Structure and classification of Lie algebras constructed from $\mathfrak{g l}_{m \mid n}$ using the derived bracket

Luan F. Oliveira
Supervisor : Elizaveta Vishnyakova ${ }^{2}$
Federal University of Minas Gerais - UFMG

Mathematics Undergraduate Program ${ }^{1}$, Institute of Exact Sciences ${ }^{2}$
luanmat@ufmg.br ${ }^{1}$, vishnyakovae@googlemail.com ${ }^{2}$

Abstract

Our poster is devoted to a classification of Lie algebras obtained from the Lie superalgebra $\mathfrak{g}=\mathfrak{g l}_{m \mid n}$ over (\mathbb{C}) using the derived bracket construction: $$
\left[X, Y_{B}=[X,[B, Y]],\right.
$$ where $X, Y \in \mathfrak{g}_{-1}$ and $B \in \mathfrak{g}_{1}$. Moreover, we obtained Levi-Malcev decomposition of these Lie algebras.

Introduction

The idea of "derived bracket" came from a graded Lie algebra (or superalgebra) structure together with an odd derivation of square zero, producing a graded bracket of opposite parity. While they are not Lie brackets on the algebra itself, they give rise to a Lie algebra structure on some of its subspaces and quotients. Kosmann-Schwarzbach, in [3], created a definition attempting to generalize this notion. As an example of its importance, the derived bracket allowed Roytenberg in [4] to discover an alternative description for Courant algebroid and Courant bracket of Liu, Weinstein and Xu. A Lie superalgebra is a generalization of a Lie algebra to the \mathbb{Z}_{2}-graded case. We use a Lie superalgebra $\mathfrak{g l}_{m \mid n}$ over \mathbb{C} from Kac's classification [1] to construct and classify a family of Lie algebras.

Basic tools

Definition 1.A superspace V is a \mathbb{Z}_{2}-graded vector space ($V=V_{0} \oplus V_{i}$). A superalgebra $\mathcal{A}=\mathcal{A}_{\overline{0}} \oplus \mathcal{A}_{\overline{1}}$ is a superspace over \mathbb{C} such that for every $a, b \in \mathbb{Z}_{2}$:

$$
A_{a} A_{b} \subset A_{a+b}
$$

Definition 2. A Lie superalgebra \mathfrak{L} is a superalgebra with a Lie superbracket operation $[\cdot, \cdot]$, satisfying:
i) $[a, b]=-(-1)^{(\operatorname{deg} a)(\operatorname{deg} b)}[b, a]$;
ii) $[a,[b, c]]=[[a, b], c]+(-1)^{(\operatorname{deg} a)(\operatorname{deg} b)}[b,[a, c]]$.

Definition 3. Let G be an abelian group and $V=\bigoplus\left(V_{\alpha}\right)$ be a G-graded space. Then the $\alpha \in G$.
associative algebra (End V, \circ), where " \circ "is the usual composition, possesses a G-grading defined by:

$$
\text { End } V=\bigoplus_{\alpha \in G}\left(\text { End } V_{\alpha}\right) \text {, }
$$

End $V_{\alpha}=\left\{f \in\right.$ End $\left.V_{\alpha} \mid f\left(V_{s}\right) \subseteq V_{s+\alpha}\right\}$.
In particular, for $G=\mathbb{Z}_{2}$ we obtain the associative superalgebra:

End $V=$ End $V_{0} \oplus$ End V_{1}.
Definition 4. Let V be a superspace such that $\operatorname{dim} V_{0}=m$ and $\operatorname{dim} V_{1}=n$.
The Lie superalgebra $\mathfrak{g l}_{m \mid n}$ is defined as the superspace End $V=\mathfrak{g l}(V)$ endowed with the following Lie superbracket $[X, Y]=X \circ Y-Y \circ X$. If bases of V_{0} and V_{1} are fixed, we can identify $\mathfrak{g l}(V)$ with Lie superalgebras of matrices of the form:

$$
\begin{gathered}
m \\
m \\
m \\
n \\
A
\end{gathered}
$$

Remark 1.The Lie superalgebra $\mathfrak{g l}_{m \mid n}$ admits the following \mathbb{Z}-grading:

$$
\mathfrak{g}_{m \mid n}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1},
$$

$\left(\begin{array}{ll}A & 0 \\ 0 & D\end{array}\right) \in \mathfrak{g}_{0},\left(\begin{array}{ll}0 & 0 \\ C & 0\end{array}\right) \in \mathfrak{g}_{-1},\left(\begin{array}{ll}0 & B \\ 0 & 0\end{array}\right) \in \mathfrak{g}_{1}$.
Definition 5. A radical \mathfrak{r} of a finite-dimensional Lie algebra L is the maximal solvable ideal \mathfrak{r} of L.
A Lie algebra L is called semisimple if its radical \mathfrak{r} is equal to zero.

