Elliptic Function Fields Abraham Rojas ICMC - USP abraham.rojas@usp.br

Introduction

Let K be a perfect field. An elliptic function field (E.F.F.) is an algebraic function field F/K, with field of constant K, such that 1. the genus of F/K is 1

2. there exists a divisor $D \in Div(F)$ with deg A = 1.

We assume some facts from the theory of algebraic function fields, whose importance goes beyond the present topic:

$$y^2+y=x+rac{1}{ax+b}$$
 with $a,b\in K$ and $a
eq 0$ (iv)

Proof. (ii) holds. To show $\beta_2 x_2 + \gamma_2 \neq 0$ we use **Proposition 1.** Let F/K be a function field. Then $F^{p^n} :=$ $\{z^{p^n} \mid z \in F\}$ is the unique $K \subset L \subset F$ s.t. F/L is purely inseparable of degree p^n . Also $F^{p^n} \simeq F$ (Frobenius map). Now, set $y_3 = y_2(\beta_2 x_2 + \gamma_2)^{-1}$, then $F = K(x_2, y_3)$. If $\beta = 0$,

- The Riemann-Roch Theorem is an essential equation that relates divisors and the genus.
- Most of the theorems that appears in this poster are consequence of the Hurwitz genus formula.
- Ramification of places is used in calculations, existence proofs and in other situations.

E.F.F when char $K \neq 2$

There exist $x, y \in F$ such that

F = K(x, y) and $y^2 = f(x)$ (i)

where $f \in K[x]$ is square-free and has degree 3.

Proof. It's easy to show the existence of a place *P* of degree 1. By Riemann-Roch Theorem $\ell(iP) = i$ for i > 0, hence $\mathscr{L}(P) = K \text{ and } \mathscr{L}((i+1)P) \supsetneq \mathscr{L}(iP).$ Choose $x_1 \in \mathscr{L}(2P) \setminus K$ and $y_1 \in \mathscr{L}(3P) \setminus \mathscr{L}(2P)$. Then $(x_1)_{\infty} = 2P$ and $(y_1) = 3P$, so $[F : K(x_j)] = j$, hence $F = K(x_1,y_1)$. Since $\ell(6P) = 6$: $1, x_1, y_1, x_1^2, x_1y_1, x_1^3, y_1^2 \in \mathbb{R}$ $\mathscr{L}(6P)$ are L.D. over K. Replacing x_1 and y_1 by appropriate multiples, say x_2 and y_2 then $F = K(x_2, y_2)$ and

equation (ii) has the form (iii). If $\beta \neq 0$, equation (ii) has the form

$$y_3^3 + y_3 =
u x_2 x_2 +
ho + rac{\sigma}{(eta_2 x_2 + \gamma_2)^2} + rac{ au}{eta_2 x_2 + \gamma_2} \hspace{0.5cm} ext{(V)}$$

with $\nu \neq 0$. As K is perfect, $\sigma = \sigma_1^2$ for some σ_1^2 . Set $y = y_3 + \sigma_1 (\beta_2 x_2 + \gamma_2)^{-1}$. This makes equation (v) to have the form (iv) (as before, one uses that F/K is not rational).

Conversely, if (iii) or (iv) holds then F/K(x) is an Artin-Schreier extension of degree 2. So we can use the following

Theorem 2. Let F'/F be an Artin-Schreier extension with char K = p > 0. For $P \in \mathbb{P}_F$ define

 $m_P := egin{cases} m & ext{if} \, \exists z \in F ext{ s.t. } p
min v_P \left(u - (z^p - z)
ight) = -m < 0 \ -1 & ext{if} \, \exists z \in F ext{ s.t. } v_P \left(u - (z^p - z)
ight) \geq 0 \end{cases}$

If there is $Q \in \mathbb{P}_F$ with $m_Q > 0$ then K is alg.closed in F' and

$$g' = p \cdot g + rac{p-1}{2} \left(-2 + \sum_{P \in \mathbb{P}_F} \left(m_P + 1
ight) \cdot \deg P
ight)$$

We proceed as in the previous case to finish the proof.

