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Resumo

Nesta tese estudamos a equivaléncia topoldgica entre germes de campos de vetores holo-
morfos com uma singularidade isolada na origem de C" (n > 2). Assim, se a equivaléncia
topolégica é de classe C'!, provamos que a multiplicidade algébrica do campo (na origem)
é invariante. Alem disso, se considerarmos somente campos de vetores em C?, é sufi-
ciente supor que a equivaléncia topoldgica é diferencidvel na origem de C?.

Palavras chaves: vector field, holomorphic, multiplicity.



Preface

Given a curve f : (C%,0) — (C,0), singular at 0 € C?, we define its algebraic multiplicity
as the degree of the first nonzero jet of f, that is, v(f) = v where

f=Fot fosr oo

is the Taylor development of f and f, # 0. A well known result by Burau [5] and
Zariski [6] states that v is a topological invariant, that is, given f: (C2,0) — (C,2) and a
homeomorphism h : U — U between neighborhoods of 0 € C? such that h(f~(0)NU) =
FH0) NV then v(f) = v(f). Consider now a holomorphic vector field Z in C? with a
singularity at 0 € C?. If

Z =T+ Typr + -

we define v = v(Z) as the algebraic multiplicity of Z. A natural question, posed by
J.F.Mattei is: is v(Z) a topological invariant of 7. In [2], the authors give a positive
answer if Fy is a generalized curve, that is, if the desingularization of Z does not contain
complex saddle-nodes. In this work, we impose conditions on the topological equivalence
h:U — U. Thus, in Part II we prove the following:
Theorem. Leth:U — U be a topological equivalence between Fz and F and assume
that h preserves the orientation of C2. Suppose that h is differentiable at 0 € C? and
such that dh(0) : R — R* is a real isomorphism. Then the algebraic multiplicities of Z
and Z are the same. B

In Part I, we consider holomorphic vector fields Z and Z in C"(n > 2) with isolated
singularity at 0 € C" and prove the following: N
Theorem. Let U and U be neighborhoods of 0 € C" and let h : U — U be a C!
equivalence between Fz and Fz, that is, a C' diffeomorphism taking leaves of Fz to

leaves of F. Then the algebraic multiplicities of Z and 7 are equal.
The two parts of this thesis are independent and can be read in any order.
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Part 1

The C! case



1 Introduction

Let F be a holomorphic foliation by curves of a neighborhood U of 0 € C* with a unique
singularity at 0 € C"(n > 2). We assume that F is generated by the holomorphic vector
field

n
0
V= iz:aia—%, a; € Oy, g.cd.(ar,as,...,a,) = 1.

The algebraic multiplicity of F (at 0 € C") is the minimum vanishing order at 0 € C"
of the functions a;. Let F be another holomorphic foliation by curves of a neighborhood
Uof0€eC andlet h: U — U be a topological equivalence between F and F, that
is, a homeomorphism taking leaves of F to leaves of 7. A natural question, posed by
J.F.Mattei is: are the algebraic multiplicities of F and F the same?. In [2], the authors
give a positive answer if n = 2 and F is a generalized curve, that is, if its desingularization
does not contain complex saddle-nodes. In this work we give a sufficient condition on
the topological equivalence h : U — U for the algebraic multiplicity to be invariant.
Let m : C* — C" be the quadratic blow up with center at 0 € C". Clearly the map
h := =1 h is a homeomorphism between 7= (U\{0}) and 7=} (U\{0}). Then we prove
the following:

Theorem 1.1. Suppose that h extends to the divisor 771(0) as a homeomorphism be-
tween 7 Y(U) and 71 (U). Then the algebraic multiplicities of F and F are the same.

If his a C! diffeomorphism, we prove that h extends to the divisor. Thus, we obtain
that the algebraic multiplicity is invariant by C! equivalences:

Theorem 1.2. Let F and F be two foliations by curves of neighborhoods U and U of
0eC',n>2. Leth:U — U be a C! equivalence between F and F, that is, a c!
dzﬁeolnorphzsm taking leaves of F to leaves of.'F Then the algebraic multiplicities of F
and F are equal.

It is known that there exists a unique way of extending the pull back foliation
7 (Flngoy) to a singular analytic foliation Fo on 7~ Y(U) with singular set of codimen-
sion > 2. We say that JFj is the strict transform of F by 7. Let .7::0 be the strict transform
of F by 7. In order to prove Theorem 1.1 we show that the algebraic multiplicity of F
depends on the Chern class of the tangent bundle of Fy. To relate the Chern classes of
the tangent bundles of Fy and Fy we use the following theorem (see [1]).

Theorem 1.3. Let F and F be foliations by curves on the complex manifolds M and
M respectively. Let ¢(TF) denote the Chern class of the tangent bundle TF of F.

Let h : M — M be a_topological equivalence between F and F and consider the map
h* : H*(M,7) — H*(M,7) induced in the cohomology. Then h*(c(TF)) = c(TF).

Clearly the homeomorphism k : 7~ 1(U\{0}) — 7 1(U\{0}) is a topological equiv-
alence between Fo|-1(1n\f0}) and .7-'g|7r,1([7\{0}). To be able to apply Theorem 1.3 we

show that h extends as a topological equivalence between F{ and ,7?0. This is the non
trivial part of the proof. Thus, we prove the following.



Theorem 1.4. Let V and V be complex manifolds, let Y C 'V and Y CV be analytic
subvarieties of codimension > 1 and, let F and F be holomorphic foliations by curves
on V and V respectively. Suppose there is a homeomorphism h between V and V with
h(Y) =Y and such that hly\y is a topological equivalence between Fly\y and .7-"|‘~/\3~,.

Then h is a topological equivalence between F and F.

This part is organized as follows. In section 2, we state and prove a lemma used in
section 3 to prove Theorem 1.4. In section 4 we prove Theorem 1.1. Finally, section 5
discusses the case C''.

2 A fundamental lemma

Let D={2€C:|]z]| <1} and B= {z € C* ! : ||z|| < 1} where n > 2. Let M be a
complex manifold of complex dimension n and let D be a subset of M homeomorphic
to a disc. We say that D is a singular disc if for all z € D there exist a neighborhood
D of z in D, and an injective holomorphic function f : D — M such that f(D) = D. If
1'(0) = 0 we say that z is a singularity of D, otherwise z is a regular point of D (this
does not depend on f). The set S of singularities of D is discrete and closed in D and
we have that D\S is a complex submanifold of M. Thus, if z is a regular point of D,
there is a neighborhood U of z in M and holomorphic coordinates (w, z), w € B, z € D
on U such that D NU is represented by (w = 0). If D does not have singularities we
say that it is a reqular disc. In this case, by uniformization, there is a holomorphic map
f:+E — M, where E = D or C, such that f is a biholomorphism between E and D.
Ezample. Let F be a holomorphic foliation by curves on the complex manifold M and
let D C M be homeomorphic to a disc. If D is contained in a leaf of F then it is a
regular disc.

Lemma 2.1. Let F : Dx [0,1] — C" be a continuous map such that for all t € [0,1], the
map F(x,t) : D — C" is a homeomorphism onto its image. Thus, we have a continuous
family of discs Dy := F(D x {t}). Suppose Dy is a regular disc for each t > 0. Then Dj
18 a singular disc.

Remark. Actually, we may only assume that D; is a singular disc for all ¢ > 0.
We now state the lemmas used in the proof of Lemma 2.1.

Lemma 2.2. Let U be a simply connected domain in the complex plane such that 0 U
is a Jordan curve. Then any uniformization f : D — U extends as a homeomorphism
between D and U.

Lemma 2.3. For each k € N, let ¢y : S' — S be a homeomorphism. Then {¢}} has a
subsequence which converges almost everywhere with respect to the Lebesgue measure in
the circle.

Lemma 2.4. Let ¢ : S — C be a bounded measurable function. Suppose that fSl 2"P(2)dz =
0 for all n € Z. Then, with respect to the Lebesgue measure in the circle, ¢ vanishes
almost everywhere.



Lemma 2.5. Let D C C" be a bounded set homeomorphic to a disc. Let p € D and
suppose that D\{p} has a complex structure such that the inclusion D\{p} — C" is
holomorphic. Then there is a holomorphic injective map g : D — C* with g(D) = D,

9(0) = p.

Proof of Lemma 2.1. Let p = F(xz¢,0) be any point in Dy. Let U C D be a disc centered
at o and such that U C D. Let t; > 0 be such that ¢, — 0 as & — oo an define
Dy, = F(U x{t}). Clearly Dy C D;,. By uniformization, D,, is equivalent to a subset
of C and, since Dy, is a proper subset of Dy, , we have (again by uniformization) that Dy,
is holomorphically equivalent to the unitary disc ID. Then there is a holomorphic map
fr : D — C" which is a biholomorphism between DD and Dj. If we think that D;, is a
subset of C, by applying Lemma 2.2, we conclude that f; extends as a homeomorphism
fr : D — Dy. We may assume that f;(0) = F(zo,) for all k; otherwise we compose
fr with a suitable Moebius transformation. Observe that fi(ID) is contained in the
compact set F(U x [0,1]), hence {f;} is uniformly bounded and, by Montel’s theorem,
we can assume that f; converges uniformly on compact sets to a holomorphic function
f:D — C". Note that f(0) = p, since

f(0) = lim f(0) = kli_{goF(mOatk) = F(20,0) = p.

k—o00

Let S' = 0D and consider for each & the homeomorphism
Pk = fk|Sl : Sl — O0Dy,.

Define
7: F(OU x[0,1]) — S!

m(F(¢, 1) = ¢.

Clearly, 7 maps 0Dy = F(0U x{t;}) homeomorphically onto S!. Therefore for each k,
the map
bk ::7To<pk:Sl—>Sl

is a homeomorphism. By taking a subsequence, we may assume that ¢; converges a.e.
to a function ¢ : ST — S! (Lemma 2.3). Therefore ¢, converges a.e. to

w:=n"lo¢:S' = IDy.

Fix z € D. Since {¢x} is uniformly bounded, by the dominated convergence theorem
we have that ) .
_/ (pk(w)dw—> —/ plw) dw (1)
21 Jgr w — 21 Jgrw —x

as k — oo. By the Cauchy’s integral formula, the left part of (1) is equal to fx(x) and,
since fr(x) — f(x), we conclude that

@) = g [ 2 . (2

21 Jarw —x

Assertion 1. f : 1D — C" is not constant.



Proof. Assume by contradiction that f is a constant function. Then (™ (0) = 0 for all
n € N, where f(") is the nth derivative of f. From (2), by induction on n, it is not

difficult to prove that
1 (w)
™M)= — [ LAY =0
F710) 271 /Sl wntl v

for all n > 1. Hence

w'p(w)dw =0 for all n < —2. (3)
S§1

On the other hand, for each k and any n > 0 we have that [, w"¢p(w)dw = 0 be-
cause w"yi(w) extends holomorphically to D as w" fy(w). Then, by the dominated
convergence theorem we have that

/ w'o(w)dw = lim [ w"pg(w)dw =0 forall n>0. (4)
§1

k—oo Jg1

Thus, from (3) and (4):

/ w'o(w)dw =0 for all n e Z\{-1}.
St

And easy computation shows that each coordinate of the function ¢ := ¢ — p satisfies
the hypothesis of Lemma 2.4. Then ¢ = 0 a.e. and therefore ¢ = p a.e., which is a
contradiction because ¢(S!) C 9Dy and p ¢ 9Dy.

Assertion 2. f(D) C Dy.

Proof. Let z € C" be such that z = f(z). Then z = lim fi(z). Since fi(z) is contained
in Dy = F(Ux{tx}), we have that fy(z) = F(zy,t) with 2, € U. By taking a
subsequence, we may assume that z; — z € U. Then

z = lim fi(z) = lim F(zk,tx) = F(lim z;,0) = F(z,0) € Dy.
k—o0 k—o0 k—o0
Therefore f(D) C Dy.

It follows from Assertion 1 that f’ does not vanish. Then, we know that the zero set
of f' is discrete and closed in . Hence, there exists a disc Q@ C D centered at 0 such
that f' # 0 on Q\{0}. Since f is not constant, 0 is an isolated point in f~'(p). Thus,
we assume ) to be small enough such that QN f~!(p) = {0}. In particular, f(9Q) does
not pass through p.

Assertion 3. There is a disc D C Dy with p € D and such that D C f(Q).

Proof. Let z € Q\{0}. Then f'(z) # 0 and there exists a disc A C Q with z € A
and such that f|x : A — C" is injective, hence a homeomorphism onto its image, since
A is compact. Then f(A) is homeomorphic to a disc and, since f(A) C Dg, we have
that f(A) is open in Dy. Then f(z) is an interior point of f(£2) as a subset of Dj.
It follows that every point z € f(Q\{0}) is an interior point of f(2) C Dy. Thus if



z is a point in the boundary of f(2), since z is not an interior point, we have that
z ¢ f(0QU{0}) = f(0Q) U{p}. Therefore:

af () C f(99) U {p}.

Since f(0€2) does not pass through p, we may take a disc D C Dy containing p and
such that D is disjoint of f(9€2). Finally, we claim that D C f(2). Let z € D and
suppose that z ¢ f(£2). Since D contains p, we may take z # 0, close enough to 0, such
that 2/ := f(z) € D. We have 2’ # p because z # 0, hence we may take a path -y in
D\{p} connecting z and z’. Since z ¢ f(2) and 2z’ € f(Q), there exists 2 € v such that
2" € 0f (). Then, since 9f(Q) C () U{p}, we have 2" € f(9Q) U {p}. But thisis a
contradiction because z” € v is contained in D\{p}, which is disjoint of f(9) U {p}.

Let z € D\{p}. By Assertion 3, z = f(z) with z € Q. Since z # p we have z # 0,
hence f'(z) # 0. Then, from the proof of Assertion 3, there exists a disc A C Q, z € A,
such that f|a : A — C" is injective and f(A) is a neighborhood of z in D\{p}. Since f is
holomorphic it follows that D\{p} is a Riemann surface and the inclusion D\{p} — C”
is a holomorphic map. Then, by Lemma 2.5, there is a holomorphic injective map
g: D — C" with g(D) = D C Dy. Since p was arbitrary, it follows that Dy is a singular
disc, which finishes the proof of Lemma 2.1. O
Proof of Lemma 2.2. See [7] p.310. O
Proof of Lemma 2.3. We give a sketch of the proof. By taking a subsequence we may
assume that ¢, converges on a dense subset of S!. Let 7 : R — S! be a covering. For
each k, we may choose a lifting fr : R — R of ¢ by 7. Since ¢y is a homeomorphism,
fr is monotone and we may assume that fj is increasing for all k. We may also assume
that fj converges on a dense subset R of R. For all y € R, we define f(y) = lim f(y).
Observe that f is increasing, since so is fi for all k. We extend f to R as

f(z) = limsup f(y).
yeERy<zx

It is not difficult to see that f : R — R is increasing. Then f is continuous on a set A
of total measure. Now, it is not difficult to prove that for all z € A, the sequence fi(z)
converges to f(z) and the lemma follows. O
Proof of Lemma 2.4. We claim that [y, f(2)¢(z)dz = 0 for all continuous function
f : S! = C. By the Stone -Weierstrass approximation theorem (see [9]), f can be
uniformly approximated by a sequence of functions P, = Ap + iBg, k € N, where
Ag, By : R2 — R are real polynomials. Let z = x + iy and observe that z = 1/z if
z € S. Then

. z+z zZ—2Z z+z z—Z

Py(z) = Ag(w,y)+iBr(z,y) = Ag( 5 5 ) + i By ( 5 5 )
24+ 1)z z—1/z . z+1/z z—1/z
Ak( 2 ) 2 )+/LBk( 2 ) 2 )

Hence Py (2) = 3" a;z? where j runs on the integers, the sum is finite and the coefficients
a; depend only on the coefficients of Ay and Bj. Then

/Slpk() dz_/ Z“JZJ dz—zaa/ 2 (2)dz = 0,



by hypothesis. Since P converges uniformly to f and ¢ is bounded we have that
[ @iz~ [ @)

as k — oo and therefore [y, f(2)¢(z)dz = 0.

Now, we take an uniformly bounded sequence of continuous functions f;, : S* — C
which converges a.e. to ¢. Then {fr¢} is uniformly bounded and converges a.e. to
$¢ = |¢>. Thus by the dominated convergence theorem we have that

2
|RCCE Y OIS

as k — oo. Therefore [¢,|¢(2)|dz = 0 and it follows that ¢ = 0 almost everywhere. [
Proof of Lemma 2.5. Let A, denote the annulus {z € C, r < |z| < 1} where r > 0.
Since D C C" is bounded and D\{p} is homeomorphic to an annulus we have (see [10])
that there exist a biholomorphism

g9: Ay — D\{p},

such that g(z) — p as |z| — r. Take R with 7 < R < 1 and let I', and I'r be denote the
circles |z| = r and |z| = R respectively. For r < |z| < R we have the formula

1 1
2mi Jr, w— 2 2w Jp, w— 2z

since g extends continuously to I'; as g|r, = p. But the second integral is equal to zero
because p/(w — z) is holomorphic on the disc |w| < r, then

g9(z) = %/F %dw.

Therefore g extends to the disc |z| < R. Since g is not constant and g|r, = p we
necessarily have r = 0 and the lemma follows. U

3 An extension theorem

This section is devoted to prove Theorem 1.4. We show first that Theorem 1.4 is a
consequence of the following theorem.

Theorem 3.1. Let F be a foliation by curves on the complex manifold M. Let X C M
be an analytic subvariety of codimension > 1. Suppose that:

(i) F is generated by a holomorphic vector field.

