Um paradoxo na argumentação da diagonal de Cantor

Felipe Expósito

Universidade Federal do Rio de Janeiro - DEI

Teoria dos Números fexfe@poli.ufrj.br

Resumo

Este estudo analisa o argumento da Diagonal de Cantor ao criar uma nova sequência que não pertena a lista de sequências originais. Ao comparar com uma de suas consequências que há infinitos de tamanhos diferentes.

Introdução

O argumento da diagonal de Cantor é estruturado da seguinte forma: Argumento 1: Assume que existe uma lista infinita de sequências (∞_1). Argumento 2: Corta diagonalmente cada sequência desta lista alterando cada elemento cortado por esta diagonal. Fazendo isso infinitamente gerará uma nova sequência diferente de todas as outras e que não estava listada (∞_2). Entretanto, o que garante que o $\infty_1 = \infty_2$?

Objetivos

- 1. Mostrar que a diagonal de Cantor não cortará todas as sequências.
- 2. Utilizando como elemento chave da argumentaão o fato de existir infinitos com tamanhos diferentes.
- 3. Evidenciando o paradoxo.

Desenvolvimento da argumentao

Há 2 funções:

$$f(n)=2^n$$

Número total de listas na sequência em função do número de algarismos.

$$g(n) = n$$

Número total de sequências da qual a diagonal de Cantor se diferenciou. Para que a argumentaão de cantor seja verdadeira é preciso que $\infty_1 = \infty_2$. Se isso for verdade entâo:

$$\lim_{n \to \infty} 2^n - n = 0 \tag{1}$$

Resultados

Entretanto para todo $n \in \mathbb{N}, 2^n > n$. Portanto,

$$\lim_{n \to \infty} 2^n - n = \infty \tag{2}$$

Conclusão

- Pelo cálculo do limite acima fica evidente $\infty_1 \neq \infty_2$. Portanto, o argumento da diagonal de Cantor não gera uma sequência que se diferencia de todas as listas.
- Gera uma sequência que se diferencia de um subconjunto do conjunto infinito da lista de sequências.

Referências

[1] LIMA, ELON LAGES, Curso de Análise vol. 1, IMPA, 13a. edião, 2011