PSEUDO-PARALLEL SURFACES IN $\mathbb{Q}^n_c \times \mathbb{R}$

Marcos Paulo Tassi¹, Guillermo Antonio Lobos², Alvaro Julio Yucra Hancco³

¹ Ph.D. student PPGM-UFSCar - e-mail: mtassi@dm.ufscar.br; ² Federal University of São Carlos - e-mail: lobos@dm.ufscar.br; ³ Federal University of Tocantins - e-mail: alvaroyucra@uft.edu.br

32° Colóquio Brasileiro de Matemática

IMPA, Rio de Janeiro, 28 de Julho a 02 de Agosto, 2019

Abstract

In this work we give a characterization of pseudo-parallel surfaces in $\mathbb{S}^n_c \times \mathbb{R}$ and $\mathbb{H}^n_c \times \mathbb{R}$ \mathbb{R} , extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n = 3, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when $n \geq 4$ we give examples of pseudo-parallel surfaces with non vanishing normal curvature.

The Result: A theorem of characterization

Let $f: M^2 \to \mathbb{Q}^n_c \times \mathbb{R}$ be a pseudo-parallel surface which does not have flat normal bundle on any open subset of M^2 . Then $n \ge 4$, f is λ -isotropic and

$$K > \Phi, \tag{4}$$

$$\lambda^{2} = 4K - 3\Phi + c(||T||^{2} - 1) > 0, \qquad (5)$$

$$\|H\|^2 = 3K - 2\Phi + c(\|T\|^2 - 1) \ge 0, \tag{6}$$

where K is the Gaussian curvature, λ is a smooth real-valued function on M^2 , H is

Preliminaries

 \mathbb{Q}^n_c with $c \neq 0$ to refer the sphere *n*-space \mathbb{S}^n_c or the hyperbolic *n*-space \mathbb{H}^n_c . An isometric immersion $f: M^m \to \mathbb{Q}^n_c \times \mathbb{R}$ is said to be:

(i) totally geodesic if $\alpha = 0$;

- (ii) parallel if $(\nabla_X \alpha) = 0$;
- semi-parallel if $R(X, Y) \cdot \alpha = 0$; (iii)

pseudo-parallel if $\tilde{R}(X, Y) \cdot \alpha = \Phi X \wedge Y \cdot \alpha$, (iv)

for some smooth function Φ in M^m and any vector fields X, Y in M^m . Here, α denotes the second fundamental form of f and $R = R \oplus R^{\perp}$ denotes the curvature tensor of $\mathbb{Q}_c^n \times \mathbb{R}$. The concept of pseudo-parallel immersions was first introduced by

Asperti-Lobos-Mercuri in [1] as a generalization of semi-parallel immersions. Also in [1], authors investigated pseudo-parallel surfaces in space forms. They obtained the following result:

Theorem (Asperti-Lobos-Mercuri [1])

Let $f: M^2 \to \mathbb{Q}^4_c$ be a surface with $R^{\perp} \neq 0$. Then f is pseudo-parallel if and only if f is superminimal, that is, f is a minimal immersion and is λ -isotropic.

Also, they classified such surfaces of codimension 3 and codimension 4 with constant pseudo-parallelism function.

We recall that an isometric immersion $f: M^n \to \tilde{M}^m$ is said to be λ -isotropic if

the mean curvature vector field of f and T is the tangent part $\frac{\partial}{\partial t}$, the canonic unit vector field tangent to the second factor of $\mathbb{Q}^n_c \times \mathbb{R}$. Conversely, if f is λ -isotropic then f is pseudo-parallel.

Remark

Theorem A extends for $\mathbb{Q}^n_c \times \mathbb{R}$ a similar result of pseudo-paralell surfaces into space forms given by Asperti-Lobos-Mercuri in [1].

Some examples

For the parametrizations $f_i : \mathbb{R}^2 \to \mathbb{Q}_c^3 \times \mathbb{R}$ below, we consider 0 < d < 1, k > 0 $0, a \neq 0$ and $b \in \mathbb{R}$. The first example is a semi-parallel surface in $\mathbb{S}^3_c \times \mathbb{R}$ which is not parallel. The second and third are pseudo-parallel surfaces in $\mathbb{S}^3_c \times \mathbb{R}$ and $\mathbb{H}^3_c imes \mathbb{R}$, respectively, and both are not semi-parallel. In all the cases $0 < \|T\| < 1$, that is, f is not just an inclusion of a pseudo-parallel surface in \mathbb{Q}_c^3 into $\mathbb{Q}_c^3 \times \mathbb{R}$.

 $f_1(u,v) = \frac{1}{\sqrt{c}}(\sqrt{1-d^2}\cos\theta(u),\sqrt{1-d^2}\sin\theta(u),d\cos v,d\sin v,kv),$ $f_2(u,v) = \frac{1}{\sqrt{c}} (d \cos u, d \sin u \cos v, d \sin u \sin v, \sqrt{1-d^2}, au+b),$ $f_3(u,v) = \frac{1}{\sqrt{-c}} (d \cosh u, d \sinh u \cos v, d \sinh u \sin v, \sqrt{d^2 - 1}, au + b).$ Let $f : \mathbb{R}^2 \to \mathbb{S}^5_c$ be the surface given by (see [2])

 $\|\alpha^{f}(X,X)\| = \lambda(p), \quad \forall X \in T_{p}M, \quad \forall p \in M^{n} \text{ with } \|X\| = 1.$

On the other hand, M. Sakaki studied surfaces in $\mathbb{S}^3 \times \mathbb{R}$ and $\mathbb{H}^3 \times \mathbb{R}$, showing in [3] the following theorem:

Theorem (Sakaki [3])

Let $f: M^2 \to \mathbb{Q}^3_c \times \mathbb{R}$ a minimal surface with $c \neq 0$. If f is λ -isotropic at any point, then f is a totally geodesic immersion.