(ii) There exists a homeomorphism h: % x D — M, where ¥ is a ball in C"~' and D
s a disc in C.

(iti) If D, := h({z} x D) then for all z: either D, is contained in X, or D, N X is
discrete and D,\X is contained in a leaf of F.

10



Then F is reqular and the sets D, are the leaves of F.

Proof of Theorem 1.4. Let p be a point in Y which is regular for F. Let % denote a ball
in C*~! and D a disc in C. Consider a neighborhood W of p on which F is a product
foliation, that is, W ~ ¥ x D and the sets {z} x D are the leaves of Fly. We take W
small enough such that F restricted to M := h(W) is generated by a holomorphic vector
field. Let X be the intersection between M and Y. We will show that the hypothesis of
Theorem 3.1 hold for F restricted to M. Hypothesis (i) and (ii) of 3.1 evidently hold.
Let D, = h({z} x D).

Assertion 1. For all z € 3, either {z} x D is contained in'Y, or S, := ({2} x D)NY
is discrete and closed in {z} x D.

Proof. Since Y is closed, we have that A = {2z} x DNY is closed in {2z} x D. Suppose
that A is not discrete. Let z € A be an accumulation point of A and let f be a holo-
morphic function which defines Y on a neighborhood of z. Let D be a disc in {z} x D,
with z € D, and such that f is defined on D. Since A C Y we have that f vanishes
on AND. Then f vanishes on D because A ND has x € D as an acummulation point.
Thus, D C Y and we have therefore D C A. It follows that A is open in {z} x D and,
by connectedness, A = {z} x DNY. Thus {z} x D is contained in Y.

Suppose that D, is not contained in X. Let S, = h(S}), where S} is given by
Assertion 1. Then S, is discrete in D,. Observe that ({z} x D)\S’, is contained in a leaf
of Flpny- Then, since h[yn\y is a topological equivalence between F|y\y and }'|‘~,\1~/, it
follows that

D:\S. = h(({z} x D)\S,)

is contained in a leaf of F. Thus, hypothesis (ii7) of 3.1 holds. Then Fis regular on
M = h(W) and every D, is contained in a leaf of F. Therefore we conclude:

Assertion 2. If p is a point in Y which is regular for F, then p is mapped by h to a
reqular point of F. Moreover, there exists a neighborhood Q of p in its leaf which is
mapped by h onto a neighborhood of h(p) in its leaf.

Now, by using Assertion 2 for h and h~', we deduce that p is regular for F if and
only if h(p) is regular for F. Hence

h(Sing(F)) = Sing(F).

It remains to prove that h maps any leaf of F onto a leaf of F. Let p be a regular point
of F. Let L be the leaf of F passing through p and let L be the leaf of .7-" passing through
h(p). Let A be the set of points in L which are mapped by h into L. By Assertion 2,
if z € A there exists a neighborhood of z in L, contained in A. Therefore A is open.
Now, let z ¢ A. Then h(z) ¢ L. Thus, if L' # L is the leaf of F passing through h(z)
it follows by Assertion 2 that there exists a neighborhood € of z in L which is mapped
by h into L' # L hence Q is contained in L\ A. Then A is also closed and it follows by
conectedness that A = L, that is, h(L) C L. Analogously, we prove that h~ (L) C L.
Therefore h(L) = L. O

11



We proceed now to prove Theorem 3.1.

Proposition 3.2. Let F be a foliation by curves on the complex manifold M. Let
X C M be an analytic subvariety of codimension > 1. Suppose that:

(i) There exists a homeomorphism h : X x D — M, where ¥ is a ball in C*~' and D
is a disc in C.

(ii) If D, := h({z} x D) then for all z: either D, is contained in X, or D, is contained
in a leaf of F.

Consider z' € ¥ and suppose that D, is a singular disc. Let S,/ the set of singularities
of D,i. Then D, \S, is contained in a leaf of F.

Proof. 1t is sufficient to prove the following.
Assertion. If p € D,/\S, then p has a neighborhood in D, \S,: contained in a leaf of F.

Suppose Assertion holds. let L be a leaf of F and let € (D,/\S,/)NL. By Assertion,
there is a neighborhood A of z in D,/\S,, such that A C L. Then A C (Dy\S»)NL
and it follows that the intersection of D,/\S,, with any leaf is open in D,/\S,,. Then,
since D,/\ S, is connected, we have that it is contained in a unique leaf.

Proof of Assertion. Let p in D,/\S,,. Since p is a regular point of the singular disc D/,
on a neighborhood U C M of p we may consider coordinates (w,y), w € B, y € D with
p = (0,0) and such that D, NU is represented by (w = 0). Suppose that p = h(2’,t').
Let ¥’ be a ball in ¥ containing 2z’ and let D' be a disc in D containing #'. Then
W = X' x D' is a neighborhood of (2/,#') and, by taking W small enough, we assume
h(W) C U. Let D, = h({z} x D'). Note that D, C D, NU, hence D/, is contained in
(w =0). Let g : U — D be the projection g(w,y) = y. Consider z € ¥’ and suppose
D, \X # (0. By hypothesis (ii), D, is contained in a leaf of F. Therefore D’, is contained
in leaf of 7 and we have that g[p; : D, — D is a holomorphic map. Remember that
D, C (w=0). Then g|p, : D), — Dis given by (0,y) — y and is therefore a one to one
map. Then g(D’,) is a disc in D with g(dD’,) as boundary. Note that p = (0,0) € D’,,
hence 0 is contained in the disc g(D’,). Therefore the curve g(0D!,) winds once around
0. By the continuity of h we assume Y’ small enough such that g(9D.) is homotopic
to g(0D’,) in D\{0} for all z € X'. Then g(dD’) winds once around 0 and g|p: has
therefore a unique zero. In other words, the plaque D/, intersects Y = B x {0} C U at
a unique point. Thus, we can define the map f: A(W)\X — Y by f(D\X)=D.NY
whenever D\ X # (. We have that f is holomorphic because it is constant along the
leaves and, restricted to any transversal, is a holonomy map. Since f is bounded and
X has codimension > 1, by the generalized Riemann’s extension theorem, f extends to
a holomorphic function on h(W). Observe that f restricted to Y is the identity map,
then f is a submersion in a neighborhood V of Y. Hence f defines a regular foliation
N on V. Tt is easy to see that N coincides with F on V\X, thus N' = F. Therefore
p € Y is a regular point of F.

Now, by reducing the neighborhood W = ¥’ x D’ of (2/,t'), we may assume that
h(W) is contained in a neighborhood of p where F is given by a submersion f. Obviously
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D!, is a neighborhood of p in D,. We shall prove that D’, is contained in a leaf of F
(the leaf passing through p). If D!, is not contained in X, so is D, and, by hypothesis
(ii), we have that D!, is contained in a leaf of F. On the other hand, suppose that D’,
is contained in X. Then there exists a sequence of points z;, — 2’ such that h({z} x D)
is not contained in X, otherwise h(X"” x D) C X for some neighborhood ¥ C ¥ of 2/,
which is a contradiction because X has codimension > 1. Thus, by (7i), we have that
D), is contained in a leaf of F for all k. Recall D} C h(W) is contained in a domain
where F is given by the submersion f. Then f is constant over D} = h({z} x D) and
in particular, for all ¢ € D' we have f(h(zx,t)) = f(h(zg,t')). Then:

f(h(z1)) = f(h(lim 2,t)) = lim f(h(z, 1))
k—o0 k—oo
= tim f(h(o ) = (B lim 2, 1))
k—oo k—o0
= f(h(<,1)).
Therefore, for all ¢t € D' we have that h(z',t) and h(z’,¢') are contained in the same

Leaf. It follows that D!, is contained in the leaf passing trough h(2’,t'). Thus, Assertion
is proved. O

Proposition 3.3. Let F be a foliation by curves on the complex manifold M such that:
(i) F is generated by a holomorphic vector field.

(ii) There exists a homeomorphism h: ¥ x D — M, where ¥ is a ball in C*~' and D
is a disc in C.

(iii) For all z, there is a discrete closed set S, C D, := h({z} x D) such that D,\S, is
contained in a leaf of F.

Then F is reqular and the sets D, are the leaves of F.
We need the following Lemmas.

Lemma 3.4. Let f : D — C be smooth, and holomorphic on . Suppose that f is
regular on S'. Then f is a reqular map if and only if the curve f|s1 : S' — C has degree
1t

Proof. If ¢ is a point in S', then i¢ is the unitary vector tangent to S' at ¢. Thus the
velocity vector of the curve f|g1 in f({) is the image by f'(¢) of i¢, that is, f'(¢)i¢. The
winding number of the curve f’(¢)i¢ is the number of zeros on I of the function iz f'(z),
and this number is equal to 1 if and only if f’ # 0 on D. O

Lemma 3.5. Let M be a complex manifold and D C M a singular disc. Then there
exists a holomorphic injective map g : E — M, where E =D or C, such that g(E) = D.

!The degree of a parameterized regular curve in the plane is defined as the winding number around
0 of its velocity vector.
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Proof. Let S be the set of singularities of D. Observe that D\S is homeomorphic to
a subset of the plane. Then, since D\S is a Riemann surface, we have that D\S is
actually holomorphically equivalent to a proper subset of the Riemann sphere (see [10]).
Thus, there is a biholomorphism

g:U— D\S

where U is a domain in CP'. Consider p € S. Since D is a singular disc, there is a
holomorphic injective map h : D — D, h(0) = p, where D is disc in D. We may assume
that h is regular on D\{0}. Then p is the unique singularity in D C D and therefore
the holomorphic function

gfl oh: ﬁ\{()} —-U

is well defined. Since g~! o h is injective, we have that g~! o h(S!) is a Jordan curve,
hence it divides the sphere CP! in two domains both homeomorphic to a disc. Then
the image of g~! o h is contained in one of these domains and it follows by Riemann’s
extension theorem that g~' o h extends to ID as a one to one map. Then, since h : D — D
is a homeomorphism, we have that ¢~' extends to D as a homeomorphism. Therefore,
g~ ! extends to D as a homeomorphism onto a simply connected domain  C C. Then
U = Q\5, where S’ = ¢g71(9) is a discrete closed set and we have therefore that
g : Q\S" — M extends to Q as a holomorphic injective function g : @ — M. Since
Q) C CP!' is simply connected and clearly 2 # CP', the lemma follows from Riemann’s
Uniformization Theorem. U

Proof of Proposition 3.3.

Assertion 1. For all z, we have that D, is a singular disc and the sets D,\ Sing(F) are
the nonsingular leaves of F.

Proof. Let x € D,. Since S, is a discrete closed subset of D,, there is a disc D C D,
with z € D such that D\{z} C D,\S,. Then, from hypothesis (iii), D\{z} is contained
in a leaf of F. If D is small enough, we may think that D is contained in C". Hence,
by applying Lemma 3.5, there exists a holomorphic injective map g : D — M with
g(D) = D. Since that = € D, was arbitrary, it follows that D, is a singular disc.

Let L be a leaf of F and suppose that z € LN(D,\ Sing(F)) for some z. Take D C D,
as above. We assume D small enough such that it is contained in a neighborhood U of
x where F is trivial and given by the submersion f. Then D\{z} is contained in a leaf
of Fly and f is therefore constant over D\{z}. Hence, by continuity, f is constant over
D. Then D is contained in a leaf of F|y and we have therefore D C L. Thus we have
D C LN (D,\ Sing(F)). It follows that L N (D,\ Sing(F)) is an open subset of both L
and D,\ Sing(F) for all L and z. Now, fix a leaf L. Since the intersection of L with any
D,\ Sing(F) is open in L, it follows by connectedness that L is contained in a unique
D,\ Sing(F). For this D,\ Sing(F), we also have that its intersection with any leaf is
open in D,\ Sing(F). Again by connectedness D,\ Sing(F) is contained in a unique
leaf, thus we necessarily have D,\ Sing(F) C L and it follows that D,\ Sing(F) = L.
Therefore Assertion 1 is proved.
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Fix p € M. We have p € D,/ for some 2’ € 3. Take p’ in D,/\S,/. From hypothesis
(131), p' is a regular point of F. We have p' = h(2’,t') with ¢’ € D. If B C X is a ball
containing 2z’, then Yo := B x {#'} is a (n — 1) ball passing through (2’,t'). We assume
B small enough such that 3 is mapped by h into a neighborhood W' of p' where F is
equivalent to a product foliation. Let ¥ (submanifold of W) be a global transversal to
Flw. If wis a point contained in h(Xg), the leaf of F|y passing through it intersects X
in a unique point ¥ (w). We claim that v is a homeomorphism of h(X() onto its image.
Since h(Xg) is compact, it suffices to prove that v is injective on h(3g). Suppose that w;
and wo are two points in h(Xg) contained in the same leaf L of F|yy. From Assertion 1,
we have that L C D, for some z. Then h~!(L) C {2z} x D, hence h™*(w;) and h~!(w3)
are two different points in the intersection of (z x D) with X, which is a contradiction
because 3o C ¥ x {t'} intersects (z x D) only at (z,t'). N

We redefine % as 3 = 9)(h(Xo)). Then for all z € B we have that D, intersects ¥ at
the unique point 9 (h(z,tg)); otherwise, if D, intersects ¥ in two different points z1 and
To, then A1)~ 1(z1) and h~ 14~ !(z2) would be two different points in the intersection
of {z} x D with 3.

We may define the map

g:V=hBxD) -3,
g(D,)=D,NX.

By Assertion 1, each leaf of F is contained in some D,. Then g is constant along the
leaves. Therefore, since the restriction of g to any transversal is a holonomy map, we
have that g is holomorphic on V'\ Sing(F). Actually, since Sing(F) has codimension
> 2, g is holomorphic on V.

Consider z € ¥\g(Sing(F)). Then D = g~'(z) does not intersect Sing(F). Clearly
D is equal to some D,. Then, by Assertion 1, D\ Sing(F) = D is a leaf of F. Thus, we
conclude that for all z € $\g(Sing(F)), the leaf passing through z is simply connected.
Moreover, since Sing(F) has codimension > 2, we have that ¢g(Sing(F)) has codimension
>1in 3 and we have therefore that:

Assertion 2. For all x in a dense subset of f], the leaf passing through x is simply con-
nected.

Let Z be a holomorphic vector field which generates 7 on V' and ¢ the local complex
flow of Z. Let L be a leaf of F|y and let z;, be its intersection with ¥ (g(L) = {z}).
There exists e, > 0 such that ¢(z,*) maps the disc |t| < 1 biholomorphically onto a
neighborhood Dy, of z;, in L. Thus, given any z in Dy, there exists a unique 77 (z) with
|71.(z)| < er, such that ¢(zr,77,(x)) = z. The function 77, : Dy, — C is the complex time
between z; and z. Clearly 77, is holomorphic on Dy,.

Assertion 3. The function Tp can be analytically continued on L along any path -y :
[0,1] — L with v(0) = z.

Proof. Since «y does not intersect Sing(F) there exists 6 > 0 such that for all z in
v([0,1]), the map ¢(z,*) is a biholomorphism between Dy; and its image. Denote zp,
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by 2o and let 0 = 59 < 81 < --- < 8, =1 and 1 = y(s1),...,2, = ¥(s;) be such that:
(z) The open sets ¢(z;,Ds) for i = 0,...,r cover ([0, 1]).
(74) x; is contained in p(z;_1,D5) fori =1,...,r.

For each i = 0,...,7 let 7/ : ¢(z;,D95) — Doy be defined by ¢(z;,7/(z)) = z. Let
z € @(zi—1,D5) N(x;,Ds). Let t; =7 _(z;) for i = 1,...,r and define ¢y = 0. Clearly,
|ti| and |7](z)| are less than §, hence |t; + 7/(z)| < 26 and we have that

(i1, ti +7(x) = @le(®i,t),7(z))
= o(p(zi—1, 71 (2i)), 7 (2))
= o(zi,7i(x))

Then, by definition of 7;_; we obtain:
ti+7i(z) = 7]_y (). (5)
For each i = 1,...,7 let 7; be the holomorphic function on ¢(z;, Ds) defined by
=1 +tg+ -+t

By using (5) we deduce that 7,_; = 7 on ¢(z;_1,D5) N (z;,Ds). Moreover, it fol-
lows from the definition that 7y is equal to 77, in a neighborhood of zg = 1. Therefore,
Tg,---,Tr give an analytic continuation of 77, along ~.

Assertion 4. Let L be any leaf of Flyv and let v',~4" : [0,1] — L be paths such that
7(0) = 4"(0) = 2z and +'(1) = v"(1) = =z € L. Let 17 be the analytic continu-
ation of 11, along v and let T be the analytic continuation of tr, along ~". Then
11 () = 7] (x). Thus, 11, extends as a holomorphic function on L. Therefore we may
define 7 : V\ Sing(F) — C by 7 = 71, on L. Then 7 is holomorphic on U\ Sing(F) and
extends to U because Sing(F) has codimension > 2. Moreover, if restricted to a leaf, T
is a regular map. In particular, T is a submersion on U\ Sing(F).

Proof. Fix L and denote z; by zg. Let 0 = s < --- < s, = 1, let Xg,...,2, be
transversals to the foliation at the points 29,21 = y(s1), ..., 2, = Y(s,) respectively, and
let § > 0 with the following properties:

(’i Yo C i]
(7) The flow ¢ maps X; x Dys biholomorphically onto its image, for all i = 0,...,7r.

(791) The transversal ¥; is contained in ¢(3;_1 x Ds), for all s =1,...,7.

