Fractional Cauchy problems with almost sectorial operators

Marduck M. Henao

Universidade federal de Santa Catarina - UFSC, Brasil marduckmontoya@gmail.com

Introduction

The sectorial operators have been studied extensively during the last 50 years, both in the abstract setting and in its applications for partial differential equations.
Recall that a sectorial operator A, defined in a Banach space, is a closed and densely defined operator whose spectrum lies in a sector $S_{\omega}=\{z \in \mathbb{C} \backslash\{0\}:|\arg z| \leq \omega\} \cup\{0\}$ for defined operator whose spectrum lies in a sector $S_{\omega}=\{z \in \mathbb{C}\{0\}:|\arg z| \leq$

$$
\left\|(z-A)^{-1}\right\| \leq M|z|^{-1} \forall z \in \mathbb{C} \backslash S_{\omega} .
$$

Many important elliptical differential operators belong to the class of sectorial operators, specially when they are defined in some Lebesque space. However if we consider thes elliptic operators defined in a more regular space, like the Hölder continuous functions, hen the estimative (1) does not hold; we only manage to obtain a "more weakly" inequality This new behavior allows us to prove the existence of a semigroup that is singular at $t=0$. To clarify the ideas presented above, we intruduce the almost sectorial operators.

Definition 1. Let $-1<\gamma<0,0<\omega<\pi / 2$ and X is a Banach space over \mathbb{C}. By θ_{ω}^{ν} we denote the family of all linear closed operators $A: D(A) \subset X \rightarrow X$ which satisfies:
i) $\sigma(A) \subset S_{\omega}=\{z \in \mathbb{C} \backslash\{0\} ;|\arg z| \leq \omega\} \cup\{0\}$;
ii) there exists $C_{\omega}>0$ such that:

$$
\left\|(z-A)^{-1}\right\| \leq C_{\omega}|z|^{\gamma}, \forall z \in \mathbb{C} \backslash S_{\omega}
$$

A linear operator A will be called an almost sectorial operator on X, if $A \in \Theta_{\omega}^{\nu}(X)$.
Now consider the fractional Cauchy problem:

$$
\left\{\begin{array}{l}
{ }^{c} D_{t}^{\alpha} u(t)+A u(t)=f(t, u(t)), t>0 \tag{2}\\
u(0)=u_{0} \in X
\end{array}\right.
$$

where X is a Banach space over $\mathbb{C}, \alpha \in(0,1), A: \mathcal{D}(A) \subset X \rightarrow X$ is a almost sectorial operator, $f:[0, \infty) \times X \rightarrow X$ is a continuous function and $c D_{t}^{\alpha}$ is the Caputo fractional derivative where

$$
{ }_{c} D_{t}^{\alpha} u(t):=\frac{d}{d t}\left\{\frac{1}{\Gamma(1-\alpha)} \int_{0}^{t}(t-s)^{-\alpha} u^{\prime}(s) d s\right\}
$$

and u is a suitable function

Some properties

Let $\alpha, \beta>0, z \in \mathbb{C}$ and $E_{\alpha, \beta}: \mathbb{C} \rightarrow \mathbb{C}$ the generalized Mittag-Leffler special function defined by

$$
E_{\alpha, \beta}:=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\alpha n+\beta)} .
$$

Now consider also the Wright-type function, with $0<\alpha<1$ and $z \in \mathbb{C}$, given by

$$
\psi_{\alpha}(z):=\sum_{n=0}^{\infty} \frac{(-z)^{n}}{n!\Gamma(-\alpha n+1-\alpha)}
$$

Thus we have the following properties:

$$
\begin{aligned}
& \text { i) } \int_{0}^{\infty} \psi_{\alpha}(t) e^{-z t} d t=E_{\alpha}(-z), z \in \mathbb{C} \text {; } \\
& \text { ii) } \int_{0}^{\infty} \alpha t \psi_{\alpha}(t) e^{-z t} d t=e_{\alpha}(-z), z \in \mathbb{C} .
\end{aligned}
$$

For more details see [1]
Theorem 2. Assume that $\alpha \in(0,1)$ and $A \in \Theta_{\omega}^{\nu}(X)$. Then the operators $\left\{S_{\alpha}(t): t>0\right\}$ and $\left\{P_{\alpha}(t): t>0\right\}$, given by

$$
\begin{aligned}
& S_{\alpha}(t):=\frac{1}{2 \pi i} \int_{\Gamma} E_{\alpha}\left(-z t^{\alpha}\right)(z-A)^{-1} d z, \\
& P_{\alpha}(t):=\frac{1}{2 \pi i} \int_{\Gamma} e_{\alpha}\left(-z t^{\alpha}\right)(z-A)^{-1} d z,
\end{aligned}
$$

where the contour Γ starts and ends at $-\infty$, encircles the disc $|\lambda| \leq|z|^{\frac{1}{\alpha}}$ and is oriented counter-clockwise, are bounded linear operators.

