A result about Global bifurcation on Time scales

Pierluigi Benevieri¹, Jaqueline G. Mesquita², Aldo Pereira² ¹ Instituto de Matemática e Estatística, Universidade de São Paulo ² Departamento de Matemática, Universidade de Brasília pereirasolis@gmail.com

INTRODUCTION

We consider the following semilinear parametrized operator equation

 $Lx + \lambda h(x) + k(x) = 0, \qquad \lambda \ge 0.$ (1)

The problem related to equation (1) here is the existence of an atypical bifurcation point. We make a topological approach, based on the notion

ATYPICAL BIFURCATION

Definition 4. An atypical bifurcation point is a point $p \in \Omega \cap \ker L$ such that any neighborhood of (p,0) contains solutions (x,λ) with $\lambda \neq 0$. **Theorem 5.** Let $H : \Omega \times [0,\infty) \to F$ be an oriented map, defined by

 $H(x,\lambda) = Lx + \lambda (h(x) + k(x)),$

where $G(x,\lambda) = Lx + \lambda h(x)$ is a Φ_0 -homotopy, and $K(x,\lambda) = -\lambda k(x)$ is locally compact. Let

of topological degree for compact perturbations on nonlinear Fredholm maps in Banach spaces. Our objective is to give a result about global bifurcation for the nonlinear equation (1) on time scales.

TIME SCALES

- A time scale \mathbb{T} is a closed, nonempty set of the real numbers.
- $f: T \rightarrow X$ is rd-continuous if it is continuous at right-dense points, and left-sided limits exist at left-dense points.
- A subset $\mathscr{F} \subset \mathscr{C}_{rd}([a,b]_{\mathbb{T}},E)$ is equiregulated, if given $\varepsilon > 0$, $t_0 \in [a,b]_{\mathbb{T}}$, there exists $\delta > 0$ such that

(i) for any $t_0 - \delta < s < t_0$, $||x(s) - x(t_0^-)|| < \varepsilon$;

(ii) for any $t_0 < \tau < t_0 + \delta$, $||x(\tau) - x(t_0^+)|| < \varepsilon$.

• The set \mathscr{F} is rd-equicontinuous, if \mathscr{F} is equiregulated, and for every $\varepsilon > 0$ and for all right-dense $t' \in [a,b]_{\mathbb{T}}$, there exists $\delta > 0$ such that

 $\|f(t)-f(t')\| < \varepsilon, \quad f \in \mathscr{F}, \quad t \in [t',t'+\delta) \cap [a,b]_{\mathbb{T}}.$

 $v: \Omega \cap \ker L \to F_1, \quad v(p) = \pi h(p) + \pi k(p).$

Let $W \subset \Omega \times [0, +\infty)$ be open, and denote by $W_{\lambda} = \{x \in \Omega : (x, \lambda) \in W\}$. If the Brouwer degree $\deg_B(v, W_0 \cap \ker L, 0)$ is well defined and nonzero, then there exists in W a connected set of nontrivial solutions of the equation (1) whose closure in W is not compact and intersects $\ker L \times \{0\}$.

RESULTS ON TIME SCALES

We consider the following particular case of (1), defined on time scales

 $\begin{cases} x^{\Delta}(t) + \lambda \phi \left(t, x(t), x^{\Delta}(t) \right) + \lambda \psi \left(t, x(t) \right) = 0 \\ x(0) = x(T). \end{cases}$ (2)

To obtain a global bifurcation theorem on time scales, we assume: **(A1)** T is an unbounded *T*-periodic time scale containing 0; **(A2)** $\phi(t, x(t), x^{\Delta}(t))$ and $\psi(t, x(t))$ are rd–continuous and *T*-periodic with respect to *t*, and continuous with respect to *x* and x^{Δ} ;

Proposition 1 (Arzelà-Ascoli). Let *E* be a Banach space. The set $H \subset \mathscr{C}_{rd}([a,b]_{\mathbb{T}},X)$ is relatively compact if and only if, *H* is rd-equicontinuous and for each $t \in [a,b]_{\mathbb{T}}$, H(t) is relatively compact set in *E*.