)
)
)
)

(7v) For alli=1,...,r we have that ¥; = h;(3), where h; is the holonomy map along

Y-
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Denote by V' the union of the sets p(X; x D) for 1 = 0,...,7. Consider z € V' and
let L, be the leaf passing through z. Let k£ € {0,...,r} be such that z € ¢(3) x Dy).
Then L, intersects ¥, and it follows from hypothesis (iv) that L, intersects each 3;.
Since ¥y C ¥ we have that L, intersects ¥y in a unique point and, by (iv), the same
holds for each ;. Then we may define p; : V' — X; such that p;(z) is the point of
intersection between L, and X;. Let 7/(z) € Ds be defined by ¢(pi(z),7](x)) = x. Since
pi(x) € ¥;, by hypothesis (ii7) we have that p;(z) € p(2;_1 xDs) fori =1,...,r. Then
for i =1,...,7 we may define t; : V! — D5 as ¢; = 7/_, o p;. Define ¢y : V! — Dy as the
zero function. Clearly, p;, 7; and ¢; are holomorphic functions. We proceed as in the
proof of Assertion 3. Let z € p(X; x Ds) N¢(X;—1 x Ds). Since |¢t;(z)| and |7}(z)| are
less than ¢, then |¢;(z) + 7/(z)| < 26. Thus, by hypothesis (ii), p(pi—1(z), ti(z) + 7,(z))
is well defined and:

o(pi—1(z),ti(z) +7i(x)) = @le(pi-i(z

1l
5 5
%
RS
“ql‘
Pty
&

= .
Then by definition of 7/ ; we deduce that
ti(w) + 7i(x) = i1 (2).
Thus, the holomorphic functions on ¢(%; x D) defined as
7i(x) = 7, (2) + to(2) 4 -+ + ti(x) (6)

for each 4 =0, ...,r are such that
Ti = Ti—1

on p(3; xDs)Np(X;—1 xDy). Observe that for any leaf L', the restriction 79|, coincides
with 77, on a neighborhood of z/. Then 7o|z/, -+ ,7.|rs give an analytic continuation
of 77,. Thus, 7|z, is the analytic continuation of 77, along v/, hence 7,(z) = 77 (). We
denote 7, by 7'. Analogously we construct 7" for 4”. Then we have that 7”|;/ is an
analytic continuation of 77/ and, 7|}, is the analytic continuation of 7;, along 4", hence
7"(x) = 7r(z). By Assertion 2, we may take a sequence {zy} of points in X with
T — x as k — oo and such that the leaf L passing through z; is simply connected
for all k. From above 7’|, and 7"|;, are analytic continuations of 77,. Since Ly is
simply connected and, by Assertion 2, 77, has an analytic continuation along any path,
then 7'|r, and 7”|1, coincide on a neighborhood of zj. In particular, 7'(zy) = 7" (zy).
Making k£ — oo it follows by continuity that 7/'(z) = 7”(z), that is, 7] (z) = 7/(z).
Therefore, 77, extends to L.

We define 7 : V\ Sing(F) — C by 7| = 7. From above, 7 coincides with the
holomorphic function 7/ on a neighborhood of the point z (arbitrary point). Then 7
is holomorphic. Finally, remember (equation 6) that on a neighborhood of any non
singular point, 7 is expressed as

7 (z) = 70(x) + to(z) + - - + tr(2).
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If we restrict = to a leaf, the first term of the sum above is a regular map and the other
terms are constants. Hence 7 is a regular map of any leaf. This finishes the proof of
Assertion 4.

Given z € f], we know that ¢g~'(z) is equal to D, for some z. We denote g~!(z) by
D,. Thus, we have p € D, for z = g(p). It follows from hypothesis (7i7) that there is a
disc D' C D, containing p such that D'\{p} is contained in a leaf. Lemma 2.5 implies
that there is a holomorphic bijective map f : Q@ — D', f(0) = p, where  C C is a disc
containing D. Thus if D = f(D), we have that f : D — D is holomorphic and regular
on D\{0}. Since D\{p} is contained in a leaf and by Assertion 3 we have that 7 is a
submersion on U\ Sing(F), then there exists a neighborhood V' of A on which 7 defines
a foliation by transversal balls along 0A. If we denote by ¥, the transversal passing
trough ¢ € A we have that 7 is constant along ¥.. Recall that y € S is the unique
point in the intersection of D, and . It follows from the transversal uniformity of the
foliation that if y € Y is close to z then D, intersects only one time each transversal Y.
Let 6,(¢) be the intersection of D, with X¢. Since 6,(¢) and ¢ are both contained in ¥,
we have that 7(0,(¢)) = 7(¢) for all ¢ € JA. Note that 6, := 6,(9A) is a smooth Jordan
curve in Dy. By Assertion 2, we may choose y such that D, is a leaf. We consider
D, C Dy, the regular disc bounded by 6,.

Let f, : D — D, be a uniformization map. Since 6, is a smooth Jordan curve, f,
extends as a diffeomorphism f, : D — D, (see [8], p.323). By Assertion 3, we have
that 7 is regular on D,,. It follows that 7o f, : D — C is a regular map. Therefore, by
Lemma 3.4, the curve 7o f, : S' — C has degree 1. Remember that 7(6,(¢)) = 7(¢) for
all { € 9A, thus 7(0D,) = 7(9D). Then

To fy(Sl) =7(0Dy) =7(0D) =T o0 f(Sh.

Therefore 7o f : S' — C is only a reparametrization of 7 o fy: S' = C, hence 7o f :
S! — C is regular and has degree 1. Again by Lemma 3.4, 7o f : D — C is also a regular
map and in particular, 7 o f is locally injective. Therefore there exists a disc U C D,
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centered at 0, such that 7 o f is injective on U. Then
7o f(0U)

is a Jordan curve in C. We also denote f(U) by D. Again, let ¥ be the transversal
ball through ¢ € 9D. Proceeding as above, if ¥’ is a small enough ball in ) containing
z = g(p), we obtain that for all y € ¥’ the set D, intersects each 3¢ at the unique point
0,(¢). Thus we have the Jordan curve 6, in D, such that 7(6,) = 7(0D). Remember
that 7(0D) = 7o f(0U) is a Jordan curve in C. It follows that 7(6,) is Jordan curve
in C for all y. Let D, C D, be the disc bounded by 60,. Since D, is a singular disc,
by Lemma 3.5, there is an injective holomorphic map f, : E — M, where £ =D or C,
such that f,(F) = D,. Let Q, C E be such that f,(Q,) = D,. Clearly Q, is a disc and
fy(0Qy) = 0D,. Then
70 fy(08y) = 7(9Dy)

is, from above, a Jordan curve in C. Hence we deduce that the holomorphic function
7o fy : Qy — C is injective on €),. Thus, since f, is injective, we conclude that

T:ﬁy—ﬂc

is injective for all y € ¥
Denote by W the union of the discs D, for all y € ¥'. It is easy to see that W is a
neighborhood of p. Define B
F:W—=XxC

F(w) = (9(w), 7(w))

Assertion 5. F is a biholomorphism between W and its image.

Proof. Clearly F is holomorphic on W. We shall prove that F injective on W. Suppose
F(w) = F(w'). Then g(w) = g(w') = y, hence w,w’ € D, and, since W N D,, = D,
we have w,w’ € Dy. On the other hand 7(w) = 7(w') and since 7 is injective on D, we
conclude that w = w’. Now, since W is compact, F is a homeomorphism onto its image
and it follows that F' is a biholomorphism.

_ Now, we will prove that p € W is regular for F. Let N be the regular foliation on
Y x C whose leaves are the sets {#} x C. Let F’ be the pull-back foliation of N by the
biholomorphism F. Then F’ is regular and it is easy to see that F’ coincides with F out
on a open set of W (out of Sing(F)). Then F' = F on W and F is therefore regular at p.
Since p € U was arbitrary, we have proved that Sing(F) is empty. Then, from Assertion
1, the sets D, are the leaves of F. The proof of Proposition 3.3 is complete. U

Lemma 3.6. Let M be a complex manifold and let X C M be a subvariety of codimen-
sion k > 1. Let p be a point in X. Then there exist a path x4, t € [0,1), with xg = p
and such that x4 is out of X for all t > 0.

Proof. Let U be a neighborhood of pin M and f : U — C" be such that f~1(0) = XNU.
There is a complex disc D passing through p such that f|p does not vanish, otherwise
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f71(0) C X contains a neighborhood of p in M. By reducing D, we may assume that
p € D is the unique zero of f|p. Then D\{p} is disjoint of X and it is sufficient to take
any path z; in D with o = p and x; # p for all ¢t > 0. O
Proof of Theorem 3.1.

Assertion 1. Let z € X3 such that D, is not contained in X. Then D, is contained in a
leaf of F.

Proof. Take ty € D, such that h(z,t9) ¢ X. Since X is closed in M, if ¥’ is a small
enough neighborhood (ball) of z in X, we have that h(2',ty) ¢ X for all 2’ € ¥’. Hence,
for all 2/ € ¥ we have that D, is not contained in X. Then, by hypothesis (i),
S, = D,y N X is discrete and D\ S, is contained in a nonsingular leaf of F. There-
fore, F restricted to M' := h(X' x D) satisfies the hypothesis of Proposition 3.3 and we
have therefore that D, is contained in a leaf of F.

Assertion 2. Let z € X such that D, is contained in X. Then D, is a singular disc.

Proof. Let z € D,, x = h(z,t). Let ¥’ C X be a neighborhood (a ball) of z and
D’ C D be a neighborhood (a disc) of ¢. If ¥’ and D’ are small enough, we may assume
that M’ := h(X' x D') is a domain in C". Since X has codimension > 1, by Lemma
3.6, there is a path xs = h(zy,ts) in M’ such that 2o = x and zs ¢ X for all s > 0.
Then D, := D, is not contained in X for all s > 0 and it follows by Assertion 1
that D, is contained in a leaf. Hence Dy is a regular disc for all s > 0. Then, we may
apply Lemma 2.1 to the family of discs D and conclude that D, = Dy is a singular disc.

Assertion 3. Let z be such that D, C X. Let S, be the set of singularities of the singular
disc D,. Then D,\S, is contained in a leaf of F.

Proof. By Assertion 2, if D, is not contained in X we have that D, is contained in a leaf
of F. Therefore, the hypothesis of Proposition 3.2 holds for F and Assertion 3 follows.

Let z be such that D, is not contained in X. By hypothesis (7i7) of 3.1, we have that
S, := D,N X is discrete and D,\S, is contained in a leaf of F. From this and Assertion
3 we conclude: for all z there is a discrete set S, such that D,\S, is contained in a leaf
of F. Therefore the hypothesis of Proposition 3.3 holds and Theorem 3.1 follows. [

4 The algebraic multiplicity and the Chern class of the
tangent bundle of the strict transform

Let Fo, .%g and A as in §1.

Proposition 4.1. If h extends to the divisor as a homeomorphism between 7 1(U) and
7L_1(U), then the extension also denoted by h is a topological equivalence between Fo and

Fo.

Proof. Is a direct application of Theorem 1.4. O
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Proof of Theorem 1.1. Suppose that F is generated on U by the holomorphic vector
field

- 0
V= Z“ia_%’ a; € Oy, g.cd.(a,as,...,a,) = 1.

For each j = 1,2,...,n, let Uj = (z; # 0) and U} = 7~ (U;). Let Vj = 7*(V|y,). If

(z,...,2) are coordinates on U; such that
J i\ — (dod J J
m(zy,...,2)) = (xjml, RN ,xjmfl)
then
a; — 0
Vi=a; + E L A
]a . axﬂ.’
i=1,i#j ] 7

where a; = a;om fori=1,...,n. On U]’., Fo is defined by the vector field

where r is the algebraic multiplicity of V at 0 € C" and £ = 1 or 0 depending on the
divisor being invariant or not by Fo. Evidently V; = V; on U/ N U}. Then

AN 3
sz(mz/x;) Wj on UZ’QUJI

It follows from this equation that the tangent bundle TF, of Fy is isomorphic to L&,
where L is the line bundle associated to the divisor E = 7w !(0). Then the Chern
class ¢(TFy) of TFy is equal to (£ — r)c(L). It is natural consider E as an element in
H,_o(U",7Z), where U' = 7= }(U). We know that c(L) is equal to d(E) € H*(U',7Z), the
dual of E. Therefore

(TFo) = (€ = r)d(E).

On the other hand, makeNﬁ' = 71'71(6) and observe that the divisor E is invariant by
Fo if and only if it is by Fy. Then analogously we have

o(TFy) = (€ — T)d(E),

where 7 is the algebraic multiplicity of Nﬁ and d(E) € H2(U',Z) is the dual of E. By
Proposition 4.1 we have that h : U' — U’ is a topological equivalence between Fy and
Fo. Then Theorem 1.3 implies that

(€ = r)h*(d(B)) = (£ = 7)d(E). (7)

We may assume that U is a ball in C*. Thus, we have that U’ is a tubular neigh-
borhood of E and therefore H?(U',Z) ~ Z. Since the cohomology is invariant by
homeomorphisms, we also have H2(U’,Z) ~ 7. Can be proved that d(E) and d(E) are
generators of H*(U’, Z) and H?(U', Z) respectively. Then we have that h*(d(E)) = d(E)
or h*(d(F)) = —d(F). By using this in (7) we obtain » =7 or r + 7 = 2£. The second
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possibility implies r =7 = ¢, since r > 1, 7 > 1 and £ = 1 or 0. Therefore we conclude
that r = 7. O
Remark. Under the hypothesis of Theorem 1.1, we have another invariants. The restric-
tion of Fy to the divisor is a foliation with Sing(Fp) as singular set. It is well known that
this foliation coincides out of the singular set with a unique foliation N of codimension
> 2 in the divisor (the saturated foliation). We will say that A is the foliation induced
by Fo in the divisor. Let N be the foliation induced by }'0 in the divisor. It follows
from Theorem 1.4 that A" and N are topologically equivalent. Thus, since the divisor is
isomorphic to P*"~!, Theorem 1.3 implies that d(N') = d(N). In other words, the degree
of the foliation induced in the divisor is invariant.
From above, F is generated by the holomorphic vector fields W; and

AN
W= (al/ai) "W, on UINUJ

where { =1 or 0. Let € U;NU;. Let zt = (z%,...,2%) be the coordinates of z in U]

and let 27 = (z{,...,#73) be the coordinates of  in Uj. Since (") = m(27), we have
that
i i J d J J
(zizh, ... b, . xlxt) = (zj2y, .. Ty, ,x]ac%)

hence z7 / zt = :v . Replacing in last equation we obtain:

Wi = («2) "W, on UINUL (8)

Observe that 7~ 1(0) N U/ is represented by (z! = 0). Recall that 7= 1(0) is canonically
isomorphic to P*~1. A point p in 7=1(0) N U} given by
(@3 (P); -+ 0y -, 2, (p))

is represented in homogeneous coordinates by

[zt 2](p) = [2(p) : -+ Lyt oo 2 2l (D)),
hence m;(p) = (2;/2z)(p). Thus, if U; = U N7 1(0) and J; = W;|y,, it follows from (8)
that
Ji = (Zj/zi)r_gjj on Ll, ﬂu]'. (9)
Let S be the union of the components of codimension 2 of Sing (Fy). Then S is the
codimension 1 part (respect to the divisor) of the zero set of {J;}. Each .J; may be

expressed as J; = f;Z;, where f; is a holomorphic function on ¥; and the vector field Z;
has singular set of codimension > 2. Tt follows from (9) that

Zi = (fi/ 1) (z]2)" *Z; on Ui NU;.
From this equation, it is not difficult to conclude that
r=dN) —deg(S) — 1 +¢,

where deg(S) is the degree of S as a divisor of 7=!(0). Then, since the algebraic
multiplicity y and the degree of the foliation induced in the divisor are invariants, we
deduce that the degree of the codimension 1 part of the singular set of the strict transform
is also an invariant. Moreover it is not difficult to see that h(S) = S, where S is the
union of the components of codimension 2 of Sing(Fp).

22



5 The case C!

In this section we prove Theorem 1.2. In view of Theorem 1.1, it is sufficient to show
the following.

Proposition 5.1. Let F and F be two foliations by curves of neighborhoods U and U
0f 0 € C". Leth:U — U be a C equivalence. Let h: 7~ (U\{0}) — =~ (U\{0}) be
as before. Then h can be extended to the divisor as a homeomorphism between n~1(U)
and == (U).
We start the proof.

Proposition 5.2. Under the conditions of Proposition 5.1, we have that dh(0) : C" —
C"™ maps complex lines onto complex lines. Furthermore, if J : C* — C" is the conjuga-
tion J(z) = z, then either dh(0) : C* — C" is a c-linear isomorphism, or dh(0) = Qo J,
where Q@ : C* — C" is a c-linear isomorphism. Thus, dh(0) induces a diffeomorphism
of P~ onto itself.

Proof. let L be a complex line, 0 € L C C". There exists c-linear functions 4; : C* — C
fori=1,...,(n—1), such that

L={ze€C": Ai(2) =0, forall i=1,2,....,(n—1)}.
Let V : U — C" be a holomorphic vector field which generates F. The set:
B={ze€C": AjoV(z) =0, forall i=1,2,....,(n—1)}

is an analytic variety and it is easy to see that 0 € B. Then, there exists a complex
curve contained in B and passing through 0. In particular there exists a sequence
of points z € C*"\{0}, zx — 0, such that A; o V(zz) = 0 for all £ € N and all
i=1,2,....,(n —1). In other words, T, F = L for all K € N. Now, since h is a C*
equivalence, dh,, (T,, F) = Th(zk)j-:, that is, dh,, (L) = Th(zk)f is a complex line for all
k € N. Making k — oo, since h € C' and the space of complex lines of C* is compact,
we obtain that d ho(L) is also a complex line. The second part of the proposition is an
immediate consequence of the following lemma. O

Lemma 5.3. Let A : R?" — R?" be a R-linear isomorphism. Identify R?>™ with C"
and assume that A maps complex lines onto complex lines. Then, either A is a C-linear
isomorphism, or A= Qo J with Q) : C* — C" a c-linear isomorphism.

