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1. Introduction

Presentation of the model
The one dimensional fractional Schrödinger equations

i∂tu(t, x) + (−∆)α/2u(t, x) = λ|u(x, t)|2u(x, t), x, t ∈ R

was introduced in the theory of the fractional quantum mechanics where the Feynmann path
integrals approach is generalized to α-stable Lévy process . Also it appears in the water
wave models.
In this presentation, we study the following initial boundary value problem (IBVP) on the pos-
itive half-line 

i∂tu(t, x) + (−∆)α/2u(t, x) = λ|u(t, x)|2u(t, x), (t, x) ∈ R× R+,

u(0, x) = u0(x), x ∈ R+,

u(0, t) = f (t), t ∈ (0, T ),

(1)

where α ∈ (1, 2) and the nonlocal operator (−∆)α/2, is defined by

(−∆)α/2v(x) =

∫
R
eixξ|ξ|α/2ˆ̃v(ξ)dξ for v ∈ C∞0 (R+) (2)

and

ṽ =

{
v(x), for x ≥ 0,

v(−x), for x < 0.

where
u0 ∈ Hs(R+) and f ∈ H

2s−1+α
2α (R+). (3)

we are interested on the following questions for the IBVP (1):

• Is the IBVP (1) local well-posedness in the low regularity Sobolev space, more precisely,
in Hs(R+) for 0 ≤ s < 1

2?
• Is there some smoothing effect for the IBVP (1)?

We state the main theorem for IBVP (1) as follows.
Theorem 1.1 Let s ∈ (2−α

4 , 1
2). For given initial-boundary data u0 and f satisfying (3) there

exist a positive time T := T

(
‖u0‖Hs(R+), ‖f‖H 2s−1+α

2α (R+)

)
and unique solution u(t, x) ∈

C((0, T );Hs(R+)) of the IBVP (1), satisfying

u ∈ C
(
R+; H

2s−1+α
2α (0, T )

)
∩Xs,b((0, T )× R+),

for some b(s) < 1
2. Moreover, the map (u0, f ) 7−→ u is analytic from Hs(R+) ×H

2s−1+α
8 (R+) to

C
(
(0, T ); Hs(R+)

)
.

Moreover, for a < min{α−1
2 , 4s+α−2

2 } holds

u(x, t)− Lu0,f (x, t) ∈ Hs+a(R+), (4)

for all t in (0, T ), where Lu0,f (x, t) denotes the solution of the linearized IBVP (1).

Throughout of this presentation, we fix a cutoff function ψ ∈ C∞0 (R) such that ψ(t) = 1 if
t ∈ [−1, 1] and supp ψ ⊂ [−2, 2].

2. Preliminary

2.1 Bourgain spaces
For s, b ∈ R, and α ∈ (1, 2) we introduce the classical Bourgain spaces Xs,b related to the
Schrödinger equation as the completion of S′(R2) under the norms

‖u‖Xs,b, =

(∫ ∫
〈ξ〉2s〈τ − |ξ|α〉2b|û(ξ, τ )|2dξdτ

)1
2

2.2 Riemman-Liouville fractional integral

The tempered distribution tα−1+

Γ(α)
is defined as a locally integrable function for Re α > 0 by〈
tα−1
+

Γ(α)
, f

〉
=

1

Γ(α)

∫ +∞

0
tα−1f (t)dt.

For Re α > 0, we have that
tα−1
+

Γ(α)
= ∂kt

(
tα+k−1
+

Γ(α + k)

)
, (5)

for all k ∈ N.
Definition 2.1 If f ∈ C∞0 (R+), we define

Iαf =
tα−1
+

Γ(α)
∗ f.

para todo α ∈ C

3. Linear Version

We define the unitary group associated to the linear fractional Schrodinger equation as

v(t) := eit(−∆)α/2φ =
1

2π

∫
R
eixξeit|ξ|

α
φ̂(ξ)dξ

where α ∈ (0, 2). v is a solution of the following problem{
i∂tv(t, x) + (−∆)α/2v(t, x) = 0, (t, x) ∈ R× R,
v(0, x) = φ(x), x ∈ R.

