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Abstract
We present a Sobolev type inequality for varifolds intrinsically defined in a natural way, as a consequence
of a generalized monotonicity formula for this kind of varifolds and avoiding the use of the Nash’s isometric
embedding.

Introduction
The ordinary Sobolev inequality has been known for many years and its value in the theory of partial differ-
ential equations is well known. In [?] Miranda obtained a Sobolev inequality for minimal graphs. A refined
version of this new inequality was used by Bombieri, De Giorgi and Miranda to derive gradient bounds for
solutions to the minimal surface equation (see [?]).

In [?], a general Sobolev type inequality was presented. That inequality is obtained on what might be termed
a generalized manifold and as special cases, results the ordinary Sobolev inequality, a Sobolev inequality on
graphs of weak solutions to the mean curvature equation, and a Sobolev inequality on arbitrary C2 submani-
folds of Rn (of arbitrary co-dimension).

On the other hand, in [?] Allard proves a Sobolev type inequality in a varifold context from a Isoperimetrical
inequality for varifolds, for functions with compact support on a varifold V whose first variation δV lies in an
appropriate Lebesgue space with respect to ‖δV ‖.

In this, joint work with Stefano Nardulli (UFABC), we present a Riemannian intrinsic version of the Allard’s
result, using a natural extension of the concept of varifold and monotonicity, following the ideas of Simon and
Michael in [?] and [?].

Settings
Definition 0.1. Let (Mn, g) a n-dimensional Riemannian manifold, we define an abstract varifold as a Radon
measure on Gk(M), where

Gk(M) :=
⋃
x∈M

{x} × Gr(k, TxM),

Let Vk(M) the space of all k-dimensional varifolds, endowed with the weak topology induced by C0
c (Gk(M))

which is the space of continuous compactly supported functions on Gk(Mn) endowed with the compact open
topology.

Definition 0.2. Let V ∈ Vk(Mn), g be a Riemannian metric on Mn. We say that the nonnegative Radon mea-
sure on Mn, ||V ||, is the weight of V if ||V || = π#(V ). Here, π indicates the natural fiber bundle projection,
i.e. for every A ⊆ Gm(M), x ∈Mn, S ∈ Gk(TxM

n), we have ||V ||(A) := V (π−1(A)).

Definition 0.3. Let (Mn, g) be a n-dimensional Riemannian manifold with Levi-Civita connection ∇, let
X1
c(M) be the set of differentiable vector fields on M and V ∈ Vk(M) be a k-dimensional varifold

(2 ≤ k ≤ n). We define the first variation of V along the vector field X ∈ X1
c(M) as

δV (X) :=

∫
Gk(M)

divSX(x)dV (x, S),

where

divSX(x) =

k∑
i=1

〈τi(x),∇τiX(x)〉g ,

and {τ1(x), . . . , τk(x)} is an orthonormal basis of S ∈ Gr(k, TxM).

Given V ∈ Vk(M), using standard approximation theory we see that δV : X0
c(M) → R defines a linear

functional

Proposition 0.1 (First Variation Representation). Let V ∈ Vk(M) such that for all W ⊂⊂ U open set, there
exists a constant C := C(W ) such that

|δV (X)| ≤ C‖X‖L∞(W,V ),

for all X ∈ X0
c(W ). Then the total variation ‖δV ‖ is a Radon measure on U ⊂ M open set. Furthermore,

there exists H ‖V ‖-measurable function, and Z ⊂M with ‖V ‖(Z) = 0, such that

δV (X) = −
∫
M
〈X,H〉g d‖V ‖ +

∫
〈X, ν〉g d‖δV ‖sing,

where ν is a ‖δV ‖-measurable function with ‖ν(x)‖ = 1, and ‖δV ‖sing = ‖δV ‖xZ.
In resemble with the manifolds, H is called the generalized mean curvature vector, ν the generalized outer

normal and ‖δV ‖sing is called the generalized boundary of V

Monotonicity Formula
We are mainly interested in Varifolds without generalized boundary (i.e ‖δV ‖sing = 0). Furthermore, since
we know than H ∈ L1

loc(M,TM : ‖V ‖) then we ask to V to satisfy:

Allard’s Conditions:

Let (Mn, g)a Riemannian manifold, such that Secg ≤ b, for some b ∈ R, and V ∈ Vk(M). We say that V
satisfy AC if, for given X ∈ X1

c(M) such that spt ‖V ‖ ⊂ Bg(ξ, ρ), for given ξ ∈M and ρ < inj(M,g)(ξ),

|δV (X)| ≤ C

(∫
Bg(ξ,ρ)

|X|
p
p−1
g d‖V ‖

)p−1
p

.

Remark 0.1. Notice that, by a simple use of Hölder inequality

AC⇔

{
‖δV ‖ is a Radon measure & ‖δV ‖sing = 0

H ∈ Lp(M,TM : ‖V ‖),

furthermore

δV (X) =

∫
Gk(M)

divS(X(x))dV (x, S) = −
∫
M
〈X(x), H(x)〉g d‖V ‖(x)

Let u(x) = rξ(x) = dist(M,g)(x, ξ), and for ε > 0 given, let γ ∈ C1
c (]−∞, 1[) such that

γε(y) = 1 if |y| ≤ ε, γε(y) = 0 if |y| > 1, γ′ε(y) < 0 if ε < |y| < 1,

and consider,

X̃s,ε(x) =

(
γε

(
u(x)

s

)
(u∇u)

)
(x), for 0 < |s| < r0.

