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Abstract

Our poster 1s devoted to a classification of Lie
algebras obtained from the Lie superalgebra

g = gl,,, over (C) using the derived bracket
construction:
[[Xa Y]]B — [Xa [Ba Y“a

where X, Y € g 1 and B € g;. Moreover, we
obtained Levi-Malcev decomposition of these
Lie algebras.

Introduction

The 1dea of “derived bracket” came from a gra-
ded Lie algebra (or superalgebra) structure to-
gether with an odd derivation of square zero,
producing a graded bracket of opposite parity.
While they are not Lie brackets on the alge-
bra itself, they give rise to a Lie algebra struc-
ture on some of 1ts subspaces and quotients.

Kosmann-Schwarzbach, 1n [3], created a defi-
nition attempting to generalize this notion. As

an example of 1ts importance, the derived bra-
cket allowed Roytenberg in [4] to discover an
alternative description for Courant algebroid
and Courant bracket of Liu, Weinstein and Xu.

A Lie superalgebra 1s a generalization of a Lie
algebra to the Zo-graded case. We use a Lie
superalgebra gl,,,, over C trom Kac’s classifi-

cation [1] to construct and classity a family of
Lie algebras.

Basic tools

Definition 1.A superspace V is a Zo-graded
vector space (V. = Vi @ Vi). A superalgebra
A = A; ® A; is a superspace over C such that
for every a,b € Zs:

ACLAb C ACL—HT

Definition 2. A Lie superalgebra £ is a super-
algebra with a Lie superbracket operation

|- ,- |, satisfying:

) 0, 8] = —(~1)(%0 9 V]p,

ii) [a, [b, c]] = [[a, b], c]+(=1)"" @ P]b, [a, c]].

Definition 3. Let G be an abelian group and
V = 6}(\/@) be a G-graded space. Then the

aelG
associative algebra (End V, o), where “o ’is

the usual composition, possesses a G-grading
defined by:
End V = @(End V),
acl
End V, ={f € End V, | f(Vi) C Viia}.

In particular, for G = Zo we obtain the associ-
ative superalgebra:

End V = End V;; & End V7.

Definition 4. Let V' be a superspace such that
dim Vi = m and dim V; = n.
The Lie superalgebra gl,, is defined
as the superspace End V = gl(V) en-
dowed with the following Lie superbracket
X, Y|=XoY —YoX. If bases of V; and
Vi are fixed, we can identify gl(V') with Lie su-
peralgebras of matrices of the form.:

n\C D

Remark 1. The Lie superalgebra gl
the following Z.-grading:
g[m]n = g-1 D o D 91,
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Definition 3. A radical ¢ of a finite-dimensional
Lie algebra L is the maximal solvable ideal t
of L.

A Lie algebra L is called semisimple if its ra-
dical v is equal to zero.
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Definition 6.If L = L_1 ® Ly D L, is a graded
Lie superalgebra over C with bracket |-, -| and
B € L; such that |B, B| = 0, we can define the

following bilinear map [, |p): V Q@ V — V:
[T, y]](B) — [:Ev EBa y]?

for x and y € L_i. We call these new bracket
the derived bracket of |-, -| by B.

Lemma 1.let B € Mat,,»,(C), rank B=r.

Then there exist two invertible matrices P,
and P, such that P, BP, = B’, where B’ =

([OT 8) . Here I, is the identity matrix of size r.

Proof: This 1s a standard result from linear al-
gebra.

Lemma 2. Let L be a finite dimensional Lie al-
gebra over C . Let ¢ be its radical and consider

a solvable ideal a. Then:
a) L/t is semisimple.

b) A quotient L/a is semisimple if and only if

t=a.
Prootf: _
a) Let 7 : L — L/t be the canonical map and

J be a solvable ideal of L /t.

ThenU =7 'J, vt CUand U/t = J. As U s
solvable and v is maximal, U/t = 0, therefore,
J = 0.

b) As L/a is semisimple, t/a = 0 then vt = a.
Conversely, if © = a then, by the item “a”, L/a
1s semisimple.

Theorem 1. (Levi) Let L be a finite dimensi-
onal Lie algebra. If L is not solvable, then

there exists a semisimple subalgebra s of L
such that:

L=sxrt, s= L/t

Proof: See [2] for more details.

Theorem 2. (Malcev) Let s and s' be semisim-
ple subalgebras of L with L = s X t = §' X t.
Then there exists an automorphism o of L such
that o(s) = 5.

Proof: See [2] for more details.