Proof. Since A maps any complex line onto a complex line, for all v € C*"\{0} there
exists O(v) € C\{0} such that A(iv) = 6(v)A(v). Let v; and vy be two cC-linearly
independent vectors. Then

A(ivy +ive) = A(iv1) + A(iva) = 0(v1) A(v1) + 0(v2) A(ve).
Moreover:
A(ivg +iva) = A(i(v1 + v2)) = 0(v1 + v2) A(v1 + v2)
= 9(1)1 + UQ)A(Ul) + 9(’01 + UQ)A(’UQ).
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From the equations above, we obtain:
(0(v1) — O(v1 + v2))A(v1) + ((0(v2) — (Vi + v2)) A(v2) = 0. (10)

Let Ly and Lo be the complex lines generated by vy and v9 respectively. Since vy and
v9 are C-linearly independent, we have that L, and Lo are different. This implies, since
A is an isomorphism, that A(L;) and A(Lg) are different complex lines. Then, since
A(Lq) and A(Lg) are generated by A(vy) and A(vy) respectively, we have that A(v;)
and A(v9) are c-linearly independent. Thus, it follows from equation (10) that

0(v1) = 0(v1 +v2) = O(v2).

It is now easy to see that O(v) = 6y, Vv € C*"\{0}. We know that there exists two
c-linear transformations P : C* — C" and @) : C" — C" such that

A(z) = P(z) + Q(2), forall z € C".
Then
A(iz) = iP(z) —iQ(2).
On the other hand
A(iz) = 09A(z) = 0o P(2) + 6Q(Z), for all z € C".
consequently
(0o —9)P(z) + (6o +9)Q(2) = 0.

Since, as functions of z, (fp—i) P and (6y+17)QoJ are holomorphic and anti-holomorphic
respectively, we have that

(6o —1)P=0, (Bp+i)QoJ=0.

From this it is easy to see that either P = 0, or () = 0. This proves the lemma. U

Definition 5.4. Let {2z} be a sequence of points in C"\{0}. Let L be a complez line
in C" . We say that {2z} is tangent to L at 0 if zp — 0 and every accumulation point
of {zx/||zk||} is contained in L.

Let m : C7 — C" be the blow up at 0 € C*. We know that 7 1(0) is naturally
isomorphic to P"~!. Thus, for each p € 7=1(0) we denote by L, the respective complex
line in C".

Proposition 5.5. Let {p;} be a sequence of points in @\ﬂ_l(O). Then py, — p € 7~1(0)
if and only if {m(py)} is tangent to L, at 0.

Proof. Let
U, = {(21,22,...,Zn) eC": z # 0}.

There exist coordinates (71,23, ..., 7,) on 7~ }(U;) such that

(1, %9y ..., Tpn) = (L1, T1T9, ..., T1Tp)
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and 7~ 1(0) is represented by z; = 0. Without lost of generality we may assume that
p=(0,0,...,0), L, = {z2 = 0,..., 2, = 0}, and pj, = (217, 2z2",...,2,%) € 7= 1(Uy) for
all k£ € N. Assume first that p, — p. Evidently, 7(px) — 0. On the other hand

Tr(pk) _ mlk (1a$2ka"'a$’nk)
m(ze)ll |z F (L, ek, 2P|
and since ( i k)
1,29%, ...,z
—(1,0,0,...,0),
o,z h)] )

any accumulation point of {7 (pg)/||7(px)||} have the form A(1,0,...,0) with A € C\{0}.
Therefore {7(py)} is tangent to L, in 0. Conversely, suppose that {7(py)} is tangent to
L, in 0. Let m(pg) = 2% = (2}, ..., 2%). Since any accumulation point of

e | I | | =0

is contained in L, = {22 =0, ..., z, = 0}, Then for k big enough and all j = 2,....,n we

k
have that —— < ¢, with e > 0 arbitrary. Then
[I2*]] ’

2] < 18]+ L] < L2+ (0= Dell2"],

hence |2f| > (1 — (n —1)¢€)||2¥|| and therefore 2 # 0 if € is small enough. Thus, we may
assume that py = (2%, ...,2%) € 771 (Uy). Then (2%, z%2%, ... 2bz%) — 0 and therefore
z1* — 0. On the other hand, since any accumulation point of

’/T(pk) :Elk (la:EQka"'a‘/Enk)

(Il e 11(1, 2ok, . 2k

is contained in L, C C", then the same property holds for the sequence

(17$2ka"'7$nk)
[[(1, 2ok, ...,z B)||
hence z;* — 0 for all i = 2,3,...,n and therefore p;, — p.

proof of Proposition 5.1. Let p € 7~ 1(0) and {pj,} any sequence of points in 7~ 1(U)\7 1 (0)
such that p; — p.
Since h € C', we have

r(m(pk))

—0ask — 0.
|7 (k)|

h(m(px)) = dho(m(pk)) + r(7(pk)), where

Then

W) o ( (wo)) | ()
|M@M|‘“”QMWMJ+HMMM' 1

By proposition 5.5, 7(py) is tangent to L, at 0, hence any point of accumulation of the
sequence {(7m(px))/||7(pk)||} is contained in L,. Thus, it is easy to see from equation
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(11) that any point of accumulation of the sequence {h(m(px))/||7(pr)||} is contained in
dhy(L,) and the same holds for the sequence

hr(pe)) _ him(px)) _llw(pr)ll
@)l ()] 1T ()|

From proposition 5.2, we have that dhg(L,) is a complex line. Then {h(n(py)}) is
tangent to dho(Ly) at 0. It follows by proposition 5.5 that 7! o honm(py) = h(px) — ¢,
where ¢ € 771(0) is such that L, = dho(L,). We remark that ¢ = H(p), where H
is the diffeomorphism of 77 1(0) ~ P"~! onto itself induced by dhy (5.2). We define
h(p) = H(p) for all p in 7~1(0). Finally, we prove that h : 7=1(0) — 7~ 1(0) is a
homeomorphism. Let p € 7 (0) and let p;, in C such that pr — pas k — oo. Let
x be a limit point of the sequence {h(pg)}, that is, z = limh(qx), where {qx} is a
subsequence of {py}. Clearly, there exists a subsequence {ry} of {qx} such that: either
{r}} is contained in 7 1(0), or {r}} is contained in 7~ (U)\7 1(0). If {ry} is contained
in 771(0) we have that h(ry) = H(r) for all k and

x = lim h(qx) = lim h(ry) = lim H(ry) = H(p) = h(p),
k—o00 k—oc k—oc

since H is continuous. On the other hand, if {ry} is contained in 7=}(U)\7~1(0), we
have from above that
z = lim h(ry) = H(p) = h(p).

— 00

Therefore h is continuous. Analogously we prove that h~! is also continuous.

26



Part 11

The differentiable case
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6 Introduction

Let F be a holomorphic foliation by curves of a neighborhood U of 0 € C? with a unique
singularity at 0 € C2. We assume that F is generated by the holomorphic vector field

- 0
V= Z“ia_%’ a; € Oy, g.cd.(a,as,...,a,) = 1.

The algebraic multiplicity of F (at 0 € C?) is the minimum vanishing order at 0 € C*
of the functions a;. Let F be a holomorphic foliation by curves of a neighborhood U
of 0 € C2 and Let h : U — U be a topological equivalence between F and F, that
is, a homeomorphism taking leaves of F to leaves of F. A natural question, posed by
J.F.Mattei is: are the algebraic multiplicities of 7 and F the same?. In [2], the authors
give a positive answer if F is a generalized curve, that is, if the desingularization of F
does not contain complex saddle-nodes. If F is dicritical, that is, after a blow up the
exceptional divisor is not invariant by the strict transform of F, the conjecture is also
true: in this case, it is not difficult to show that the algebraic multiplicity of F is equal
to the index of F (as defined in [2]) along a generic separatrix. Then the topological
invariance of the algebraic multiplicity of a dicritical singularity is a consequence of the
topological invariance of the index along a curve, which is proved in [2]. Thus, from
now on we assume that 7 is nondicritical. In this work we impose conditions on the
topological equivalence h : U — U and prove the following.

Theorem 6.1. Leth: U — U be a topological equivalence between F and F and assume
that h preserves the orientation of C2. Suppose that h is differentiable at 0 € C? and
such that dh(0) : R* — R* is a real isomorphism. Then the algebraic multiplicities of F
and F are the same.

Let 7 : C2 — C2 be the blow up at 0 € C2. Given a complex line P passing through
0 € C?, we say that P is regular for F, if the strict transform of P by 7 intersects the
divisor F at a regular point of the strict transform of F. The following theorem is a key
step in the proof of Theorem 6.1.

Theorem 6.2. Leth: U — U be a topological equivalence between F and F and assume
that h preserves the orientation of (C2 Let P and P be two complezx lines passing through
0 € C? which are reqular for F and F respectively. Suppose that PNU is homeomorphic
to a disc and h(PNU) = h(PNU). Then the algebraic multiplicities of F and F are
equal.

The paper is organized as follows. In section 7 we prove a weaker version of Theorem
6.2. In section 8 we stay and prove a topological lemma, fundamental for the following
sections. We prove Theorem 6.2 in section 9. Finally, in section 10 we prove Theorem
6.1.

7 A first theorem.

Let h: U — U be a topological equivalence between J and F. Let Fo and ,7?0 be the
strict transforms of F and F respectively. Let W and W be denote the sets 7—(U) and
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7 1(U) respectively. Let

h:W\E - W\E
be the homeomorphism defined by o = 7~ 'h7. We have a natural fibration p on
C? which fibers are the strict transforms of the complex lines passing through 0 €

C?. Consider p,p € E and let L, and Lz be the fibers of p passing through p and p
respectively. This section is devoted to prove the following.

Theorem 7.1. Suppose ﬁz\atp and p are reqular points of Fy and .7?0 respectively. Let Q)
be a neighborhood of p in C?. Suppose that h extends to (W\E)USQ as a homeomorphism
onto its image, such that h(L, " W) = Lz N W. Then the algebraic multiplicities of F
and F are the same.

Let v be the algebraic multiplicity of F at 0 and let py, ..., pr be the singularities of
Fo on E. We have the following relation due to Van Den Essen:

k
Z/‘L(]_—Uapl) :/.L(]:,O) _V2+V+17
i=1

where p(F, p) is the Milnor number of F at p. Let s = Zle u(Fo,pi). In the same way,
let s be the sum of the Milnor numbers of the singularities on E of Fo. Then, since the
Milnor number is a topological invariant, it is sufficient to prove that s = 3.

Let D C ENQ be a closed disc containing p, which does not contain singularities of
Fo and such that h(D) does not contains singularities of Fo. Let D and D be the closed
discs in E equal to the closure of E\D and E\h(D) respectively. Then h maps W\D
homeomorphically onto W\D and the interiors of D and D contain all the singularities
of Fy and Fy respectively. Observe that h is a topological equivalence between .7:0|W\ D

and ‘7::0|W\1~)' Since h(L, "W) = Lz N W, we have the homeomorphism
h s (WADN\Lp = (WA\D)\Lj.

We know that W\L, and W\Lﬁ are isomorphic to C?, where the divisor can be repre-
sented by the vertical line {z; = 0} and the sets W\L, and W\Ljz give neighborhoods

V and V of {=1 = 0}. Thus, we may think that the foliations Fy and .7?0 are defined on
the sets V and V in C?, and that

h:V\DcCC?—V\Dc

is a topological equivalence between F{ and .7?0. Observe that Fy is globally defined by a
holomorphic vector field on V' and the same holds for .%g on V. The disc D is contained
in {z; = 0} and we may assume that D = {(0, z2) : |22| < r}, where r > 0.

We proceed now to compute s. Let Z be a holomorphic vector field, which generates
the foliation Fy on V. Let B be a neighborhood of D homeomorphic to a ball, such that
0B is homeomorphic to S? and B C V. Since all the singularities of Fy are contained
in D C B, it can be proved that the sum of the Milnor numbers of the singularities of
Fo is equal to the degree of the map

|IZ—|I : 0B — S?,
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Z Z(z)
7 (2) = 7 .
1Z]] 1Z(2)]]
Let B be a neighborhood of B homeomorphic to a ball and such that B C V. Since V

is a neighborhood of {z; = 0}, for ¢ > 0 small enough, the set {|z1| < 2¢,|z2| < 47},
which contains D, is contained in V. Then, we may chose B and B such that

B C {|z1]| <&,z < 2r}.

The last hypothesis will be used only in the proof of Lemma 7.5. _
Consider the sets B = h(B\D) U D, B = h(B\D)UD and V = h(V\D)U D. It is
easy to see that B, B and V are neighborhoods of D in C2.

V
B

R <A

=N

Let B
p:D. xB—VcC?
and L
o:D.xB—=VcCC?
be the local complex flows of Z and Z respectively, where D, = {T € C : ||T|| < €} with

¢ small enough. Now, we follow the ideas used in [2] to prove the topological invariance
of the Milnor number.

Lemma 7.2. There exists continuous functions 7 : B\D — (0,¢) and 7 : h(B\D) —
D \{0} such that for all z € B\D we have:

(i) ¢(7(2),2z) € B\D.
(ii) o(t1(2),2) # z, for any t € (0,1].
(iii) h(p(7(2),2)) = @(7T(h(2)), h(2)).

We say that a function f : U — R is lower(upper) semi-continuous if given € > 0 and
xg € U, there is a neighborhood Q of ¢ in U such that f(x) > f(zo)—e (f(z) < f(xo)+e)
for all z € 2. We need the following lemma.
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Lemma 7.3. Let U be an open set in R" and let f: U — R and g : U — R be an upper
and a lower semicontinuous function respectively. Suppose that f < g. Then there exists
a continuous function h : U — R such that f < h < g. In particular, if g is a strictly
positive lower semicontinuous function, then there exists a continuous function h such
that 0 < h < g.

Proof of Lemma 7.2. Clearly, given z € B\D there exists 6 > 0 such that ¢(x,z2) is
injective on Dy. Then define §(z) > 0 as the supreme of §' < e such that ¢(x,z) is
injective on Dy .

Assertion 1. The function § : B\D — (0,¢] is lower semicontinuous.

Proof. Fix zg € B\D and let € > 0. We will prove that for z close enough to zy we have
d(z) > d(z9) — €. Suppose by contradiction that for zy — zy we have that ¢(*, ;) is not
injective on s, )_.. Then there are points tx,; in D ,,)_, with #; 7 ¢} and such that
@(tg, z) = @(t}, z) for all k. By taking a subsequence we may assume that t; — a and
t, — a’ with a,a’ € Ds(;5)— C Dj(y). By continuity we have

<p(a,zo) = lim (p(tkazk) = lim Qo(t;mzk) = so(a,azﬂ)
k—o00 k—oo

and, since ¢(*,z) is injective on Djy(,,), we deduce that a = a’. Let 2’ = ¢(a,z) and

take a neighborhood € of 2’ and dy > 0 such that ¢(x, z) is injective on Dy, for all z € Q.

For k big enough we have that ¢(a, z;) € Q and (¢, — a), (¢}, — a’) € Ds,. Then, since
(P(tk; —a, (10(0’7 Zk)) = ‘P(tk, Zk) = (p(t;mzk) = (p(t;e - ala (10(0"’ Zk))a

we have that ¢, —a =t} — a/, hence ¢}, = ¢}, which is a contradiction.

Assertion 2. Consider 5_: B\D — (0,¢], where §(z) is the supreme of &' < e such that
o(Dsr,z) C B\D. Then 0 is a lower semicontinuous function.

Proof. Fix zy and let € > 0. The set @(ﬁg(m)_e, 20) is compact and is contained in B\ D.
z) is also contained in B\D. Then

5(z) > 8(z0) — € and it follows that § is lower semicontinuous.

If z is close enough to zy we have that @(ﬁg(zo)

—e

Consider 9 : h(B\D) — (0, ¢], where §(w) is the supreme of ¢’ < e such that @(*, w)
is injective on Dg. As in Assertion 1, we can prove that J is a lower semicontinuous
function.

Assertion 3. Define § : B\D — (0,&], where S(Z)Ais the supreme of &' < e such that
h(o(Dsr, 2)) is contained in &(]D)g(h(z)), h(z)). Then ¢ is a lower semicontinuous function.
Proof. Fix zy and let € > 0. Since h(‘P(DS(zo)’zU)) is contained in @(Dg(h(m)),h(zg)),

there is ¢ > 0 such that h((p(ﬁs(m)ie,zg)) is contained in &(]D)g(h(m))fe,,h(zo)). Let

¥ be a disc passing through h(zp) and transverse to the foliation. Since ¢ is lower

semicontinuous, we may take X small enough such that ¢(x, z) is injective on ]D)g( h(z0))—¢
for all z € 3. Moreover, we may take X small enough such that ¢ is injective on
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Dg(h(z()))_e, x .. Let M denote the open set ‘z(DS(h(zo))—e’ x %) and let M" = §(D, /o x X).
We may take a neighborhood 2 of zq such that h(€2) C M’ and 5(h(2)) > 0(h(z0)) — € /2
for all z € €2, because § is lower semicontinuous. Since h((p(ﬁ5( .+ 20)) is compact
) ,2)) is
0)—€

contained in M for all z € Q. Fix z € Q. Since h(z) € M’, there is w’ € ¥ and ¢/,
with [t'| < €'/2, such that h(z) = ¢(¢',w'). Since h((p(]])(;(m)_e,z)) is contained in M, we
deduce that it is contained in (z(DE(h(zo))—e"w,)' Then, given w in h((p(ﬁ(;(

20)— 2/
and is contained in M, we may assume 2 small enough such that h(p(D 5(

20)—6’ Z))a we

have that w = @(t”,w") with |t"] < §(h(2)) — €. Thus
w =", w') =" -1, (t',w)) = G(t" —t', h(2)),

where [t" — #'| < [t"] + |t'| < 8(h(20)) — € + €/2 = d(h(z)) — €/2 < 3(h(z)). Then
h(tp(]D)(;(ZO)_e, z)) is contained in ﬁ(Dg(h(z)), h(z)) and it follows that J is lower semicon-
tinuous.