Definition 6. If $L=L_{-1} \oplus L_{0} \oplus L_{1}$ is a graded Lie superalgebra over \mathbb{C} with bracket $[\cdot, \cdot]$ and $B \in L_{1}$ such that $[B, B]=0$, we can define the following bilinear map $\llbracket \cdot, \cdot \rrbracket_{(B)}: V \otimes V \rightarrow V$:
$[x, y]_{(B)}=[x,[B, y]$,
for x and $y \in L_{-1}$. We call these new bracket the derived bracket of $[\cdot, \cdot]$ by B.
Lemma 1. Let $B \in M a t_{m \times n}(\mathbb{C})$, rank $B=r$. Then there exist two invertible matrices P_{m} and P_{n} such that $P_{m} B P_{n}=B^{\prime}$, where $B^{\prime}=$ $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$. Here I_{r} is the identity matrix of size r. Proof: This is a standard result from linear algebra.
Lemma 2. Let L be a finite dimensional Lie algebra over \mathbb{C}. Let \mathfrak{r} be its radical and consider a solvable ideal \mathfrak{a}. Then:
a) L / r is semisimple.
b) A quotient L / \mathfrak{a} is semisimple if and only if $\mathfrak{r}=\mathfrak{a}$
Proof:
a) Let $\pi: L \rightarrow L / \mathrm{r}$ be the canonical map and J be a solvable ideal of L / r.
Then $U=\pi^{-1} J, \mathfrak{r} \subseteq U$ and $U / \mathfrak{r} \cong J$. As U is solvable and \mathfrak{r} is maximal, $U / \mathfrak{r}=0$, therefore, $J=0$.
b) As L / \mathfrak{a} is semisimple, $\mathfrak{r} / \mathfrak{a}=0$ then $\mathfrak{r}=\mathfrak{a}$.

Conversely, if $\mathfrak{r}=\mathfrak{a}$ then, by the item " a ", L / \mathfrak{a} is semisimple.
Theorem 1. (Levi) Let L be a finite dimensional Lie algebra. If L is not solvable, then there exists a semisimple subalgebra \mathfrak{s} of L such that:
$L=\mathfrak{s} \ltimes \mathfrak{r}, \mathfrak{s} \cong L / \mathfrak{r}$.
Proof: See [2] for more details.
Theorem 2. (Malcev) Let \mathfrak{s} and \mathfrak{s}^{\prime} be semisimple subalgebras of L with $L=\mathfrak{s} \ltimes \mathfrak{r}=\mathfrak{s}^{\prime} \ltimes \mathfrak{r}$. Then there exists an automorphism σ of L such that $\sigma(\mathfrak{s})=\mathfrak{s}^{\prime}$.
Proof: See [2] for more details.

Results

Lemma 3. Let $B \in \mathfrak{g}_{1}$ and $X, Y \in \mathfrak{g}_{-1}$ in the form of block matrices $x_{i j}$ and $y_{i j}, i, j=\{1,2\}$. Then:

$$
[X[B, Y]]=\left(\begin{array}{ccc}
0 & 0 \\
-Y B Y & 0 \\
-1
\end{array}\right),
$$