Results

Lemma 3.Let B € g, and X.Y € g_, in the
form of block matrices x;; and y;j, i, 5 = {1, 2}.
Then:

X[B, Y]] = (XBY v Bx 8) ,
XBY — YBX = (

Proof: A direct calculation and the result from
Lemma 1 shows the proof.

Theorem 3. Let V be a superspace, gl(V) =
g.1Dgs® g1 and [-, | p be the derived bracket
by B.

Then: (g_1, [, 1) is a Lie algebra and its cen-

ter is: 00
4= (0 ?J22> '

Proof: A direct calculation shows that
(g_1, [, ]1B) respects anticommutativity and the

Jacobi 1dentity.
For the center, let y € Z and = € gl,,,. Using

the formula of Lemma 3, we see that |z| B, y|| =
0. Now consider w € gl,,,,, such that w ¢ Z.

It is easy to see that [z|B,w|| # 0 for all x.
Therefore, Z 1s the center of (g_1, [, IB).

Theorem 4. Let (g_.,[-, 15) be a Lie algebra,

B € g,, rank B = r and B’ as in Lemma 1.
Then there is an isomorphism of Lie algebras:

(9—17 [ ]]B) ; (9—17 [ °]]B’)°
Proof: Consider the matrix P = <Pom Po_l),
where P, and P, are from Lemma 1. .
Let op : g[m\u — g[m‘u,X — PX P,
T . @lmn — g—1 18 the natural projection .
We choose to demonstrate the theorem by
constructing a diagram of gl , and g_,, using
the mappings defined above. To achieve that
we need to prove that each g_;, g, and g, are

using the derived bracket

CBM**?JM — yn**xn fn**ylz — yn**iﬁlz
$21**y11 — 921**5511 $21**y12 — y21**l‘12
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invariant by ¢p.

m 1
_m(XY
Let T = Z?(Z W),TEg[m‘n.

P, 0 XY —
o= (¢ o) (zw) (5 p,) =
(PmXPm1 P,YP,

pPlzp ' P WP, )
Observe that each subspace have a specific

size, then (¢p(X), op(W)) C go, op(Y) C g,
and ¢p(Z) C g-..

Now we can constructq}he following diagram:

g[m]n - ? g[m]n
b,
g1 7 Y1

We just need to prove that ¢p 1S a homo-
morphism of Lie algebras, 1. €.,

¢PHX7 Y]] — [[¢P(X)7 ¢P(Y)]]
Let XY €g_,.
By Lemma 3, we have:

J 0 0\ (P’ 0
¢pﬂX;YﬂB=( 0 Pn—l)(XBY—YBX o)( 0 P,

0 0
= (Pn—lXBYPﬂ;l _ PlYBXP:! o) -
Writing B as P, ' B'P ! we get:

0

((Pan P.YB(P'YP,")— (P'YP, B (P, 'XP,")

=D, XP,', PTY P g = [¢p(X), 6p(Y)ip.
Therefore ¢p 1s a homomorphism of Lie alge-

bras.
Theorem 5. Consider the Lie algebras

(g_1, [, 1p)andr ={0,....1 }, | = min{m,n},
be the possible integer values for rank B’. Let

R = {(gg'i ))((2122 ) L, where o, is a scalar ma-

X011 8 ) }, where trace

trix of size r and S = { (
S = 0 and X, is a matrix of size r .

Then:

a) R is solvable;

b) S is semisimple,

c) R=1t(g_,).

d) The family of Lie algebras (g_+, [, 1p) ad-
mits a parametrization by r.

Prootf:

a) A direct calculation shows that R? C Z,
where Z is the center of (g_+, [, ‘|5, therefore

R 15 solvable. .
b) Observe that S ~ sl,,, then S 1s simple and

only admits O as solvable ideal. Therefore, .S 1s
semisimple.

c) Follows directly from Lemma 2.

d) Consider X € (g_.,[,-]Jp) and Y €
(-1, [, 1B;), Where rank B| = ri, rank By =
ro and r; # ro. From Theorem 1, there is a
decomposition such that X = S5; x R; and
Y = S, X Ry. From the fact that S ~ sl,,
dim sl, =n* — 1 and r; # ry, we conclude that
dim S| # dim Ss therefore S, # S5. From The-
orem 2, we know that the subalgebra of this de-
composition 1s unique up to an automorphism.
In another words, the algebras associated with
a specific r; cannot be 1somorphic to another
algebra associated with » # r;. Therefore, each
Lie algebra (g, [, ] 5) 18 uniquely associated
with each parameter r.
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