PSEUDO-PARALLEL SURFACES IN $\mathbb{Q}_{c}^{n} \times \mathbb{R}$

Marcos Paulo Tassi ${ }^{1}$, Guillermo Antonio Lobos ${ }^{2}$, Alvaro Julio Yucra Hancco ${ }^{3}$
 32° Colóquio Brasileiro de Matemática
IMPA, Rio de Janeiro, 28 de Julho a 02 de Agosto, 2019

Abstract

In this work we give a characterization of pseudo-parallel surfaces in $\mathbb{S}_{c}^{n} \times \mathbb{R}$ and $\mathbb{H}_{c}^{n} \times$ \mathbb{R}, extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when $n=3$, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when $n \geq 4$ we give examples of pseudo-parallel surfaces with non vanishing normal curvature.

Preliminaries

\mathbb{Q}_{c}^{n} with $c \neq 0$ to refer the sphere n-space \mathbb{S}_{c}^{n} or the hyperbolic n-space \mathbb{H}_{c}^{n}.
An isometric immersion $f: M^{m} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ is said to be:
(i) totally geodesic if $\alpha=0$;
(ii) parallel if $\left(\nabla_{x} \alpha\right)=0$;
(iii) semi-parallel if $\tilde{R}(X, Y) \cdot \alpha=0$;
(iv) pseudo-parallel if $\tilde{R}(X, Y) \cdot \alpha=\Phi X \wedge Y \cdot \alpha$,
for some smooth function Φ in M^{m} and any vector fields X, Y in M^{m}. Here, α denotes the second fundamental form of f and $\tilde{R}=R \oplus R^{\perp}$ denotes the curvature tensor of $\mathbb{Q}_{c}^{n} \times \mathbb{R}$. The concept of pseudo-parallel immersions was first introduced by Asperti-Lobos-Mercuri in [1] as a generalization of semi-parallel immersions. Also in [1], authors investigated pseudo-parallel surfaces in space forms. They obtained the following result:

Theorem (Asperti-Lobos-Mercuri [1])

Let $f: M^{2} \rightarrow \mathbb{Q}_{c}^{4}$ be a surface with $R^{\perp} \neq 0$. Then f is pseudo-parallel if and only if f is superminimal, that is, f is a minimal immersion and is λ-isotropic.

Also, they classified such surfaces of codimension 3 and codimension 4 with constant pseudo-parallelism function.
We recall that an isometric immersion $f: M^{n} \rightarrow \tilde{M}^{m}$ is said to be λ-isotropic if $\left\|\alpha^{f}(X, X)\right\|=\lambda(p), \quad \forall X \in T_{p} M, \quad \forall p \in M^{n}$ with $\|X\|=1$.
On the other hand, M. Sakaki studied surfaces in $\mathbb{S}^{3} \times \mathbb{R}$ and $\mathbb{H}^{3} \times \mathbb{R}$, showing in [3] the following theorem:

Theorem (Sakaki [3])

Let $f: M^{2} \rightarrow \mathbb{Q}_{c}^{3} \times \mathbb{R}$ a minimal surface with $c \neq 0$. If f is λ-isotropic at any point, then f is a totally geodesic immersion.
By the Fundamental Equations and pseudo-parallelism condition we get the relations:

$$
\begin{align*}
R^{\perp}\left(e_{1}, e_{2}\right) \alpha_{11} & =2(\Phi-K) \alpha_{12},=-R^{\perp}\left(e_{1}, e_{2}\right) \alpha_{22} \tag{1}\\
R^{\perp}\left(e_{1}, e_{2}\right) \alpha_{12} & =(K-\Phi)\left(\alpha_{11}-\alpha_{22}\right), \tag{2}\\
K & =c\left(1-\|T\|^{2}\right)+\left\langle\alpha_{11}, \alpha_{22}\right\rangle-\left\|\alpha_{12}\right\|^{2}, \tag{3}
\end{align*}
$$

where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal frame of $M^{2}, \alpha_{i j}=\alpha\left(e_{i}, e_{j}\right), K$ is the Gaussian curvature of M^{2} and is the tangent part of $\frac{\partial}{\partial t}$, the canonical unit vector field tangent to the second factor of $\mathbb{Q}_{c}^{n} \times \mathbb{R}$.

Proposition 1

Let $f: M^{2} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ be a surface with flat normal bundle. Then f is pseudo-parallel immersion.

Proof

Since f has flat normal bundle, by equations (1) to (2) we conclude that f is Φ-pseudo-parallel by taking $\Phi=K$, where K is the Gaussian curvature of M^{2}

We have two propositions that is useful to construct examples of pseudo-parallel surfaces.

Proposition 2

Let $f: M^{m} \rightarrow \mathbb{Q}_{c}^{n}$ be an isometric immersion and let $j: \mathbb{Q}_{c}^{n} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ be a totally geodesic immersion. If f is Φ-pseudo-parallel, then $j \circ f$ is Φ-pseudo-parallel.

Proposition 3

Let $f: M^{m} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ be an isometric immersion and let $j: \mathbb{Q}_{c}^{n} \times \mathbb{R} \rightarrow \mathbb{Q}_{c}^{n+1} \times \mathbb{R}$ be a totally geodesic immersion. If f is Φ-pseudo-parallel, then $j \circ f$ is Φ-pseudoparallel.