$X B Y-Y B X=\binom{x_{1} * y_{11}-y_{1} * * x_{11} x_{11}^{* *} y_{12}-y_{1} * x_{12} x_{12}}{x_{21} * y_{11}-y_{21}^{*} * x_{11} x_{21} * y_{12}-y_{21} * x_{12}}$.
Proof: A direct calculation and the result from Lemma 1 shows the proof.
Theorem 3. Let V be a superspace, $\mathfrak{g l}(V)=$ $\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ and $\llbracket \cdot, \rrbracket_{B}$ be the derived bracket by B.
Then: $\left(\mathfrak{g}_{-1},\left[\cdot, \cdot \rrbracket_{B}\right)\right.$ is a Lie algebra and its center is:

$$
Z=\left(\begin{array}{cc}
0 & 0 \\
0 & y_{22}
\end{array}\right)
$$

Proof: A direct calculation shows that $\left(\mathfrak{g}_{-1}, \mathbb{I},{ }_{B}\right)$ respects anticommutativity and the Jacobi identity.
For the center, let $y \in Z$ and $x \in \mathfrak{g l}_{m \mid n}$. Using the formula of Lemma 3, we see that $[x[B, y]]=$ 0 . Now consider $w \in \mathfrak{g l}_{m \mid n}$, such that $w \notin Z$. It is easy to see that $[x[B, w]] \neq 0$ for all x. Therefore, Z is the center of $\left(\mathfrak{g}_{-1}, \llbracket, \rrbracket_{B}\right)$.
Theorem 4. Let $\left(\mathfrak{g}_{-1}, \Gamma^{\cdot}, \rrbracket_{B}\right)$ be a Lie algebra, $\overline{B \in \mathfrak{g}_{1}}$, rank $B=r$ and B^{\prime} as in Lemma 1 . Then there is an isomorphism of Lie algebras:

$$
\left(\mathfrak{g}_{-1},\left[\mathbb{I}^{\prime}, \cdot\right]_{B}\right) \xrightarrow{\sim}\left(\mathfrak{g}_{-1},\left[\left[^{\prime}, \cdot\right]_{B^{\prime}}\right) .\right.
$$

Proof: Consider the matrix $P=\left(\begin{array}{cc}P_{m} & 0 \\ 0 & P_{n}^{-1}\end{array}\right)$, where P_{m} and P_{n} are from Lemma 1.
Let $\phi_{P}: \mathfrak{g l}_{\mathfrak{m} \mid \mathfrak{n}} \rightarrow \mathfrak{g l}_{\mathfrak{m} \mid \mathfrak{n}}, X \mapsto P X P^{-1}$;
$\pi: \mathfrak{g l}_{\mathfrak{m} \mid \mathfrak{n}} \rightarrow \mathfrak{g}_{-1}$ is the natural projection
We choose to demonstrate the theorem by constructing a diagram of $\mathfrak{g} \mathfrak{l}_{\mathfrak{m} \mid \mathfrak{n}}$ and \mathfrak{g}_{-1}, using the mappings defined above. To achieve that we need to prove that each $\mathfrak{g}_{-1}, \mathfrak{g}_{0}$ and \mathfrak{g}_{1} are
invariant by ϕ_{P}.

$$
\begin{aligned}
& \phi_{P}(T)=\left(\begin{array}{cc}
P_{m} & 0 \\
0 & P_{n}^{-1}
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right)\left(\begin{array}{cc}
P_{m}^{-1} & 0 \\
0 & P_{n}
\end{array}\right)= \\
& \left(\begin{array}{cc}
P_{m} X P_{m}^{-1} & P_{m} Y P_{n} \\
P_{n}^{-1} Z P_{m}^{-1} & P_{n}^{-1} W P_{n}
\end{array}\right) \text {. }
\end{aligned}
$$

Observe that each subspace have a specific size, then $\left(\phi_{P}(X), \phi_{P}(W)\right) \subseteq \mathfrak{g}_{0}, \phi_{P}(Y) \subseteq \mathfrak{g}_{1}$ and $\phi_{P}(Z) \subseteq \mathfrak{g}_{-1}$.
Now we can construct the following diagram:

We just need to prove that ϕ_{P} is a homomorphism of Lie algebras, i. e.,
$\left.\phi_{P}\left[X, Y_{V}\right]=\llbracket \phi_{P}(X), \phi_{P}(Y)\right]$.
Let $X, Y \in \mathfrak{g}_{-1}$.
By Lemma 3, we have:
$\phi_{p}\left[X, Y_{]_{B}}=\left(\begin{array}{cc}P_{m} & 0 \\ 0 & P_{n}^{-1}\end{array}\right)\left(\begin{array}{cc}0 & 0 \\ X B Y-Y B X & 0\end{array}\right)\left(\begin{array}{cc}P_{m}^{-1} & 0 \\ 0 & P_{n}\end{array}\right)\right.$ $=\binom{0}{P_{n}^{-1} X B Y P_{m}^{-1}-P_{n}^{-1} Y B X P_{m}^{-1} 0}$.
Writing B as $P_{m}^{m_{1}^{1}} B^{\prime} P_{n}^{-1}$ we get: ${ }^{-1}$
$\left(\left(P_{n}^{-1} X P_{m}^{-1}\right) B^{\prime}\left(P_{n}^{-1} Y P_{m}^{-1}\right)-\left(P_{n}^{-1} Y P_{m}^{-1}\right) B^{\prime}\left(P_{n}^{-1} X P_{m}^{-1}\right) 00\right)$ $=\left[P_{n}^{-1} X P_{m}^{-1}, P_{n}^{-1} Y P_{m}^{-1} \rrbracket B_{B^{\prime}}=\llbracket \phi_{P}(X), \phi_{P}(Y)\right]_{B^{\prime}}$. Therefore ϕ_{P} is a homomorphism of Lie algebras.
Theorem 5. Consider the Lie algebras $\frac{\mathfrak{g}_{-1},\left[\cdot, \cdot l_{B^{\prime}}\right)}{}$ and $r=\{0, \ldots, l\}, l=\min \{m, n\}$, be the possible integer values for rank B^{\prime}. Let $R=\left\{\left(\begin{array}{ll}\alpha I_{r} & X_{12} \\ X_{21} & X_{22}\end{array}\right)\right\}$, where αI_{r} is a scalar matrix of size r and $S=\left\{\left(\begin{array}{cc}X_{11} & 0 \\ 0 & 0\end{array}\right)\right\}$, where trace $S=0$ and X_{11} is a matrix of size r.
Then:
a) R is solvable;
b) S is semisimple;
c) $R \cong \mathfrak{r}\left(\mathfrak{g}_{-1}\right)$.
d) The family of Lie algebras $\left(\mathfrak{g}_{-1},\left[\cdot, \cdot \|_{B^{\prime}}\right)\right.$ admits a parametrization by r.

Proof:

a) A direct calculation shows that $R^{(2)} \subseteq Z$, where Z is the center of $\left(\mathfrak{g}_{-1},\left[\cdot\left[\cdot \|_{B^{\prime}}\right)\right.\right.$, therefore R is solvable.
b) Observe that $S \simeq \mathfrak{s l}_{n}$, then S is simple and only admits 0 as solvable ideal. Therefore, S is semisimple.
c) Follows directly from Lemma 2.
d) Consider $X \in\left(\mathfrak{g}_{-1},[\cdot \cdot \cdot]_{B_{1}^{\prime}}\right)$ and $Y \in$ $\left(\mathfrak{g}_{-1}, \llbracket \cdot, \cdot \|_{B_{2}^{\prime}}\right)$, where rank $B_{1}^{\prime}=r_{1}$, rank $B_{2}^{\prime}=$ r_{2} and $r_{1} \neq r_{2}$. From Theorem 1, there is a decomposition such that $X=S_{1} \ltimes R_{1}$ and $Y=S_{2} \ltimes R_{2}$. From the fact that $S \simeq \mathfrak{s i}_{n}$, $\operatorname{dim} \mathfrak{s l}_{n}=n^{2}-1$ and $r_{1} \neq r_{2}$, we conclude that $\operatorname{dim} S_{1} \neq \operatorname{dim} S_{2}$ therefore $S_{1} \neq S_{2}$. From Theorem 2, we know that the subalgebra of this decomposition is unique up to an automorphism. In another words, the algebras associated with a specific r_{i} cannot be isomorphic to another algebra associated with $r \neq r_{i}$. Therefore, each Lie algebra $\left(\mathfrak{g}_{-1},[\cdot, \cdot]_{B_{r}^{\prime}}\right)$ is uniquely associated with each parameter r.

References

[1] Kac, V. G.. Lie Superalgebras, Massachusetts Institute of Technology, 1973.
[2] Goto, M., Grosshans, F., Semisimple Lie algebras, Marcel Dekker, 1978.
[3] Kosmann-Schwarzbach, Y., Derived brackets, https://arxiv.org/abs/math/0312524, 2003.
[4] Roytenberg, D., Courant algebroids, derived brackets and even symplectic supermanifolds, https://arxiv.org/abs/math/9910078, 1999.