Proof of Theorem 4

Proof. We will begin by defining for $r>0$ the complete metric space:
$F_{r}\left(T, u_{0}\right)=\left\{u \in C((0, T] ; X) ; \rho_{T}\left(u, S_{\alpha}(t) u_{0}\right) \leq r\right\}$,
where

$$
\rho_{T}\left(u_{1}, u_{2}\right)=\sup _{t \in(0, T]}\left\|u_{1}(t)-u_{2}(t)\right\|
$$

Let us prove the hypotheses of Banach fixed-point theorem for function Γ^{α}, which is given by

$$
\left(\Gamma^{\alpha} u\right)(t)=S_{\alpha}(t) u_{0}+\int_{0}^{t}(t-s)^{\alpha-1} P_{\alpha}(t-s) f(s, u(s)) d s, u \in F_{r}\left(T_{0}, u_{0}\right)
$$

Since f is continuous and $S_{\alpha}(t)$ is uniformly continuous for $t>0$, then

$$
\left(\Gamma^{\alpha} u\right)(t) \in C((0, T] ; X) \quad \text { and } \quad\left\|\left(\Gamma^{\alpha} u\right)(t)-S_{\alpha}(t) u_{0}\right\| \leq r .
$$

Then, for any $u, v \in F_{r}\left(T_{0}, u_{o}\right)$, with $0<T_{0} \leq T$, we have

$$
\left\|\left(\Gamma^{\alpha} u\right)(t)-\left(\Gamma^{\alpha} v\right)(t)\right\| \leq \frac{1}{2} \rho_{T_{0}}(u, v)
$$

Therefore Γ^{α} is a contraction on $F_{r}\left(T_{0}, u_{0}\right)$. Then, by Banach fixed-point theorem, we have that Γ^{α} has a unique fixed point $u \in F_{r}\left(T_{0}, u_{0}\right)$, which is a mild solution to problem (2) on $\left(0, T_{0}\right)$.

More Regular Solutions

Before we discuss more regular solutions, we introduce the fractional powers of an almost sectorial operator.
Definition 5. Let $A \in \Theta_{\omega}^{\nu}$ and $\beta>1+\gamma$. Then we define

$$
A^{-\beta}=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} s^{\beta-1} T(s) d s
$$

where $\{T(t): t \geq 0\}$ is the semigroup generated by $-A$.
A fundamental result that allows us to better understand these operators is given bellow.
Proposition 6. Let $A \in \Theta_{\omega}^{\gamma}$ and $\beta>1+\gamma$. Then the operator $A^{-\beta} \in \mathcal{L}(X)$ and it is injective. Moreover, if $\beta, \delta>1+\gamma$ then

$$
A^{-\beta} A^{-\delta}=A^{-(\beta+\delta)} .
$$

Definition 7. Supported by Proposition 6 we can define the fractional power of A, for any $\beta>1+\gamma$, as

$$
A^{\beta}: \mathcal{D}\left(A^{\beta}\right) \subset X \rightarrow X,
$$

where $\mathcal{D}\left(A^{\beta}\right):=\mathcal{R}\left(A^{-\beta}\right)$ and $A^{\beta}:=\left(A^{-\beta}\right)^{-1}$
Finally a very important theorem that improves, under certain conditions, the regularity of the mild solution obtained in Theorem 4.
Theorem 8. Let $A \in \Theta_{\omega}^{\nu}(X)$ with $-1<\gamma<-1 / 2,0<\omega<\pi / 2$ and $u_{0} \in X^{1}$. Assume the existence of a continuos function $M_{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and a constant $N_{f}>0$ such that $f:(0, T) \times X^{1} \rightarrow X^{1}$ satisties:

$$
\|f(t, x)-f(t, y)\|_{X^{1}} \leq M_{f}(r)\|x-y\|_{X^{1}}
$$

and

$$
\left\|f\left(t, S_{\alpha}(t) u_{0}\right)\right\|_{X^{1}} \leq N_{f}\left(1+t^{-\alpha(1+\gamma)}\left\|u_{0}\right\|_{X^{1}}\right),
$$

for all $0<t \leq T$ and for each $x, y \in X^{1}$ satisfying

$$
\sup _{t \in(0, T]}\left\|x(t)-S_{\alpha}(t) u_{0}\right\|_{x^{1}} \leq r,
$$

and

$$
\sup _{t \in(0, T]}\left\|y(t)-S_{\alpha}(t) u_{0}\right\|_{X^{1}} \leq r
$$

Then there is $T_{0}>0$ such that the problem (2) has a unique mild solution defined on $\left(0, T_{0}\right)$.

Acknowledgement

I would like to thanks Prof. Dr. Paulo M. Carvalho Neto. Also, I want to thanks the department of Pure and Applied Mathematics of the Federal University of Santa Catarina (UFSC) and CNPq

Bibliography

[1] P. M. Carvalho Neto, Fractional differential equations: A novel study of local and global solutions in Banach spaces, Ph.D. Thesis, Universidade de São Paulo, São Carlos, 2013.
[2] H. Markus. The Funtional Calculus for Sectorial Operators, Oper. Theory Adv. Appl., Birkhauser-Verlag, Basel, v.69, 2006.
[3] F. Periago, B. Straub, A Functional Calculus for Almost Sectorial Operators and Applications to Abstrac Evolution Equation, J. Evol. Equ., v. 2, p.41-68, 2002.
[4] R-N. Wang, D-H Chen e T-J. Xiao. Abstract Fractional Cauchy Problem with Almost Sectorial Operators, J. Differential Equations, v.252, p.202-235, 2012.