The Result: A theorem of characterization

Let $f: M^{2} \rightarrow \mathbb{Q}_{c}^{n} \times \mathbb{R}$ be a pseudo-parallel surface which does not have flat normal bundle on any open subset of M^{2}. Then $n \geq 4, f$ is λ-isotropic and

$$
\begin{align*}
& K>\Phi \\
& \lambda^{2}=4 K-3 \Phi+c\left(\|T\|^{2}-1\right)>0 \tag{5}\\
& \|H\|^{2}=3 K-2 \Phi+c\left(\|T\|^{2}-1\right) \geq 0 \tag{6}
\end{align*}
$$

where K is the Gaussian curvature, λ is a smooth real-valued function on M^{2}, H is the mean curvature vector field of f and T is the tangent part $\frac{\partial}{\partial t}$, the canonic unit vector field tangent to the second factor of $\mathbb{Q}_{c}^{n} \times \mathbb{R}$.
Conversely, if f is λ-isotropic then f is pseudo-parallel.

Remark

Theorem A extends for $\mathbb{Q}_{c}^{n} \times \mathbb{R}$ a similar result of pseudo-paralell surfaces into space forms given by Asperti-Lobos-Mercuri in [1].

Some examples

For the parametrizations $f_{i}: \mathbb{R}^{2} \rightarrow \mathbb{Q}_{c}^{3} \times \mathbb{R}$ below, we consider $0<d<1, k>$ $0, a \neq 0$ and $b \in \mathbb{R}$. The first example is a semi-parallel surface in $\mathbb{S}_{c}^{3} \times \mathbb{R}$ which is not parallel. The second and third are pseudo-parallel surfaces in $\mathbb{S}_{c}^{3} \times \mathbb{R}$ and $\mathbb{H}_{c}^{3} \times \mathbb{R}$, respectively, and both are not semi-parallel. In all the cases $0<\|T\|<1$, that is, f is not just an inclusion of a pseudo-parallel surface in \mathbb{Q}_{c}^{3} into $\mathbb{Q}_{c}^{3} \times \mathbb{R}$.
$f_{1}(u, v)=\frac{1}{\sqrt{c}}\left(\sqrt{1-d^{2}} \cos \theta(u), \sqrt{1-d^{2}} \sin \theta(u), d \cos v, d \sin v, k v\right)$,
$f_{2}(u, v)=\frac{1}{\sqrt{c}}\left(d \cos u, d \sin u \cos v, d \sin u \sin v, \sqrt{1-d^{2}}, a u+b\right)$,
$f_{3}(u, v)=\frac{1}{\sqrt{-c}}\left(d \cosh u, d \sinh u \cos v, d \sinh u \sin v, \sqrt{d^{2}-1}, a u+b\right)$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{S}_{c}^{5}$ be the surface given by (see [2]) $f(x, y)=\frac{2}{\sqrt{6 c}}\left(\cos u \cos v, \cos u \sin v, \frac{\sqrt{2}}{2} \cos (2 u), \sin u \cos v, \sin u \sin v, \frac{\sqrt{2}}{2} \sin (2 u)\right)$, where $u=\sqrt{\frac{c}{2}} x, v=\frac{\sqrt{6 c}}{2} y . f$ is a pseudo-parallel immersion in \mathbb{S}_{c}^{5} with $\Phi=\frac{-c}{2}$. Thus, if $i: \mathbb{S}_{c}^{5} \rightarrow \mathbb{S}_{c}^{5} \times \mathbb{R}$ is the totally geodesic inclusion given by $i(x)=(x, 0)$, by Proposition 2 we have that $i \circ f$ is a pseudo-parallel immersion in $\mathbb{S}_{c}^{5} \times \mathbb{R}$ with non vanishing normal curvature.

Question

1 Are there other examples, up to isometries, of pseudo parallel surfaces in $\mathbb{Q}_{c}^{3} \times \mathbb{R}(c \neq 0)$, which T is not a principal direction?
2 Is there an isometric immersion of a topological 2-sphere into $\mathbb{S}^{4} \times \mathbb{R}$ that is not included in a slice?

Conjecture:

"The only minimal Φ-pseudo-parallel surfaces in $\mathbb{Q}_{c}^{4} \times \mathbb{R}$ with non vanishing normal curvature and constant Φ are given for $i \circ f$ where i is totally geodesic in $\mathbb{S}_{c}^{4} \times \mathbb{R}$ and f the Veronese surface". See Conjecture in [4]"

Acknowledgements

The first author is partially supported by CAPES, Grant 88881.133043/2016-01 The second author is partially suported by FAPESP, Grant 2016/23746-6.

References

[1] A.C. Asperti; G.A. Lobos; F. Mercuri, Pseudoparallel hypersurfaces of a space form, Adv. Geom. 2, (2002), 57-71
[2] K. Sakamoto, Constant isotropic surfaces in 5-dimensional space forms Geometria Dedicata 29 (1989), 293-306.
[3] M. Sakaki, On the curvature ellipse of minimal surfaces in $N^{3}(c) \times \mathbb{R}$, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), 165-172
[4] M.P. Tassi; G.A. Lobos; A. Yucra, Pseudo-parallel surfaces of $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, Bull. Braz. Math. Soc. New Series (2019) http://doi.org/10.1007/s00574-018-00126-9

