Uma Abordagem Alfabética da Conjectura de Nivat

Cleber F. Colle & Eduardo Garibaldi

Instituto de Ciência e Tecnologia - Universidade Federal de São Paulo

cleber.colle@unifesp.br, garibaldi@ime.unicamp.br

UNIFESP 25 ANOS Universidade pública, conhecimento público

Introdução

Fixado um alfabeto finito A, para cada inteiro $n \in \mathbb{N}$, a n-complexidade de uma sequência infinita $\xi = (\xi_i)_{i \in \mathbb{Z}} \in A^{\mathbb{Z}}$ é definida como sendo o número de palavras distintas da forma $\xi_j \xi_{j+1} \cdots \xi_{j+n-1}$ ocorrendo em ξ . Em 1938, Morse e Hedlund [8] provaram um dos resultados mais célebres em dinâmica simbólica, que estabelece uma conexão entre sequências periódicas (sequências em que existe $m \geq 1$ tal que $\xi_{i+m} = \xi_i$ para todo $i \in \mathbb{Z}$) e complexidade. Denotando por $P_{\xi}(n)$ a n-complexidade de ξ , Morse e Hedlund provaram que $\xi \in A^{\mathbb{Z}}$ é periódica se, e somente se, existe $n \in \mathbb{N}$ tal que $P_{\xi}(n) \leq n$.

Uma extensão natural da função complexidade para altas dimensões é obtida ao considerar, no lugar de palavras, hiper-retângulos de símbolos, i.e., a $(n_1 \times \cdots \times n_d)$ -complexidade de uma configuração $\eta = (\eta_g)_{g \in \mathbb{Z}^d} \in A^{\mathbb{Z}^d}$ é o número de motivos distintos de tamanho $n_1 \times \cdots \times n_d$ ocorrendo em η . Com relação à periodicidade, uma extensão natural para altas dimensões é dizer que η é periódica quando existir um vetor $h \in (\mathbb{Z}^d)^*$ tal que $\eta_{g+h} = \eta_g$ para todo $g \in \mathbb{Z}^d$.

Denotando por $P_{\eta}(n_1, \ldots, n_d)$ a $(n_1 \times \cdots \times n_d)$ -complexidade de $\eta \in A^{\mathbb{Z}^d}$, a conjectura de Nivat [9] é apenas a generalização natural do Teorema de Morse-Hedlund para o caso bidimensional.

Conjectura de Nivat (1997). Dado $\eta \in A^{\mathbb{Z}^2}$, se existem $n, k \in \mathbb{N}$ tais que $P_{\eta}(n, k) \leq nk$, então η é periódica.

A Conjectura de Nivat tem sido intensivamente estudada nos últimos 16 anos. O primeiro passo na direção de uma prova para a conjectura foi dado por Sander e Tijdeman [11]: eles mostraram que se $P_{\eta}(n,2) \leq 2n$ para algum $n \in \mathbb{N}$, então $\eta \in A^{\mathbb{Z}^2}$ é periódica. Sander e Tijdeman [12] também deram contra-exemplos do análogo da Conjectura de Nivat em altas dimensões, i.e., eles mostraram que, para $d \geq 3$, existem configurações aperiódicas $\eta \in \{0,1\}^{\mathbb{Z}^d}$ tais que

$$P_n(n,\ldots,n) = 2n^{d-1} + 1.$$

Seja $\eta \in A^{\mathbb{Z}^2}$ e suponha que existem $n, k \in \mathbb{N}$ tais que $P_{\eta}(n, k) \leq nk/C$. Foi provado que η é periódica para C = 144 em [5] e para C = 16 em [10].

O melhor resultado conhecido até 2017 foi obtido por Bryna Kra e Van Cyr [4]. Usando a noção de subespaços expansivos introduzida por Boyle e Lind, eles lançaram uma nova luz na direção de uma prova para a Conjectura de Nivat ao relacionarem subespaços não-expansivos à periodicidade. Em particular, eles provaram que se existem $n,k\in\mathbb{N}$ tais que

$$P_{\eta}(n,k) \leq rac{1}{2}nk,$$

então $\eta \in A^{\mathbb{Z}^2}$ é periódica.

Nossas Contribuições

Nosso resultado principal [2] é um melhoramento alfabético do resultado de Bryna Kra e Van Cyr. Nós consideramos a função complexidade com respeito a uma classe de conjuntos mais geral do que retângulos, chamados conjuntos quase-regulares. No caso particular de retângulos, nós provamos que, para uma configuração $\eta \in A^{\mathbb{Z}^2}$ contendo todas as letras de A, se existem $n,k\in\mathbb{N}$ tais que

$$P_{\eta}(n,k) \le \frac{1}{2}nk + |A| - 1 = \left(\frac{1}{2} + \frac{|A| - 1}{nk}\right)nk,$$
 (1)

onde |A| denota a cardinalidade do alfabeto A, então η é periódica.

