Manifolds of constant sectional curvature can be characterized by certain properties of their spherical curves.

Characterization of manifolds of constant curvature by spherical curves

Luiz C. B. da Silva¹ [luiz.da-silva@weizmann.ac.il] and José D. da Silva²

¹Dep. of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel

²Departamento de Matemática, Univ. Federal Rural de Pernambuco, Recife, Brazil

Introduction

- Space forms are characterized in terms of geodesic spheres: e.g., all their spheres are umbilical.
- In \mathbb{E}^n , $\mathbb{H}^n(r)$, and $\mathbb{S}^n(r)$ the behavior of spherical curves is well understood.
- We show how to characterize space forms by studying the behavior of spherical curves.

We provide a *new proof* for the link "const. curvature \Leftrightarrow umbilicity of spheres" [Kulkarni 1975], but using rotation minimizing (RM) frames: <u>Definition.</u> A normal vector field V is RM along α if and only if $\exists \lambda : \nabla_{\alpha'} V = \lambda \alpha'$.

Space forms and umbilical spheres

<u>Theorem 1</u>. M^{m+1} is a space form \Leftrightarrow every sphere G(p,R) in M^{m+1} , R small enough, is totally umbilical.

- Comes from the fact that the normal ξ is RM along any α in G(p,R) when the shape operator $S(X) \equiv -\nabla_X \xi$ satisfies for all $X \in \mathfrak{X}(G(p,R))$, $S(X) = \lambda X$, i.e., when $S(x) = H \operatorname{Id}$.
- Given X_q, Y_q , we then exploit the 2-surface defined by $f(u,s) = \exp_p(uV(s))$ s.t. $q = f|_{(R,0)}$ and $\frac{\partial f}{\partial s}|_{(R,0)} = X_q, \frac{\partial f}{\partial u}|_{(R,0)} = Y_q$. Umbilicity means $\nabla_X Y = -\lambda X$.

Space forms and spherical curves

From the umbilicity of spheres, we have the following characterizations:

$$\sum_{i=1} a_i \kappa_i(s) \ = \ H(s), \, \xi(s) \ = \ \sum_{i=1} a_i \, \mathbf{n}_i(s),$$

where H is the mean curvature, a_i are constants, and $\{\alpha', \mathbf{n}_1, \dots, \mathbf{n}_m\}$ is an RM frame along α .

<u>Theorem 3.</u> M^{m+1} is a space form if and only if every curve $\alpha(s)$ in G(p,R), R small, satisfies

$$\kappa^2(s) \ge H^2(\alpha(s)),$$

where H is the mean curvature and κ is the curvature function of $\alpha(s)$ in M^{m+1} . Also, equality holds for geodesics only.

<u>Theorem 4.</u> M^3 is a space form if and only if every closed curve α in G(p,R), R small, has a vanishing total torsion $\oint_{\Omega} \tau$.

<u>Remarks.</u> (A) In a generic manifold, Thrs. 2, 3, and 4 may be adapted to characterize totally umbilical hypersurfaces.

(B) Theorems 1, 2, and 3 are also valid for semi-Riemannian manifolds.

Financial support

Luiz da Silva thanks the Israel Science Foundation and the Minerva Foundation.

Reference

LCB da Silva & JD da Silva, arXiv 1809.05943 (To appear in Annali di Matematica.)

