Renormalizing KPZ equation at weak disorder in dimension ≥ 3

Francis Comets¹, Clément Cosco¹, Chiranjib Mukherjee²

¹ Université de Paris, France

 2 Universität Münster, Germany

We study the solution $h_{\epsilon}(t, x)$ of the (regularized) Kardar-Parisi-Zhang (KPZ) equation on $[0, \infty) \times \mathbb{R}^d, d \geq 3$,

$$\frac{\partial}{\partial t}h_{\epsilon} = \frac{1}{2}\Delta h_{\epsilon} + \left[\frac{1}{2}|\nabla h_{\epsilon}|^2 - C_{\epsilon}\right] + \beta \epsilon^{\frac{d-2}{2}}\xi_{\epsilon} \tag{1}$$

with $h_{\epsilon}(0, x) = 0$. Here $\beta > 0$ quantifies the disorder strength, $\xi_{\epsilon} = \xi \star \phi_{\epsilon}$ is a spatially smoothened (at scale ϵ) Gaussian spacetime white noise and C_{ϵ} is a divergent constant as $\epsilon \to 0$.

For sufficiently small β , there exists a stationary solution of (1) for $\epsilon = 1$, and we denote by $h_{\epsilon}(t, x)$ the one driven by the diffusively rescaled (at scale ϵ), time-reversed and spatially translated white noise $\xi^{\epsilon,t,x}$. Then, it is known that $h_{\epsilon}(t,x) - \mathfrak{h}_{\epsilon}(t,x) \to 0$ in probability as $\epsilon \to 0$.

In this talk, we will show convergence in law of the process:

$$\epsilon^{1-\frac{d}{2}} \left[h_{\epsilon}(t,x) - \mathfrak{h}_{\epsilon}(t,x) \right] \longrightarrow \mathcal{H}(t,x)$$

to a centered Gaussian field which is the (real-valued) solution of the non-noisy heat equation $\partial_t \mathcal{H} = \frac{1}{2}\Delta \mathcal{H}$ with a random initial condition $\mathcal{H}(0, x)$ given by a Gaussian free field on \mathbb{R}^d .