It is easy to see that the function g = min{é, 4, b} } is also lower semicontinuous. Then,
by Lemma, 7.3, there exists a positive continuous function 7 on B\ D such that 7 < 4,4, 5.
By the definition of d, (i) is satisfied. Since (%, 2) is injective on Dy and 7(z) € Dy, we
have that (i7) holds. Now, we shall define 7. Let w = h(z) € h(B\D). Since 7 < 8, we
have that h(¢(7(2), 2)) is contained in G(Dg(h(z))’ h(z)) and by injectivity there exists a
unique 7(h(z)) in D5 h2) such that h(p(7(2),2)) = @(T(h(2)), h(2)). Now, it is easy to
see that 7 is continuous and therefore (iii) holds. O

Proof of Lemma 7.8. Consider z € U and a, € R, such that f(z) < a, < g(z). Tt
follows from the definition of lower and upper semicontinuous function that there exists
a neighborhood V, of z in U such that f(y) < a, < g(y) for all y € V. We may take
a subset I C U, such that U C |J;c; Vi and {V;}ics is locally finite. Thus, we have
f(z) < a; < g(z) for all z € V;. Let {4 }icr be a partition of the unity subordinate to
{Vi}icr- Then, we define h: U — R by

h(z) = thi(z)a;.

el

Clearly, h is continuous. If z € V;, then f(z) < a; < g(z), hence ;(z) f(z) < ;(x)a; <
¥i(z)g(x) and it follows that f < h < g. O

From Lemma 7.2, we have the maps
f:B\D — B\D,
and L o
f:B\D — B\D,

f(w) = (7 (w), w)
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with B
hof=foh

and such that f and fNare without fixed points.
There exists 1,1 : C2 — C? with the following properties:

(i) ¥(D) =0 and (D) = 0.
(i) 4 : C2\D — C2\{0} and ¢ : C2\D — C?\{0} are homeomorphisms.
(731) 1 and 7;/; are equal to the identity out of B and B respectively.
We define

fro= ey B\{0} = B\{0} c C,

I' = @fg B0} = B\{0} c C,
o= php iV V.
Then we have the following:
(1) f" and f" do not have fixed points.
(i) On OB, we have f' = f and f' = f.
(iii) R’ is a homeomorphism with #’(0) = 0 and such that &' o f' = f o I/,
Thus, there are well defined maps:
(f'=id) = B\{0} = C*\{0},
(f —id) : B\{0} — C*\{0}.
Observe that H3(B\{0}) C H3(C?\{0}) and this inclusion is an isomorphism between
the groups. Then (f’ — id) induces a map
(f —id)s : H3(C*\{0}) — H;3(C*\{0})

at the homology level.
Lemma 7.4. (f' —id), is the multiplication by s.

Proof. We have that B C B is a generator of H3(C?\{0}). It is known that, homolog-
ically:
(/' — id)(S%) = (f — id) (0B) = nS?,

where n is the degree of the map:

g:0B — S,
_ i
9 ==
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Thus, it is sufficient to prove that deg(g) = s. Observe that g = %, since f' = f

on 0B. By (ii) of Lemma 7.2 the map

)

D T, = 70
e 20
0.2 = EoT 126

is well defined. Evidently, G(1, z) = g(z). On the other hand:

-1

T(2 o(tr(2),2) — 2 o(tr(2),2) — 2

. G |
e R e i
_ 1(2) lim ©(s,2) — 2 _1-lim (s, 2) — 2
el o] s lim =
) 20)
el TZEN

It follows that G is continuous and therefore is a homotopy between g¢(z) and

G(0,z) = % . % Now, since 73(S!) = {0}, the map 7/|7| : dB — S! is ho-

motopic to the constant 1 € S and g is homotopic to Z/||Z||. Therefore deg(g) =
deg(Z/||Z]]) = s.
In the same way, we have that

(f' = id). : Hy(C*\{0}) — H3(C*\{0})

is the multiplication by 3.
Let
B s H3(C*\{0}) — H3(C*\{0})

be the isomorphism induced by A'. Clearly, the following lemma implies Proposition 6.2.

Lemma 7.5. The following diagram commutes:

Hy(@\{0}) L2 (2 \{oy)
. [
Hy(@\{o}) L2 my e\ foy)
Proof. Recall that B was chosen such that
B C {|z1] < e, |z2| < 2r} C{|z1] < 2e,|22| <4r} C V.

Since I’ o f' = f' o I’ we have (f' —id) ok = f'oh' — h' = h' o f' — h'. Tt is sufficient
to prove that h' o f’ — b’ and A’ o (f' —id) : B\{0} — C?\{0} are homotopic. For any
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z € B\{0} and t € [0,1] we have that f'(z),(1 —1t)z € D, X Dy,.. Then (f'(z) + (1 —1)z)
is contained in Dy, x Dy, C V. Therefore, the map:

F:[0,1] x (B\{0}) = C*\{0},
Ft,2) = (f'(z) — (1= )2) — B (t2)

is well defined. F' is continuous and F'(¢,z) # 0 for all (¢,2) € [0,1] x (B\{0}) because
F(t,z) = 0 implies h'(f'(z) — (1 — t)z) = h'(tz) and since h’ is a homeomorphism
f'(z) = (1 —t)z = tz, hence f'(2) = z, Wthh contradicts f'(z) # 2. Thus F is a
homotopy between h' o f' —h' and b/ o (f' —id). O

8 A topological fact.

Let 7 : C2 — (2 be the blow up at 0 € C? and let E = 7=1(0). Letp:(/CE—>Ebe
the natural projection. If z € E, the set p~!(z) is the strict transform of a complex
line passing through 0 € C? and = € p~!(x). Let M be a complex manifold. We say
that D is a complex disc in M, if D C M and there is a map f : D — M, which is a
homeomorphism onto D and is holomorphic on D. Let V' be any subset of M containing
OD. The map flg: : S' — 0D C M defines a 1-cycle in V and represents an element
in Hy (V) which does not depend on f. We denote this 1-cycle by 9D independly of the
set V. For simplicity, we write v = 4/ in Hy(M) for means that the 1-cycles v and +/
represents the same element in the group Hi(M). The following Lemma is a reason for
assuming that the topological equivalence h preserves the orientation of C2.

Lemma 8.1. Let h: U — U’ be a homeomorphism, where U and U’ are neighborhoods
of 0 € C?> homeomorphic to balls. Let P and P' be two complex lines passing through
0 € C?. Suppose that PN U is homeomorphic to a disc and h(PNU) = P'NU'. Let L
and L' be the strict transforms of P and P’ respectively. Let p and p’ be the points of
intersection of L and L' with E respectively. Denote by W and W' the sets n='(U) and

a1 (U") in C2 and let h : W\E — W'\E be the homeomorphism defined by h = n~' h.
Let V. .C W be a neighborhood of p and let

p:DxD—=V

be a biholomorphism such that o({0} x D) = LNV and p(D x {0}) = ENV. Letr
with 0 < r < 1 and consider the disc B, = @(w,|z| < 1), where w € D. Let Q be a

neighborhood of p' in E, homeomorphic to a disc. Let V' C C2 be the set p~*(Q). Let
A" C V'\E and B' C V'\L' be complex discs transverse to L' and E respectively. Then,
for |w| small enough we have the following:

(i) If h preserves the orientation of C2, then
h(0By) = £0B" in  Hy(V'\(L' U E)),

where & = +1 or —1.
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(ii) If h inverts the orientation of C?, then
h(0By) = —260A" + ¢0B' in H{(V'\(L' U E)),
where & = +1 or —1.

Remark. With some hypothesis on the foliation F, we have in fact that the topolog-
ical equivalence h necessarily preserves the orientation of C2. Precisely, we have the
following.

Proposition 8.2. Let F be a holomorphic foliation by curves on U which has 0 € C?
as its unique singularity. Suppose that F has three smooth and transverse separatrices.
Suppose that F s another holomorphic foliation of a neighborhood U of 0 € C? and let

h:U—=U

be a topological equivalence between F and F. Then h preserves the orientation of C2.

Let U C C? be an open set homeomorphic to a ball. Let P be a complex line in C?
and suppose that U N P is homeomorphic to a disc. It follows by Alexander’s duality
theorem that H;(U\P) ~ Z. Let D C C? be a complex disc transverse to P. The 1-cycle
0D represents an element in Hy(U\P) ~ Z, which does not depends on the disc D. We
know that 0D is a generator of the group and we say that it is the positive generator
of Hi(U\P). Given a homeomorphism f : M — M’ where M and M’ are oriented
manifolds, we define deg(f) to be 1 or —1 depending on whether f preserves or reverses
orientation.

Lemma 8.3. Let h: U — U’ be a homeomorphism, where U and U’ are neighborhoods
of 0 € C> homeomorphic to balls. Let P and P’ be two complex lines passing through
0 € C?. Suppose that P N U is homeomorphic to a disc and h(PNU) = P'NU'. Let a
and a' be 1-cycles in U\P and U'\P' representing the positive generators of H1(U\P)
and Hy(U'\P') respectively. Then

h(a) = deg(h)deg(h|p)a’ in Hi(U'\P').

Proof of Lemma 8.1. 1f B" C V'\L' is any complex disc transverse to E, we have that
0B" is homologous 0B’ in Hy(V'\(L'UE)). Thus, we may change the disc B’ if necessary
and assume that it is contained in W'. Let V' be the 1-cycle defined by &' = ©(9B8').
Then, since m(B’) C U’ is a complex disc transverse to P’ and w(9B') = on(B’), we have
that b’ is a positive generator of Hq(U'\P’). Analogously, if b = 7(9B,,), we deduce that
b is a positive generator of H(U\P). It follows from Lemma 8.3 that:

h(b) =€d’ in  Hy(U'\P'),

where ) = deg(h) and ¢ = deg(h|p). Then, since 7~ : U'\P' — W'\(L' U E) is well
defined, we have that

mH(h(b)) = gér (V) in Hy(W'\(L'UE))

and thus
h(0By) = %£0B" in Hy(W'\(L' UE)). (12)
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Observe that m(A’) is a complex disc transverse to P’. Then the cycle dn(A’) =
m(0A") represents the positive generator of Hy(U'\P'). Thus, we deduce that 7(0.A") =
w(0B') in H{(U'\P'") and therefore

oA =08 in H(W'\(L' URE)). (13)

Let C be the disc ¢(0,]z] < r) in L. Let C’ be a disc in L' containing p’. Since
h maps C homeomorphically into L' with h(p) = p', the cycle h(9C) is a generator of
the group Hy(L'\{p'}) and we have h(9C) = deg(h|,)0C'. Thus, since h|;, preserves
orientation if an only if h|p does, we have that h(9C) = £9C' in Hy(L'\{p'}). Since
L'\{p'} is contained in V'\E, we conclude that

h(9C) = £aC" in Hy{(V'\E). (14)
Observe that 9C' = 9B' in H{(V'\E). Moreover, dC = ¢(0,|z| = r) is homologous
to 0By = p(w,|z| = r) in the set T' = ¢(|z| < |w|,|z| = r). It is easy to see that
for |w| small enough, the set h(T) is contained in V'\E. Then h(dC) and h(0B,,) are
homologous in V'\ E. It follows from (14) and the observations above that for |w| small

enough:

h(OBy) = €98 in Hy(V'\E). (15)

We know that there exists integers n and m such that
h(0By) =ndA" + moB' in Hy(V'\(L'UE)).
Then, since V'\(L'UE) C V'\E:
h(0By) = ndA + moB'  in H;(V'\E),

hence
h(an):maB' n Hl(V'\E),

because dA" = 0 in Hy(V'\E). From this and (15) we conclude that m = £. Then
h(0By) = ndA + €08 in Hy(V'\(L'URE))
and, since V'\(E U L') is contained in W'\(E U L'), we have that
h(0By) = ndA" + 0B in Hy(W'\(L' UE)). (16)
From (13) we have 0A' = 0B’ in H,(W'\(L' U E)). Replacing in (16) we obtain:
h(0By) =ndB' +&0B' in H(W'\(L' UE)).
Thus, from (12) we have:
WEOB = noB + 0B in Hy{(W'\(L' UE))

and therefore n = (1) — 1)€. This proves the Lemma. O
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Proof of Proposition 8.2. It is known that the germ of three smooth and transverse
curves is equivalent to the germ given by its tangents lines. Therefore we may assume
that F has three transverse complex lines P, P, and P3 as separatrices. Then h(P),

h(P%) and h(P;) are smooth and transverse separatrices of 7 and we can also assume
that they are contained in complex lines Pl, P2 and P3 By reducing U we may assume
that UN Py, UN P, and UN P3 are homeomorphic to discs. We may take a neighborhood
U' C h(U) of 0 € C? such that U’ N Py, U' N P, and U’ N P3 are homeomorphic to discs
and are contained in h(U N Py), h(U N Py) and h(U N Ps) respectively. Then if we make
U = h_l(U’ ), it is easy to see that U'N Py, U'NPy and U'N Py are homeomorphic to discs
and h(U'NPy) = Unp, h(U'NnP) = Unp,, h(U'NP3) = U'NP;. We may choose two of
the complex lines P, P» and P3, say us P and P, such that deg(h|p,) = deg(h|p,). Let
D C Py be a disc containing 0 € C*. Then h(9D) = deg(h |p, )0 h(D) in H,(PyNU'\{0})
and, since P, NU'\{0} C U'\P,, we have that

h(9D) = deg(h|p,)0h(D) in Hi(U'\P).

On the other hand, since 0D and Oh(D) are positive generators of Hy(U'\P,) and
H,(U"\ P2) respectively, we have by Lemma 8.3 that

h(0D) = deg(h) deg(h|p,)0h(D) in Hy(U'\P).

Finally, since deg(h|p,) = deg(h|p,), it follows from the equations above that deg(h) = 1
and therefore h preserves orientation. O

Proof of Lemma 8.3. We only sketch the proof. Let D and D’ be complex discs transverse
to P and P’ respectively. Thus 9D and 9D’ are homologous to a and a’ respectively.
Clearly h(90D) = £€0D’', where ¢ =1 or —1. Let L=PNU and L' = P'NU’. Tt follows
from the topological invariance of the intersection number (see [12], p.200) that

h(L) - h(D) = deg(h)L' - D'.
On the other hand it is easy to see that
B(L) - b(D) = (deg(h|p)L') - (€D') = deg(h|p)¢L' - D'

Then deg(h|p)¢ = deg(h) and therefore ¢ = deg(h|p) deg(h), which proves the lemma.
O

9 Proof of theorem 6.2

Let p : C - 77 1(0) be the projection associated to the natural fibration on a neigh-
borhood of the divisor 77(0). Let h: U — (7, F, f, P, and P be as in Theorem
6.2. We know that the strict transforms of P and P are fibers of p- Let L, and Lg,
the fibers passing through p and p, be the strict transforms of P and P respectively.
By the hypothesis on P and P we have that p and p are regular points of Fy and fo
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respectively. Let W and WNdengte the sets 71 (U) and 7~ *(U) and let E be the divisor
7=1(0). Since h(PNU) = PNU, if

h:W\E — W\E
is the homeomorphism given by h = 7~ ' hn, we have that

h(L, N W\{p}) = Ly N W\{p}.

Now, it is easy to see that Theorem 6.2 is a direct consequence of the following propo-
sition.

Proposition 9.1. Let p and p be points in the divisor which are nonsingular for Fo and
Fo respectively. Let L, and Lz be the fibers through p and p respectively and suppose
that

h(L, N W\{p}) = Ly N W\{p}.

Then there exists neighborhoods U C U and UcU of 0 € C%, and another topological
equivalence

h:U—>U
between F and .7?, for which the hypothesis of Proposition 7.1 holds.

We need some lemmas. Let U C C be the domain bounded by the Jordan curve J.
Let p € U and ¢ € J. We know that any biholomorphism between DD and U extends as
a homeomorphism between D and U = U U J and there exists a unique biholomorphism
f:D — U with f(0) = p and such that its extension to D satisfies f(1) = ¢. In
other words, f : D — U is the unique orientation preserving homeomorphism, which is
conformal on D and maps 0 to p and 1 to ¢. Tt is easy to prove that g : D — U defined
by g(z) = f(2) is the unique orientation reversing homeomorphism, which is conformal
on D and maps 0 to p and 1 to (. Therefore we have the following.

Lemma 9.2. Let U,U" C C be the domains bounded by the Jordan curves J and J'
respectively. Let p € U, ¢ € J and p' € U', ' € J'. Then there exists exactly two
homeomorphisms between U and U’ which are conformal and maps p to p’ and ¢ to ('.
The first one preserves orientation and the other one reverses orientation.

Lemma 9.3. Let J, : S' — C be a Jordan curve for all k > 1. Suppose that Jy
converges uniformly on S to the Jordan curve J : S' — C. Let U and Uy, k > 1 be
the domains bounded by J and Jy, k > 1 respectively. Let pr, € U and ( € Ji be
such that p, = p €U and ( — (€ Jask — oo. Let f : D = U and f : D — Uy,
be the orientation preserving homeomorphisms which are conformal on D and such that

f(0) =p, f(1) =, fr(0) = px and fr(0) = Cx. Then fr converges to f uniformly on

D. If under the same hypothesis, we change “orientation preserving homeomorphisms”
by “orientation reversing homeomorphisms”, the conclusion is also true.

