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Abstract

A general variational framework is stabilished for problems involving
the Laplacian Operator in RN . The well-known equation

−∆u+ u = f (u) , u ∈ H1
(
RN
)

(1)

is studied with suitable hypothesis on f : R→ R using Ekeland’s Va-
riational Principle and bypassing the lack of compactness with Lions’
Lemma, proving the existence of a weak solution to the problem.

Introduction

This work aims in studying variational methods for proving the exis-
tence of weak solutions to some elliptic Partial Differential Equations.
As Sobolev’s continuous and compact immersions form the basic arse-
nal of such framework, problems in unlimited domains in RN present
additional difficulties due to the lack of Sobolev Compact Immersions,
and thus lead to the need of additional tools (like Lions’ Lemma) for
stabilishing non-triviality of the constructed solution.
As such, this work begins by stabilishing the variational framework
for studying a partial differential equation in RN involving the Lapla-
cian operator, followed by Ekeland’s Variational Principle and Lions’
Lemma, and ends with the application of those propositions showing
the existence of a weak solution to that problem.

Variational Framework

The variational method consists in finding a functional I such that
searching for weak solutions for the original problem is reduced to fin-
ding critial points of I. For the elliptic problem considered, the functi-
onal and it’s Fréchet derivative are given by (for all v ∈ H1

(
RN
)
)

I (u) =
1

2

∫
RN
|∇u|2 +

1

2

∫
RN
|u|2 −

∫
RN
F (u) (2)

I ′ (u) v =

∫
RN
∇u∇v +

∫
RN
uv −

∫
RN
f (u) v (3)

By Sobolev’s Continuous Immersions: given a domain Ω ⊆
RN , H1 (Ω) ↪→ Ls (Ω)∀s ∈ [2, 2∗], where 2∗ ={

2N
N−2

, ifN ≥ 3

∞, ifN ∈ {1, 2}
. As a consequence, there exists C > 0 such

that |u|s ≤ C‖u‖H1(Ω) for all u ∈ H1 (Ω).
Obs: if Ω is bounded,H1 is changed toH1

0 .

Fundamental Theorems

Theorem 1 (Ekeland’s Variational Principle): LetX be a complete
metric space and Φ : X → R ∪ {+∞} a lower-semicontinuous
functional, 6≡ +∞, bounded from below. Let ε, λ > 0 and
u ∈ X be such that Φ (u) ≤ inf

X
Φ + ε

2
. Then, there exists

vε ∈ X such that (a) Φ (vε) ≤ Φ (u); (b) d (vε, u) ≤ 1/λ; (c)
Φ (vε) < Φ (w) + ελd (vε, w) ∀w ∈ X \ vε.
Proof key idea: Define the equivalence relation w ≺ v ⇐⇒

Φ (w) ≤ Φ (v)− εd (w, v) in X and the subset sequence (An)
∞
n=1

recurservely as: u0 = u,A0 = {w ∈ X : w ≺ u0}, un ∈ X
such that Φ (un) ≤ inf

An−1

Φ + 1/n andAn = {w ∈ X : w ≺ un}
for n ≥ 1. AllAn are closed,An ⊃ An+1 for all n and the diameter

of An approaches zero as n approaches infinity, so the intersection of
all such sets contains only one element, vε, which satisfies (a), (b)

and (c).
Corolary 1: Let E be a Banach Space and I : E → R a lower-

semicontinuous funcional bounded from below. Suppose I is Frechét
differentiable for all u ∈ E, then given δ > 0, there exists uδ ∈ E
such that I (uδ) ≤ inf

u∈E
I (u) + δ

2
and ‖I ′ (uδ) ‖E′ ≤ δ.

Theorem 2 (Lions’ Lemma): Let r > 0 and q ∈ [2, 2∗). If
(un) ⊂ H1

(
RN
)

is limited in H1
(
RN
)

and if sup
y∈RN

∫
Br(y) |u|

q →

0, then un→ 0 in Ls
(
RN

)
for all s ∈ (2, 2∗).

Proof key idea: Apply Sobolev and Hölder inequalities and cover
the space with balls of radius r such that each point of the space is
contained in at mostN + 1 balls.
Corolary 2: If (un) is a bounded (PS)c sequence for I , then only

one of the following items occur: (a) the sequence converges to zero
inH1

(
RN
)
; (b) there exists (yn) ⊂ RN and r, β > 0 such that∫

Br(yn)

|u|2 ≥ β > 0 (4)

Non-trivial weak solution

Theorem 3: If f ∈ C0 (R,R) satisfies: (f0) f(s) = 0 ∀s ≤ 0;
(f1) lim

s→0
f (s) /s = 0; (f2) lim sup

s→∞
f ′ (s) / |s|q−2 < +∞;

(f3) s → f (s) /s is increasing ∀s > 0; and (f4) there exists
θ > 2 such that 0 < θF (s) ≤ sf (s) ∀s > 0, then (1) has a
weak solution.
Proof key ideas: The conditions above gives us estimates on f and
F . Restricting I to the Nehari Manifold, we apply Corolary 1 and get
a candidate sequence. By standard arguments we prove convergence
(up to a subsequence) to a critical point u. Using Corolary 2, we de-
fine vn (x) = u (x+ yn), which weakly converges to a non-trivial
critical point v, a weak solution.
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Acknowledgments

The author would like to thank Prof. Giovany M. Figueiredo for ad-
vising him in this beautiful area of mathematics, the Universidade de
Brası́lia for the scholarship for this Undergraduate Research Project
and IMPA for the 2019 summer program scholarship.


