Chromatic index of random multigraphs

Gal Kronenberg ${ }^{1}$

${ }^{1}$ Tel Aviv University

For a (multi)graph $G=(V, E)$, we denote by $\chi^{\prime}(G)$ the minimum number of colors needed to color the edges of G properly. Clearly, $\Delta(G) \leq \chi^{\prime}(G)$. Vizing proved that $\chi^{\prime}(G) \leq \Delta(G)+\mu(G)$, where $\mu(G)=\max \left\{\mu(e) \left\lvert\, e \in\binom{V}{2}\right.\right\}$ is the maximum edge multiplicity of G.

Let $S \subseteq V$ and let $\rho(G)=\max \left\{\left.\frac{e(G[S])}{\lfloor|S| / 2\rfloor} \right\rvert\, S \subseteq V\right\}$. Since every color class forms a matching, we have that $\chi^{\prime}(G) \geq\lceil\rho(G)\rceil$. In the '70s, Goldberg, and independently Seymour, conjectured that for any multigraph $G, \chi^{\prime}(G) \in\{\Delta(G), \Delta(G)+1,\lceil\rho(G)\rceil\}$. We show that their conjecture is true w.h.p. for random multigraphs.

The model $M(n, m)$ is the probability space consisting of all loopless multigraphs with n vertices and m edges, in which m pairs from $[n]$ are chosen independently at random with repetitions (that is, we permit edge repetitions in the standard random graph model $G(n, m)$). Our result states that, for a given $m:=m(n), M \sim$ $M(n, m)$ typically satisfy $\chi^{\prime}(G)=\max \{\Delta(G),\lceil\rho(G)\rceil\}$. In particular, we show that if n is even and $m:=m(n)$, then $\chi^{\prime}(M)=\Delta(M)$ for a typical $M \sim M(n, m)$. Furthermore, for a fixed $\varepsilon>0$, if n is odd, then a typical $M \sim M(n, m)$ has $\chi^{\prime}(M)=\Delta(M)$ for $m \leq(1-\varepsilon) n^{3} \log n$, and $\chi^{\prime}(M)=\lceil\rho(M)\rceil$ for $m \geq(1+\varepsilon) n^{3} \log n$.

