Construção de Fractais utilizando o Teorema de Napoleão

José Augusto da Costa Jacomeli & Fernando Pereira de Souza

Universidade Federal de Mato Grasso do Sul gu_jacomeli@outlook.com

Resumo

O presente trabalho apresenta uma aplicação do Teorema de Napoleão na construção de Fractais. O objetivo é aplicar o teorema em um triângulo equilátero obtendo a famosa figura "Estrela de Davi". Nosso estudo mostra que cada ponta da estrela também são triângulos equiláteros, permitindo assim aplicar o teorema nos triângulos menores, e assim sucessivamente, obtendo um fractal. O artigo apresenta as propriedades geométricas da área e perímetro da figura obtida, usando conceitos de séries numéricas.

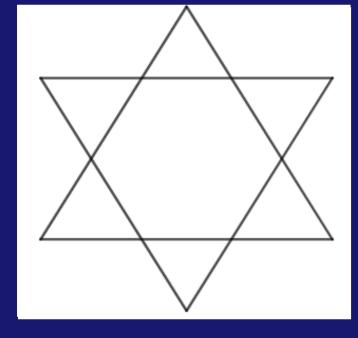
Introdução

O Teorema de Napoleão é um dos clássicos teoremas na área de geometria que apresenta diversas provas, generalizações e variantes. Por muitas vezes o Teorema vem sido esquecido e pouco estudo em cursos de graduação em matemática.

Apesar de não ser provado sua participação em relação a criação, o nome do Teorema é atribuído à Napoleão Bonaparte (1769 – 1821), que além de tudo era um grande admirador das ciências exatas.

O trabalho está inserido em uma atividade de pesquisa individual do grupo PET Conexões de Saberes Matemática CPTL/UFMS, que tem como objetivo revisar e ampliar o conhecimento com conceitos que por sua vez podem ser esquecidos ou podem não fazer parte da grade curricular do curso.

Primeiramente foi estudado o Teorema de Napoleão e sua demonstração, logo após, aplicamos o Teorema em um triângulo equilátero de lado I, obtemos assim a figura:



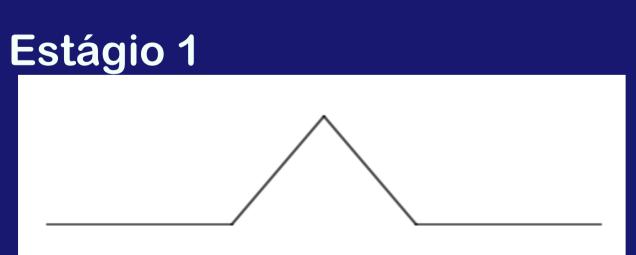
A figura a seguir consiste na Estrela de Davi, sendo 2 triângulos equiláteros congruentes de posições opostas, e ainda, cada ponta é um triângulo equilátero, logo podemos aplicar novamente o Teorema, e assim sucessivamente, formando um fractal.

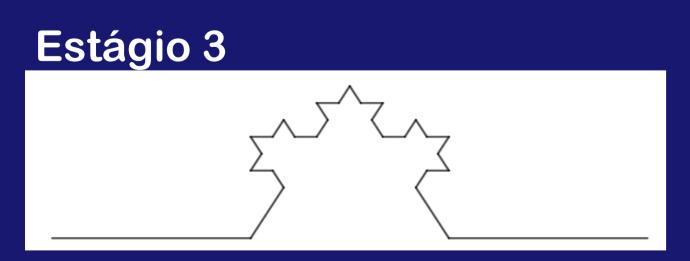
Resultados

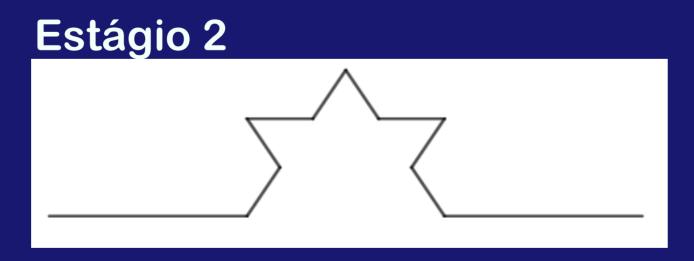
Teorema de Napoleão: Seja $\triangle ABC$ um triângulo arbitrário, em seus lados foram construídos triângulos equiláteros, os ortocentros desses triângulos formará um novo triângulo equilátero.

