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Resumo

The Korteweg- de Vries [KdV] equation is a mathematical model of
waves on shallow water surfaces. It is particularly notable as the pro-
totypical example of an exactly solvable model, that is, a non-linear
partial differential equation whose solution can be exactly and preci-
sely specified. KdV can be solved by means of the inverse scattering
transform. The mathematical theory behind the KdV equation is a
topic of active research. The KdV equation was first introduced by
Boussinesq (1877) and rediscovered by Diederik Korteweg and Gus-
tav de Vries (1895).

Introduction

The Korteweg - de Vries equation forms one of a group of equations
governing nonlinear dispersive wave motion which are solvable on the
infinite line by the technique of inverse scattering. In this work, we
want to present the solution of the initial value problem for the kdv
equation, described as:
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Where a and b represent the nonlinearity and the dispersion respec-
tively. The original derivation of Korteweg and de Vries brings these
parameters in terms of physical quantities such as acceleration of gra-
vity, channel depth, etc. Here, for simplicity, we will keep a and b
only as generic parameters. Then let’s assume the constants a = 6

and b = 1, The factor 6 is just a scaling factor to make solutions
easier to describe
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Study for Exact Solution to the KdV Equation

In this section we shall examine solutions of the KdV equation [2]
and the methods one can use for obtaining them. We first start by
looking for travelling wave solutions. For that we make the Ansatz
u(x, t) = z(x − ct) ≡ z(ζ) for some c ∈ <. By inserting this
into the KdV equation yields an ordinary differential equation for z,
namely −cdz
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= 0, which can be easily integrated

yielding −cz + 3z2 + d2z
dζ2

= c1 where c1 is an integration cons-
tant. We then multiply the latter equation by dz

dζ
, integrate it again,

thus obtaining an additional integration constant c2. By rescaling the
(integration) constants, we find:(dz

dζ
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= −2z3 + cz2 + c1z + c2 ≡ F (z)

We have thus obtained a first order non-linear (ordinary) differential
equation which needs to be solved. Obviously the roots of F will play
an important role in our analysis and we can distinguish the following
cases
1.F has three distinct (real) roots.
2.F has two (real) roots, one has order two.
3.F has one simple root (and two imaginary ones).
4.F has one root of order three.
For details on the F function for analytical solutions, see [5] making
some conditions for the function F and its derivatives we have in case

x ±∞ we should have z → 0, dz
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→ 0, d

2z
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→ 0. From these re-

quirements it follows c1 = c2 = 0.1 Case Particular c1 = c2 = 0

In this case, we will have that the equation
(
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c1z + c2 is reduced to:
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By seperation of variables we may write
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through some algebraic manipulations and using appropriate transfor-
mations we obtain
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Now we use ζ = x− ct and we finally get

u(x− ct) =
c

2
sech2

(√c
2

(x− ct)
)

(6)

In order to have a real solution the quantity c must be a positive num-
ber. As it is easily seen from [?] for c > 0 the solitary wave moves to
the right. The second point is that the amplitude is proportional to the
speed which is indicated by the value of . Thus larger amplitude so-
litary waves move with a higher speed than smaller amplitude waves.
The figure, shows the propagation of such a wave for different times .

Figura 1: Solitary wave at t = 0, t = 4, t = 8 and t = 12

Work in Progress for the Study of KdV

Solving a nonlinear equation is somewhat cumbersome, so we present
the Hirota method for the construction of multisolitonic solutions for
non-linear integrable systems. Multisolitonic solutions can, of course,
be derived by other methods, such as reverse spreading, for example.
The advantage of the Hirota method is that it is more algebraic than
analytical, in addition to being faster to produce results. Let’s discuss
it in a bit more detail in the context of the KdV equation.
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1More general solutions can be found for other choices of c and . These solutions can be c1, c2 represented in terms of elliptic integrals, for details see [?]


