

Structure and classification of Lie algebras constructed from $\mathfrak{gl}_{m|n}$ using the derived bracket

Luan F. Oliveira¹ Supervisor : Elizaveta Vishnyakova² Federal University of Minas Gerais - UFMG Mathematics Undergraduate Program¹, Institute of Exact Sciences² luanmat@ufmg.br¹, vishnyakovae@googlemail.com²

Abstract

Our poster is devoted to a classification of Lie algebras obtained from the Lie superalgebra $\mathfrak{g} = \mathfrak{gl}_{m|n}$ over (\mathbb{C}) using the derived bracket construction:

 $[X,Y]_B = [X,[B,Y]],$

where $X, Y \in \mathfrak{g}_{-1}$ and $B \in \mathfrak{g}_1$. Moreover, we obtained Levi-Malcev decomposition of these

Definition 6. If $L = L_{-1} \oplus L_0 \oplus L_1$ is a graded Lie superalgebra over \mathbb{C} with bracket $[\cdot, \cdot]$ and $B \in L_1$ such that [B, B] = 0, we can define the following bilinear map $[\![\cdot, \cdot]\!]_{(B)} : V \otimes V \to V$: $[\![x, y]\!]_{(B)} = [x, [B, y],$

for x and $y \in L_{-1}$. We call these new bracket the derived bracket of $[\cdot, \cdot]$ by B.

Lemma 1. Let $B \in Mat_{m \times n}(\mathbb{C})$, rank B=r. Then there exist two invertible matrices P_m and P_n such that $P_mBP_n = B'$, where $B' = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$. Here I_r is the identity matrix of size r.

Lie algebras.

Introduction

The idea of "derived bracket" came from a graded Lie algebra (or superalgebra) structure together with an odd derivation of square zero, producing a graded bracket of opposite parity. While they are not Lie brackets on the algebra itself, they give rise to a Lie algebra structure on some of its subspaces and quotients. Kosmann-Schwarzbach, in [3], created a definition attempting to generalize this notion. As an example of its importance, the derived bracket allowed Roytenberg in [4] to discover an alternative description for Courant algebroid and Courant bracket of Liu, Weinstein and Xu.

A Lie superalgebra is a generalization of a Lie algebra to the \mathbb{Z}_2 -graded case. We use a Lie superalgebra $\mathfrak{gl}_{m|n}$ over \mathbb{C} from Kac's classification [1] to construct and classify a family of Lie algebras.

Basic tools

<u>Definition</u> 1. *A superspace V is a* \mathbb{Z}_2 *-graded vector space* ($V = V_{\overline{0}} \oplus V_{\overline{1}}$). *A superalgebra* $\mathcal{A} = \mathcal{A}_{\overline{0}} \oplus \mathcal{A}_{\overline{1}}$ *is a superspace over* \mathbb{C} *such that for every* $a, b \in \mathbb{Z}_2$: Proof: This is a standard result from linear algebra.

Lemma 2. Let *L* be a finite dimensional Lie algebra over \mathbb{C} . Let \mathfrak{r} be its radical and consider a solvable ideal \mathfrak{a} . Then:

a) L/\mathfrak{r} is semisimple.

b) A quotient L/\mathfrak{a} is semisimple if and only if $\mathfrak{r} = \mathfrak{a}$. Proof:

a) Let $\pi : L \to L/\mathfrak{r}$ be the canonical map and J be a solvable ideal of L/\mathfrak{r} .

Then $U = \pi^{-1}J$, $\mathfrak{r} \subseteq U$ and $U/\mathfrak{r} \cong J$. As U is solvable and \mathfrak{r} is maximal, $U/\mathfrak{r} = 0$, therefore, J = 0.

b) As L/\mathfrak{a} is semisimple, $\mathfrak{r}/\mathfrak{a} = 0$ then $\mathfrak{r} = \mathfrak{a}$. Conversely, if $\mathfrak{r} = \mathfrak{a}$ then, by the item "a", L/\mathfrak{a} is semisimple.

Theorem 1. (Levi) Let L be a finite dimensional Lie algebra. If L is not solvable, then there exists a semisimple subalgebra \mathfrak{s} of L such that: $L = \mathfrak{s} \ltimes \mathfrak{r}, \ \mathfrak{s} \cong L/\mathfrak{r}.$

Proof: See [2] for more details.

Theorem 2. (Malcev) Let \mathfrak{s} and \mathfrak{s}' be semisim-

and $\phi_P(Z) \subseteq \mathfrak{g}_{-1}$.