Aqui está um exemplo de configuração que satisfaz (1) mas não satisfaz a condição do Teorema de Kra-Cyr. Seja A o alfabeto formado pelas cores "branco" e "vermelho" e defina $\eta \in A^{\mathbb{Z}^2}$ como $\eta_g :=$ "vermelho" se $g = (a,a) + b(\sum_{i=6}^c i,0)$, onde $a \in \mathbb{Z}$, $b \in \{-1,0,1\}$ e $c \geq 6$, e $\eta_g :=$ "branco" caso contrário. Note que

$$P_n(n,k) = n+k$$

para $n+k \leq 7$ e que, das simetrias dessa configuração,

$$P_{\eta}(n,k) = n + k + \frac{1}{2}(n+k-7)(n+k-6)$$

para n+k>7. Não é difícil verificar que não existem $n,k\in\mathbb{N}$ tais que $P_{\eta}(n,k)\leq \frac{1}{2}nk$. Contudo, $P_{\eta}(3,4)=7=\frac{1}{2}\cdot 12+|A|-1$.

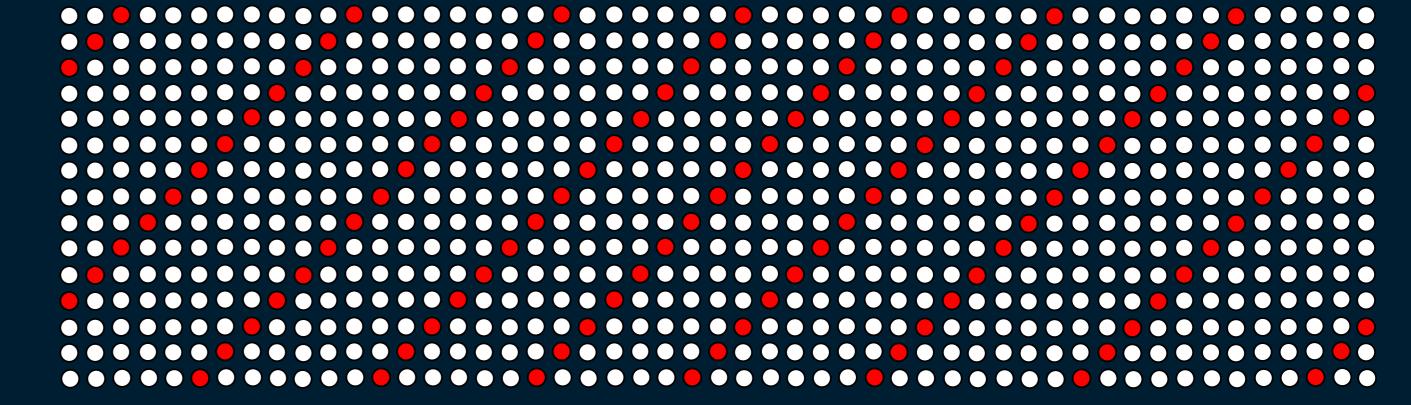


Figura 1: Representação da configuração η .

Referências

- [1] Boyle, M., Lind, D.: Expansive Subdynamics. Trans. Amer. Math. Soc. **349**(1), 55-102 (1997).
- [2] Colle, C. F., Garibaldi, E.: An Alphabetical Approach to Nivat's Conjecture. Preprint arXiv:1904.04897.
- [3] Cassaigne, J.: Subword Complexity and Periodicity in Two or More Dimensions. Developments in Language Theory. Foundations, Applications and perspectives (*DLT'*99), Aachen, Germany, World Scientific, Singapore, 14-21 (2000).
- [4] Cyr, V., Kra, B.: Nonexpansive \mathbb{Z}^2 -Subdynamics and Nivat's Conjecture. Trans. Amer. Math. Soc. **367**, 6487-6537 (2015).
- [5] Epifanio, C., Koskas, M., Mignosi, F.: On a Conjecture on Bidimensional Words. Theor. Comput. Sci. **299**, 123-150 (2003).
- [6] J. Cassaigne. A counterexample to a conjecture of Lagarias and Pleasants. 2006
- [7] Kari, J., Szabados, M.: An Algebraic Geometric Approach to Nivat's Conjecture. Lecture Notes in Comput. Sci. **9135**, 273-285 (2015).
- [8] Morse, M., Hedlund, G. A.: Symbolic Dynamics. Amer. J. Math. **60**, 815-866 (1938).
- [9] Nivat, M.: Invited Talk at ICALP. Bologna, (1997).
- [10] Quas, A., Zamboni, L.: Periodicity and Local Complexity. Theor. Comput. Sci. **319**, 229-240 (2004).
- [11] Sander, J., Tijdeman, R.: The Rectangle Complexity of Functions on TwoDimensional Lattices. Theor. Comp. Sci. **270**, 857-863 (2002).
- [12] Sander, J., Tijdeman, R.: The Complexity Function on Lattices. Theor. Comput. Sci. **246**, 195-225 (2000).

Agradecimentos

Agradeço à CAPES pelo apoio financeiro.