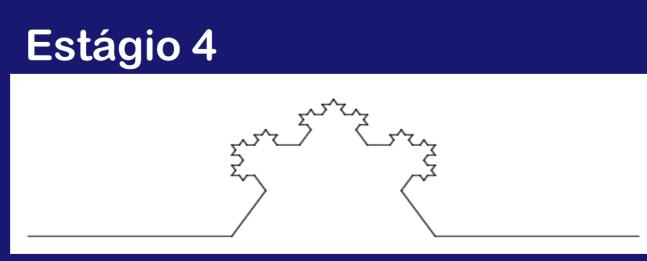
Ao aplicarmos o teorema em um triângulo equilátero de lado /, obteremos a famosa Estrela de Davi (figura 1), que consiste em 2 triângulos equiláteros congruentes de posições opostas, e ainda, por meio de semelhança de triângulos podemos concluir que os triângulos menores formados em suas pontas são equiláteros e ainda, que o hexágono central formado será regular.

Assim, aplicaremos novamente o teorema nos triângulos menores das pontas, e assim sucessivamente. Assim:









Assim, observando o Perímetro de cada estágio temos:

Estágio	N° de Lados	Proporção dos	N° de Lados	Proporção dos		
	Fixos	lados fixos	novos	lados novos		
1	-	-	2 ² .3	1/3		
2	-	-	2 ⁴ .3	1		
				$\overline{3^2}$		
3	2 ² 3	1	2 ⁴ 3 ²	1		
		32		33		
4	2 ² 3	1	2 ⁴ 3 ³	1		
		3 ²		3 ⁴		
	2 ² 3 ²	$\frac{\overline{3^2}}{1}$ $\overline{3^3}$				
	-2-		-4-4	4		
5	2 ² 3	$\frac{1}{2}$	2 ⁴ 3 ⁴	1		
	-2-2	$\frac{\overline{3^2}}{1}$		3 ⁵		
	2 ² 3 ²					
	_2_2	5° 1				
	2 ² 3 ³	$\frac{\overline{3^3}}{1}$ $\overline{3^4}$				
		3.				

Logo, teremos a seguinte relação para o n-ésimo estágio:

$$P_n = \sum_{k=1}^{n-2} 2^2 3^k \frac{l}{3^{k+1}} + 2^4 3^{n-1} \frac{2^2 l}{3} (n-2+2^2) = \frac{4l}{3} (n+2).$$

Assim, quando tendemos a aplicação infinita do Teorema

$$P = \lim_{n \to \infty} P_n = \lim_{n \to \infty} \frac{4l}{3}(n+2) = +\infty$$

Ou seja, temos que o perímetro tenderá ao infinito aplicando o teorema infinitas vezes

Agora, observando a área de cada estágio, temos:

				,	
Estágio	Hexágono	Triângulos fixos	Proporção do lado dos triângulos fixos	Triângulos novos	Proporção do lado dos Triângulos novos
1	1	-	-	2.3	1 -3 1
2	1	2.3	$\frac{1}{3}$	2 ² .3	
3	1	2.3 2 ² .3	1 3 1 22	2^23^2	$\frac{\overline{3^2}}{1}$ $\overline{3^3}$
4	1	2.3 2 ² .3 2 ² 3 ²	$\frac{1}{3}$ $\frac{1}{3^2}$ $\frac{1}{3^3}$	2 ² 3 ³	1 3 ⁴
5	1	2.3 $2^{2}.3$ $2^{2}3^{2}$ $2^{2}3^{3}$	$ \begin{array}{r} $	2 ² 3 ⁴	1 3 ⁵

Logo, teremos a seguinte relação para o n-ésimo estágio:

$$A_n = \frac{\sqrt{3}l^2}{3} + \sqrt{3}l^2 \left(3\frac{l}{3^4} + 3^2 \frac{l}{3^6} + 3^3 \frac{l}{3^8} + 3^4 \frac{l}{3^{10}} + \cdots \right)$$
$$= \frac{\sqrt{3}l^2}{3} + \sqrt{3}l^2 \sum_{k=1}^{n} (\frac{1}{3})^{k+2}$$

quando n tende ao infinito, é uma série geométrica com razão a, -1<a<1, então a série converge. Portanto, a área do fractal é finita. Conclusão

Os Fractais são poucos estudados no curso de graduação e neste trabalho foi possível reunir conceitos de geometria, cálculo e estudo de fractais. A figura obtida se assemelha com a ilha de Koch e possui as mesmas propriedades, perímetro infinito e área finita.

Referências

- [1] ALVES, D. S. Os Teoremas Esquecidos pelos Professores de Geometria Plana do Ensino Médio. Dissertação (UFMS) Universidade Federal de Mato Grosso do Sul, Campo Grande, 2015.
- [2] GONZAGA. G. C. S. *Teorema de Napoleão: Origem, Demonstração e Aplicações.* Dissertação (UFG) Universidade Federal de Goiás, Goiânia, 2015.