Now we can construct the following diagram: $\mathfrak{gl}_{\mathfrak{m}|\mathfrak{n}} \xrightarrow{\phi_P} \mathfrak{gl}_{\mathfrak{m}|\mathfrak{n}}$

 $\begin{array}{l}
\mathfrak{g}_{-1} \xrightarrow{\phi_P} \mathfrak{g}_{-1} \\
\text{We just need to prove that } \phi_P \text{ is a homomorphism of Lie algebras, i. e.,} \\
\phi_P[X, Y] = [\phi_P(X), \phi_P(Y)]. \\
\text{Let } X, Y \in \mathfrak{g}_{-1}. \\
\text{By Lemma 3, we have:} \\
\phi_p[X, Y]_B = \begin{pmatrix} P_m & 0 \\ 0 & P_n^{-1} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ XBY - YBX & 0 \end{pmatrix} \begin{pmatrix} P_m^{-1} & 0 \\ 0 & P_n \end{pmatrix} \\
= \begin{pmatrix} 0 & 0 \\ P_n^{-1}XBYP_m^{-1} - P_n^{-1}YBXP_m^{-1} & 0 \\ 0 & P_n^{-1}B'P_n^{-1} & \text{we get:} \\
\end{array}$

 $\begin{pmatrix} 0 & 0 \\ (P_n^{-1}XP_m^{-1})B'(P_n^{-1}YP_m^{-1}) - (P_n^{-1}YP_m^{-1})B'(P_n^{-1}XP_m^{-1}) & 0 \end{pmatrix}$ = $[P_n^{-1}XP_m^{-1}, P_n^{-1}YP_m^{-1}]_{B'} = [\phi_P(X), \phi_P(Y)]_{B'}.$ Therefore ϕ_P is a homomorphism of Lie algebras.

Theorem 5. Consider the Lie algebras $(\mathfrak{g}_{-1}, \llbracket\cdot, \cdot\rrbracket_{B'})$ and $r = \{0, ..., l\}, l = min\{m, n\},$ be the possible integer values for rank B'. Let $R = \{\begin{pmatrix} \alpha I_r & X_{12} \\ X_{21} & X_{22} \end{pmatrix}\},$ where αI_r is a scalar matrix of size r and $S = \{\begin{pmatrix} X_{11} & 0 \\ 0 & 0 \end{pmatrix}\},$ where trace S = 0 and X_{11} is a matrix of size r.

 $A_a A_b \subset A_{a+b}.$

Definition 2. A Lie superalgebra \mathfrak{L} is a superalgebra with a Lie superbracket operation [\cdot , \cdot], satisfying: i) $[a, b] = -(-1)^{(deg \ a)(deg \ b)}[b, a];$ ii) $[a, [b, c]] = [[a, b], c] + (-1)^{(deg \ a)(deg \ b)}[b, [a, c]].$

Definition 3. Let G be an abelian group and $V = \bigoplus_{\alpha \in G} (V_{\alpha})$ be a G-graded space. Then the

associative algebra (End V, \circ), where " \circ " is the usual composition, possesses a G-grading defined by:

End $V = \bigoplus_{\alpha \in G} (\text{End } V_{\alpha}),$

End $V_{\alpha} = \{f \in \text{End } V_{\alpha} \mid f(V_s) \subseteq V_{s+\alpha}\}.$ In particular, for $G = \mathbb{Z}_2$ we obtain the associative superalgebra:

End $V = \text{End } V_{\overline{0}} \oplus \text{End } V_{\overline{1}}$. **Definition 4.** Let V be a superspace such that $\dim V_{\overline{0}} = m$ and $\dim V_{\overline{1}} = n$. The Lie superalgebra $\mathfrak{gl}_{m|n}$ is defined as the superspace End $V = \mathfrak{gl}(V)$ enple subalgebras of *L* with $L = \mathfrak{s} \ltimes \mathfrak{r} = \mathfrak{s}' \ltimes \mathfrak{r}$. Then there exists an automorphism σ of *L* such that $\sigma(\mathfrak{s}) = \mathfrak{s}'$. Proof: See [2] for more details.

<u>Results</u>

Lemma 3. Let $B \in \mathfrak{g}_1$ and $X, Y \in \mathfrak{g}_{-1}$ in the form of block matrices x_{ij} and y_{ij} , $i, j = \{1, 2\}$. *Then:*

 $[X[B,Y]] = \begin{pmatrix} 0 & 0 \\ XBY - YBX & 0 \end{pmatrix},$ $XBY - YBX = \begin{pmatrix} x_{11} * *y_{11} - y_{11} * *x_{11} & x_{11} * *y_{12} - y_{11} * *x_{12} \\ x_{21} * *y_{11} - y_{21} * *x_{11} & x_{21} * *y_{12} - y_{21} * *x_{12} \end{pmatrix}.$

Proof: A direct calculation and the result from Lemma 1 shows the proof.

<u>Theorem</u> 3. Let V be a superspace, $\mathfrak{gl}(V) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_1$ and $\llbracket \cdot, \cdot \rrbracket_B$ be the derived bracket by B.

Then: $(\mathfrak{g}_{-1}, \llbracket \cdot, \cdot \rrbracket_B)$ is a Lie algebra and its center is:

 $Z = \begin{pmatrix} 0 & 0 \\ 0 & y_{22} \end{pmatrix}.$

Proof: A direct calculation shows that $(\mathfrak{g}_{-1}, [\![,]\!]_B)$ respects anticommutativity and the Jacobi identity.

