Exponential decay properties of solutions to the fifth-order KdV equation

Pedro Isaza ${ }^{1}$

${ }^{1}$ Universidad Nacional de Colombia-Medellín

We consider the Cauchy problem for the fifth-order nonlinear dispersive equation of the form

$$
\begin{aligned}
\partial_{t} u-\partial_{x}^{5} u+Q\left(u, \partial_{x} u, \cdots, \partial_{x}^{3} u\right) & =0, u=u(x, t), x \in \mathbb{R}, t \in[0, T] \\
u(x, 0) & =u_{0}(x) .
\end{aligned}
$$

where Q is a polynomial. We prove that if the initial data u_{0} is such that $e^{a_{0} x_{+}^{5 / 4}} u_{0} \in L^{2}(\mathbb{R})$, then the solution $u(\cdot, t)$ of the problem has also the same type of decay as time evolves, but the strength of the decay decreases in time.

More precisely,

$$
\left\|e^{a(t) x_{+}^{5 / 4}} u(\cdot, t)\right\|_{L^{2}(\mathbb{R})} \leq C \quad \text { for } t \in[0, T]
$$

where

$$
a(t)=\frac{a_{0}}{\left(1+\frac{5^{5}}{4^{3}} a_{0}^{4} t\right)^{1 / 4}} .
$$

We also prove that this decay is the best that can be expected.

