Random cliques in random graphs

Oliver Riordan¹

 1 University of Oxford

We show that for each $r \geq 4$, in a density range extending up to, and slightly beyond, the threshold for a K_r -factor, the copies of K_r in the random graph G(n, p) are randomly distributed, in the (onesided) sense that the hypergraph that they form contains a copy of a binomial random hypergraph with almost exactly the right density. Thus, an asymptotically sharp bound for the threshold in Shamir's hypergraph matching problem – recently announced by Jeff Kahn – implies a corresponding bound for K_r -factors in G(n, p). The same method works for certain other graphs F in place of K_r ; the case r = 3 is only partially resolved, surprisingly.