For the center, let $y \in Z$ and $x \in \mathfrak{gl}_{m|n}$. Using

Then: a) R is solvable; b) S is semisimple; c) $R \cong \mathfrak{r}(\mathfrak{g}_{-1}).$ d) The family of Lie algebras $(\mathfrak{g}_{-1}, \llbracket \cdot, \cdot \rrbracket_{B'})$ admits a parametrization by r.

Proof:

a) A direct calculation shows that $R^{(2)} \subseteq Z$, where Z is the center of $(\mathfrak{g}_{-1}, \llbracket \cdot, \cdot \rrbracket_{B'})$, therefore R is solvable.

b) Observe that $S \simeq \mathfrak{sl}_n$, then S is simple and only admits 0 as solvable ideal. Therefore, S is semisimple.

c) Follows directly from Lemma 2.

d) Consider $X \in (\mathfrak{g}_{-1}, [\cdot, \cdot]_{B_1})$ and $Y \in (\mathfrak{g}_{-1}, [\cdot, \cdot]_{B_2})$, where $rank B_1' = r_1$, $rank B_2' = r_2$ and $r_1 \neq r_2$. From Theorem 1, there is a decomposition such that $X = S_1 \ltimes R_1$ and $Y = S_2 \ltimes R_2$. From the fact that $S \simeq \mathfrak{sl}_n$, $dim \mathfrak{sl}_n = n^2 - 1$ and $r_1 \neq r_2$, we conclude that $dim S_1 \neq dim S_2$ therefore $S_1 \neq S_2$. From The-

dowed with the following Lie superbracket $[X,Y] = X \circ Y - Y \circ X$. If bases of $V_{\bar{0}}$ and $V_{\bar{1}}$ are fixed, we can identify $\mathfrak{gl}(V)$ with Lie superalgebras of matrices of the form:

> m n $m \begin{pmatrix} A & B \\ n \begin{pmatrix} C & D \end{pmatrix}$.

Remark 1. The Lie superalgebra $\mathfrak{gl}_{m|n}$ admits the following \mathbb{Z} -grading: $\mathfrak{gl}_{m|n} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1,$ $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \in \mathfrak{g}_0, \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \in \mathfrak{g}_{-1}, \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \in \mathfrak{g}_1.$ **Definition 5.** A radical \mathfrak{r} of a finite-dimensional

Lie algebra L *is the maximal solvable ideal* **v** *of* L. *A Lie algebra* L *is called semisimple if its radical* **v** *is equal to zero.*

the formula of Lemma 3, we see that [x[B, y]] =0. Now consider $w \in \mathfrak{gl}_{m|n}$, such that $w \notin Z$. It is easy to see that $[x[B, w]] \neq 0$ for all x. Therefore, Z is the center of $(\mathfrak{g}_{-1}, [,]_B)$. <u>**Theorem</u> 4. Let (\mathfrak{g}_{-1}, \llbracket \cdot, \cdot \rrbracket_B) be a Lie algebra**,</u> $B \in \mathfrak{g}_1$, rank B = r and B' as in Lemma 1. Then there is an isomorphism of Lie algebras: $(\mathfrak{g}_{-1}, \llbracket \cdot, \cdot \rrbracket_B) \xrightarrow{\sim} (\mathfrak{g}_{-1}, \llbracket \cdot, \cdot \rrbracket_{B'}).$ Proof: Consider the matrix $P = \begin{pmatrix} P_m & 0 \\ 0 & P_n^{-1} \end{pmatrix}$, where P_m and P_n are from Lemma 1. Let $\phi_P : \mathfrak{gl}_{\mathfrak{m}|\mathfrak{n}} \to \mathfrak{gl}_{\mathfrak{m}|\mathfrak{n}}, X \mapsto PXP^{-1};$ $\pi: \mathfrak{gl}_{\mathfrak{m}|\mathfrak{n}} \to \mathfrak{g}_{-1}$ is the natural projection. We choose to demonstrate the theorem by constructing a diagram of $\mathfrak{gl}_{\mathfrak{m}|\mathfrak{n}}$ and \mathfrak{g}_{-1} , using the mappings defined above. To achieve that we need to prove that each \mathfrak{g}_{-1} , \mathfrak{g}_{0} and \mathfrak{g}_{1} are

orem 2, we know that the subalgebra of this decomposition is unique up to an automorphism. In another words, the algebras associated with a specific r_i cannot be isomorphic to another algebra associated with $r \neq r_i$. Therefore, each Lie algebra $(\mathfrak{g}_{-1}, \llbracket \cdot, \cdot \rrbracket_{B'_r})$ is uniquely associated with each parameter r.

References

[1] Kac, V. G.. Lie Superalgebras, Massachusetts Institute of Technology, 1973.
[2] Goto, M., Grosshans, F., Semisimple Lie algebras, Marcel Dekker, 1978.

[3] Kosmann-Schwarzbach, Y., Derived brackets, https://arxiv.org/abs/math/0312524, 2003.

[4] Roytenberg, D., Courant algebroids, derived brackets and even symplectic supermanifolds, https://arxiv.org/abs/math/9910078, 1999.