Uma condição para preservação de invariantes topológicos em espaços munidos com topologias comparáveis

Igor G. S. Sousa & Marcelo G. O. Vieira

Universidade Federal de Uberlândia - Instituto de Ciências Exatas e Naturais do Pontal

igorgabriel_sousa@outlook.com & mgov@ufu.br

Resumo

Este trabalho tem por objetivo estudar invariantes topológicos que se preservam em um conjunto munido de topologia, quando se troca a topologia do conjunto por outra topologia.

Introdução

Dado um conjunto X, denotaremos em todo o texto a família de todos os subconjuntos de X por $\mathcal{P}(X)$.

Definição 1. Seja X um conjunto e $\mathcal{T} \subset \mathcal{P}(X)$. Diz-se que a família \mathcal{T} é uma **topologia** em X se, e somente se,

 $i) \emptyset \in \mathcal{T} e X \in \mathcal{T};$

ii) Se $n \in \mathbb{N}$ e $U_1, \ldots, U_n \in \mathcal{T}$, então $U_1 \cap \ldots \cap U_n \in \mathcal{T}$; iii) Se I é um conjunto qualquer de índices e $U_i \in \mathcal{T}$, $\forall i \in I$, então $\bigcup_{i \in \mathcal{T}} U_i \in \mathcal{T}$.

Definição 2. Dados um conjunto X e uma topologia \mathcal{T} em X, diz-se que o par (X, \mathcal{T}) é um **espaço topológico**.

Exemplo 1. Seja X um conjunto não vazio. A coleção $\mathcal{T}_0 = \{\emptyset, X\}$ é uma topologia em X denominada **topologia trivial**. A família $\mathcal{P}(X)$ também é uma topologia em X denominada **topologia discreta**.

Exemplo 2. Considere $X = \{a,b\}$ tal que $a \neq b$. A família $\mathcal{T}^s = \{\emptyset, \{a\}, X\}$ é denominada **topologia de Sierpinski**. O conjunto (X, \mathcal{T}^s) é denominado **espaço de Sierpinski**.

Exemplo 3. Seja (X, \mathcal{T}) um espaço topológico e $W \subset X$. A família $\mathcal{T}_W = \{V \in \mathcal{P}(W) : V = U \cap W \text{ para algum } U \in \mathcal{T}\}$ é uma topologia em W chamada **topologia induzida** por \mathcal{T} .

Topologias comparáveis e preservação de continuidade

Definição 3. Seja X um conjunto e \mathcal{T} e \mathcal{S} duas topologias em X. Diz-se que:

(i) \mathcal{T} e \mathcal{S} são comparáveis se, e somente se, $\mathcal{T} \subset \mathcal{S}$ ou $\mathcal{S} \subset \mathcal{T}$. (ii) \mathcal{S} é mais fraca que \mathcal{T} (ou \mathcal{T} é mais forte que \mathcal{S}) se, e só se, $\mathcal{S} \subset \mathcal{T}$.

Considere X um conjunto e \mathcal{T} uma topologia qualquer em X. Note que \mathcal{T} é mais fraca que a topologia discreta em X e mais forte que a topologia trivial em X, ou seja, $\mathcal{T}_0 \subset \mathcal{T} \subset \mathcal{P}(X)$.

Proposição 1. Sejam (X, \mathcal{T}) e (Y, \mathcal{R}) espaços topológicos. A aplicação $f: (X, \mathcal{T}) \to (Y, \mathcal{R})$ é contínua se, e somente se, $f^{-1}(V) \in \mathcal{T}$, para todo $V \in \mathcal{R}$.

Proposição 2. Sejam (X, \mathcal{T}) , (X, \mathcal{S}) , (Y, \mathcal{R}) e (Y, \mathcal{Q}) espaços topológicos.

(i) Se $f:(X,\mathcal{S}) \to (Y,\mathcal{R})$ é contínua e \mathcal{T} é mais forte que \mathcal{S} , então $f:(X,\mathcal{T}) \to (Y,\mathcal{R})$ é contínua.

(ii) Se $f:(X,\mathcal{T}) \to (Y,\mathcal{R})$ é contínua e \mathcal{Q} é mais fraca que \mathcal{R} , então $f:(X,\mathcal{T}) \to (Y,\mathcal{Q})$ é contínua.

Demonstração. i) Tem-se por hipótese que $f: (X, \mathcal{S}) \to (Y, \mathcal{R})$ é contínua, logo $f^{-1}(V) \in \mathcal{S}$, para todo $V \in \mathcal{R}$. Por hipótese também $\mathcal{S} \subset \mathcal{T}$, donde resulta que $f^{-1}(V) \in \mathcal{T}$, para todo $V \in \mathcal{R}$. Portanto, $f: (X, \mathcal{T}) \to (Y, \mathcal{R})$ é contínua. ii) Procede-se de modo similar.

