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Abstract

Our poster is devoted to a classification of Lie
algebras obtained from the Lie superalgebra
g = glm|n over (C) using the derived bracket
construction:

JX, Y KB = [X, [B, Y ]],

where X, Y ∈ g−1 and B ∈ g1. Moreover, we
obtained Levi-Malcev decomposition of these
Lie algebras.

Introduction
The idea of “derived bracket” came from a gra-
ded Lie algebra (or superalgebra) structure to-
gether with an odd derivation of square zero,
producing a graded bracket of opposite parity.
While they are not Lie brackets on the alge-
bra itself, they give rise to a Lie algebra struc-
ture on some of its subspaces and quotients.
Kosmann-Schwarzbach, in [3], created a defi-
nition attempting to generalize this notion. As
an example of its importance, the derived bra-
cket allowed Roytenberg in [4] to discover an
alternative description for Courant algebroid
and Courant bracket of Liu, Weinstein and Xu.
A Lie superalgebra is a generalization of a Lie
algebra to the Z2-graded case. We use a Lie
superalgebra glm|n over C from Kac’s classifi-
cation [1] to construct and classify a family of
Lie algebras.

Basic tools
Definition 1. A superspace V is a Z2-graded
vector space (V = V0̄ ⊕ V1̄). A superalgebra
A = A0̄ ⊕A1̄ is a superspace over C such that
for every a, b ∈ Z2:

AaAb ⊂ Aa+b.
Definition 2. A Lie superalgebra L is a super-
algebra with a Lie superbracket operation
[· ,· ], satisfying:
i) [a, b] = −(−1)(deg a)(deg b)[b, a];
ii) [a, [b, c]] = [[a, b], c]+(−1)(deg a)(deg b)[b, [a, c]].

Definition 3. Let G be an abelian group and
V =

⊕
α∈G

(Vα) be a G-graded space. Then the

associative algebra (End V , ◦), where “◦ ”is
the usual composition, possesses a G-grading
defined by:

End V =
⊕
α∈G

(End Vα),

End Vα = {f ∈ End Vα | f (Vs) ⊆ Vs+α}.
In particular, for G = Z2 we obtain the associ-
ative superalgebra:

End V = End V0̄ ⊕ End V1̄.
Definition 4. Let V be a superspace such that
dim V0̄ = m and dim V1̄ = n.
The Lie superalgebra glm|n is defined
as the superspace End V = gl(V ) en-
dowed with the following Lie superbracket
[X, Y ] = X ◦ Y − Y ◦X . If bases of V0̄ and
V1̄ are fixed, we can identify gl(V ) with Lie su-
peralgebras of matrices of the form:

m n( )
m A B
n C D

.

Remark 1. The Lie superalgebra glm|n admits
the following Z-grading:

glm|n = g−1 ⊕ g0 ⊕ g1,(
A 0
0 D

)
∈ g0,

(
0 0
C 0

)
∈ g−1,

(
0 B
0 0

)
∈ g1.

Definition 5.A radical r of a finite-dimensional
Lie algebra L is the maximal solvable ideal r
of L.
A Lie algebra L is called semisimple if its ra-
dical r is equal to zero.

Definition 6. If L = L−1 ⊕ L0 ⊕ L1 is a graded
Lie superalgebra over C with bracket [·, ·] and
B ∈ L1 such that [B,B] = 0, we can define the
following bilinear map J·, ·K(B) : V ⊗ V → V :

Jx, yK(B) = [x, [B, y],

for x and y ∈ L−1. We call these new bracket
the derived bracket of [·, ·] by B.

Lemma 1. Let B ∈ Matm×n(C), rank B=r.
Then there exist two invertible matrices Pm
and Pn such that PmBPn = B′, where B′ =(
Ir 0
0 0

)
. Here Ir is the identity matrix of size r.

Proof: This is a standard result from linear al-
gebra.
Lemma 2. Let L be a finite dimensional Lie al-
gebra over C . Let r be its radical and consider
a solvable ideal a. Then:
a) L/r is semisimple.
b) A quotient L/a is semisimple if and only if
r = a .
Proof:
a) Let π : L → L/r be the canonical map and
J be a solvable ideal of L/r.
Then U = π−1J , r ⊆ U and U/r ∼= J . As U is
solvable and r is maximal, U/r = 0, therefore,
J = 0.
b) As L/a is semisimple, r/a = 0 then r = a.
Conversely, if r = a then, by the item “a”, L/a
is semisimple.
Theorem 1. (Levi) Let L be a finite dimensi-
onal Lie algebra. If L is not solvable, then
there exists a semisimple subalgebra s of L
such that:

L = sn r, s ∼= L/r.
Proof: See [2] for more details.
Theorem 2. (Malcev) Let s and s′ be semisim-
ple subalgebras of L with L = s n r = s′ n r.
Then there exists an automorphism σ of L such
that σ(s) = s′.
Proof: See [2] for more details.

