Commutative Moufang loops and cubic hypersur-
 face

Marina Rasskazova \& Alexandre Grichkov \& Henrique Guzzo

Omsk State Technical University, Russian
marinarasskazova@yandex.ru

Overview

Let $V(k)$ be a cubic hypersurface over a field k. In the book [Yu.Manin, Cubic forms, Amsterdam, 1982] the author proved that on $V(k)$ there exists an universal equivalence $\sim \operatorname{such}$ that $M_{V}(k)=$ $V(k) / \sim$ has structure of quasigroup $\circ, x \circ y \in M_{V}(k)$, if $x, y \in$ $M_{V}(k)$ Moreover, with new multiplication $\boldsymbol{x} \cdot \boldsymbol{y}=c \circ(x \circ y)$, the set $M_{V}(\boldsymbol{k})$ is a commutative loop. The connection of this structure of quasigroup on $M_{V}(k)$ with $V(k)$ is the follows: if $x \neq y \in V(k)$ and a line $l(x, y)$ intersects $V(k)$ in the point $z \in V(k)$, then $z \sim$ $\boldsymbol{x} \circ \boldsymbol{y}$. Yu.Manin proved that the commutative loop $L=\left(M_{V}(\boldsymbol{k}), \cdot\right)$ has the following decomposition $L=L_{2} \times L_{3}$, where L_{2} is an elementary abelian 2 - group and L_{3} is a commutative Moufang loop of exponent $3\left(C M L_{3}\right)$. In the same book Yu.Manin asked: (1) there exists cubic hypersurface $V(k)$ for some field k such that $\left(M_{V}(k), \cdot\right)$ is not an abelian group? (2) Let \boldsymbol{F}_{n} be a free $C M L_{3}$ with n generators. What is the order of F_{n} ? Those questions are still open. In this work we give an answer on the second question for all $n<9$.

Introduction

A set L with a binary operation $L \times L \rightarrow L:(x, y) \mapsto x \cdot y$ is called a $C M L_{3}$, if for given $a, b, c \in L$ we have $a^{2} \cdot(b \cdot c)=(a \cdot b) \cdot(a \cdot c)$. and $a^{3}=e, e \cdot a=a$.

Results

It is not difficult to prove that $\left|F_{n}\right|=3^{\delta_{n}}$ and $\delta_{3}=4$. The loop F_{3} has the following structure. $F_{3}=\mathrm{F}_{3}^{4}$ and
$\left(x_{1}, \ldots, x_{4}\right) \cdot\left(y_{1}, \ldots, y_{4}\right)=\left(x_{1}+y_{1}, \ldots, x_{3}+y_{3}, x_{4}+y_{4}+f\right)$,
where $f=f\left(x_{1}, \ldots x_{3}, y_{1}, \ldots, y_{3}\right)=x_{1} x_{3} y_{2}+x_{2} y_{1} y_{3}-x_{1} y_{2} y_{3}-$ $x_{2} x_{3} y_{1}$.
For $n>3$ we have the following results, obtained during 40 years by many authors (R.Bruck, J.Smith, A.Grishkov, I.Shestakov, A.Zavarnitsine and others):

$$
\delta_{3}=4, \delta_{4}=12, \delta_{5}=49, \delta_{6}=220, \delta_{7}=1014
$$

Those results are founded on the following list of known identities of $C M L_{3}:((x, y, z), y, z)=(((x, y, z), z, t), z, v)=1$.
$((((a, x, y), z, b), t, c), b, c)((((a, x, z), y, b), t, c), b, c)$
$((((a, x, t), y, b), z, c), b, c)^{-1}((((a, x, b), y, z), t, c), b, c)$
$((((a, x, c), y, z), t, b), b, c)((((a, x, b), y, c), z, t), b, c)=e$.

The last identity was proved recently in our paper with A.Grishkov and A.Zavarnitsive (not published yet) using computational calculation and new approach. We proved that for F_{n} there exists multiplication formula given by some special polynomials. The Conjecture that this identity is valid in $C M L_{3}$-loops was formulated in the paper [Grishkov, A., Shestakov, I. Commutative Moufang loops and alternative algebras. Journal of Algebra, v. 333, p. 1-13, 2011.]
Theorem 1. Let M_{8} be the commutative Moufang loop of exponent 3 with 8 generators.
Then $\left|M_{8}\right|=3^{4688}$, if in M_{8} we have the following identities

$$
\begin{align*}
& ((((v, x, a), y, b), z, t), a, c), b, c) \\
& ((((v, x, y), z, a), t, b), a, c), b, c)^{-1} \\
& ((((v, x, z), y, a), t, b), a, c), b, c) \tag{3}\\
& ((((v, x, t), y, a), z, b), a, c), b, c) \\
& ((((v, x, a), y, z), t, b), a, c), b, c) \\
& ((((v, x, b), y, z), t, a), a, c), b, c)=e . \\
& ((((v, x, a), y, b), z, c), t, a), b, c)^{-1} \\
& ((((v, x, z), y, a), t, b), a, c), b, c)^{-1} \\
& ((((v, x, t), y, a), z, b), a, c), b, c) \tag{4}\\
& ((((v, x, b), y, z), t, a), a, c), b, c) \\
& ((((v, x, a), y, z), t, b), a, c), b, c) \\
& ((((v, x, c), y, z), t, a), a, b), b, c)=e .
\end{align*}
$$

