
INTERVAL NUMERICAL METHODS FOR FIXED POINTS
José Eduardo de Almeida Ayres · Luiz Henrique de Figueiredo

Finding the fixed points of a function is important in many contexts.
For instance, solving nonlinear equations is frequently cast as finding
fixed points. Newton’s method is probably the main example of this
formulation. Fixed points, and more generally periodic points, are
also important in discrete dynamical systems, especially in complex
dynamics, where periodic orbits play a key role. There is a large
literature on interval methods for solving nonlinear equations, but
surprisingly very little that is specific to fixed points.

Let f : Ω ⊆ Rd → Rd be a continuous function defined on a box Ω.
We describe a rigorous numerical method based on interval analysis
for finding all fixed points of f : attracting, repelling, and indifferent.
We specialize this method for finding all attracting periodic points of a
complex polynomial.

Our algorithm is a divide-and-conquer algorithm that recursively
subdivides Ω and discard boxes that cannot contain a solution to
isolate fixed points within a given tolerance ε. Our algorithm is both
spatially adaptive, because its search is guided by the location of the
fixed points of f , and analytically adaptive because its search is also
guided by the nature of the fixed points of f .

Interval analysis is the main tool for rigorous numerical computation.
It is based on interval arithmetic, an extension of ordinary arithmetic
operations and standard elementary functions to intervals. The basic
fact in interval analysis is that for each function f : Ω ⊆ Rd → R

expressed by a formula or an algorithm, there is a computable
function F automatically built from the expression of f , called the
natural interval extension of f , such that F (X) is an interval that
estimates the whole range of values taken by f on a box X ⊆ Ω:

F (X) ⊇ f(X) = {f(x) : x ∈ X}
Finding the exact range f(X) is a hard problem in general. Therefore,
the inclusion F (X) ⊇ f(X) is usually proper and interval estimates
are usually overestimates. Nevertheless, the estimates F (X) get
better asX shrinks to a point in the sense that F ({x}) = {f(x)} for
every x ∈ Ω. More precisely, we have at least linear convergence
for interval estimates: diam(F (X)) ≤ c diam(X) for some c

that depends only on f . Thus, interval methods are typically
divide-and-conquer methods that recursively explore the domain of f ,
getting better information about f as they refine the subdivision, and
discarding boxes that cannot contain a solution. For instance, when
finding the zeros of f in Ω, we can discard a box X whenever
0 /∈ F (X). This is a computational proof that f has no zeros in X.
However, because of overestimation, we cannot conclude that f has
a zero in X when 0 ∈ F (X). In this case, we subdivide X and
recursively test the pieces.

Automatic differentiation is the perfect companion for interval
arithmetic and works in a similar fashion. It automatically converts an
expression for f into an algorithm that simultaneously computes the
value of f and of all its partial derivatives. When fed intervals instead
of numbers, this algorithm computes interval estimates for the value
of f and of all its partial derivatives. This allows us to reason reliably
about both the range of values of f and its regions of monotonicity.

Interval arithmetic and automatic differentiation allow us to check the
hypotheses of the fixed-point theorems rigorously in a computer. The
existence of fixed points in a boxX guaranteed by Brouwer’s theorem
follows whenever F (X) ⊆ X because then f(X) ⊆ F (X) implies
f(X) ⊆ X. The existence of a unique fixed point in a box X
guaranteed by Banach’s theorem follows whenever F (X) ⊆ X and
‖F ′(X)‖ < 1 because these imply that f is a contraction in X,
thanks to the mean value inequality. Here, F ′ is an interval extension
of the Jacobian matrix of f , which can be computed with automatic
differentiation.

ALGORITHM

procedure Explore(X)

W,W ′← X, 1

for k = 1 to n do
W,W ′← F (W ), F ′(W )W ′

if W is outside the escape disk then
discard X

end
end
X ′← X ∩W
if X ′ = ∅ or |W ′‖ ≥ 1 then

discard X
else if diam(X ′) < ε then

accept X ′

else if W ⊆ X and ‖W ′‖ < 1 then
ExploreAttracting(X ′)

else if diam(X ′) < λ diam(X) then
Explore(X ′)

else
SubExplore(X ′)

end
end

procedure
ExploreAttracting(X)

x̂← mid(X)

repeat
x̂← fn(x̂)

until convergence
X ← [x̂, x̂]

repeat
X ← Inflate(X)

until F n(X) ⊆ X
repeat
X ← F n(X)

until convergence
accept X

end

Convergence
Interval iteration
Inflation
Picard
Brouwer
Banach
Explore
SubExplore

PERFORMANCE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
16

14

12

10

8

6

4

2

0

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
16

14

12

10

8

6

4

2

0

2

super attracting point strongly attracting point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
16

14

12

10

8

6

4

2

0

2

weakly attracting point

CONVERGENCE

ACKNOWLEDGEMENTS The first author is partially supported by CNPq and FAPERJ doctoral scholarships. The second author is partially supported by a CNPq research grant. This research was done
in the Visgraf Computer Graphics laboratory at IMPA. Visgraf is supported by the funding agencies FINEP, CNPq, and FAPERJ, and also by gifts from IBM Brasil, Microsoft, NVIDIA, and other companies.


