Elliptic Function Fields
 Abraham Rojas
 ICMC - USP
 abraham.rojas@usp.br

Introduction

Let K be a perfect field. An elliptic function field (E.F.F.) is an algebraic function field F / K, with field of constant K, such that 1. the genus of F / K is 1
2. there exists a divisor $D \in \operatorname{Div}(F)$ with $\operatorname{deg} A=1$.

We assume some facts from the theory of algebraic function fields, whose importance goes beyond the present topic:
-The Riemann-Roch Theorem is an essential equation that relates divisors and the genus.

- Most of the theorems that appears in this poster are consequence of the Hurwitz genus formula.
- Ramification of places is used in calculations, existence proofs and in other situations.
E.F.F when char $K \neq 2$

There exist $x, y \in F$ such that

$$
\begin{equation*}
F=K(x, y) \quad \text { and } \quad y^{2}=f(x) \tag{i}
\end{equation*}
$$

where $f \in \boldsymbol{K}[x]$ is square-free and has degree 3 .
Proof. It's easy to show the existence of a place P of degree 1. By Riemann-Roch Theorem $\ell(i P)=i$ for $i>0$, hence $\mathscr{L}(P)=K$ and $\mathscr{L}((i+1) P) \supsetneq \mathscr{L}(i P)$.
Choose $x_{1} \in \mathscr{L}(2 P) \backslash K$ and $y_{1} \in \mathscr{L}(3 P) \backslash \mathscr{L}(2 P)$. Then $\left(x_{1}\right)_{\infty}=2 P$ and $\left(y_{1}\right)=3 P$, so $\left[F: K\left(x_{j}\right)\right]=j$, hence $F=K\left(x_{1}, y_{1}\right)$. Since $\ell(6 P)=6: 1, x_{1}, y_{1}, x_{1}^{2}, x_{1} y_{1}, x_{1}^{3}, y_{1}^{2} \in$ $\mathscr{L}(6 P)$ are L.D. over K. Replacing x_{1} and y_{1} by appropiate multiples, say x_{2} and y_{2} then $F=K\left(x_{2}, y_{2}\right)$ and

$$
\begin{equation*}
y_{2}^{2}+\left(\beta x_{2}+\gamma\right) y_{2}=x_{2}^{3}+\epsilon x_{2}^{2}+\lambda x_{2}+\mu \tag{ii}
\end{equation*}
$$

When char $K \neq 2$, we set $y=y_{2}+\left(\beta_{2} x_{2}+\gamma_{2}\right) / 2$ and $x=x_{2}$. Then $\boldsymbol{F}=\boldsymbol{K}(\boldsymbol{x}, \boldsymbol{y})$ and $\boldsymbol{y}^{2}=\boldsymbol{f}(\boldsymbol{x})$ has degree 3 . If f had a zero of multiplicity 2 , we can show that F / K is rational, which is impossible.
Conversely, if (i) holds then $\boldsymbol{F} / \boldsymbol{K}(\boldsymbol{x})$ is a Kummer extension of degree 3 . So we can use the following
Theorem 1. Let F^{\prime} / F be a Kummer extension of degree n, set $r_{p}=\operatorname{gcd}\left(n, v_{p}\left(y^{n}\right)\right)>0$ for $P \in \mathbb{P}_{F}$. If there exists $Q \in \mathbb{P}_{F}$ with $r_{Q}=1$ then K is alg. closed in F^{\prime} and

$$
g^{\prime}=1+n(g-1)+\frac{1}{2} \sum_{P \in \mathbb{P}_{F}}\left(n-r_{P}\right) \operatorname{deg} P
$$

In our case, F is a Kummer extension of $K(x)$. Let $P_{i} \in \mathbb{P}_{F}$ be the place of $p_{i}(x)$, then $v_{P_{i}}(f(x))=1$, also $v_{P_{\infty}}(f(x))=-3$, so $r_{P}=1$ for all $P \in \mathbb{P}_{F}$. Therefore the genus of F / K is 1 . Ramification of places can be used to prove the existence of a divisor of degree 1.
Example. Let $\mathcal{M}(\Gamma)$ be set of elliptic functions with respect to the lattice $\Gamma=\mathbb{Z} \gamma_{1} \oplus \mathbb{Z} \gamma_{2}$, i.e., meromorphic functions f s.t. $f(z+\gamma)=f(z), \forall \gamma \in \Gamma$. The Weierstrass \mathfrak{p} - function is

$$
\mathfrak{p}(z)=\frac{1}{z^{2}}+\sum_{0 \neq \gamma \in \Gamma}\left(\frac{1}{(z-\gamma)^{2}}-\frac{1}{\gamma^{2}}\right)
$$

