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Introduction

Let K be a perfect field. An elliptic function field (E.F.F.) is an
algebraic function field F/K, with field of constantK, such that
1. the genus of F/K is 1

2. there exists a divisor D ∈ Div(F ) with degA = 1.
We assume some facts from the theory of algebraic function
fields, whose importance goes beyond the present topic:
•The Riemann-Roch Theorem is an essential equation that

relates divisors and the genus.
•Most of the theorems that appears in this poster are conse-

quence of the Hurwitz genus formula.
•Ramification of places is used in calculations, existence

proofs and in other situations.

E.F.F when charK 6= 2

There exist x, y ∈ F such that

F = K(x, y) and y2 = f(x) (i)

where f ∈ K[x] is square-free and has degree 3.
Proof. It’s easy to show the existence of a place P of degree
1. By Riemann-Roch Theorem `(iP ) = i for i > 0, hence
L (P ) = K and L ((i+ 1)P ) ) L (iP ).
Choose x1 ∈ L (2P ) \ K and y1 ∈ L (3P ) \ L (2P ). Then
(x1)∞ = 2P and (y1) = 3P , so [F : K(xj)] = j, hence
F = K(x1, y1). Since `(6P ) = 6: 1, x1, y1, x
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L (6P ) are L.D. over K. Replacing x1 and y1 by appropiate mul-
tiples, say x2 and y2 then F = K(x2, y2) and

y2
2 + (βx2 + γ)y2 = x3

2 + εx2
2 + λx2 + µ (ii)

When charK 6= 2, we set y = y2+(β2x2+γ2)/2 and x = x2.
Then F = K(x, y) and y2 = f(x) has degree 3. If f had a
zero of multiplicity 2, we can show that F/K is rational, which
is impossible.

Conversely , if (i) holds then F/K(x) is a Kummer extension of
degree 3. So we can use the following
Theorem 1. Let F ′/F be a Kummer extension of degree n, set
rp = gcd(n, vp(y

n)) > 0 for P ∈ PF . If there exists Q ∈ PF
with rQ = 1 then K is alg. closed in F ′ and

g′ = 1 + n(g − 1) +
1

2

∑
P∈PF

(n− rP) degP

In our case, F is a Kummer extension ofK(x). Let Pi ∈ PF be
the place of pi(x), then vPi(f(x)) = 1, also vP∞(f(x)) = −3,
so rP = 1 for all P ∈ PF . Therefore the genus of F/K is 1.
Ramification of places can be used to prove the existence of a
divisor of degree 1.

Example. Let M(Γ) be set of elliptic functions with respect
to the lattice Γ = Zγ1

⊕
Zγ2, i.e., meromorphic functions f s.t.

f(z + γ) = f(z), ∀γ ∈ Γ. The Weierstrass p- function is

p(z) =
1

z2
+

∑
0 6=γ∈Γ

(
1

(z − γ)2
−

1

γ2

)
We have thatM(Γ) = C(p, p′) and p′ = 4p3− ap− b ∈ C[p]

is square-free. HenceM(Γ)/C is an E.F.F.

E.F.F when charK = 2

There exist x, y ∈ F such that F = K(x, y) and one the fol-
lowing equations holds

y2 + y = f(x) ∈ K[x] with deg f = 3 (iii)

y2 + y = x+
1

ax+ b
with a, b ∈ K and a 6= 0 (iv)

Proof. (ii) holds. To show β2x2 + γ2 6= 0 we use
Proposition 1. Let F/K be a function field. Then F pn :=

{zpn | z ∈ F} is the unique K ⊂ L ⊂ F s.t. F/L is purely
inseparable of degree pn. Also F pn ' F (Frobenius map).
Now, set y3 = y2(β2x2+γ2)

−1, then F = K(x2, y3). If β = 0,
equation (ii) has the form (iii). If β 6= 0, equation (ii) has the form

y3
3 + y3 = νx2x2 + ρ+

σ

(β2x2 + γ2)2
+

τ

β2x2 + γ2

(v)

with ν 6= 0. As K is perfect, σ = σ2
1 for some σ2

1. Set
y = y3 +σ1(β2x2 +γ2)

−1. This makes equation (v) to have the
form (iv) (as before, one uses that F/K is not rational).

Conversely , if (iii) or (iv) holds then F/K(x) is an Artin-
Schreier extension of degree 2. So we can use the following

Theorem 2. Let F ′/F be an Artin-Schreier extension with
charK = p > 0. For P ∈ PF define

mP :=

{
m if ∃z ∈ F s.t. p - vP (u− (zp − z)) = −m < 0

−1 if ∃z ∈ F s.t. vP (u− (zp − z)) ≥ 0

If there is Q ∈ PF with mQ > 0 then K is alg.closed in F ′ and

g′ = p · g +
p− 1

2

−2 +
∑
P∈PF

(mP + 1) · degP


We proceed as in the previous case to finish the proof.

The group law

Proposition 2.Let F = K(x, y) be an elliptic function field and
let P(1)

F be the set of places of degree 1, then:
•For each A ∈ Div(F ) s.t. degA = 1 there exists a unique

place with A ∼ P . In particular P(1)
F 6= ∅.

• If we fix P0 ∈ P(1)
F then we have a bijection

Φ :

{
P(1)
F −→ Cl0(F )

P 7−→ [P − P0]

where Cl0(F ) = {[A] ∈ Cl(F ) | degA = 0} (Cl(F ) is the
divisor class group of F/K).

Now, for P,Q ∈ P(1)
F , we can define

P ⊕Q = Φ−1(Φ(P ) + Φ(Q))

This operation turns P(1)
F into an abelian group, isomorphic to

Cl0(F ), with zero element P0.

Figure 1: The group law as in [1]. By SuperManu - Own work based on Image:ECClines.png
by en:User:Chas zzz brown, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2970559
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