Then, for S ∈ Gr(k, TxM)

divS X̃s,ε = γε

(u
s

)
divS(u∇u) + γ′ε

(u
s

) u
s
− γ′ε

(u
s

) u
s

∣∣∣∇S⊥u∣∣∣2
g
.

Let h ∈ C1(U) a non-negative function, and consider

Xs,ε(y) := h(y)X̃s(y) = h(y)

(
γε

(
u(y)

s

)
(u∇u)

)
(y), for 0 < |s| < r0.

Then
divSXs,ε(y) = h(y) divS X̃ε,s +

〈
∇Sh(y), X̃ε,s

〉
g
,

therefore,

δV (Xs,ε) =

∫
Gk(U)

h(y)γε

(
u(y)

s

)
divS(u∇u)(y)dV (y, S) +

∫
Gk(U)

h(y)u(y)

s
γ′ε

(
u(y)

s

)
dV (y, S)

−
∫
Gk(U)

h(y)u(y)

s
γ′ε

(
u(y)

s

) ∣∣∇⊥u∣∣2
g

+

∫
Gk(U)

γε

(
u(y)

s

)〈
∇Sh(y), (u∇u) (y)

〉
g
dV (y, S)

To compare divS(u∇u) we make use of the following Lemma, which is an application of the Rauch com-
parison Theorem.

Lemma 0.1. Let (M, g) be a complete Riemannian manifold, with Levi-Civita connection ∇, let b ∈ R such
that Secg ≤ b, assume br0 < π. Then

divS(u∇u)(x) ≥ ku(x) cotb(u(x)),

for all x ∈ Bg(ξ, r0), where cotb(s) = csb(s)/snb(s).

In order to apply the Lemma above we have to ask to M to satisfy certain geometrical conditions, that is:

Geometric Conditions:

Let (Mn, g) a Riemannian manifold, we say that Mn satisfy GC if, for ξ ∈M :

1. Secg ≤ b for some b ∈ R
2. There exists r0 such that 0 < r0 < inj(M,g)(ξ) and r0b < π.

Theorem 0.2 (Fundamental Weighted Monotonicity Inequality). Let (M ,g) a complete Riemannian manifold
satisfying GC , and V ∈ RVk(M) a varifold satisfying AC , then, for all 0 < s < r0 we have in distributional
sense:

d

ds

(
1

sk

∫
Bg(ξ,s)

h(y)d‖V ‖(y)

)
≥ d

ds

∫
Bg(ξ,s)

h

∣∣∣∇⊥u∣∣∣2
g

rkξ
d‖V ‖+ 1

sk+1

(∫
Bg(ξ,s)

〈∇h + hH, (u∇u)〉g d‖V ‖)

)
+ c∗

k

sk

∫
Bg(ξ,s)

h(y)d‖V ‖(y)

where

c∗ = c∗(r0, b) :=
c(r0)− 1

s
, & c := c(s, b) =

s
√
b cot

(√
bs
)

b > 0

0 b ≤ 0,

Sobolev-Type inequality
Theorem 0.3 (Sobolev Type Inequality). Let (Mn, g) a complete manifold satisfying GC and V ∈ RVk(M)
satisfying AC , furthermore, assume that for ξ ∈ M ∩ spt ‖V ‖ given Θk (x, ‖V ‖) ≥ 1 for a.e. x ∈ Bg(ξ, r0,).
Let h ∈ C1

c (Bg(ξ, r0)) non negative, then there exists C > 0 such that(∫
M
h

n
n−1

)n−1
n

≤ C

∫
M

(∣∣∣∇Mh∣∣∣
g

+ h
(
|H|g − c

∗k
))

d‖V ‖,

Comments on the proof
Notice that the Fundamental Wighted Monotonicity Inequality implies that for a.e ξ ∈ spt ‖V ‖ ∩ spth

1

ωkσ
k

∫
Bg(ξ,σ)

hd‖V ‖ ≤ 1

ωkρ
k

∫
Bg(ξ,ρ)

hd‖V ‖ +

∫ ρ

σ

1

sk

(∫
Bg(ξ,s)

∣∣∣∇Mh∣∣∣
g

+ h
(
|H|g − c

∗k
)
d‖V ‖

)
ds.

Now, we use the following calculus Lemma

Lemma 0.4. Suppose f and g are bounded non-decreasing functions on ]0,∞[, and

1 ≤ 1

σk
f (σ) ≤ 1

ρk
f (ρ) +

∫ ρ

0

1

sk
g(s)ds, (1)

where 0 < σ < ρ <∞. Then, there exists ρ ∈]0, ρ0[ such that

f (5ρ) ≤ 1

2
5kρ0g(ρ),

where ρ0 = 2
(
limρ→∞ f (ρ)

)1
n.

Putting together Lemma ??, the Sobolev Type Inequality and a standard covering argument called the Vitali’s
5 Lemma, we get the result.
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