A Family of Algebraic Lattices in dimension 2^n via **Quaternion** Algebra

Cintya Wink de Oliveira Benedito & Carina Alves & Nelson G. Brasil Jr. & Sueli I.R. Costa

São Paulo State University (UNESP), São João da Boa Vista

cintya.benedito@unesp.br

Introduction

It has been shown that algebraic lattices, i.e., lattices constructed via the canonical embedding of an algebraic number field, provide an efficient tool for designing lattice codes [2].

Now, we will consider a family of lattices in dimension 2^r , $r \ge 1$, by using a maximal quaternion order in the quaternion algebra $\mathcal{A}_r =$ $(-1,-1)_{\mathbb{K}_r}$, where $\mathbb{K}_r = \mathbb{Q}\left(\zeta_{2^r} + \zeta_{2^r}^{-1}\right)$. Let $\mathcal{A}_r = (-1, -1)_{\mathbb{K}_r}$ be the quaternion algebra over $\mathbb{K}_r =$ $\mathbb{Q}\left(\zeta_{2^r}+\zeta_{2^r}^{-1}
ight)=\mathbb{Q}(\eta_r)$. Then, $\mathcal{M}_r \supseteq (-1, -1)_{\mathbb{O}_{\mathbb{K}_r}}$ characterized by the basis

Figure 1: Packing density of different lattices

In this work we propose an algebraic construction of lattices in dimension 4n via maximal orders of quaternion algebras. Based in [3], we show that we can define algebraic lattices from quaternion algebra in the same way that we define algebraic lattices from number fields. By using the quaternion algebra $\mathcal{A} = (-1, -1)_{\mathbb{K}}$, where $\mathbb{K} = \mathbb{Q}(\zeta_{2^r} + \zeta_{2^r}^{-1})$ we characterize the associated maximal order and construct a family of algebraic lattices in dimension 2^n , n > 0.

Algebraic Lattices via Quaternion Algebra

A quaternion algebra $\mathcal{A} = (a, b)_{\mathbb{K}}$ over a field \mathbb{K} is a central simple algebra of dimension 4 with basis $\{1, i, j, k\}$ satisfying

 $i^2 = a$, $j^2 = b$ and k = ij = -ji,

$${\cal B}_r = igg\{1, rac{p_{r-1}(\eta_r)}{2}(1+i), rac{p_{r-1}(\eta_r)}{2}(1+j), rac{1+i+j+k}{2}igg\} \ (4)$$

is a maximal quaternion order in \mathcal{A}_r , where $p_{r-1}(x)$ is the minimal polynomial of η_{r-1} and $\mathbb{O}_{\mathbb{K}_r} = \mathbb{Z}[\eta_r]$ is the ring of integers of \mathbb{K}_r . Let $\mathcal{A}_4 = (-1, -1)_{\mathbb{K}}$ be a quaternion algebra, where $\mathbb{K}_4 =$ $\mathbb{Q}(\eta_4), \eta_4 = (\zeta_{2^4} + \zeta_{2^4}^{-1}) = \sqrt{2} + \sqrt{2}$. A maximal order associated with this algebra is characterized by the basis,

$$\mathcal{B} = \left\{1, rac{1}{\sqrt{2}}(1+i), rac{1}{\sqrt{2}}(1+j), rac{1+i+j+k}{2}
ight\}.$$

Choosing $\alpha = (2 - \eta_4)^3$ and $\mathcal{I} = \mathcal{M}$, by Theorem , we obtain a 16-dimensional lattice $\Lambda = \sigma_{\alpha A_4}(\mathcal{I})$ with volume

$$\mathcal{V}ol(\Lambda) = \left(2^3\cdot 2^{11}
ight)^2\sqrt{1} = 2^{28}.$$

We have that

 $t_lpha=\min\{Tr_{\mathbb{K}/\mathbb{O}}\left(Trd(lpha xar{x})
ight),\ x\in\mathcal{I},\ x
eq 0\}=32.$ Then, by (3) the center density of Λ is

where $a, b \in \mathbb{K}/\{0\}$.