If the identities (3) and (4) are not hold in M_{8} then $\left|M_{8}\right|=3^{4800}$. If only one of the identities (3) or (4) is not hold in M_{8} then $\left|M_{8}\right|=$ 3^{4744}.
Reduction of a calculation in F_{n} to the calculation in some associative algebra.
Let $F_{n}^{1}=F_{n}, F_{n}^{2}=\left(F_{n}, F_{n}, F_{n}\right), F_{n}^{k+1}=\left(F_{n}^{k}, F_{n}, F_{n}\right)$. We consider $L\left(F_{n}\right)=\sum_{k=1}^{n-1} \oplus F_{n}^{k} / F_{n}^{k+1}$.
Then $L\left(F_{n}\right)$ is an algebra with 3 -linear operation $\left[a_{i}, a_{j}, a_{k}\right]=$ $\left(a_{i}, a_{j}, a_{k}\right)\left(\bmod F_{n}^{i+j+k+1}\right)$, where $a_{s} \in F_{n}^{s}$. Every F_{3}-space F_{n}^{k} / F_{n}^{k+1} has a basis $v_{1}, \ldots, v_{f(k)}$. It is clear that the function $f(k)$ depends on n too. For simplify notations we denote $x_{i 1}$ by i. Using the following identity of $C M L_{3}-$ loops $((x, y, z), a, b)=$ $((x, a, b), y, z)(x,(y, a, b), z)(x, y,(z, a, b))$ we can suppose that v_{i} may be written in the form of a simple associator $v=$ $\left.\left.v_{i}=\left[\ldots\left[i_{0}, i_{1}, i_{2}\right], i_{3}, i_{4}\right], \ldots\right], i_{2 k-3}, i_{2 k-2}\right]$, where i_{0} is the minimal number such that $i_{0} \neq i_{s}$ for all $s>0$. By definition
a) $\operatorname{supp}(v)=\left\{i_{0}, \ldots, i_{2 k-2}\right\}$,
b) $\operatorname{type}(v)=\left(a_{0}, a_{1}, \ldots, a_{t}\right)$, where $a_{r}=\mid\left\{s \mid i_{s}\right.$ appears in $\operatorname{supp}(v)$

It is clear that $\sum_{i=0}^{t} i a_{i}=2 k-1$. It is easy to prove that for any two simple associators $v, w \in L\left(F_{n}\right)$ there exists an automorphism ϕ of \boldsymbol{F}_{n} such that $\boldsymbol{v}^{\phi}=\boldsymbol{w}$ (here we identify ϕ and induced automorphism of $L\left(F_{n}\right)$) if $\operatorname{type}(v)=\operatorname{type}(w)$.
By definition W_{k} is a set of all types of non-zero simple associators from F_{n}^{k} / F_{n}^{k+1} and $W=W(n)=\cup_{i=1}^{2 k-4} W_{i}$. We denote by $\boldsymbol{g}(a)$ for $a \in W_{k}$ the number of basic elements v_{i} such that type $\left(v_{i}\right)=a$. If we know the set $W(\boldsymbol{n})$ and corresponding function $\boldsymbol{g}(\boldsymbol{a})$ it is easy to calculate $\delta_{n}=\log _{3}\left|F_{n}\right|$. We define for $a=\left(a_{0}, \ldots, a_{s}\right)$, $|a|=\sum_{i=0}^{s} a_{s},|a|_{i}=\sum_{j=i+1}^{s} a, C_{a}^{n}=C_{n}^{|a|} C_{|a|}^{a_{0}} C_{|a|_{0}}^{a_{1}} \ldots C_{|a|_{s-1}}^{a_{s}}$. Then $\delta_{n}=\sum_{a \in W(n)} C_{a}^{n} \boldsymbol{g}(\boldsymbol{a})$.
Since $W(n-1) \subset W(n)$, if we describe $W(n)$, we have description of all $W(m), m<n$. Moreover, for $m<n$ we have
$W(m)=\left\{a=\left(a_{0}, \ldots, a_{s}\right) \in W(n) \mid \sum_{i=0}^{s} a_{i} \leq m\right\}$
Main example.
$\mathrm{n}=8 . W(8)=\{(1,0),(3,0),(5,0),(3,1),(3,2),(3,3),(5,1)\} \cup$ $\{(7,0),(5,2),(6,0,1)(3,4)\} \cup\{(7,1),(7,0,0,1),(5,3),(3,5)\}$, $g(1,0)=g(3,0)=g(3,1)=1, g(3,2)=1, g(5,0)=$ $4, g(3,3)=1, g(5,1)=5, g(7,0)=20, g(5,2)=$ $6, g(3,4)=g(6,0,1)=1, g(7,1)=29, g(7,0,0,1)=$ $1,6 \leq g(5,3) \leq 8, g(3,5)=1$,

Acknowledgement

The first author would like to thank FAPESP for the financial support of this work (process n. 2018/11292-6).

