Uma classe especial de cw-expansividade: cwf-expansividade

Mayara Braz Antunes

Universidade Estadual de Campinas

ra163508@ime.unicamp.br

Neste trabalho iremos introduzir o conceito de homeomorfismos continuumwise fully expansivos ou cwf-expansivos, os quais formam uma classe especial dos homeomorfismos cw-expansivos. No intuito de estudar a dinâmica desses objetos apresentaremos o teorema que garante que a propriedade de mistura (topologicamente mixing) está presente nos mesmos. Além disso, veremos dois exemplos de homeomorfismos cwf-expansivos, dentre eles o tão famoso Solenóide no Toro.

Definições

Estaremos considerando um contínuo como sendo um espaço métrico compacto, conexo e não-degenerado. Se X é um contínuo, o espaço $\{A \subset X \mid A$ é um subcontínuo não-degenerado de $X\}$ com a métrica Hausdorff d_H , isto é,

$$d_H(A,B) := \inf\{\varepsilon > 0 \mid B \subset U_{\varepsilon}(A), A \subset U_{\varepsilon}(B)\},$$

onde $U_{\varepsilon}(A)$ denota a ε -vizinhança de A, é um contínuo conexo por caminhos.

Considere X um espaço métrico compacto com métrica d.

Definição 1. Um homeomorfismo $f:X\to X$ é dito *expansivo* se existe um número c>0 tal que se $x,y\in X$ e $x\neq y$, então existe $N=N(x,y)\in \mathbb{Z}$ tal que

$$d(f^N(x), f^N(y)) > c.$$

Definição 2. Dizemos que um homeomorfismo $f:X\to X$ é cw-expansivo se existe um número c>0 tal que se A é um subcontínuo não-degenerado de X então existe $N=N(A)\in\mathbb{Z}$ tal que

$$\operatorname{diam}(f^N(A)) > c.$$

Definição 3. Dizemos que um homeomorfismo $f: X \to X$ é *cwf-expansivo* se para todo $\varepsilon > 0$ e todo $\delta > 0$ existe um natural $N = N(\varepsilon, \delta) > 0$ tal que se A é um subcontínuo não-degenerado de X com diam $(A) \geq \delta$ então, uma das duas opções abaixo acontece:

 $1.d_H(f^n(A),X) < \varepsilon$ para todo $n \ge N$;

 $2.d_H(f^{-n}(A),X)<arepsilon$ para todo $n\geq N.$

Uma aplicação contínua f é pcwf-expansiva se para todo $\varepsilon > 0$ e todo $\delta > 0$ existe um natural $N = N(\varepsilon, \delta) > 0$ tal que se A é um subcontínuo não-degenerado de X com diam $(A) \geq \delta$ então 1. acima ocorre.

Definição 4. Seja $f:X\to X$ uma aplicação contínua. Definimos o espaço de limite inverso por:

$$(X,f)=\{\widetilde{x}=(x_k)_{k\in\mathbb{N}}\mid x_k\in X,\ f(x_{k+1})=x_k\}.$$

O conjunto (X, f) é um espaço métrico compacto com a métrica

$$d(\widetilde{x},\widetilde{y}) = \sum_{k=0}^{\infty} rac{d(x_k,y_k)}{2^k},$$

onde $\widetilde{x}=(x_k)_{k\in\mathbb{N}},\widetilde{y}=(y_k)_{k\in\mathbb{N}}\in(X,f).$

Definição 5. Definimos uma aplicação $\widetilde{f}:(X,f) o (X,f)$ por

$$f((x_0,x_1,\ldots))=(f(x_0),f(x_1),\ldots)=(f(x_0),x_0,x_1,\ldots),$$

onde $(x_0, x_1, \ldots) \in (X, f)$. A aplicação f é homeomorfismo conhecido por *shift* da f.

Observação: Dizemos que um aplicação f é topologicamente mixing se dados dois abertos U e V não-vazios existe $N=N(U,V)\in\mathbb{N}$ tal que $f^N(U)\cap V\neq\emptyset$.

Exemplos

Exemplo 1. (Solenóide) Considere a aplicação $f: S^1 \to S^1$ dada por $f(z) = 2z \pmod{1}$. Então o espaço de limite inverso (S^1, f) é o solenóide e o shift $\widetilde{f}: (S^1, f) \to (S^1, f)$, $\widetilde{f}((x_k)_{k \in \mathbb{N}}) = (f(x_0), x_0, x_1, \ldots)$ é um homeomorfismo expansivo e também pcwf-expansivo (provaremos mais a frente).