Results
Lemma 3. Let B ∈ g1 and X, Y ∈ g−1 in the
form of block matrices xij and yij, i, j = {1, 2}.
Then:

[X [B, Y ]] =
(

0 0
XBY − Y BX 0

)
,

XBY − Y BX =
(
x11**y11 − y11**x11 x11**y12 − y11**x12

x21**y11 − y21**x11 x21**y12 − y21**x12

)
.

Proof: A direct calculation and the result from
Lemma 1 shows the proof.
Theorem 3. Let V be a superspace, gl(V ) =
g−1 ⊕ g0̄ ⊕ g1 and J·, ·KB be the derived bracket
by B.
Then: (g−1, J·, ·KB) is a Lie algebra and its cen-
ter is:

Z =
(

0 0
0 y22

)
.

Proof: A direct calculation shows that
(g−1, J , KB) respects anticommutativity and the
Jacobi identity.
For the center, let y ∈ Z and x ∈ glm|n. Using
the formula of Lemma 3, we see that [x[B, y]] =
0. Now consider w ∈ glm|n, such that w 6∈ Z.
It is easy to see that [x[B,w]] 6= 0 for all x.
Therefore, Z is the center of (g−1, J , KB).
Theorem 4. Let (g−1, J·, ·KB) be a Lie algebra,
B ∈ g1, rank B = r and B′ as in Lemma 1.
Then there is an isomorphism of Lie algebras:

(g−1, J·, ·KB)
∼−→ (g−1, J·, ·KB′).

Proof: Consider the matrix P =
(
Pm 0
0 P−1

n

)
,

where Pm and Pn are from Lemma 1.
Let φP : glm|n→ glm|n, X 7→ PXP−1;
π : glm|n→ g−1 is the natural projection .
We choose to demonstrate the theorem by
constructing a diagram of glm|n and g−1, using
the mappings defined above. To achieve that
we need to prove that each g−1, g0 and g1 are

invariant by φP .

Let T =
m n( )

m X Y
n Z W

, T ∈ glm|n.

φP (T ) =
(
Pm 0
0 P−1

n

)(
X Y
Z W

)(
P−1
m 0
0 Pn

)
=(

PmXP
−1
m PmY Pn

P−1
n ZP−1

m P−1
n WPn

)
.

Observe that each subspace have a specific
size, then (φP (X), φP (W )) ⊆ g0, φP (Y ) ⊆ g1
and φP (Z) ⊆ g−1.
Now we can construct the following diagram:

glm|n glm|n

g−1 g−1

φP

π π

φP

.

We just need to prove that φP is a homo-
morphism of Lie algebras, i. e.,
φP JX, Y K = JφP (X), φP (Y )K.
Let X, Y ∈ g−1.
By Lemma 3, we have:
φpJX, Y KB =

(
Pm 0
0 P−1

n

)(
0 0

XBY − Y BX 0

)(
P−1
m 0
0 Pn

)
=
(

0 0
P−1
n XBY P−1

m − P−1
n Y BXP−1

m 0

)
.

Writing B as P−1
m B′P−1

n we get:(
0 0

(P−1
n XP−1

m )B′(P−1
n Y P−1

m )− (P−1
n Y P−1

m )B′(P−1
n XP−1

m ) 0

)
= JP−1

n XP−1
m , P−1

n Y P−1
m KB′ = JφP (X), φP (Y )KB′.

Therefore φP is a homomorphism of Lie alge-
bras.
Theorem 5. Consider the Lie algebras
(g−1, J·, ·KB′) and r = {0, ..., l }, l = min{m,n},
be the possible integer values for rank B′. Let
R = {

(
αIr X12
X21 X22.

)
}, where αIr is a scalar ma-

trix of size r and S = {
(
X11 0

0 0.

)
}, where trace

S = 0 and X11 is a matrix of size r .
Then:
a) R is solvable;
b) S is semisimple;
c) R ∼= r(g−1).
d) The family of Lie algebras (g−1, J·, ·KB′) ad-
mits a parametrization by r.
Proof:
a) A direct calculation shows that R(2) ⊆ Z,
where Z is the center of (g−1, J·, ·KB′), therefore
R is solvable.
b) Observe that S ' sln, then S is simple and
only admits 0 as solvable ideal. Therefore, S is
semisimple.
c) Follows directly from Lemma 2.
d) Consider X ∈ (g−1, J·, ·KB′1) and Y ∈
(g−1, J·, ·KB′2), where rank B′1 = r1, rank B′2 =
r2 and r1 6= r2. From Theorem 1, there is a
decomposition such that X = S1 n R1 and
Y = S2 n R2. From the fact that S ' sln,
dim sln = n2 − 1 and r1 6= r2, we conclude that
dim S1 6= dim S2 therefore S1 6= S2. From The-
orem 2, we know that the subalgebra of this de-
composition is unique up to an automorphism.
In another words, the algebras associated with
a specific ri cannot be isomorphic to another
algebra associated with r 6= ri. Therefore, each
Lie algebra (g−1, J·, ·KB′r) is uniquely associated
with each parameter r.
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