Image Milnor number and A_e -codimension

Daiane Alice Henrique Ament¹, J. J. Nuño-Ballesteros², J. N. Tomazella³

A theorem by D. Mond shows that if $f:(\mathbb{C},0)\to(\mathbb{C}^2,0)$ is finite and has degree one onto its image (Y,0), then the \mathcal{A}_e -codimension is less than or equal to the image Milnor number, with equality if and only if (Y,0) is weighted homogeneous. Inspired by the previous inequality, we consider $f:(X,0)\to(\mathbb{C}^2,0)$, where $(X,0)\subset(\mathbb{C}^n,0)$ is an isolated complete intersection singularity of dimension one and f is a finite map germ of degree one onto its image (Y,0). We define the image Milnor number of f. Moreover if $f:(X,0)\to(\mathbb{C}^2,0)$ is a map germ, where (X,0) is a plane curve singularity we obtain the similar inequality. When $(X,0)\subset(\mathbb{C}^n,0)$ is irreducible weighted homogeneous and f is weighted homogeneous with the same weights of (X,0) we show that the \mathcal{A}_e -codimension is equal to the image Milnor number.

¹ Universidade Federal de Lavras

² Universidad de Valencia

³ Universidade Federal de São Carlos