ORIENTATION AND DEGREE

- $L: E \to F$ is Fredholm if kerL and cokerL have finite dimension, and the index is defined by $n = \dim \ker L \dim \operatorname{coker} L$.
- $g: \Omega \to F$ is a Fredholm map if it is C^1 and g'(x) is a Φ_0 -operator.
- $f: \Omega \to F$ is quasi-Fredholm if there exists a Φ_0 -map g, called smoothing map of f, such that g - f is locally compact.
- $H: \Omega \times [0,1] \to F$ of the form $H(x,\lambda) = G(x,\lambda) K(x,\lambda)$, where *G* is a Φ_0 -homotopy and *K* is locally compact, is called a quasi-Fredholm homotopy and *G* a smoothing map of *H*.

Definition 2. An orientation of a Φ_0 -map $g: \Omega \subset E \to F$ is an orientation

(A3) ϕ is differentiable with respect to the second and third variable, and

 $(t, u, v) \mapsto \partial_2 \phi(t, u, v), \qquad (t, u, v) \mapsto \partial_3 \phi(t, u, v)$

are rd-continuous w.r.t. *t*, and continuous w.r.t. the variables *u* and *v*. **Proposition 6.** The map $h(x)(t) = \phi(t, x(t), x^{\Delta}(t))$ is C^1 , and

 $h'(x)q(t) = \partial_2 \phi(t, x(t), x^{\Delta}(t))q(t) + \partial_3 \phi(t, x(t), x^{\Delta}(t))q^{\Delta}(t).$

Proposition 7. Let $G(x,\lambda)(t) = x^{\Delta}(t) + \lambda \phi(t,x(t),x^{\Delta}(t))$. A necessary and sufficient condition for $G'_{\lambda}(x)$ to be a Fredholm operator of index zero is

 $\det(I+\lambda M_x(t))\neq 0, \qquad t\in[0,T]_{\mathbb{T}}.$

Proposition 8. The map $k(x)(t) = \psi(t, x(t))$, is compact.

Theorem 9. Consider $w : \mathbb{R}^n \to \mathbb{R}^n$ given by

 $w(p) = \frac{1}{T} \int_0^T \phi(t, p, 0) + \Psi(t, p) \Delta t.$

Let $W \subset C^1 \times [0, +\infty)$ open, and $W_0 = \{p \in \mathbb{R}^n : (p, 0) \in W\}$. Assume that $\deg_B(w, W_0, 0)$ is defined and different from zero. Then, W contains a connected set of nontrivial solutions of problem ..., whose closure in W is not compact and intersects ker $L \times \{0\} \simeq \mathbb{R}^n$.

of $g': x \mapsto g'(x)$, denoted by $\alpha(x)$, such that for any x there exists $A \in \alpha(x)$ which is a positive corrector of h(y) for any y in a neighborhood of x.

Definition 3 (Topological degree). Let *g* be a positively oriented smoothing map of *f*, *V* an open nbh of $f^{-1}(y) \cap U$ such that $\overline{V} \subseteq U$, *g* is proper on \overline{V} and $(f-g)|_{\overline{V}}$ has relatively compact image, and $\xi : \overline{V} \to F$ having bounded finite dimensional image and such that

$\|g(x) - f(x) - \xi(x)\| < dist_F(y, f(\partial V)), \quad x \in \partial V,$

where $f(\partial V)$ is closed. Then, define

 $\deg(f, U, y) = \deg(g - \xi, V, y).$

REFERENCES

 P. Benevieri, M. Furi, A degree theory for locally compact perturba tions of Fredholm maps in Banach spaces, Abstr. Appl. Anal. (2006), Art. ID 64764, 20 pp.
M. Bohner, A. Peterson: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
G. Prodi and A. Ambrosetti, Analisi non lineare, Quad. 1, Scuola Norm. Sup. Pisa, 1973.