By the Fundamental Equations and pseudo-parallelism condition we get the relations:

$$R^{\perp}(e_1, e_2)\alpha_{11} = 2(\Phi - K)\alpha_{12}, = -R^{\perp}(e_1, e_2)\alpha_{22}$$
 (1)

$$P^{\perp}(e_1, e_2)\alpha_{12} = (K - \Phi)(\alpha_{11} - \alpha_{22}),$$
 (2)

 $K = c(1 - ||T||^2) + \langle \alpha_{11}, \alpha_{22} \rangle - ||\alpha_{12}||^2,$ (3)

where $\{e_1, e_2\}$ is an orthonormal frame of M^2 , $\alpha_{ij} = \alpha(e_i, e_j)$, K is the Gaussian curvature of M^2 and is the tangent part of $\frac{\partial}{\partial t}$, the canonical unit vector field tangent to the second factor of $\mathbb{Q}^n_c \times \mathbb{R}$.

Proposition 1

Let $f: M^2 \to \mathbb{Q}^n_c \times \mathbb{R}$ be a surface with flat normal bundle. Then f is pseudo-parallel immersion.

 $f(x,y) = \frac{2}{\sqrt{6c}} (\cos u \cos v, \cos u \sin v, \frac{\sqrt{2}}{2} \cos(2u), \sin u \cos v, \sin u \sin v, \frac{\sqrt{2}}{2} \sin(2u)),$ where $u = \sqrt{\frac{c}{2}}x$, $v = \frac{\sqrt{6c}}{2}y$. f is a pseudo-parallel immersion in \mathbb{S}_c^5 with $\Phi = \frac{-c}{2}$. Thus, if $i: \mathbb{S}^5_c \to \mathbb{S}^5_c \times \mathbb{R}$ is the totally geodesic inclusion given by i(x) = (x, 0), by Proposition 2 we have that $i \circ f$ is a pseudo-parallel immersion in $\mathbb{S}^5_c \times \mathbb{R}$ with non vanishing normal curvature.

Question

- 1 Are there other examples, up to isometries, of pseudo parallel surfaces in $\mathbb{Q}_c^3 \times \mathbb{R} \ (c \neq 0)$, which T is not a principal direction?
- **2** Is there an isometric immersion of a topological 2-sphere into $\mathbb{S}^4 \times \mathbb{R}$ that is not included in a slice?

Conjecture:

'The only minimal Φ -pseudo-parallel surfaces in $\mathbb{Q}_c^4 imes \mathbb{R}$ with non vanishing normal curvature and constant Φ are given for $i \circ f$ where i is totally geodesic in $\mathbb{S}^4_c \times \mathbb{R}$ and f the Veronese surface". See *Conjecture* in [4]"

Acknowledgements

The first author is partially supported by CAPES, Grant 88881.133043/2016-01. The second author is partially suported by FAPESP, Grant 2016/23746-6.

Since f has flat normal bundle, by equations (1) to (2) we conclude that f is Φ -pseudo-parallel by taking $\Phi = K$, where K is the Gaussian curvature of M^2 .

We have two propositions that is useful to construct examples of pseudo-parallel surfaces.

Proposition 2

Let $f: M^m \to \mathbb{Q}^n_c$ be an isometric immersion and let $j: \mathbb{Q}^n_c \to \mathbb{Q}^n_c \times \mathbb{R}$ be a totally geodesic immersion. If f is Φ -pseudo-parallel, then $j \circ f$ is Φ -pseudo-parallel.

Proposition 3

Let $f: M^m \to \mathbb{Q}^n_c \times \mathbb{R}$ be an isometric immersion and let $j: \mathbb{Q}^n_c \times \mathbb{R} \to \mathbb{Q}^{n+l}_c \times \mathbb{R}$ be a totally geodesic immersion. If f is Φ -pseudo-parallel, then $j \circ f$ is Φ -pseudoparallel.

References

- A.C. ASPERTI; G.A. LOBOS; F. MERCURI, *Pseudoparallel* |1| hypersurfaces of a space form, Adv. Geom. 2, (2002), 57-71.
- K. SAKAMOTO, Constant isotropic surfaces in 5-dimensional space forms, Geometria Dedicata **29** (1989), 293–306.
- M. SAKAKI, On the curvature ellipse of minimal surfaces in $N^3(c) \times \mathbb{R}$, |3| Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 165-172.
- M.P. TASSI; G.A. LOBOS; A. YUCRA, *Pseudo-parallel surfaces of* |4| $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$, Bull. Braz. Math. Soc. New Series (2019) http://doi.org/10.1007/s00574-018-00126-9.