Lemma 9.4. Let ¢ : X — C\{0} be a continuous function. Suppose that ¢, : m(X) —
71 (C\{0}) is trivial. Then there exists a continuous function log, : X — C such that
logs — ¢
e .
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Lemma 9.5. Let ¢ : S' — S be an orientation preserving homeomorphism. Consider
St as a subset of C and define the closed curve a: S* — C\{0} by a(¢) = ¢(¢)/¢. Then
a is homotopically trivial in C\{0}.

Lemma 9.6. Let ¢ : S — S! be an orientation preserving homeomorphism and let T :
S' = C be such that e™©) = $(¢)/¢. Let A C C be the annulus {z € C:1/2 < |2| < 1}.
Then the map

g:A— A

is a homeomorphism. Moreover, g = ¢ on {|z| = 1} and g =id on {|z| = 1/2}.

Lemma 9.7. Let f: D — C be a C%-diffeomorphism onto its image. Then there eists
8o > 0 such that for all § < &y the set f(|z| < 0) is conver?

Lemma 9.8. Let f : D — C be a conformal map. Let U be an open set in C and let
do > 0. Suppose for all § < dg the set f(|z| < §) is convex and contained in U. Then
there exists € > 0 with the following property: if g : D — C is a conformal map with?
IIf = all{jz1<s0y < € then for all § < dq the set g(|z| < d) is convex and contained in U.

Any leaf of Fy or .TFVO has a natural orientation induced by the complex structure.
Thus, given a leaf L of Fy out of the divisor, we may state if h|y : L — L preserves
or reverses orientation. Suppose that h|; preserves orientation. Then it is not difficult
to prove that h|;: preserves orientation of any leaf L' close enough to L. On the other
hand, if h|;, reverses orientation, the same holds for h|z provided the leaf L' is close
enough to L. By connectedness we have in fact that: either h preserves orientation for
every leaf, or h reverses orientation for every leaf.

proof of Proposition 9.1. Let V and V be neighborhoods of p and p and let ¢ : DxD — V
and @ : D x D — V be diffeomorphisms with the following properties:

(1) If restricted to D x D, the maps ¢ and ¢ are biholomorphisms.

(71) The leaves of Fy|y and the leaves of .%g
@(D x {*}) respectively.

|7 are given by the sets o(D x {*}) and

(ii) We have L, NV = ({0} x D), ENV = (D x {0}), Ly NV = 3({0} x D) and
ENV = gD x {0}).

Let o : V — D be the projection o(¢(21,2)) = # and we also denote by o the pro-
jection o : V. — D, o(#(21,22)) = z1. Let & be the set L,NV = ({0} x D). We
have that h(X) C Ly and we may assume V small enough such that h(X) C V Given
z = (0,29) € X, we denote by D, the plaque p(D x {22}) passing through 2. We have
that D, is a closed disc in the leaf of Fy passing through zx.

2For convenience, we define a set U C C to be convex if U is the domain bounded by a smooth Jordan
curve with positive curvature.
3If K is compact and f is continuous, ||f||x is defined as the supreme of |f(z)| for z € K
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Step 1. Fix a point g in D = S! and denote by ¢, the unique point in 9D, such that
0(gqz) = q. If h preserves the orientation of the leaves, by Lemma 9.2 we may define
faz: Dy — h(D,) as the unique orientation-preserving-homeomorphism which is confor-
mal on the interior of D, and such that f,(x) = h(z) and f,(qz) = h(qy). Otherwise,
we define f, : D, — h(D,) as the unique orientation reversing homeomorphism which
is conformal on the interior of D, and such that f(z) = h(z) and f;(gs) = h(qs). Let
0, : D — D, be the inverse of g|p, : D, — D.

Assertion 1. Let f: V\E — C be defined by f|p, = fo for all x € X\{p}. Then f is
continuous.

Proof. Let g, : D — h(D,) be defined by g, = f, 0 0;'. It is sufficient to prove that
gz varies continuously with z, precisely: fix o € ¥\{p} and let z4(k > 1) be such that
T — T as k — oo; then we shall prove that g,, — g, uniformly on D. Since h(D,,)
is a compact and simply connected subset of a leaf of .7::0, there exits a neighborhood U
of h(Dg,) and a biholomorphism ¢ = (Z,W) : U — D x D such that the leaves of Fy
are mapped to the sets D x {z}. We may assume that h(D,, ) is contained in U for all
k > 0. Thus, we define Gy : D - D x D by G = ¢po gy, = (Z 0 gy, W 0 gy, ). Since
gz, (D) = h(Dy,) C U is contained in a leaf, there is zj, € D such that G¢(D) is contained
inD x {z}. Thus W o g,, = 2 and it is sufficient to show that F, = Zog,, : D — D
converges to Fy = W o g, uniformly on . Observe that Fy is a homeomorphism onto
its image and is conformal on ID. Moreover, we have that

Fi(0) = Z 0 g5, (0) = Z(h(zx)) = Z(h(z0)) = Z © g2,(0) = Fy(0)
and

F(q) = Z © gz, (q) = hqay,) = h(gzo) = ga0(q) = Fo(q)-

Then Assertion 1 follows from Lemma 9.3

Let
0, : St — St

be the homeomorphism defined by 6, = of, 'ho, !|g:. It is easy to see that 0, preserves
the orientation of S'. Consider the annulus A = {1/2 < ||z|| < 1} C D and define the
function

¢ Ax (X\{p}) — C\{0}

_ 0:(2/121)
Assertion 2. At homotopy level, ¢, : (A x (E\{p})) = 71 (C\{0}) is trivial.

Proof. The generators of 7 (A x (X\{p})) are represented by the paths

a,f: 8" = (B\{p}) x 4,
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defined by a({) = (,z0) and B(¢) = (¢,7(¢)), where 2y € ¥ and y is a simply closed
curve around p in ¥. Recall that ¢ € S', then |g| = 1 and we have

HEO) = g = 210 _ oo

q q
el ohlane)  ef o Fvo (@)
_ q _ q
o olayo)

- q
- 1L

Then ¢,(8) = 0. On the other hand, since ,, : S' — S! is an orientation-preserving-
homeomorphism, we have by Lemma 9.5 that

$poa:St— C\{0},

020 (C)

poal() = c

is homotopically trivial and thus ¢.(a) = 0.

It follows from Assertion 2 and Lemma 9.4 that there exists a continuous function
log, : A X (X\{p}) = C
such that ¢'°8s = ¢. We define the map
g1 A% (S\ph) = A
(2, 1) = 2@l Dlogs(2)

It follows from Lemma 9.6 that for all z the map

gz : A— A,

92(2) = 9(z,z)

is a homeomorphism such that g, = id on {|z| = 1/2} and g, = 6, on S'. Let A, be

the annulus p;'(A) in D, and let 04!, = o, '(|2| = 1/2) and A" = o;'(]z| = 1) be the
interior and the exterior boundary of A, respectively. Then the map

g:A; — fo(Ay)

defined by g, = fr0;'9z0: Az — fz(A;) is a homeomorphism and it is easy to see that
g coincides with f, on dA! and with h on 9A!. Then we may define the homeomorphism

hy : Dy — h(Dy)
by
hy = fz on Q;l(|z|§1/2)a
hy = gz on A,.
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Clearly, h,; coincides with h on 9D, and it is easy to see that h, depends continuously
with z. Finally, we define the function h’' by

B|p, = hy forall zeX\{p},

h' = h, otherwise.

It is easy to see that A’ is injective and take leaves to leaves. Moreover, if we restrict
h' to a small enough neighborhood of the divisor, ' is continuous. Hence, h’ restricted
to a neighborhood of the divisor is a homeomorphism onto its image and is therefore
a topological equivalence between Fy and Fy. By definition A’ is conformal on every
plaque o7 '(|z| < 1/2), because coincides with f,. In other words, there is ¢ > 0 such
that h' restricted to o(]z1| < 1/2,|22| < €) is conformal along the leaves.

Step 2. From step 1 and by reducing V, we may assume that h restricted to V is
conformal along the leaves. Then for all z € ¥\{p} the map

ho,': D — h(Dy)

is conformal and maps 0 to h(z). Given z € ¥\{p}, since ho;'(0) = h(z) is contained
in Lz NV, there is § > 0 such that the disc {|z| < ¢} in D is mapped by ho, ! into the

interior of V. Then the map
ohoy "+ {|z| <8} =D

is well defined and assuming § be small, by Lemma 9.7 we have that for all & < § the
disc {|z| < ¢'} is mapped by phg,;! onto a convex subset of I. Define d(x) > 0 as the
supreme of 0 < § < 1 such that for all § < 4, the disc {|z| < ¢’} in D is mapped by
ohoy; ' onto a convex subset of D.

Assertion 3. The function § : ¥\p — RT is lower semi-continuous.

Proof. Fix o € ¥\p and let € > 0. Take &y be such that §(zg) —e < Jp < §(zp). Then
the disc {|z| < do} is mapped by thgol onto a compact subset of D. Then, if Q is a
small enough neighborhood of zy in X\p, we have that

ohoy ' {|z] <6} =D

is well defined for all z € Q. If we write f = ghg;ol, it follows from the definition of
d(zo) that for all &' < §(xg) — €, the set f(]z| < ¢') is a convex subset of D. Let ¢g > 0
be given by Lemma 9.8 for f = ghg;ol and U = D. Then if

g:{|z|§50}—>ﬁ

is a conformal map with ||f — gll{.|<s(ze)—c} < €0, We have that for all §' < d(zo) — ¢,
the set g(|z| < d’) is also convex and contained in D. By reducing the neighborhood €
of ¢y we may assume that

|lohoz, — 0hoy ' [1{1:1<5(z0)—c} < €0
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for all z € Q. Then, we deduce that for all & < d(xg) — € the set pho, '(|z| < &) is
convex and contained in D). Thus by the definition of §(z) we conclude that

d(z) > §(xp) —e.
It follows that ¢ is a lower semi-continuous function.
Assertion 4. There exists a positive continuous function
r:3X\p— (0,1)
such that for all © the map
ohoy" : {|z| <r(2)} =D
is well defined and its image Uy := oho, ' (|z| < r(z)) is a convex subset of D.

Proof. We take the any continuous function r < § given by Lemma 7.3. Then Assertion
4 is a direct consequence of the definition of §.

For all 0 <r <1 let G, : [0,1] — [0,1] be the homeomorphism defined by

In(1/7)

/81"(t) = t In2 |
We have that 5,(0) =0, 8,(1) =1 and it is easy to see that 5,(1/2) = r. In fact

In(1/7)

B (1/2) = (1/2) =z = <2$)*ln(1/r)
— ((ean)ﬁyn(’") _ o) _
For each z € ¥\{p} we define the homeomorphism:
fo:D—D,

Observe that f, maps each ratio of D homeomorphically onto its_elf and this homeomor-
phism is “given” by £, ;). We have that f2(0) =0, f, =id on D and that f, maps the

disc {|z| < 1/2} onto the disc {|z| < r(z)}. For ally € Ly C V, let ggjl : D — D, be
the inverse of g|p, : Dy — D.

Assertion 5. For each x € X\{p}, define the homeomorphism
hy = hoy' fzo: Dy — h(Dy).

Then hy coincides with h on D, and maps the disc o, (|z| < 1/2) onto Q;(lm)(Ux).
Moreover, h, depends continuously on x.
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Proof. If ( € 0Dy, then o(¢) € S! and since f, = id on S we have that f,(2(¢)) = 0(¢).
Then

ha () = hey ' fz0(¢) = hoz ' o(¢) = Q).
On the other hand,
ha(oy ' (|21 <1/2)) = hoy " faoloy (|2 < 1/2)) = hoy ' fu(l2| < 1/2)
and, since f,(|z| < 1/2) = {|z| < r(z)}, we obtain:
ha(oy (2] < 1/2)) = hoy ' (|2] < r(2)).
Recall that U, = pho, (2] < r(z)) and so

Q;:(lm)(Um) = h@;1(|z| <r(z)).
therefore
ha(0y (2] <1/2)) = 05 (Us)-

Finally, h depends continuously on x because (3, depends continuously on r.

We now define the function i’ by

W|p, = hy forall uz,

h' = h, otherwise.

It is easy to see that h’ is injective and take leaves to leaves. Moreover, if we restrict
I to a small enough neighborhood of the divisor, it is continuous. Hence, h’ restricted
to a neighborhood of the divisor is a homeomorphism onto its image and is there-
fore a topological equivalence between Fy and .7?0. By definition, 2’ maps each plaque
07 (|z] < 1/2) onto g,:(lx)(Um). In other words, any plaque o3 '(|]z| < 1/2) is mapped by
h' onto a set which projection by p is a convex set U, in .

Step 3. From step 2 and by reducing V we may assume that h maps each plaque D,
onto g;(lx) (Ug). Since U, C D is convex and contains 0, given w € D there exists a unique

point in the intersection of U, with the ray 0_>w Let r,(w) be the norm of this point.
It is not difficult to prove that r,(w) depends continuously on z and w. We define the
homeomorphism:
fz:D — D,
fm(w) = ﬁrz(w)(|w|)w
Observe that f; maps the ratio of D passing through w homeomorphically onto itself and

this homeomorphism is “given” by f3,, (). We have that f, maps the disc {|z| < 1/2}
onto U,.

Assertion 6. For each z € X\{p} define the homeomorphism
9z = Q,:(;)ff@ : Dp(zy = Dia)-

Then g, = id on dDy,,) and maps Q’:(lm)(Um) onto gh (|z| < 1/2). Moreover, g, depends
continuously on .
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Proof. 1f { € 0Dy, then o(C) € S' and since f, = id on S! we have that f, *(o(¢)) =
0(¢). Then

9:(¢) = Q;:(lm)f:c_lg(g) = Q;;(IC,J)Q(C) =(.
On the other hand:

92(0h () (U2)) = Oy fo  0(0 0y (Un)) = 05y fo ' (U)-
From the definition of f;, we have that f, !(U,) = {|z| < 1/2}. Then

gzc(Q]:éE)(U:v)) = Q;:({I;)fx_l(U:c) = Q}:(lm)(|z| <1/2).

Finally, g, depends continuously on z because r, depends continuously on z.
Now, define the function g by

g|Dh(z) = g, forall =,
g = id, otherwise.

It is easy to see that g is injective and maps leaves of .’fg to leaves of .7?0. Moreover, if
we restrict g to a small enough neighborhood of the divisor, g is continuous. Hence, g
restricted to a neighborhood of the divisor is a homeomorphism onto its image and is
therefore a topological equivalence of .7-N'g with itself. Finally we define h' = g o h. Then
I is a topological equivalence between Fy and Fo and from the definition of g we have

hI(D:c) =g(h(Dg)) = g(Q;({E)(Ux)) = Q}:(lx)(|z| < 1/2)'
Thus A’ maps each plaque D, onto the plaque Q}:(Ix)(|z| <1/2).

Step 4. From step 3 and by redefining V we may assume that for all y € D\{0} the
equivalence h maps the plaque (D x {y}) onto the plaque the o(ID x {f(y)}), where

f :D — D is a homeomorphism onto its image. Therefore hly\g : V\E — V\E is
expressed as

he(z,y)) = ¢(hy(2), f(y),

where h,, : D — D is a homeomorphism such that h,(0) = 0 (because h(X) C Lz). As a
first case we assume that the homeomorphisms h, preserve the orientation. Define the
function

¢ : (D\{0}) x (D\{0}) — C\{0}

_ hy(z/lz])
Assertion 7. At homotopy level, ¢, : m1((D\{0}) x (D\{0})) — m1(C\{0}) is trivial.

Proof. The generators of 71 ((D\{0}) x (D\{0})) are represented by the paths

a,f:8" = (D\{0}) x (D\{0}),
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defined as a(¢) = (¢,1) and B(¢) = (1,¢). Then we have that

o) — e 1y = D _ m©)
Boa(Q) =9l 1) = TS = T

and, since hi|g1 : S' — S! preserves the orientation, we have by Lemma 9.5 that
¢ o « is homotopically trivial in C\{0}. Observe that [ is the boundary of the disc
{(L,y) : |y| < 1}. Thus, ¢(fB) is the boundary of the complex disc B = ¢(1, |y| < 1).
Consider the disc B, = ¢(w, |y| < 1), where w € D\{0}. By Lemma 8.1 we may chose
w such that the path h(8By) in V does not link the fiber L. Thus, since 0B = 0B,, in
H(V\(Lp, U E)) and h(V\(L, U E)) C V\(Lﬁu E), we have that h(0B) does not link
the fiber L. Therefore the path ¢~'h(dB) in (D\{0}) x D does not link {0} x D and,

since

¢ h(0B) = ¢ h((B)) = & h(p(1,())
= ¢ @(he(1), Q) = (he(1), £(O)),

we conclude that the path ¢ = h¢(1) = ¢(8(¢)) is homotopically trivial in C\{0}.

Assertion 7 and Lemma 9.4 imply that there exists a continuous function
log, : (D\{0}) x (D\{0}) = C
such that ¢'°8¢ = ¢. We define the map:
W :V\E - V\E
by:

Wip(z,y) = @(x.f(y), for |o]<1/2, and
Wip(z,y) = @lacie-Dlesa), £y for |z >1/2.