É fácil ver que f definida acima é topologicamente mixing, pois dado qualquer aberto U não-vazio de S^1 , podemos tomar $m \in \mathbb{N}$ tal que $2^mU = S^1$, desta forma $f^m(U) = 2^mU \pmod{1} = S^1$ interseccionará qualquer aberto V não-vazio de S^1 .

O resultado a seguir garante que \tilde{f} é topologicamente mixing se, e somente se, f é topologicamente mixing. Por isto e pelo acabamos de ver acima, temos que o solenóide (X, f) tem a propriedade de ser misturador.

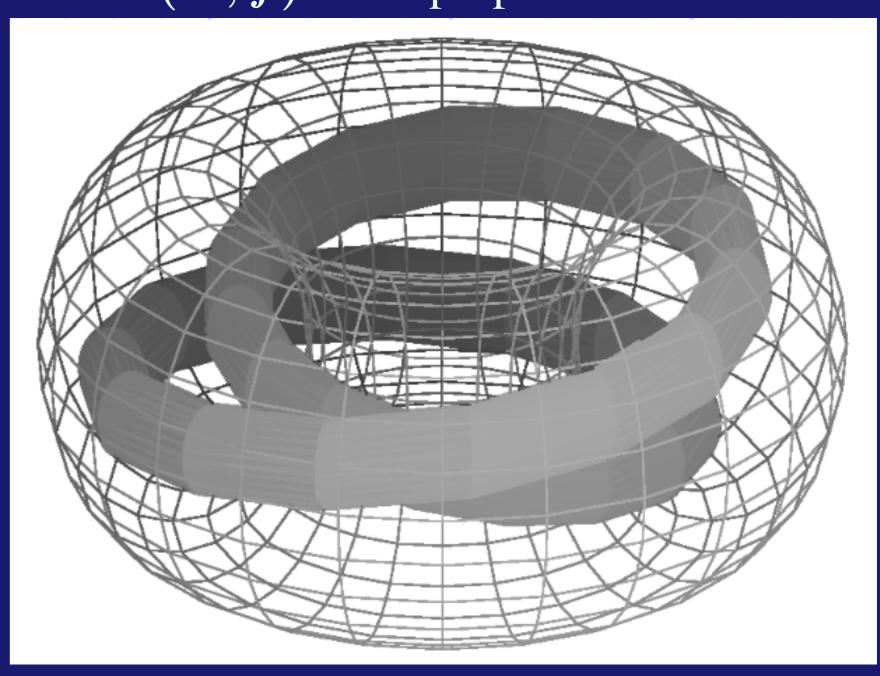


Figura 1: Solenóide - figura retirada de [3].

Exemplo 2. Seja I=[0,1] o intervalo unitário e seja $f_n:I\to I$ $(n\geq 2)$ a aplicação definida por

$$f_n(t)=egin{cases} nt-s,\ s\ par,\ -nt+s+1,\ s\ impar, \end{cases}$$
 para $t\in \left[rac{s}{n},s+rac{1}{n}
ight]$ e $s=0,1,\ldots n-1$. O shift da $f_n,$ $\widetilde{f_n}:(I,f_n) o (I,f_n)$

é um homeomorfismo pcwf-expansivo, mas não é expansivo.

Resultado

Teorema. Seja $f:S^1 \to S^1$ uma aplicação sobrejetora. Então as seguintes afirmações são equivalentes:

- 1. A aplicação shift f de f é um homeomorfismo cwf-expansivo.
- 2. f é um homeomorfismo pcwf-expansivo.
- 3. f é uma aplicação pewf-expansiva.
- 4. f é topologicamente mixing.
- 5. f é topologicamente mixing.

Referências

- [1] HISAO KATO, Continuum-wise expansive homeomorphisms, Topology and its Applications (1993)
- [2] HISAO KATO, Concerning continuum-wise fully expansive homeo-morphisms of continua, Topology and its Applications (1993)
- [3] MICHAEL BRIN GARRET STUCK, Intoduction to dynamical systems, Cambridge University Press (2003)

Agradecimentos

Agradeço ao IMECC por todo suporte acadêmico e pela grande oportunidade de estudar neste instituto que me proporciona um crescimento exponencial de minha vida profissional e do desenvolvimento da minha pesquisa e também agradeço a CAPES pela bolsa de doutorado a mim concedida.