Fractional Cauchy problems with almost sectorial operators

Marduck M. Henao Universidade federal de Santa Catarina – UFSC, Brasil marduckmontoya@gmail.com

Introduction

The sectorial operators have been studied extensively during the last 50 years, both in the abstract setting and in its applications for partial differential equations. Recall that a sectorial operator A, defined in a Banach space, is a closed and densely defined operator whose spectrum lies in a sector $S_{\omega} = \{z \in \mathbb{C} \setminus \{0\} : |\arg z| \le \omega\} \cup \{0\}$ for some $0 \le \omega < \pi/2$, and whose the resolvent operator satisfies the estimate

$$\|(z-A)^{-1}\| \le M|z|^{-1} \ \forall z \in \mathbb{C} \backslash S_{\omega}.$$
(1)

Many important elliptical differential operators belong to the class of sectorial operators, especially when they are defined in some Lebesgue space. However, if we consider these

Proof of Theorem 4

Proof. We will begin by defining for r > 0 the complete metric space:

 $F_r(T, u_0) = \{ u \in C((0, T]; X); \rho_T(u, S_\alpha(t)u_0) \le r \},\$

where

 $\rho_T(u_1, u_2) = \sup_{t \in (0, T]} \|u_1(t) - u_2(t)\|.$

Let us prove the hypotheses of Banach fixed-point theorem for function Γ^{α} , which is given by

elliptic operators defined in a more regular space, like the Hölder continuous functions, then the estimative (1) does not hold; we only manage to obtain a "more weakly" inequality. This new behavior allows us to prove the existence of a semigroup that is singular at t = 0. To clarify the ideas presented above, we intruduce the almost sectorial operators.

Definition 1. Let $-1 < \gamma < 0$, $0 < \omega < \pi/2$ and X is a Banach space over \mathbb{C} . By θ_{ω}^{γ} we denote the family of all linear closed operators $A : D(A) \subset X \rightarrow X$ which satisfies: *i*) $\sigma(A) \subset S_{\omega} = \{z \in \mathbb{C} \setminus \{0\}; | \arg z | \le \omega\} \cup \{0\};$

ii) there exists $C_{\omega} > 0$ *such that:*

$$||(z-A)^{-1}|| \leq C_{\omega}|z|^{\gamma}, \ \forall z \in \mathbb{C} \setminus S_{\omega}$$

A linear operator A will be called an almost sectorial operator on X, if $A \in \Theta_{\omega}^{\gamma}(X)$.

Now consider the fractional Cauchy problem:

$$\begin{cases} {}_{c}D_{t}^{\alpha}u(t) + Au(t) = f(t, u(t)), \ t > 0, \\ u(0) = u_{0} \in X, \end{cases}$$
(2)

where X is a Banach space over \mathbb{C} , $\alpha \in (0, 1)$, $A : \mathcal{D}(A) \subset X \to X$ is a almost sectorial operator, $f:[0,\infty) \times X \to X$ is a continuous function and cD_t^{α} is the Caputo fractional derivative where

 ${}_{c}D_{t}^{\alpha}u(t) := \frac{d}{dt} \left\{ \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} (t-s)^{-\alpha} u'(s) ds \right\}$

and *u* is a suitable function.

Some properties

 $(\Gamma^{\alpha} u)(t) = S_{\alpha}(t)u_0 + \int_0^t (t-s)^{\alpha-1} P_{\alpha}(t-s)f(s,u(s))ds, \ u \in F_r(T_0,u_0).$

Since f is continuous and $S_{\alpha}(t)$ is uniformly continuous for t > 0, then

 $(\Gamma^{\alpha} u)(t) \in C((0, T]; X)$ and $\|(\Gamma^{\alpha} u)(t) - S_{\alpha}(t)u_0\| \le r$.

Then, for any $u, v \in F_r(T_0, u_o)$, with $0 < T_0 \leq T$, we have

 $\|(\Gamma^{\alpha} u)(t) - (\Gamma^{\alpha} v)(t)\| \leq \frac{1}{2}\rho_{T_0}(u, v).$

Therefore Γ^{α} is a contraction on $F_r(T_0, u_0)$. Then, by Banach fixed-point theorem, we have that Γ^{α} has a unique fixed point $u \in F_r(T_0, u_0)$, which is a mild solution to problem (2) on $(0, T_0].$

More Regular Solutions

Before we discuss more regular solutions, we introduce the fractional powers of an almost sectorial operator.

Definition 5. Let $A \in \Theta_{\omega}^{\gamma}$ and $\beta > 1 + \gamma$. Then we define

$$-\beta = \frac{1}{\Gamma(\beta)} \int_0^\infty s^{\beta-1} T(s) \, ds$$

where $\{T(t) : t \ge 0\}$ is the semigroup generated by -A.

A fundamental result that allows us to better understand these operators is given bellow.

Proposition 6. Let $A \in \Theta_{\omega}^{\gamma}$ and $\beta > 1 + \gamma$. Then the operator $A^{-\beta} \in \mathcal{L}(X)$ and it is

Let $\alpha, \beta > 0, z \in \mathbb{C}$ and $E_{\alpha,\beta} : \mathbb{C} \to \mathbb{C}$ the generalized Mittag-Leffler special function defined by

$$E_{\alpha,\beta} := \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)}.$$

Now consider also the Wright-type function, with $0 < \alpha < 1$ and $z \in \mathbb{C}$, given by

$$\psi_{\alpha}(z) := \sum_{n=0}^{\infty} \frac{(-z)^n}{n! \Gamma(-\alpha n + 1 - \alpha)}.$$

Thus we have the following properties:

i)
$$\int_0^\infty \psi_{\alpha}(t) e^{-zt} dt = E_{\alpha}(-z), z \in \mathbb{C};$$

ii) $\int_0^\infty \alpha t \psi_{\alpha}(t) e^{-zt} dt = e_{\alpha}(-z), z \in \mathbb{C}.$

For more details see [1].

