded and has boundary ∂Q , constants $\alpha>\omega$ and $v\in E_2$ such that

 $(i)\ S\subset v+E_1$ and $I\geq lpha$ on S; $(ii)\ I\leq \omega$ on ∂Q ; $(iii)\ S$ and ∂Q link.

 (I_4) If for a sequence (u_n) , $I(u_n)$ is bounded and $(1+||u_n||)||I'(u_n)|| \to 0$, as $n \to +\infty$, then (u_n) is bounded.

Then I possesses a critical value $c \geq \alpha$.

3. Variational Setting, Linking Structure and Boundedness

Considering $A:=-\Delta+V(x)$ as an operator of $L^2(\mathbb{R}^N)$, since $V\in L^\infty(\mathbb{R}^N)$, A as well as \bar{A} are self-adjoint operators. Due to Hardy's Inequality, operator \bar{A} is treated in $H^1_0(0,\infty)$, which can be written as $H^1_0(0,\infty)=H^-\oplus H^0\oplus H^+$, with H^- , H^0 , H^+ the subspaces of $H^1_0(0,\infty)$ where \bar{A} is respectively negative, null and positive definite. In view of $(V_2)_r$ each $u\in H^+$ satisfies $\sigma^+||u||^2_{L^2(0,\infty)}\leq (\bar{A}u,u)_{L^2(0,\infty)}.$ Moreover, given $u\in H^1_0(0,\infty)$ and setting $w:=r^{\frac{1-N}{2}}u$, in view of [4] it yields $w\in H^1_{rad}(\mathbb{R}^N)$. In addition, $||w||^2_{L^2(\mathbb{R}^N)}=\omega_N\int_0^\infty |u(x)|^2dr=\omega_N||u||^2_{L^2(0,\infty)},$ and $(Aw,w)_{L^2(\mathbb{R}^N)}=\omega_N(\bar{A}u,u)_{L^2(0,\infty)},$ where ω_N is the (N-1)-dimensional surface measure of the sphere $S^{N-1}\subset\mathbb{R}^N.$ Hence, writing $H^1_{rad}(\mathbb{R}^N)=E=E^-\oplus E^0\oplus E^+,$ with E^- , E^0 , E^+ the subspaces where A is respectively negative, null and positive definite, if $w\in E^+$ it satisfies $\sigma^+||w||^2_{L^2(\mathbb{R}^N)}\leq (Aw,w)_{L^2(\mathbb{R}^N)}.$ Following the same idea, it yields

$$\sigma^{+} = \inf_{w \in E^{+}} \frac{(Aw, w)_{L^{2}(\mathbb{R}^{N})}}{||w||_{L^{2}(\mathbb{R}^{N})}^{2}} \quad \text{and} \quad -\sigma^{-} = \inf_{w \in E^{-}} \frac{-(Aw, w)_{L^{2}(\mathbb{R}^{N})}}{||w||_{L^{2}(\mathbb{R}^{N})}^{2}}, \tag{3.1}$$

which allows us to define an equivalent norm in ${\cal E}$ given by the expression

$$||u||^2 = ||u||_E^2 := ||u^0||_{L^2(\mathbb{R}^N)}^2 + \frac{1}{2}(Au^+, u)_{L^2(\mathbb{R}^N)} - \frac{1}{2}(Au^-, u)_{L^2(\mathbb{R}^N)}.$$

From hypothesis $(V_2)_r$ either $0 \notin \sigma(\bar{A})$ or it is an isolated eigenvalue of \bar{A} . Since by assumption $0 \notin \sigma_{ess}(\bar{A})$, if $0 \in \sigma(\bar{A})$ it is an eigenvalue of finite multiplicity, hence $\ker(\bar{A})$ is finite dimensional. The same conclusions hold for A, since there exists a correspondence between the eigenfunctions of \bar{A} and the radial eigenfunctions of A. Furthermore, $u_1,u_2 \in H^1_0(0,\infty)$ are orthogonal in $L^2(0,\infty)$ iff $w_1 = r^{\frac{1-N}{2}}u_1$ and $w_2 = r^{\frac{1-N}{2}}u_2$ are orthogonal in $L^2(\mathbb{R}^N)$. Therefore, H^i is infinite dimensional iff E^i is infinite dimensional, for i=-,0,+.

The functional $I:H^1(\mathbb{R}^N) o \mathbb{R}$ associated to problem (P_r) is given by

$$I(u) = \left(||u^+||^2 - ||u^-||^2\right) - \int_{\mathbb{R}^N} G(x, u) \, dx,\tag{3.2}$$

which is $C^1(E,\mathbb{R})$ and whose critical points are weak solutions for (P_r) by the Principle of Symmetric Criticality.

Under all the previous assumptions and notations, it is possible to state our main result.

Theorem 3.1. Suppose $(V_1)_r - (V_2)_r$ and $(g_1) - (g_5)$ hold. Then problem (P_r) possess a radial, nontrivial, weak solution in $H^1(\mathbb{R}^N)$.

