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Introduction

It has been shown that algebraic lattices, i.e., lattices constructed via
the canonical embedding of an algebraic number field, provide an ef-
ficient tool for designing lattice codes [2].

Figure 1: Packing density of different lattices

In this work we propose an algebraic construction of lattices in di-
mension 4n via maximal orders of quaternion algebras. Based in [3],
we show that we can define algebraic lattices from quaternion alge-
bra in the same way that we define algebraic lattices from number
fields. By using the quaternion algebra A = (−1,−1)K, where
K = Q(ζ2r + ζ−1

2r ) we characterize the associated maximal order and
construct a family of algebraic lattices in dimension 2n, n > 0.

Algebraic Lattices via Quaternion Algebra

A quaternion algebraA = (a, b)K over a field K is a central simple
algebra of dimension 4 with basis {1, i, j, k} satisfying

i2 = a, j2 = b and k = ij = −ji,

where a, b ∈ K/{0}.
Let K be a totally real number field with degree n, α a totally posi-

tive element of K and letA be a definite quaternion algebra over K. If
x = x1+x2i+x3j+x4k ∈ A then we define a twisted embedding
σαA fromA to R4n by

σαA(x) =
(√

2σ1(α)σ1(x1), · · · ,
√

2σn(α)σn(x1),

· · · ,
√

2σ1(α)σ1(x4), · · · ,
√

2σn(α)σn(x4)
)
, (1)

where σ1, · · · , σn are the n-embedding of K in R.
Let K be a totally real number field with degree n, α a totally posi-

tive element of K and let A be a definite quaternion algebra over K.
If I ⊆ M is a right ideal of a maximal quaternion orderM of A
with Z-basis {w1, · · · , w4n}, then σαA(I) is a lattice with basis
{σαA(w1), · · · , σαA(w4n)} and volume

Vol(σαA(I)) =
(
NK/Q(α)dK

)2 (
NK/Q (det(Trd(vsv̄s′))

4
s,s′=1

)1/2

(2)
where NK/Q(α) is the norm of α, dK is the discriminant of K and
{v1, v2, v3, v4} is aOK-basis of I .
LetA = (a, b)K be a definite quaternion algebra over a totally real

number field K of degree n. If x ∈ A then

|σαA(x)|2 = TrK/Q (Trd(αxx̄)) ,

where σαA is the embedding defined in (1).
Therefore, by Theorem and Proposition , the center density of the

algebraic lattice Λ = σαA(I) is given by

δ(σαA(I)) =

(√
tα
)n
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4
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(3)

where tα = min{TrK/Q (Trd(αxx̄)) , x ∈ I, x 6= 0}.

Now, we will consider a family of lattices in dimension 2r, r ≥ 1,
by using a maximal quaternion order in the quaternion algebraAr =

(−1,−1)Kr, where Kr = Q
(
ζ2r + ζ−1

2r
)
.

Let Ar = (−1, −1)Kr be the quaternion algebra over Kr =

Q
(
ζ2r + ζ−1

2r
)

= Q(ηr). Then, Mr ⊇ (−1, −1)OKr
charac-

terized by the basis

Br =

{
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2
(1 + i),

pr−1(ηr)

2
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1 + i+ j + k

2

}
,

(4)
is a maximal quaternion order in Ar, where pr−1(x) is the minimal
polynomial of ηr−1 and OKr = Z [ηr] is the ring of integers of Kr .
Let A4 = (−1, −1)K be a quaternion algebra, where K4 =

Q (η4), η4 =
(
ζ24 + ζ−1

24

)
=
√

2 +
√

2. A maximal order asso-
ciated with this algebra is characterized by the basis,
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}
.

Choosing α = (2 − η4)
3 and I = M, by Theorem , we obtain a

16-dimensional lattice Λ = σαA4
(I) with volume

Vol(Λ) =
(
23 · 211

)2√
1 = 228.

We have that

tα = min{TrK/Q (Trd(αxx̄)) , x ∈ I, x 6= 0} = 32.

Then, by (3) the center density of Λ is

δ(Λ) =

(√
32
)16

216 · 228
=

240

244
=

1

16
.

Therefore, Λ = σαA4
(I) has the same center density of Λ16 lattice.

In Table 1, we compare the center density of the family of lattices
obtained with Zn and BW-n lattices.

Table 1: Center Density
n Zn Λn BW-n
4 0.06265 0.125 0.125

8 0.00390625 0.0625 0.0625

16 2−16 0.0625 0.0625

32 2−32 2−16 1

64 2−64 2−32 216

128 2−128 2−64 264
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