 $y_2^2 + (eta x_2 + \gamma)y_2 = x_2^3 + \epsilon x_2^2 + \lambda x_2 + \mu$ (ii)

When char K
eq 2, we set $y = y_2 + (eta_2 x_2 + \gamma_2)/2$ and $x = x_2$. Then $F = \overline{K(x,y)}$ and $y^2 = f(x)$ has degree 3. If f had a zero of multiplicity 2, we can show that F/K is rational, which is impossible.

Conversely, if (i) holds then F/K(x) is a Kummer extension of degree 3. So we can use the following

Theorem 1. Let F'/F be a Kummer extension of degree n, set $r_p = \gcd(n, v_p(y^n)) > 0$ for $P \in \mathbb{P}_F$. If there exists $Q \in \mathbb{P}_F$ with $r_Q = 1$ then K is alg. closed in F' and

$$g'=1+n(g-1)+rac{1}{2}\sum_{P\in \mathbb{P}_F}\left(n-r_P
ight)\deg P$$
 ,

In our case, F is a Kummer extension of K(x). Let $P_i \in \mathbb{P}_F$ be the place of $p_i(x)$, then $v_{P_i}(f(x)) = 1$, also $v_{P_{\infty}}(f(x)) = -3$, so $r_P = 1$ for all $P \in \mathbb{P}_F$. Therefore the genus of F/K is 1. Ramification of places can be used to prove the existence of a divisor of degree 1.

Example. Let $\mathcal{M}(\Gamma)$ be set of elliptic functions with respect to the lattice $\Gamma = \mathbb{Z}\gamma_1 \oplus \mathbb{Z}\gamma_2$, i.e., meromorphic functions f s.t. $f(z + \gamma) = f(z), \forall \gamma \in \Gamma$. The Weierstrass p-function is

The group law

Proposition 2. Let F = K(x, y) be an elliptic function field and let $\mathbb{P}_{F}^{(1)}$ be the set of places of degree 1, then:

• For each $A \in Div(F)$ s.t. deg A = 1 there exists a unique place with $A \sim P$. In particular $\mathbb{P}_{F}^{(1)} \neq \emptyset$.

• If we fix $P_0 \in \mathbb{P}_F^{(1)}$ then we have a bijection

 $\Phi: egin{cases} \mathbb{P}^{(1)}_F \longrightarrow \operatorname{Cl}^0(F)\ P \longmapsto [P-P_0] \end{cases}$

where $Cl^{0}(F) = \{ [A] \in Cl(F) \mid \deg A = 0 \}$ (Cl(F) is the divisor class group of F/K). Now, for $P, Q \in \mathbb{P}_{F}^{(1)}$, we can define

$$P\oplus Q=\Phi^{-1}(\Phi(P)+\Phi(Q))$$

This operation turns $\mathbb{P}_{F}^{(1)}$ into an abelian group, isomorphic to $Cl^{0}(F)$, with zero element P_{0} .

$$\mathfrak{p}(z) = rac{1}{z^2} + \sum_{0
eq \gamma \in \Gamma} \left(rac{1}{(z-\gamma)^2} - rac{1}{\gamma^2}
ight).$$

We have that $\mathcal{M}(\Gamma) = \mathbb{C}(\mathfrak{p},\mathfrak{p}')$ and $\mathfrak{p}' = 4\mathfrak{p}^3 - a\mathfrak{p} - b \in \mathbb{C}[\mathfrak{p}]$ is square-free. Hence $\mathcal{M}(\Gamma)/\mathbb{C}$ is an E.F.F.

E.F.F when char K = 2

There exist $x, y \in F$ such that F = K(x, y) and one the following equations holds

> $y^2+y=f(x)\in K[x]$ with $\deg f=3$ (iii)

Figure 1: The group law as in [1]. By SuperManu - Own work based on Image: ECClines.png by en:User:Chas zzz brown, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2970559

References

[1] J. H. Silverman. *The Arithmetic of Elliptic Curves*. Springer, 2nd edition, 2009. Algebraic Function Fields and Codes. [2] H. Stichtenoth. Springer, 1st edition, 2010.