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Abstract

We are interested in stationary random processes and their applications to
modelling and predicting data collected sequentially in time. The spectral
representation of the covariance function (Theorem of Herglotz) is a tool for
studying these processes. Informally, the covariance function of every sta-
tionary (wide sense) random sequence with zero mean can be represented by
one distribution function F , called the spectral distribution function, (up to
normalization), whose support is concentrated on [−π, π).

Introduction

Stochastic processes have been widely used to model some natural and so-
cial phenomena, specially the stationary random sequences. In the analysis
of time-series (the realizations of a process), many authors are interested in
estimators (asymptotic behavior) for the data. At this point, an important
tool is the spectral representation of the covariance function of stationary
processes. That’s the main result of this poster, the Theorem of Herglotz and
some classical examples.

Definition 1: A sequence of complex random variables ξ = (ξn)n∈Z with
E|ξn|2 <∞, n ∈ Z, is stationary in wide sense if, for all n ∈ Z,

Eξn = Eξ0

and
cov(ξk+n, ξk) = cov(ξn, ξ0) := R(n), k ∈ Z,

where R(n) is the covariance function. We shall always suppose that
Eξ0 = 0.

Example 1: (White noise) Let ε = (εn) be an orthonormal random se-
quence, Eεn = 0, Eεiεj = δij. Such a sequence is evidently stationary,
and

R(n) =

{
1 if n = 0

0 if n 6= 0

Observe that R(n) can be represented in the form R(n) =∫ −π
π eiλndF (λ) where

F (λ) =

∫ λ

−π
f(v)dv; f(λ) =

1

2π
,−π ≤ λ < π.

Example 2: (ARMA) Let ε = (εn) be the white noise introduced before.
The random sequence ξ = (ξn) is an autoregressive model of order q if

ξn + b1ξn−1 + . . .+ bqξn−q = εn.

Suppose we have this below, then ξ = (ξn) is a moving average of order p:

ξn = a0εn + a1εn−1 + . . .+ apεn−p.

Now, we obtain an autoregression and moving average of order (p,q):

ξn + b1ξn−1 + . . .+ bqξn−q = a0εn + a1εn−1 + . . .+ apεn−p,

It’s possible to show that it has the stationary solution ξ = (ξn) for which
the covariance function is

R(n) =

∫ π

−π
eiλndF (λ);F (λ) =

∫ λ

−π
f(v)dv; f(λ) =

1

2π

∣∣∣∣∣P (e−iλ)

Q(e−iλ)

∣∣∣∣∣
2

.

Results

Theorem (Herglotz) 1: Let R(n) be the covariance function of
a stationary random sequence with zero mean. Then, there is, on
([−π, π),B([−π, π))), a finite measure F = F (B), B ∈
B([−π, π)), such that for every n ∈ Z,

R(n) =
∫ π
−π e

iλnF (dλ).
Proof 1: ForN ≥ 1 and λ ∈ [−π, π], define

fN(λ) =
1

2πN

N∑
k=1

N∑
l=1

R(k − l)e−iλkeiλl.

Using the nonnegative definiteness of R(n) and doing basic calculations,
we can see that fN is a nonnegative real function and write for k − l = m

fN(λ) =
1

2π

N∑
|m|<N

(
1−
|m|
N

)
R(m)e−iλm.

Let FN(B) =
∫
B fN(λ)dλ,B ∈ B([−π, π)). Then∫ π

−π
eiλnFN(dλ) =

∫ π

−π
eiλnfN(λ)dλ =

{(
1− |n|

N

)
R(n) if |n| < N,

0 if |n| ≥ N.

Note that the measures FN , N ≥ 1, are supported on the interval [−π, π]
and FN([−π, π]) = R(0) < ∞ for all N ≥ 1. Consequently, by
Prokhorov’s Theorem, there is a sequence {Nk} ⊂ {N} and a measure F
such that FNk

w−→ F . It then follows that∫ π

−π
eiλnF (dλ) = lim

Nk→∞

∫ π

−π
eiλnFNk

(dλ) = R(n).

To complete the proof, we just have to transfer the ”mass” F ({π}), which
is concentrated in π, to −π. The resulting new measure (again denoted by
F) will be supported on [−π, π).

Remark 1: If
∑
|R(n)| <∞, it’s possible to show that the spectral func-

tion F (λ) has density f(λ) given by

f(λ) =
1

2π

∞∑
n=−∞

e−iλnR(n).

Conclusion

The analysis of stationary processes by means of their spectral representa-
tion provides complete information on the “spectrum” of the sequence ξ.
In addition, the spectral analysis together with the study of robust estima-
tors for the covariance function are big steps towards constructing a better
mathematical model for the data.
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