In order to prove Theorem 3.1, it is necessary to show that I satisfies $(I_1)-(I_4)$ in Theorem 2.1 and then obtain a critical point of I, which is a weak solution for (P).

$$ullet$$
 (I_1) is obtained by writing $\dfrac{1}{2}(Lu,u):=||u^+||^2-||u^-||^2$ and $B(u):=-\int_{\mathbb{R}^N}G(x,u)\ dx$;

• (I_2) is proved indirectly making use of hypotheses $(g_1) - (g_2)$ and the compact embeddings $E \hookrightarrow L^s(\mathbb{R}^N)$ for $2 < s < 2^*$, to get the necessary compactness for B(u);

• (I_3) is for the linking geometry, we choose $Q:=\{re+u_2:r\geq 0,u_2\in E_2,||re+u_2||\leq r_1\}$ and $S=\partial B_\rho\cap E_1$, where $0<\rho< r_1$ are constants and $e\in E_1,||e||=1$, must be a suitable vector. In fact, since a_0 in (g_3) is such that $a_0>\sigma^+$, then for $\varepsilon>0$ small enough, in view of (3.1) there exists some unitary $e\in E^+$ such that

$$\frac{a_0}{2}||e||_{L^2(\mathbb{R}^N)}^2 > \frac{1}{2}(\sigma^+ + \varepsilon)||e||_{L^2(\mathbb{R}^N)}^2 \ge \frac{1}{2}(Ae, e)_{L^2(\mathbb{R}^N)} = ||e||^2 = 1, \tag{3.3}$$

which is chosen for the structure of Q. Since such S and ∂Q "link", the following lemma shows that I satisfies (I_3) (i) - (ii) in Theorem 2.1 for some $\alpha > 0$, $\omega = 0$, and arbitrary $v \in E_2$.

Lemma 3.2. Under the hypotheses $(V_1)_r - (V_2)_r$ and $(g_1) - (g_3)$ on I, for Q and S as above and for sufficiently large $r_1 > 0$, I satisfies $I|_S \ge \alpha > 0$ and $I|_{\partial Q} \le 0$, for some $\alpha > 0$.

This lemma is the core of our work and the choice of e satisfying (3.3) is essential for the indirect argument used to prove it. For more details confers [3];

ullet (I_4) consists of bounding the Cerami sequences of I, which is given by the following lemma also proved indirectly.

Lemma 3.3. Suppose V satisfies $(V_1)_r - (V_2)_r$ and g satisfies $(g_1) - (g_5)$, then I satisfies (I_4) . **Remark 3.4.** It is worth to highlight the special decay of radial functions in $H^1(\mathbb{R}^N)$, which plays a fundamental role in the proofs of Lemmas 3.2 and 3.3, as well as, the fact that $0 \notin \sigma_{ess}(A)$, which ensures that $\ker(A)$ is finite dimensional enabling us to arrive at necessary contradictions. Furthermore, note that hypotheses $(g_4) - (g_5)$ were assumed only for proving Lemma 3.3, then they can be replaced by any assumption which ensures the boundedness of Cerami sequences.

4. A NONTRIVIAL CRITICAL POINT OF ${\cal I}$

Finally, it is possible to prove our main result.

Proof of Theorem 3.1. Provided that I satisfies all assumptions $(I_1)-(I_4)$ in Theorem 2.1, it ensures a critical point $u\in E$ of I, with $I(u)=c\geq\alpha>0$, hence u is a non-trivial critical point of $I:E\to\mathbb{R}$. It implies that I'(u)v=0, for all $v\in H^1_{rad}(\mathbb{R}^N)$. Nevertheless, the Principle of Symmetric Criticality implies that I'(u)v=0 for all $v\in H^1(\mathbb{R}^N)$, namely, u is a critical point of I as a functional defined on the whole $H^1(\mathbb{R}^N)$. Since $I\in C^1(H^1(\mathbb{R}^N),\mathbb{R})$, it yields that u is a nontrivial weak solution of (P_r) . In addition, since $u\in E$, it is a radial weak solution.

5. REFERENCES

[1] Azzollini, A. e Pomponio, A.: On the Schrödinger equation in \mathbb{R}^N under the effect of a general nonlinear term. *Indiana University Mathematics Journal* **58** no. 3, 1361-1378, 2009.

[2] Maia, L. A. and Soares, M.: An Abstract Linking Theorem Applied to Indefinite Problems via Spectral Properties. *Advanced Nonlinear Studies https://doi.org/10.1515/ans-2019-2041*, 2019.

[3] Maia, L. A. and Soares, M.: Spectral Theory Approach for a Class of Radial Indefinite Variational Problems. *J. Differential Equations*, **266**, 6905-6923, 2019.

[4] Stuart, C. A, and Zhou, H. S.: Applying the Mountain Pass Theorem to an Asymptotically Linear Elliptic Equation on \mathbb{R}^N . *J. CommPDE* **24**, 1731-1758, 2007.