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‘ 1. Introduction |

Presentation of the model
The one dimensional fractional Schrodinger equations

iOu(t, z) + (=AY 2u(t, x) = Mul(z, )| Pulz, 1), z,t € R

was introduced in the theory of the fractional quantum mechanics where the Feynmann path
integrals approach is generalized to «a-stable Lévy process . Also it appears in the water
wave models.

In this presentation, we study the following initial boundary value problem (IBVP) on the pos-
itive half-line

iOpu(t, z) + (—A)2u(t, z) = Nu(t, z)[2u(t, ), (t,z) € R x RT,
u(0, x) = ug(x), v € RT, (1)
w(0,t) = f(t), te(0,7T),

where « € (1,2) and the nonlocal operator (—A)*/2, is defined by

(—A)Y2u(z) = / e"C|e[ /25 (e)de for v e CFO(RT) (2)
R
and
~_ v(x), forax >0,
N wu(—=z), forz<O0.
where e Len
up € HS(RY and f € H 2 (RT). (3)

we are interested on the following questions for the IBVP (1):

e /s the IBVP (1) local well-posedness in the low regularity Sobolev space, more precisely,
in H3(RT) for0 < s < 172

e /s there some smoothing effect for the IBVP (1) ?
We state the main theorem for IBVP (1) as follows.
Theorem 1.1 Let s € (QTTO‘, %). For given Initial-boundary data vy and f satisfying (3) there
exist a positive time T = T { |luo|l gsw+): I/ 2k <R+>) and unique solution u(t,z) €

C((0,T); H5(RT)) of the IBVP (1), satisfying

we C(RY H 2o (0,T)) N X*Y((0,T) x RY),

25— 1+a

for some b(s) < % Moreover, the map (ug, ) — u is analytic from H5(R™) x H (RT) to
C((0,7); H5(RY)).
Moreover, for a < min{%;1 5+0=2} holds

u(w,t) = Ly, ¢(x,t) € HRT), (4)

for allt in (0,T), where L, ((z,t) denotes the solution of the linearized IBVP (1).

Throughout of this presentation, we fix a cutoff function ¢» € C§°(R) such that ¢(t) = 1 if
t € |—1,1] and supp v C [—2,2].

‘ 2. Preliminary |

2.1 Bourgain spaces

For s,b € R, and o € (1,2) we introduce the classical Bourgain spaces X5 related to the
Schrédinger equation as the completion of S’(R?) under the norms

falleo = ([ [t - tgace >|2d5d7)

2.2 Riemman-Liouville fractional integral

a—1

The tempered distribution 12( ] IS defined as a locally integrable function for Re o« > 0 by

t?f—_l _L e a—1
<F(oz)’ f> = F(CV)/O t T f(t)dt.

/Al , (5)
['(«) [a+ k)
for all k € N.

Definition 2.1 If f € C{°(R™), we define

For Re a > 0, we have that

tOél

Lof = [(a)

« f

para todo o € C

‘ 3. Linear Version |

We define the unitary group associated to the linear fractional Schrodinger equation as

o(t) = e 0‘/2¢ _ / eiazfeitlﬂo‘@(g)dg
where a € (0,2). v is a solution of the foIIowmg problem

{i@tv(t, )+ (=A)*2y(t,2) =0, (t,z) € R xR,
v(0,2) = ¢(x), r € R.
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Lemma 3.1 Let s € R. if¢p € H5(R), then for o € (1,2) andb € (0,1) we have

it(=2)"" it(—A)*/?
e o@) o mm,)) + o) ¢<x>nC(R%H S,
A 3(@) s < el g 6] my

4. The Duhamel Boundary Forcing Operator |

~irst, we consider « € (1, 2) and define the function B is defined as follow
B(z) = / el (HEl" gg
R

Is well defined and the proof is standard.
On the other hand, consider the following equation

rz’ w4 (=A% = on x) I T
[ ()= B @ T, @ eRxOT)

u(r,0) =0, zeR
\

For any f we define

_ 1 t _ h—1/a L N,
Llf(a:,t)—B(O)F(l_é)/O (t— 1y lop ((ttl)w> I, (t) di

which is the solution of (7).
Now we state the needed estimates for the Duhamel boundary forcing operators class.

Lemma 4.1 Let0 < b < 3, —5 < s < 2L anda € (1,2). Then

V@Dl 1)+ IOOLT O o

+ ||¢<t)£f(x7t)HXs’b S CHfHHOQs—Egl<R+>

‘ 5. Nonlinear Versions |

We define the Duhamel inhomogeneous solution operator D as

t . / of2
Dw(x,t) = —2’/ git=t)(=A)" w(x, tdt,
0

which is a solution for the following problem

Oz, t) + (—A)*20(z, 1) = w(z, ), (z,t) € R x R,
v(z,0) =0, z € R.

<c<0<b<c+1 then:
R LGl B

+ [0 Dwlz, )| xso < [lw]] xse.

‘ 6. Bilinear Estimate |

Proposition 6.1 For % < s and a < min{%2, ¥t9=2} there exist ¢ > 0 such that for

1—e<b< i, wehave

Lemma 5.1 Let0 < s < 1/2 and —

OOl —"

1—|—a
(

2 3
"l xsras S Nlull o

7. Theorema 1.1: Idea of the proof |

et 7 the Banach space given by

2s—1+a

750 = C(Ry, H¥(Ry)) N C(Ry, H 20 (Ry)) N X570

under the norm

[0l zoo = sup [[o(t, )| s + sup [[v(-, @)|| 2510 + |0 00
teR 7 z€R | H 20 7

Let
Aw)(t) = ()" 5y + v(t)D (Jul?u) (1) + (LA

where h(t) = (X0, 400 V(0 (1) = 00" ), — (0D (|ulPu) (0], )|

Our goal is to show that A defines a contraction map on any ball 78
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