(6)

Lemma 3.1 Let s ∈ R. if φ ∈ Hs(R), then for α ∈ (1, 2) and b ∈ (0, 1) we have

‖eit(−∆)α/2φ(x)‖C(Rt;Hs(Rx)) + ‖ϕ(t)eit(−∆)α/2φ(x)‖
C(Rx;H

2s−1+α
2α (Rt))

+ ‖ψ(t)eit(−∆)α/2φ(x)‖Xs,b ≤ c‖ψ‖H1(R)‖φ‖Hs(R).

4. The Duhamel Boundary Forcing Operator

First, we consider α ∈ (1, 2) and define the function B is defined as follow

B(x) =

∫
R
eixξ ei|ξ|

α
dξ

is well defined and the proof is standard.
On the other hand, consider the following equation

i∂tu + (−∆)α/2u =
2π

B(0)Γ(1− 1
α)
δ0(x) I 1

α−1f (t), (x, t) ∈ R× (0, T )

u(x, 0) = 0, x ∈ R
(7)

For any f we define

Lf (x, t) =
1

B(0)Γ(1− 1
α)

∫ t

0
(t− t′)−1/αB

(
x

(t− t′)1/α

)
I 1
α−1f (t′) dt′

which is the solution of (7).
Now we state the needed estimates for the Duhamel boundary forcing operators class.
Lemma 4.1 Let 0 < b < 1

2, −1
2 < s < 2α−1

α and α ∈ (1, 2). Then

‖Lf (x, t)‖
C
(
Rt;Hs(Rx)

) + ‖ψ(t)Lf (x, t)‖
C
(
Rx;H

2s+α−1
2α

0 (R+
t )
)

+ ‖ψ(t)Lf (x, t)‖Xs,b ≤ c‖f‖
H

2s+α−1
2α

0 (R+)
.

5. Nonlinear Versions

We define the Duhamel inhomogeneous solution operator D as

Dw(x, t) = −i
∫ t

0
ei(t−t

′)(−∆)α/2w(x, t′)dt′,

which is a solution for the following problem{
i∂tv(x, t) + (−∆)α/2v(x, t) = w(x, t), (x, t) ∈ R× R,
v(x, 0) = 0, x ∈ R.

(8)

Lemma 5.1 Let 0 < s < 1/2 and −1
2 < c ≤ 0 ≤ b ≤ c + 1, then:

‖ψ(t)Dw(x, t)‖
C
(
Rt;Hs(Rx)

) + ‖ψ(t)Dw(x, t)‖
C(Rx;H

2s−1+α
2α (Rt))

+ ‖ψ(t)Dw(x, t)‖Xs,b ≤ ‖w‖Xs,c.

6. Bilinear Estimate

Proposition 6.1 For 2−α
4 < s and a < min{α−1

2 , 4s+α−2
2 } there exist ε > 0 such that for

1
2 − ε < b < 1

2, we have
‖|u|2u‖Xs+a,−b . ‖u‖3Xs,b

7. Theorema 1.1: Idea of the proof

Let Zs,b the Banach space given by

Zs,b = C(Rt, Hs(Rx)) ∩ C(Rx, H
2s−1+α

2α (Rt)) ∩Xs,b

under the norm

‖v‖Zs,b = sup
t∈R
‖v(t, ·)‖Hs + sup

x∈R
‖v(·, x)‖

H
2s−1+α

2α
+ ‖v‖Xs,b,

Let
Λ(u)(t) = ψ(t)eit(−∆)α/2ũ0 + ψ(t)D

(
|u|2u

)
(t) + ψ(t)Lh(t)

where h(t) =
(
χ(0,+∞)ψ(t)f (t)− ψ(t)eit(−∆)α/2 ũ0|x=0 − ψ(t)D

(
|u|2u

)
(t)|x=0

)∣∣∣
(0,+∞)

Our goal is to show that Λ defines a contraction map on any ball Zs,b
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