By Lemma 9.6 we have that k' maps the plaque ¢(D x {y}) homeomorphically onto the
plaque ¢(D x {f(y)}). Thus A’ is a homeomorphism which preserves the plaques and
it is easy to see that A’ coincides with h on ¢(dD x (D\{0})). Moreover h' extends to
o(|lz| < 1/2,y =0) C E as h'(p(z,0)) = ¢(x,0). It is easy to see that this extension is
a homeomorphism onto its image. We now define:

>

= h' on V\E,

= h otherwise.

>

As before, on a neighborhood of the divisor, h is also a topological equivalence between
Fo and Fy. Moreover, from above h extends to the open set ¢(|z| < 1/2,|y| < 1) and
Proposition 9.1 is therefore proved in this case. We now suppose that the homeomor-
phisms h, inverts orientation. Then we define

B :V\E — V\E
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W(p(z,y) = &(@ f(y), for |z|<1/2, and
W(p(,y) = @@eF=D0ely) (), for |a| >1/2.
and the proof follows in the same way. O

Proof of Lemma 9.3. This lemma is a direct consequence of a theorem of Rado (see [11],
p.26). O
Proof of Lemma 9.4. Fix g € X. There is a neighborhood €2 of zp¢(z¢) in C\{0} where
a branch of logarithm function is well defined. Then there exist a holomorphic function

f:2—-C

such that /() = z for all z € Q. We know that f can be analytically continued along
any path v in C\{0} with v(0) = zp and y(1) = z € C\{0}. This analytic continuation
has a value at (1) = z, which we denote by f,(z). Let z € X. Take a path a in X
connecting zo to z. Then we define Fi(z) = fgon(¢p(z)). Let @' be other path in X
connecting zq to z. Then, since

s : m(X) = m (C\{0})
is trivial, it follows that ¢ o @ and ¢ o &/ are homotopic in C\{0}. Then
Js0a(9(2)) = fpoar (¢())

and so Fy(7) = Fy (z). Therefore we define log,(z) = Fu(z) for any a. O

Proof of Lemma 9.5. 1t is known that a map ¢ : S — S™ is homotopically determined by
its degree (Brouwer). Thus, a preserving-orientation homeomorphism of S! is homotopic
to the identity map id : S — S', that is, there exists a map

F:8'x[0,1 — St
such that F((,0) = ¢(¢) and F((,1) = ¢ for all ¢ € S'. Then the map
G:S'x[0,1] = S' c Cc\{o}

defined by .8
F((,t
¢

is a homotopy between a and the constant 1. O

G(Cat) =

Proof of Lemma 9.6. We first observe that each circle {|z| = r} in A is mapped into
itself. Let z € A with |z| = r. Since

e = ¢(¢)/¢ € St
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for all ¢ € S, it follows that 7(z/|z|) = 2mit with t € R. Then

l9(2)| = |Ze(2\2\—1)7(2/|2|)| — |z||e(2|2|—1)(27rit)| =|z| =1

Now, it is sufficient to prove that g maps each {|z| = r} homeomorphicaly onto itself,
which is equivalent to prove that the map h : S' — S! defined by h(() = g(r()/r is a
homeomorphism. We have that

h(¢) = g(r¢) /r = (r¢)ePrdI=Drrc/irdl) 1 — ¢ er=17(0)

where 1/2 < r < 1. Since ¢ is a homeomorphism and preserves the orientation, there
exists a homeomorphism f : R — R such that ¢(e?™) = /() and f(t+1) = f(t) +1
for all t € R. Then, since e™(¢) = ¢(¢)/¢, we obtain

67(62””) _ ¢(627rit)/627rit _ 627rz'f(t)/e27rit _ e27ri(f(t)7t).

Hence 7(e?™) = 27i(f(t) —t + N), where N € Z. Then

h(62mt) _ e27rit6(2r—1)7'(e2”t) — 2mit ,(2r=1)(2mi)(f(t)—t+N)
—  @mi)(t+2r—1)f()—(2r—1)t+(2r-1)N)

6(27”')((27"71)f(t)+(2f2r)t+(2r71)N) (17)

and we have therefore

h(eQm't) _ eQm’f(t)
where f(t) =2r—=1)f(@)+(2—-2r)t + (2r —1)N. An easy computation shows that
f(t+1) = f(t) + 1. Moreover, since f is increasing, it is easy to see that f also is. Then

f:R — R is a homeomorphism and the lemma follows. O

Proof of Lemma 9.7. Since the conjugation z — Z preserves the convex sets, by replacing
f with f we may assume that f preserves orientation and is therefore holomorphic. For
r > 0 small enough, define g, : D — C, g,(2) = f(rz/a)/r, where a = f'(0). It is easy
to see that g,(z) — z as r — 0 for all z. Then g, converges uniformly on compact sets
to the identity id : D — ) as r — 0. Hence there is ry such that for all r < ry we have

lid =grll{21<1/2) <€

where € is given by Lemma 9.8 for §p = 1/2. Therefore g,(|z| < 1/2) is convex for all
r <rg. But

rESY2Y 0 gz < 2oy,

9r(12 < 1/2) = (- 2l

which is convex in and only if the set g(|z| < r/|2a]) is convex. Then, if we take
do = 70/(2]a]), we have that the set g(|z| < J) is convex for all § < dy. O

Proof of Lemma 9.8. Again we may assume that f is holomorphic. Given z with
|z| < dg, let k(x) be the curvature of the curve
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Let §:[0,1] — C be a smooth curve. Then the curvature of § at the point 5(¢) is
given by

_ |4 (20| B s m] - Fos L)
o0 = |7 ()| - TIFOF 1
@I 0] - B OO
B FoP
18" 1B ()P — BT (B (1)
25T | 1

Let r > 0 and consider the curve v, (t) = re'/ the boundary of the disc {|z| < r}.
Let g : D — C and let a;4 be the curve o,y = goy,. Observe that oz;ng(t) =g (7 ()7 (1),
oy, (1) = g" (% () (e ()? 4+ g' (e ()3 (8), |y (¢)] = 1 and |,(¢)] = 1/r. Then, from
(18) we have that

" 1\2 ! 11AYPV; o 1 ’

k(ary (1)) = 19 0nO0) +g(vr>gi()if)<|zr)| g ()7lg ()]
_ 19 g ()l + 9" () ()29 ()| — ' () vilg ()
g () 2 !

Hence

K(ang(t)) > lg'(v) 12/ — 19" (ve)llg’" (v) ] = lg" (ve)lg” ()

9" ()12
9" (ye)l/r = 19" (ve)| = 1g' ()
19/ | (20)
Observe that o) ™ o
v 9 g () + 9 () g” (e )y
l9' (%) = FICAI
and thes 9" ()l ()] + 19 ()l ()
/ / g Ve )9 \Vr g\ )19 \"Vr "
lg"(v)I" < FICA] <2[g" (w)|-
Replacing in equation (20) we obtain
B(ang(t) > Ig’(vr)l/r—:z:’(zr))|l —2[g" (7|
= 1/r =3lg" (v)I/lg' ()]- (21)

We know that if ¢ — f, then ¢”/¢' — f”/f’ (uniformly on the compact sets). Let
M = [|f"/f'll|z1<s0 + 1. We make take ro < do and € > 0 such that 1/ro —3M > 0 and
19" (7)1 /19’ (vr)| < M whenever

||f_9||\z\gr0<€1 and 7 <.

From this and (21) we have
E(arg(t)) >0 (22)

50



whenever [|f — g|];j<r, < €1 and 7 < 7. On the other hand, it follows from (19) that

k(o g (t)) = Flag (), oy (1)),

where
y|z|* — ya?

P = |

Let
A= {(ag (1), ap()) : t €10,1],m0 <7 < do}.

The set A is compact and contained in the domain of definition of F. Since f(|z] < d) is
convex for all 6 < dg, we have k(o f(t)) > 0 for all ¢ € [0, 1], ro < r < g and therefore
F(z,y) >¢e9 >0 (23)
for all (z,y) € A. Take £1 > 0 such that
|F(z,y) — F(a',y)| < e (24)
whenever |z — 2|, |y — y/| < e1. Tt is easy to see that there exists e > 0 such that
ol () — by <1 and [l (t) - aly(t)] < &1

for all £ € [0,1],70 < < &g, whenever ||f — g|[|.|<5, < €2. Then, by (24) we have

| F (), 0y (£)) — F (0 (£). 0y ()] < €0

and (23) implies that

E(arg(t)) = F(a,(t), apy(t)) > 0. (25)
If we take || f —gll|zj<s, < € := min{ey, €2}, it follows from (??) and (25) that k(ayy(t)) >
0 for all ¢ € [0, 1], r < dg, that is, the set g(]z| < 6) is convex for all § < §y. Clearly we
may assume e small enough such that g(|z| < d¢) is contained in U, which finishes the
proof. O

10 The differentiable case.

In this section we prove Theorem 6.1. As before, let 7 : C2 - 2 be the blow up at
0 € C? and let E be denote the divisor 7 1(0). Let p: C2 — E be the natural projection

associated to the fibration on C? which fibers are given by the strict transforms of the
complex lines passing through 0 € C2.

Definition 10.1. Let {2} be a sequence of points in C2\{0}. Let L be a complex line
passing through 0 € C? . We say that {2z} is tangent to L at 0 if zx — 0 and every
accumulation point of {zi/||zk||} is contained in L.

Lemma 10.2. Let {z}} be a sequence of points in @\E Let z € E and let Py, = w(Ly),
where Ly is the fiber of p through x. Then xy — © € E if and only if {m(xy)} is tangent
to P, at 0.
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Let C be a irreducible separatrix of F (Separatrix Theorem). Then C = h(C) is a
separatrix of F (irreducible). Let P and P be the tangents lines at 0 € C? of C and C
respectively.

Proposition 10.3. Denote by A the derivate dh(0) : RY — R*. Then A(P) = P.
Proof. Given v € P\{0}, there exits a path v : [0,1) — C, with v(0) = 0 and such that

7'(0) = v. Then the path hoy is contained in C' and therefore

(hoy)"(0) = dh(0)(v'(0)) = A(v)

is contained in P. It follows that A(P) C P, and so A(P) = P, since A is a isomor-
phism. ]

Let L and L denote the strict transforms by 7, of P and P respectively. Let ¢ and
q be the points of intersection of L and L with E. We may assume without loss of
generality that
P = ﬁ = {(21,22) S C? 29 = 0}.

Let Y = m (21 # 0) and consider holomorphic coordinates (¢,z) in U such that m
is given by 7(t,z) = (z,tz). Then the fibers of p are given by the sets {t = cte}
and , the fibers L and L are represented by {t = 0}, that is, ¢ = ¢ = (0,0). Since
fo has a finite number of singularities on E, we may take ¢ > 0 such that the set
{(£,0) : 0 < |t| < 2¢} C E does not contain singularities of Fy. let

A:C\E —» C\E

be the homeomorphism defined by A = 7~ Ax.

Proposition 10.4. There exists § > 0 such that the set
{(t,2) : [t| < 201\

is mapped by A into {(t,z) : |t| < 2¢}. Clearly, we may take & such that the set
{(t,0) : 0 < |t| < 20} C E does not contain singularities of Fy.

Proof. Let A(z) = (A1(2),As(2)) for all z = (21, 23) € C?. Since A(P) = P, it follows
that Ay(z1,0) =0 for all z; € C. Hence:

AQ(Ca 0)
Ay (Ca 0)
for all ¢ € S'. Then there exists 6 > 0 such that

AZ(C, 22)
Al (ga 22)

for all ¢ € S' and all z € C with |zp| < 26. Since A is real linear:

Aa(z1,20) _ |mlAa(z/|2]s 22/121]) _ Aa(21/l21]s 20/ ]21))
Ai(z1,22) |zl /2], 22/ 12])  Ad(zi/l2]s 2o/ 21])

=0

< 2 (26)

< 2e¢
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and, since z1/|z1| € S!, it follows from (26) that

Ag(z1,22)
<2 h < 20. 2
A (1, 22) < 2¢ whenever |z9/z1] <2 (27)
fwe {(t,x) : |t| < 20}\E, then w(w) = (21, 22) with z; # 0 and |22/21| < 2d. Therefore
Aw) = alAn(w) =7 1Az, 29) = 7 Y(A1(21, 22), Aa(21, 22))
Ag(z1, 22)

= (m,A1(21,22)),

and it follows from (27) that A(w) is contained in {(¢,z) : |t| < 2€}. O
Let p = (4,0) € E and let L, = {t = 0} (its fiber). Consider the path
B:8' = L,
B(¢) = (4,6),

and let B4 : S' — {(t,7) : |t| < 2¢} given by 3 = Ao B.

Proposition 10.5. The set p(A(L,\{p})) is equal to p(B4(S')).

Proof. Evidently pB4(S') C p(A(L,\{p})). On the other hand, let (§,z) € L,\{p},
then

pA(S,z) = pr tAn(d,z) = pr 'A(z,dx)

—~

= prYAi(z, 01), As(x, 01)) = p(%,Al(:ﬂ,(m))
_ Aaledn) o Aola/lal b/ )

Ay (z,6z) Ay (z/|x], dz/|x|)
P VST Mool b/ a])
= pr N (Ai(z/|x, 0x/|z]), Aa(a/|], 6z /|2]))
— pr "A/lal,dx/|2]) = pr ' An(6, 5/l

= pA(B(z/|z])) = p(Ba(z/|z])).
Therefore p(A(Ly\{p})) C pBa(S"). O

’0)

Define K as the set of points y € E such that there exists a sequence {z}} in L,\{p}
with h(zy) — y as k — oo.

Proposition 10.6. Given a neighborhood Q of K in @, there exist a disc X in Ly
containing p, such that the set h(X\{p}) is contained in Q.

Proof. Is a direct consequence of the definition. O
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Proposition 10.7. The set K is equal to pBa(S*). Thus, since Ba(S*) C A(L,\{p})
does not intersect L, the set K is contained in {(t,0) : 0 < |t| < 2€}.

Proof. Let y € K. Then there exist a sequence {zy} in L,\{p} with h(zy) — y as
k — oo. Let P, = m(L,), where L, is the fiber of p through y. It follows from Lemma
10.2 that the sequence {m(h(zy))} is tangent to P, at 0. Since m(zy) — 0 as k — oo
and A is the derivate of h at 0, we have that

h(m(zg)) = A(m(zi)) + R(m(zr)),
where R(m(zy))/||7(z)|| = 0 as & — oo. Therefore

hm(zk)) _ Alm(or)) | Blm(or)
w(@)ll Mm@l (@l

with R(m(zg))/||m(zk)|| — 0 as k& — oo. Since the sequence {hn(zy)} = {wh(z)} is
tangent to P, at 0, we have by definition that any accumulation point of

h(m(zr))
[ (z)|

is contained in P, and the same holds for the sequence

h(n(zg)) _ h(r(zg))  [[h(@)l]

(28)

(@)l (@)l ()]
Then, it follows from (28) that any accumulation point of the sequence
A(m(zk))
|7 ()l

is contained in P, and the same property is satisfied by

Alr(zr) _ Alm(zr)) Izl

[A( (@) (@)l (A @)

Then the sequence
! Alr(z) _ w(A(w)

Az )l |l (Alzr))]
is tangent to P, at 0. By Lemma 10.2 we have that A(z;) — y as & — oo, hence
p(A(zr)) = y as k — oo. Then y is a limit point of p(A(Ly\{p})). But p(A(L,\{p}))
is equal to pBa(S') by Proposition 10.5. Then, since pBa(S') is compact, we have that
y € pBa(St) and therefore K C pB4(S'). On the other hand, let y € pB4(S'). Then
y = p(A(9,()). Forall k € Nlet 2}, = (6, 51,() € Ly, where s, >0 and s — 0 as k — oo.
Clearly zj, — p = (4,0) as k — oo. Then 7(z;) — 0 € C? as k — oo and we have that

h(m(zg)) = A(m(z)) + R(m(zk))
with ||R(7(zg))||/||7(zk)|| = 0 as & — oo. Therefore
hr(zy)) _ Alr(zr)) | Blm(zi))

Ie(@oll — lx@e)ll @l
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Hence, since
Alr(an) _ AlsiCose) _ sk AGCH) _ AL CH)
Iw(z)ll [[(skCssaCO| [sellI(S COIE (¢, CA)]
and ||R(m(zk))||/||7(zk)|| = 0 as k — oo, we have that
h(r(zy) | AL
w11 O]
as k — oo. Let Ly be the fiber of p through y and let P, = n(Ly). Since p(A(4,¢)) =
we have A(9,() € Ly, hence mA(6,() € P,. Then

A(¢¢9) _ A(n(6,¢) _ mA(S,C)

IS AR CICAS]]

is contained in P, and it follows from (29) that any accumulation point of the sequence

m(h(zr)) _ hw(zg)) [[hlr(er))l]

(29)

()l (@)l (@)l
is contained in P,. Then, by Lemma 10.2 we have that 7(h(zy)) = v as K — oco. Thus
y € K and therefore pB(S') C K. O

Proposition 10.8. Define 0 :[0,1] — E by 0(s) = pBa(e™) for all s € [0,1]. Then

pofa(e®™®) = 6(2s), if 0<s<1/2,
pofa(e®™®) = 0(2s—1), if 1/2<s<1.

In particular, pB(S*) = 6([0,1]) and, by Proposition 10.7, we have that K = 6([0,1]).

Proof. If s € [0,1/2], then pBa(e*™) = pBa(e™?9)) = #(2s). Suppose now that s €
[1/2,1]. Then, since A is real linear:

w = pAB(e*™) = pn ! Am(,¢*™) = pr T A(e*™, 5T
= S DA((—1)e, (—1)5e2e)
( 1)(A1( —mi 27718 —Wi(SeQWiS)’AQ(e—ﬂ'ieQWis’6—771‘562771‘3))
= pwfl(—Al (67”(25 1)’ (567”(2571)), _A2(e7ri(2sfl)’ 5e7rz'(2571)))
( i(25—1) (5e7r1'(2571))
(emi(2s— 1) 567"(25 0)’

—A (ewi(25—1)’ 5e7ri(2s—1)))

1
.