Let \mathbb{K} be a totally real number field with degree n, α a totally positive element of \mathbb{K} and let \mathcal{A} be a definite quaternion algebra over \mathbb{K} . If $x = x_1 + x_2 i + x_3 j + x_4 k \in \mathcal{A}$ then we define a twisted embedding $\sigma_{lpha\mathcal{A}}$ from \mathcal{A} to \mathbb{R}^{4n} by

$$egin{split} \sigma_{lpha\mathcal{A}}(x) &= \left(\sqrt{2\sigma_1(lpha)}\sigma_1(x_1),\cdots,\sqrt{2\sigma_n(lpha)}\sigma_n(x_1), \ &\cdots,\sqrt{2\sigma_1(lpha)}\sigma_1(x_4),\cdots,\sqrt{2\sigma_n(lpha)}\sigma_n(x_4)
ight), \end{split}$$

where $\sigma_1, \cdots, \sigma_n$ are the *n*-embedding of \mathbb{K} in \mathbb{R} . Let \mathbb{K} be a totally real number field with degree n, α a totally positive element of \mathbb{K} and let \mathcal{A} be a definite quaternion algebra over \mathbb{K} . If $\mathcal{I} \subseteq \mathcal{M}$ is a right ideal of a maximal quaternion order \mathcal{M} of \mathcal{A} with \mathbb{Z} -basis $\{w_1, \cdots, w_{4n}\}$, then $\sigma_{\alpha \mathcal{A}}(\mathcal{I})$ is a lattice with basis $\{\sigma_{\alpha \mathcal{A}}(w_1), \cdots, \sigma_{\alpha \mathcal{A}}(w_{4n})\}$ and volume

$$\mathcal{V}ol(\sigma_{lpha\mathcal{A}}(\mathcal{I})) = ig(N_{\mathbb{K}/\mathbb{Q}}(lpha)d_{\mathbb{K}}ig)^2ig(N_{\mathbb{K}/\mathbb{Q}}\left(\det(Trd(v_sar{v_{s'}}))_{s,s'=1}^4ig)^{1/2} ig)^{1/2} ig)^{1/2}$$

where $N_{\mathbb{K}/\mathbb{Q}}(\alpha)$ is the norm of α , $d_{\mathbb{K}}$ is the discriminant of \mathbb{K} and $\{v_1, v_2, v_3, v_4\}$ is a $\mathcal{O}_{\mathbb{K}}$ -basis of \mathcal{I} .

$$\delta(\Lambda) = rac{\left(\sqrt{32}
ight)^{16}}{2^{16}\cdot 2^{28}} = rac{2^{40}}{2^{44}} = rac{1}{16}$$

Therefore, $\Lambda = \sigma_{\alpha A_4}(\mathcal{I})$ has the same center density of Λ_{16} lattice. In Table 1, we compare the center density of the family of lattices obtained with \mathbb{Z}^n and BW-*n* lattices.

Table 1: Center Density				
	\boldsymbol{n}	\mathbb{Z}^n	Λ_n	BW-n
	4	0.06265	0.125	0.125
	8	0.00390625	0.0625	0.0625
	16	2^{-16}	0.0625	0.0625
	32	2^{-32}	2^{-16}	1
(64	2^{-64}	2^{-32}	2^{16}
]	28	2^{-128}	2^{-64}	2^{64}

References

[1] C. Alves and J.-C. Belfiore. Lattices from maximal orders into quaternion algebras. Journal of Pure and Applied Algebra, Avail-

Let $\mathcal{A} = (a, b)_{\mathbb{K}}$ be a definite quaternion algebra over a totally real number field $\mathbb K$ of degree n. If $x \in \mathcal A$ then

 $|\sigma_{lpha\mathcal{A}}(x)|^2 = Tr_{\mathbb{K}/\mathbb{Q}}\left(Trd(lpha xar{x})
ight),$

where $\sigma_{\alpha A}$ is the embedding defined in (1). Therefore, by Theorem and Proposition, the center density of the algebraic lattice $\Lambda = \sigma_{\alpha \mathcal{A}}(\mathcal{I})$ is given by

$$egin{aligned} \delta(\sigma_{lpha\mathcal{A}}(\mathcal{I})) &= rac{\left(\sqrt{t_lpha}
ight)^n}{2^n (N_{\mathbb{K}/\mathbb{Q}}(lpha) d_{\mathbb{K}})^2 (N_{\mathbb{K}/\mathbb{Q}} \left(\det(Trd(v_s ar{v_{s'}}))^4_{s,s'=1})
ight)^{1/2}} \ & (3) \end{aligned}$$
 where $t_lpha &= \min\{Tr_{\mathbb{K}/\mathbb{Q}} \left(Trd(lpha x ar{x})
ight), \ x \in \mathcal{I}, \ x
eq 0\}. \end{aligned}$

able online 29 April 2014.

[2] J. Boutros, E. Viterbo, C. Ratello, and J.-C. Belfiore. Good lattice constellations for both rayleigh fading and gaussian channels. *IEEE Trans. Inform. Theory*, 42(2):502–517, 1996.

[3] F.-F. Tu and Y. Yang. Lattice packing from quaternion algebras. RIM Kôkyroku Bessatsu, 2012.

Acknowledgment

Acknowledgment to 32th Colóquio Brasileiro de Matemática for the opportunity and São Paulo Research Foundation (FAPESP), the obtained results are continuation of the project 2013/25977-7.