We have that $\mathcal{M}(\Gamma)=\mathbb{C}\left(\mathfrak{p}, \mathfrak{p}^{\prime}\right)$ and $\mathfrak{p}^{\prime}=4 \mathfrak{p}^{3}-a \mathfrak{p}-b \in \mathbb{C}[\mathfrak{p}]$ is square-free. Hence $\mathcal{M}(\Gamma) / \mathbb{C}$ is an E.F.F.
E.F.F when char $K=2$

There exist $x, y \in F$ such that $F=K(x, y)$ and one the following equations holds

$$
\begin{equation*}
y^{2}+y=f(x) \in K[x] \text { with } \operatorname{deg} f=3 \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
y^{2}+y=x+\frac{1}{a x+b} \text { with } a, b \in K \text { and } a \neq 0 \tag{iv}
\end{equation*}
$$

Proof. (ii) holds. To show $\beta_{2} x_{2}+\gamma_{2} \neq 0$ we use
Proposition 1. Let F / K be a function field. Then $F^{p^{n}}:=$ $\left\{z^{p^{n}} \mid z \in F\right\}$ is the unique $K \subset L \subset F$ s.t. F / L is purely inseparable of degree p^{n}. Also $F^{p^{n}} \simeq F$ (Frobenius map).
Now, set $y_{3}=y_{2}\left(\beta_{2} x_{2}+\gamma_{2}\right)^{-1}$, then $F=K\left(x_{2}, y_{3}\right)$. If $\beta=0$, equation (ii) has the form (iii). If $\beta \neq 0$, equation (ii) has the form

$$
\begin{equation*}
y_{3}^{3}+y_{3}=\nu x_{2} x_{2}+\rho+\frac{\sigma}{\left(\beta_{2} x_{2}+\gamma_{2}\right)^{2}}+\frac{\tau}{\beta_{2} x_{2}+\gamma_{2}} \tag{v}
\end{equation*}
$$

with $\nu \neq 0$. As K is perfect, $\sigma=\sigma_{1}^{2}$ for some σ_{1}^{2}. Set $y=y_{3}+\sigma_{1}\left(\beta_{2} x_{2}+\gamma_{2}\right)^{-1}$. This makes equation (v) to have the form (iv) (as before, one uses that $\boldsymbol{F} / \boldsymbol{K}$ is not rational).
Conversely, if (iii) or (iv) holds then $\boldsymbol{F} / \boldsymbol{K}(\boldsymbol{x})$ is an ArtinSchreier extension of degree 2. So we can use the following

Theorem 2. Let F^{\prime} / F be an Artin-Schreier extension with char $K=p>0$. For $P \in \mathbb{P}_{F}$ define
$m_{P}:= \begin{cases}m & \text { if } \exists z \in F \text { s.t. } p \nmid v_{P}\left(u-\left(z^{p}-z\right)\right)=-m<0 \\ -1 & \text { if } \exists z \in F \text { s.t. } v_{P}\left(u-\left(z^{p}-z\right)\right) \geq 0\end{cases}$ If there is $Q \in \mathbb{P}_{F}$ with $m_{Q}>0$ then K is alg.closed in F^{\prime} and

$$
g^{\prime}=p \cdot g+\frac{p-1}{2}\left(-2+\sum_{P \in \mathbb{P}_{F}}\left(m_{P}+1\right) \cdot \operatorname{deg} P\right)
$$

We proceed as in the previous case to finish the proof.

The group law

Proposition 2. Let $\boldsymbol{F}=\boldsymbol{K}(x, y)$ be an elliptic function field and let $\mathbb{P}_{F}^{(1)}$ be the set of places of degree 1 , then:

- For each $A \in \operatorname{Div}(F)$ s.t. $\operatorname{deg} A=1$ there exists a unique place with $A \sim P$. In particular $\mathbb{P}_{F}^{(1)} \neq \emptyset$.
- If we fix $P_{0} \in \mathbb{P}_{F}^{(1)}$ then we have a bijection

$$
\Phi:\left\{\begin{array}{lll}
\mathbb{P}_{F}^{(1)} & \longrightarrow \mathrm{Cl}^{0}(F) \\
P & \longmapsto\left[P-P_{0}\right]
\end{array}\right.
$$

where $C l^{0}(F)=\{[A] \in C l(F) \mid \operatorname{deg} A=0\}(C l(F)$ is the divisor class group of F / K).
Now, for $P, Q \in \mathbb{P}_{F}^{(1)}$, we can define

$$
P \oplus Q=\Phi^{-1}(\Phi(P)+\Phi(Q))
$$

This operation turns $\mathbb{P}_{F}^{(1)}$ into an abelian group, isomorphic to $C l^{0}(F)$, with zero element P_{0}.

Figure 1: The group law as in [1]. By SuperManu - Own work based on Image:ECClines.png by en:User:Chas zzz brown, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2970559

References

[1] J. H. Silverman. The Arithmetic of Elliptic Curves. Springer, 2nd edition, 2009.
[2] H. Stichtenoth. Algebraic Function Fields and Codes. Springer, 1st edition, 2010.