(
- (Al em™i(25—1) §emi(2s—

A,y (em(Qs 1) ’
N )

Semi(2s— 1)) ) )
mi(2s—1) mi(2s—1)
p A (emi@s—1 ’(56771‘(23—1))’A1(e , d¢ ))
— pﬂ_l(Al(em(Qs_l) m (25-1) ) As ( wi(25— 1)’6e7ri(2s—1)))
_ pTr—lA(ewi(%—l)’(sem(?s 1)) = pr 1A7r(5 6771(23 1))
_ pA((5, em’(?s—l)) _ pAﬁ(em )) = pBa ( wi(25— 1))

= 0(2s—1),
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since (2s — 1) € [0,1].

Proposition 10.9. We have that: either K is a unitary set, or K is equal to a Jordan
curve.

Proof. By Proposition 10.7 and Proposition 10.8, it is sufficient to prove that: either
0 is constant or it is is a simply closed curve. By Proposition 10.8, we have that
0(0) = 6(2(1/2) — 1) = pBa(e*™(1/2)) = 9(2(1/2)) = 6(1). Thus 6 defines a closed curve
in E. Suppose that € is not a simply curve, that is, 6(s') = 6(s") for 0 < ¢’ < s” < 1.
Observe that

0(s') = pr~'Am(8,e™") = prtA(e™ | 5.

Writing A(e™', de™") = (A, A}) we have that
! !
0(s') = pn 1 (A}, AY) = P(A—?,Aﬁ) = (A—?,O)-
Analogously, making A(e™", §e™s") = (A”, AY) we obtain

"
0(s") = (A—,i,, )-

Ay

Then A= % and we have therefore that
1 1

ahy +bA;5 Ay Ay
aAl +OAT T AL T AT
for all a,b € R such that aA’| + bA # 0. Computing as above

! 1 !
085 1A% 0y = (B2,0) = o(s),

,071'71(G,A’1 + bA'll,aAIQ + bAg) = (m, A—Il,

that is,
prH(a(AT, Ag) +D(AT, Ag)) = 6(s). (30)
Since 0 < s’ < s" < 1, the vectors emis’ ‘and ¢™s" are real-linearly independent. Thus,
for all s € [0,1) we have that €™ = ae™* + be™" with a,b € R. Therefore:
0(s) = pAB(E™) = prLAn(6,¥™%) = prtA(2T, 5629

= pwflA(aem‘s, + be™", 5(aemsl + be“su))

= pr YA(a(e™, 5™ ) + b(e™, ™))

= pr YaA(e™,5e™ ) + bA (™", 5e™"))

= pr '(a(A], A)) + (AT, A)),
and by using (30):

O(s) = 0(s).

It follows that 6 is constant and the assertion is therefore proved.
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We denote by V and V the sets {(,z) : |t| < 20} and {(t,z) : || < 2€} respectively.
Let
B:S8' =V

be the path defined by 3(¢) = (¢, ¢).

Proposition 10.10. The path Ba is homologous to £B in ‘7\(5 U E), where £ =1 or
—1.

Proof. Let By, be the disc {(t,z) : ¢ = w,|z| < 1} in V. Observe that B is equal to
0B, where B is the disc {(e,z) : |z| < 1} in V. Then, since A : R* — R* preserves
orientation, it follows from Lemma 8.1 that for some w # 0:

A(0B,) =¢0B=¢3 in Hi(V\(LUBE)). (31)

Observe that 9B, is homologous to 8 in V\(L U E). Then, since A(V\(L U E)) is
contained in V\(L U E), it follows that

A(8By) = A(B) = B4 in H(V\(LUE)). (32)

Thus the proposition follows from (32) and (31).

Proposition 10.11. Suppose that K is a Jordan curve and let U C {(¢,0) : |t| < 2¢}
be the domain bounded by K. Then q = (0,0) ¢ U.

Proof. Making C = {(t,0) : |t| < €} and since p: V\(L U E) — C\{p'} is well defined,
it follows from Proposition 10.10 that

p(Ba) =¢p(B) in Hi(C\{p'}).
Then, since p(8) = 0 in Hy(C\{p'}), we have that

pofa=0 in Hi(C\{p'}). (33)

If we consider p o 84 as defined on [0,1] by s — pB4(e*™), it follows from Proposition

10.8 that po S4 = 0 % 6. Then
pofa=20 in Hi(C\{p'})
and it follows from (33) that
0=0 in Hi(C\{p'}),

since H,(C\{p'}) does not have torsion. Therefore p’ ¢ U.

Proposition 10.12. Let X be a disc in L, containing p and such that A = h(X\{p}) is

contained in 17\E Let vy be a path in A, which represents a generator of H1(A). Then
v is homologous to B in V\E with £ =1 or —1.
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Proof. Since V\(L U E) is contained in V\E, it follows from Proposition 10.10 that 84
is homologous to ¢ ﬂ in V\E where £ = 1 or —1. Therefore it is sufficient to show that
v is homologous to {84 with € =1 or —1. Let

Oy : S' = L, = {t =5}

be the path defined by 9,(¢) = (J,7¢) with 0 < r < 1 small enough such that {(J, z) :
|z| < r} is contained in 3. Then 9, is a generator of H1(X\{p}) and consequently h o,
is a generator of Hi(A). Thus v is homologous to £h o ¥, in ‘7\E, where £ =1 or —1.
Therefore it is sufficient to prove that h o 4, is homologous to 54 in ‘7\E Recall that
B(¢) = (6,¢). Then S and ¥, are homologous in C' = {(4,z) : 0 < |z| < 1} C L, and,
since A(C) C V\E, it follows that the paths Ao 3 = 84 and Ao ¥, are homologous in
V\E. Then, it suffices to show that h o, and Ao ¥, are homologous in V\ E for some
r > 0.

Let P' = m(Ly) and consider the path 6, : S' — P’ defined by 6, = 7 o9, that
is 0,.(¢) = (r¢,6r¢). Recall that A : R* — R* is an isomorphism, then there exist a
constant ¢ > 0 such that

I|A(2)|| > ¢||2|| forall zeC2. (34)
Since A is the derivate of h at 0, there exists € > 0 such that
h(z) = A(z) + R(2), (35)

with |R(z)| < ¢|z| whenever |z| < e. Now, assume that

r < min{ ——,c¢, ¢ +1
where the constant g > 0 will be defined later. Then, since 6,.(¢) = (r(, ér() satisfies
10, (Ol = V146> <e, (36)
we have that
RO (O] < cl|6r (Ol (37)

Therefore the map
F:8'"x[0,1] - C?,

F(C.s) = A(6:(C)) + sR(6-(C))
is such that

IF(C ol = [[A(0:(C)) + sR(6:(0))]]
> [[AG ) = [[s RO (O] = |0 (O] = [[R (6 ()] > 0.

Observe that F((,0) = A(0,(¢)) and F({,1) = A(0,(¢)) + R(6,(¢)) = h(6,(¢)). Then F
defines a homotopy between A(6,) and h(HT) in C?\{0}. Thus, since 7=1 A(6,) = A(",)
and 7! h(9 ) = h(d,), it follows that 7! o F' defines a homotopy between A o 4, and
h o, in (C2\E Therefore, in order to prove that Ao, = ho ¥, in Hy(V\E), i
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suffices to show that 7! o F(C,s) belongs to V for all s € [0,1], ¢ € S'. We write
F(C,S) = (xFayF)’ A(QT(C)) = (mAayA) and R(QT(C)) = (mRayR)a then

(zr,yr) = (zA,yA) + 5(TR,YR)- (38)

Observe that

(Fwa) = n 7 @a,ya) =7 AB(Q) = An'6,(0) = Ao Q).
hence (ya/za,0) = pAd,(¢). Then, since A9, (() is contained in A(L,\{p}), it follows
from Proposition 10.5 and Proposition 10.7 that (ya/za,0) is contained in K. Thus,
since K a compact subset of {(¢,0) : |[t| < 2¢}, we have that

lyal 4 o) < 2 (39)

|z Al

for some €1 > 0 small enough. Take €5 > 0 be such that

62(1 + 26)
< €. 40
(c/(1+26) —eg) " (40)
Now, we chose ¢ be such that
|R(2)[| < e2ll=ll (41)

whenever ||z|| < g9. Observe that 7! o (2, yr) belongs to
V ={(t,z) : |z] < 2}
if and only if Z—l; < 2¢, and by (38), if and only if

Ya T SYr < %. (42)
TA + SYR

An easy computation shows that

YA+ SYr _ ya 4 SYR— syr(ya/za)

TA + SYr TA A+ SYR

Thus, in view of (39), it is sufficient to prove that

|syr — syr(ya/za)| <en. (43)
|zA + syr|

Since that |16, (¢)|| = 7v1 + §2 < ey, it follows from (41) that ||(yr, yr)|| = ||R(6-(C))]| <
€2(|07(C)]], hence |yr| < &2[|6-(¢)[[- Then

lsyr — syr(ya/za)l = [syr|- |1 —ya/zal
< eal|fr (O + lyal/lzal)

and, by using (39), we obtain

[syr — s(ya/za)yr| < e2(1 + 2€)[16,(C)]|- (44)
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On the other hand, also from (39) we have that |ya| < 2¢|z |, hence

(1 +2€)[zal = [za] + |yal = [[(za,ya)l| = [[A6-(C))]] = cll6r (O]

and therefore

C
ol 2 15 10l

Then

C
[wa + syl 2 [oal = Isyr| 2 lval = lyrl 2 77110 (O] = e2l|6- (O]

and so
lza + syr| > (¢/(1 + 2€) — €2)]|6-()]]-

From this and (44) we obtain

syr — s(ya/zalyr| . e2(L+20)[10,(Ol  _  ea(l +2¢)

[za+syrl 7 (¢/(1+2€) —)]|0:(O)]]  (¢/(1+2€) —€)
and from (40):

|syr — sya/zayr|
|zA + syr|
which finishes the proof. O

S €1,

It follows from Proposition 10.7 and Proposition 10.9 that there exists a subset D
of the divisor E with the following properties:

(1) D is diffeomorphic to a closed disc.
(13) D is contained in {(¢,0) : 0 < |¢| < 2¢}
(731) K is contained in the interior of D.

Let p be a point in the interior of D and let Lz be the fiber of p through p. Since D is
contained in a leaf of fg, there is a disc ¥’ in L containing p with the following property:
if z € ¥/, then there exists a closed disc D, in the leaf of ,7?0 passing through z, such that
p maps D, diffeomorphically onto D. Let W denote the set |J,.5, D,. By Proposition
10.6, there exists a disc X in L, containing p, such that the set A = h(X\{p}) is contained
in the interior of W. We assume ¥ be small enough such that Fy is transverse to 3.

Proposition 10.13. There exists a disc Ycy containing p, with the following prop-
erty. Given v € X\{p}, the disc Dy intersects A in a unique point f(x). Moreover, the
map f: X\{p} — A is continuous.

Proof. The foliation .%g induces a complex structure in A as follows. Let y € A and
z € E\{p} with h(z) = y. Since ¥ is transverse to Fy, there exists a neighborhood
Wy of z in « \E such that each leaf of Fo|w, intersects ¥ only one time. Let W, be
a neighborhood of y where .%g is trivial. Thus, there exists a disc f]y (complex sub-
manifold of W) such that each leaf of .7::0|Wy intersects f]y at a unique point. We may
assume that h_l(Wy) is contained in W,. Let X, C ¥ N W, be a disc with z € 3,
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and such that the closure of ¥, = h(¥;) C A is contained in W,. If w is a point
contained in Y, the leaf of ﬁ0|Wy passing through it intersects f]y in a unique point
thy(w). Clearly, 1, is continuous and we claim that 1, is a homeomorphism of 3, onto
its image. Since iy is compact, it suffices to prove that v, is injective on iy. Suppose
that wy and wy are two different points in fy contained in the same leaf L of fg|wy.
Then, since m, ' (W,) C W,, we have that m,'(L) is contained in a leaf L' of Folw,.
Then h~!'(w;) and h='(ws) are two different points in the intersection of L’ with X,
which is a contradiction. Then we consider v, : 3, — f]y as a local chart of A. We may
assume the sets 3, be small enough such that, if 3, "X, # 0, then 3, UX,/ is contained
in an open set where .7::0 is trivial. Then it is easy to see that the map ¢,/ o4, 1 which
preserves the leaves, is a holonomy map and therefore holomorphic.

Given y € A, denote by g(y) the point in X'\{p} such that y € Dgy,. It is not

difficult to see that the map got), 1:¥, — ¥ is a holonomy map. Therefore g: A — ¥/
is holomorphic and regular. It is know (see [10]) that there exists a biholomorphism

p: A ={z€eC:0<r<|z|<1} = A

and we may take ¢ such that ¢(z) — E as |z| — r. Hence go ¢(z) — p as |z| — 7.
Then the map go ¢ : A, — X' extends as g o ¢ = p on |z| = r. This implies that » = 0.
Then g o ¢ extends holomorphicaly to D with g o ¢(0) = p.

Assertion. The map g o @ is reqular at Q.

Proof. Let « be a path in D\{0} which winds once around 0. It is sufficient to prove
that the path g o () in X' winds once around p. Let 8’ be a path in X'\ {p} such that

g =p in H(V\E). (45)

Clearly (' represents generators in Hy(X'\{p}) and Hi(W\E). Let N and N’ be integers
such that that

gop(y)=Npg'" in Hi(Z'\{p}) (46)

and
@(y) =N in H(W\E). (47)

We shall prove that N =1 or —1. Observe that ¢ is the restriction of the map
G : W\E — ¥\{p}

defined by G(D,) = {z} for all z € ¥'\{p}. Then, since g(5') = /', it follows from (47)
that

gow(y)=N'g in Hi(Z\{p})
and, in view of (46), we conclude that N’ = N. Thus, since W\E C ‘N/\E, equation
(47) gives: N
p(y) = NG in Hi(V\E).

Then, by (45), we have that

p(y) =NB in Hy(V\E).
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Thus, since () is a generator of Hy(A), Proposition 10.12 implies that N =1 or —1.

Now, since g o ¢ is regular at 0, there exists a disc 2 in D containing 0, such that
g o |l is a homeomorphism onto its image. Then, since ¢ is a diffeomorphism, it
follows that g = 9|w(9\{0}) is a homeomorphism onto its image. Thus we take a disc

3 C gp(Q) C ¥’ containing p and define f = g~ on S\{p}. Let z € X\{p}. Clearly
f(xz) € A and since g(f(x)) = x, we have that f(z) € D, and so f(z) € D, N A. If
y € Dy N A, then ¢g(y) = = and therefore y = f(z). Then f(z) is the unique point in
the intersection of D, and A. This proves the proposition. O

We need the following lemma.
Lemma 10.14. For each x € D, we may take a homeomorphism hy : D — D such that:
(i) hy(x) =0 for all z € D.
(ii) hy =id on S'.
(iii) hy depends continuously on x.

Proof of Theorem 6.1. From Lemma 10.14, for each x € Y we may take a homeomor-
phism h, : D — D such that:

(1) he(p(f(2))) =P
(#4) hy =id on 0D
(#31) h, depends continuously on z.
Then the homeomorphism g, : D, — D, defined by
pogs=hgop (48)
depends continuously on z € S C L. Consider the map g defined as

= gz on D,

id otherwise.

We have that g is univalent and preserves the leaves of .%g. Moreover, in a small enough
neighborhood of the divisor, g is continuous. Thus, if restricted to a small enough
neighborhood of the divisor, g is a topological equivalence between .%g and itself. Then,
in a neighborhood of the divisor, g o h gives a topological equivalence between Fy and
Fo. Therefore for some neighborhoods W and W of 0 € C?, the map

fl:ﬂ'ghﬂ_l:W%W
is a topological equivalence between F and F. Let P = n(Ly) and P= m(Lg).
Assertion. There exists a disc D in P containing 0 € C2?, such that B(D) s contained

mn P.
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Proof. If y € A is close enough to E, we have that y € D, for some z € 3. Thus, there
is a disc Yo C X containing p, such that for all y in h(Xo\{p}) C A we have y = f(x)
for some z € 3. Then, from (48) and (i) we have that

pog(y) =pog(f(z)) =haop(f(z))=p.
Thus g(y) € Ly for all y € h(Xo\{p}) and therefore
g o h(Zo\{p}) C L.
Then, if D C 7(g) C P, we have that h(D) c P.

Consider a neighborhood W' C W of 0 € C? homeomorphic to a ball and such that
W’'NP C D. We take W' small enough such that h(W’)N P is contained in h(D). Thus,
making W' = h(W'), it is easy to see that

KW' NP)=W'nP.
Then, o
h|WI U—-Ww
is a topological equivalence between Fy and ﬁo, which satisfies the hypothesis of Theo-

rem 6.2. Therefore Theorem 6.1 is proved. O

Proof of Lemma 10.14. Let v : D — [0, 1] be such that ¢ = 1 on {|z| < 1/2} and % =0
on S'. Let

Gr(t) : 10,1] — [0,1]
be a diffeomorphism with £3,(0) = 0, (1) = 1, B(r) = 1/2 and such that §, depends
continuously on r > 0. Given z € D, define the vector field

Vy:D—C

Va(z) = —b(Byy (|21))z,

and let ¢, the flow associated to V. Then define h, : D — D by hy(2) = @i (1, 2). Tt is
easy to see that h, satisfy the conditions of Lemma 10.14. O
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