Theorem 2. Assume that $\alpha \in (0, 1)$ and $A \in \Theta_{\omega}^{\gamma}(X)$. Then the operators $\{S_{\alpha}(t) : t > 0\}$ and $\{P_{\alpha}(t): t > 0\}$, given by

$$S_{\alpha}(t) := \frac{1}{2\pi i} \int_{\Gamma} E_{\alpha}(-zt^{\alpha})(z-A)^{-1} dz,$$
$$P_{\alpha}(t) := \frac{1}{2\pi i} \int_{\Gamma} e_{\alpha}(-zt^{\alpha})(z-A)^{-1} dz,$$

where the contour Γ starts and ends at $-\infty$, encircles the disc $|\lambda| \leq |z|^{\frac{1}{\alpha}}$ and is oriented counter-clockwise, are bounded linear operators.

injective. Moreover, if β , $\delta > 1 + \gamma$ then

 $A^{-\beta}A^{-\delta} = A^{-(\beta+\delta)}.$

Definition 7. Supported by Proposition 6 we can define the fractional power of A, for any $\beta > 1 + \gamma$, as $A^{\beta}: \mathcal{D}(A^{\beta}) \subset X \to X,$

where $\mathcal{D}(A^{\beta}) := \mathcal{R}(A^{-\beta})$ and $A^{\beta} := (A^{-\beta})^{-1}$.

Finally a very important theorem that improves, under certain conditions, the regularity of the mild solution obtained in Theorem 4.

Theorem 8. Let $A \in \Theta_{\omega}^{\gamma}(X)$ with $-1 < \gamma < -1/2$, $0 < \omega < \pi/2$ and $u_0 \in X^1$. Assume the existence of a continuos function $M_f : \mathbb{R}^+ \to \mathbb{R}^+$ and a constant $N_f > 0$ such that $f: (0, T] \times X^1 \to X^1$ satisfies:

 $||f(t, x) - f(t, y)||_{\chi^1} \le M_f(r) ||x - y||_{\chi^1}$

and

```
\|f(t, S_{\alpha}(t)u_0)\|_{\chi^1} \leq N_f(1 + t^{-\alpha(1+\gamma)}\|u_0\|_{\chi^1}),
```

for all $0 < t \le T$ and for each x, $y \in X^1$ satisfying

sup $||x(t) - S_{\alpha}(t)u_0||_{X^1} \le r$, $t \in (0,T]$

and

sup $||y(t) - S_{\alpha}(t)u_0||_{X^1} \le r$. *t*∈(0, *I* |

Then there is $T_0 > 0$ such that the problem (2) has a unique mild solution defined on $(0, T_0].$

Existence and Uniqueness

The appropriate definition for the concept of solution to problem (2) is:

Definition 3. Let $u \in C((0, T]; X)$, with T > 0, be a continuous function. We say that u is a mild solution of (2) if

$$u(t) = S_{\alpha}(t)u_0 + \int_0^t (t-s)^{\alpha-1} P_{\alpha}(t-s)f(s,u(s))ds, \ t \in (0,T].$$

The existence and uniqueness of solution to this problem was already studied (see [1,2,3,4]), and can be enunciated as follows:

Theorem 4. Let $A \in \Theta_{\omega}^{\gamma}(X)$ with $-1 < \gamma < -1/2$ and $0 < \omega < \pi/2$. Suppose that the nonlinear function $f : (0, T] \times X \rightarrow X$ is continuous with respect to t end assume the existence of constants M, N > 0 satisfying

 $||f(t,x) - f(t,y)|| \le M(1 + ||x||^{\nu-1} + ||y||^{\nu-1})||x - y||,$

with

 $||f(t, x)|| \le N(1 + ||x||^{\nu}),$ for all $t \in (0, T]$, for each x, $y \in X$ and $v \in \left[1, \frac{\gamma}{1+\gamma}\right]$. Then, for every $u_0 \in X$, there exists a $T_0 > 0$ such that the problem (2) has a unique mild solution defined on (0, T_0].

Acknowledgement

would like to thanks Prof. Dr. Paulo M. Carvalho Neto. Also, I want to thanks the department of Pure and Applied Mathematics of the Federal University of Santa Catarina (UFSC) and CNPq.

Bibliography

- [1] P. M. Carvalho Neto, Fractional differential equations: A novel study of local and global solutions in Banach spaces, Ph.D. Thesis, Universidade de São Paulo, São Carlos, 2013.
- [2] H. Markus. The Funtional Calculus for Sectorial Operators, Oper. Theory Adv. Appl., Birkhauser-Verlag, Basel, v.69, 2006.
- [3] F. Periago, B. Straub, A Functional Calculus for Almost Sectorial Operators and Applications to Abstrac Evolution Equation, J. Evol. Equ., v. 2, p.41-68, 2002.
- [4] R-N. Wang, D-H Chen e T-J. Xiao. Abstract Fractional Cauchy Problem with Almost Sectorial Operators, J. Differential Equations, v.252, p.202-235, 2012.