Corolário 1. Sejam (X, \mathcal{T}) , (X, \mathcal{S}) espaços topológicos. Se \mathcal{T} é mais forte que \mathcal{S} então a inclusão $i: (X, \mathcal{T}) \to (X, \mathcal{S})$ é contínua.

Uma condição para preservação de invariantes topológicos

Definição 4. Sejam (X, \mathcal{T}) e (Y, \mathcal{R}) esp. topológicos. Diz-se que: (i) Uma aplicação $f: (X, \mathcal{T}) \to (Y, \mathcal{R})$ é um **homeomorfismo** entre X e Y se, e somente se, f é contínua, bijetora e sua inversa f^{-1} é contínua.

(ii) (X, \mathcal{T}) e (Y, \mathcal{R}) são **homeomorfos** se, e somente se, existe um homeomorfismo $f: (X, \mathcal{T}) \to (Y, \mathcal{R})$.

Definição 5. Uma propriedade P é um invariante topológico se, e somente se, dado qualquer espaço topológico (X, \mathcal{T}) que possui a propriedade P e dado qualquer espaço topológico (Y, \mathcal{R}) homeomorfo a (X, \mathcal{T}) , tem-se que (Y, \mathcal{R}) também possui a propriedade P.

Definição 6. Uma propriedade P é um invariante contínuo direto se, e somente se, dado qualquer espaço topológico (X, \mathcal{T}) que possui a propriedade P e dada qualquer aplicação $f: (X, \mathcal{T}) \to (Y, \mathcal{R})$ contínua, tem-se que a imagem direta f(X), com respeito a topologia induzida por \mathcal{R} , também possui a propriedade P.

É fácil verificar que todo invariante contínuo direto é também um invariante topológico. A definição abaixo é um exemplo de invariante contínuo direto (ver referências) denominado **conexidade**.

Definição 7. Um espaço topológico (X, \mathcal{T}) é dito **conexo** se, e somente se, não existem $A, B \in \mathcal{T}$ tais que $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$ e $X = A \cup B$.

Definição 8. Seja (X, \mathcal{T}) um espaço topológico e $x \in X$. A união de todos subconjuntos conexos de X que contém x é denominada componente conexa de X com respeito a x e é denotada por C_x .

O número de componentes conexas presentes em um espaço topológico é um invariante topológico (ver referências).

Teorema 1. Sejam (X, \mathcal{T}) e (X, \mathcal{S}) espaços topológicos. Se (X, \mathcal{T}) tem P como invariante contínuo direto e \mathcal{S} é mais fraca que \mathcal{T} , então (X, \mathcal{S}) também tem P como invariante contínuo direto.

Demonstração. Segue do fato que P é invariante contínuo direto e que se $\mathcal{S} \subset \mathcal{T}$, então a inclusão $i : (X, \mathcal{T}) \to (X, \mathcal{S})$ é contínua. \square

Por fim, será mostrado um exemplo de invariante topológico que não é invariante contínuo direito. Considere $X = \{a,b\}$ e \mathcal{T}^s a topologia de Sierpinski em X. Como \mathcal{T}^s é mais fraca que $\mathcal{P}(X)$, então a inclusão $i\colon (X,\mathcal{T}^s)\to (X,\mathcal{S})$ é contínua. É fácil verificar que (X,\mathcal{T}^s) é conexo, logo possui uma única componente conexa. Também é fácil verificar que $(X,\mathcal{P}(X))$ possui duas componentes conexas, a saber, $\{a\}$ e $\{b\}$. Como os números de componentes conexas de $(X,\mathcal{P}(X))$ e de (X,\mathcal{T}^s) são diferentes, conclui-se que a propriedade número de componentes conexas não se preserva pela aplicação contínua inclusão, isto é, número de componentes conexas não é invariante contínuo direto, embora seja invariante topológico.

Conclusão

Uma condição para que um invariante topológico seja preservado mediante enfraquecimento da topologia de um espaço é que este seja um invariante contínuo direto.

Referências

[1] Kuhlkamp, N. Introdução à Topologia Geral, Editora UFSC, 2002.

[2] MUNKRES, J. Topology, A First Course, Prentice Hall, 2000.

Agradecimento

Este trabalho contou com o apoio do Programa de Educação Tutorial - PET vinculado a SESu/MEC.